Common Collector (Emitter Follower) Amplifier

• Gain is never better than unity, however, has some desirable input and output impedance characteristics --- acts as a buffer

Common Collector (Emitter Follower) Amplifier

• Without R_C there is no need for C_3

Emitter FollowerExample

- Calculate the voltage gain, current gain, input resistance and output resistance
- Assume capacitors are infinite
- 1) Calculate dc operating point

Emitter Follower Example

• 2) Establish small signal model

Amplifier Input Resistance, R_{ib}

• 3) Calculate input resistance

Transistor's Input Resistance, R_{ib}

• *"Reflect"* impedances into base from emitter for simplified input resistance calcuation

Amplifier Input Resistance, R_i

• R_B is part of the amplifier circuit, and adds to the input resistance to the transistor

• Amplifier input resistance is limited by R_B in this circuit. Why not make it bigger?

Emitter Follower --- Buffer

- Even though the load resistance is $10k\Omega$, the input resistance is much higher
- This is a desirable feature of a buffer amplifier, especially if R_S is large, or R_L is small
- Is R_{in} big enough for our example? What is v_i ?

Emitter Follower --- Buffer

- Further voltage division for the amplifier stage
- Most easily seen using other small signal model

Analysis by Inspection

• Experienced analog designers just analyze the circuit directly by inspection

Analysis by Inspection

• What if R_L is much less than R_E ?

Emitter Follower Current Gain

- No voltage gain, but acts as a buffer to drive small impedance loads
- Provides good current amplification

Output Resistance, R_o

• 4) Calculate output resistance

Output Resistance, **R**₀

Common Base Amplifier

- Gain is close to unity
- Very low input impedance --- great for impedance matching (e.g. 50 ohms)
- Large output impedance -- approximately R_C
- Great high frequency behavior -- more on this later...

Current Source Biasing

- Instead of resistors, a current source is used to bias the transistor in this example
- Current sources can be used to bias other amplifier types too
- Building a current source is less expensive than building a resistor on an IC --- we'll be addressing IC issues such as this much more extensively beginning with the next lecture

Current Buffer

- Can be used as a current buffer
- Macromodel:

Small Signal Equivalent Circuit

• Since the base is grounded, we would probably select the T-model from Lecture 13

• What parameters are being ignored in this simplified T-model? And what is the potential impact?

Common Base Small Signal Analysis

Common Base Small Signal Analysis