dc Bias Point Calculations

- Instead of supplying two dc voltages, the V_{BE} is generally established by a voltage divider using the VCC supply
- But then the ac input cannot be attached as shown. Why?

Decoupling

• What is the advantage of adding decoupling to this circuit?

Output Decoupling

- What would be the ideal values for these capacitors?
- How do we select the capacitor values?

PNP Amplifiers • dc bias voltages are negative -10V R_C R_2 R_L + R_1 v_{in} \checkmark

PNP Amplifiers

• Which can also be designed by shifting all of the dc voltages by the same potential:

Decoupling and Biasing

• Decoupling also allows us to specify the effective base resistance, R_{BB} , independent of V_{in}

Decoupling and Biasing

- We'd like to have $V_{BB} >> V_{BE}$ so that the currents are not overly dependent on V_{BE} . Why is this dependency undesirable?
- But what is the problem with a large V_{BB} ?

• Discrete amplifier design rules of thumb: select bias point so that the expected ac signal can swing from max to min without clipping at the supply or forcing the transistor into saturation

• The 1µF capacitors are nearly perfect at decoupling the input and output dc signal components at this 10kHz frequency

- Decoupling is evident from the frequency response
- Decoupling would cause distortion at low frequency

• For smaller decoupling C's (10nF) we will see some distortion even at 10kHz

• Frequency response with 10nF decoupling C's

Controlling Parameter Variations

• The current gain, β , varies with temperature

•*Recombination greatly depends on temperature*

- Recombination also depends on the *injection level* (magnitude of current)
- An emitter resistor, R_E is used as negative feedback to reduce the $\beta\text{-variation}$ effect on I_C

Controlling Parameter Variations

- Make R_{BB} small enough that the base voltage is roughly independent of base current so that R_E feedback can be most effective
 - •But why not too small?

• If base voltage is nearly constant, an increase in current due to β -variation will tend to decrease V_{BE} because of R_E

Universal Amplifier Configuration

• Dual supplies for generality, makes base biasing simpler

- Use decoupling for input and output signals
- But what does the capacitor at the emitter do?

Decoupling Capacitors

- Decoupling C's are generally used only for discrete design since it is difficult to build a large capacitor on a chip
- Direct coupled amplifiers are generally used on ICs, but they are similar in form to the amplifiers that we will study here

Common Emitter Amplifier

• Popular discrete-component amplifier configuration

• If there is no dc component in v_{in} , then we don't need C_1 or R_B with -VEE.

