IC implementations

- So far, we talked mostly about discrete circuits...
- In IC:
- Very rare use of capacitors, inductors practically never (only in some RF circuits)
- - you typically do not have resistors > several K Ohm,
- - the larger resistance, the more expensive it is,
- - a resistor is much more expensive than a bunch of transistors!

Opamps

- Previously we looked at the block-level internal structure of an operational amplifier
- We are now starting to look at the transistor level implementations of these blocks
- What sort of amplifier circuits would you propose for the blocks below based on what you've seen so far?

Opamps

• We macromodeled these blocks in the following way:

• What do the R's represent?

IC implementations

• There is one more thing you have when you design IC:

Device Matching

For example:

- electrical parametes of device 0.1 %
- temperature of operation of many devices can be almost the same.
- This would be to some extent possible, but veeeeeeeeeeeeeeee expensive in discrete design

Basic Differential Amplifier

• Emitter voltage becomes whatever value is necessary so that forward active transistor currents sum to current source value, I

Basic Differential Amplifier

• You can express input signal in more convenient terms:

common mode signal:

differential mode signal:

then:

Basic Differential Amplifier

• Differential output rejects common mode inputs

Mismatch of elements

• Differential output rejects common mode inputs, but what if T1 and T2 are not identical or " R_c in not identical to R_c "?

• Using transistors as loads we can do some tricks not to lose gain for asymmetric output - you will see this later.

ECL

• Basic component of an emitter-coupled logic (ECL) gate

Small Signal Differential Amplifier

• For analog applications we use the differential amplifier in a small signal sense

PNP Differential Amplifier

• Works the same way, but VEE is more positive than VCC

Small Signal Differential Amplifier

• Assume that the common mode signal has been used for biasing and the input is a small signal differential input

What is the added resistor modeling?

Small Signal Model of Diff Amp

- Establish small signal model the same way as we did for other amplifiers
- Fabricated very carefully for perfect matching of parameters

Calculate Gain • What is the impact of r_o ? v_{o1} v_{o2} +v_{diff} $g_m^{v}\pi^{1}$ $g_m v_{\pi 2}$ + +R_C > R_C r_{π} $-v_{id}/2$ ′*r*π $v_{id}/2$ $\overline{+}$

Differential Input Resistance

• The differential input resistance is huge

Common Mode Gain

- Just consider the common component of the input signal
- By symmetry arguments we only have to look at half of the ckt

Common Mode Gain

• "Looks" like a common emitter amplifier with an emitter resistor

Common Mode Rejction Ratio

$$CMRR = \left| \frac{A_d}{A_{cm}} \right|$$

• If output is taken differentially, then the CMRR is apparently infinite

• But for a single sided output response is has a finite value

Common Mode Rejction Ratio

- More importantly, due to mismatch in parameters even the differential output CMRR is not infinite
- Assume one side has a variation in R_C

Common Mode and Differential Gain

• Process is controlled as tightly as possible to minimize A_{cm}

$$v_o = A_d(v_1 - v_2) + A_{cm}\left(\frac{v_1 + v_2}{2}\right)$$

• Mismatch in transistors Q1 and Q2 creates a dc offset voltage

Common Mode Characteristics

- Also, there is an input bias current to both inputs

• When the transistors are not perfectly matched there will be a slight offset in these values