Real-Time and Embedded Systems

JOHN A. STANKOVIC

University of Massachusetts, Amherst (stankovic@cs.umass.edu)

Real-time systems are those systems in
which the correctness of the system de-
pends not only on the logical results of
computation but also on the time at
which the results are produced [Stan-
kovic 1988]. They span a broad spec-
trum of complexity from very simple
microcontrollers in embedded systems
(a microprocessor controlling an auto-
mobile engine) to highly sophisticated,
complex, and distributed systems (air
traffic control for the continental United
States). Other real-time systems in-
clude command and control systems,
process control systems, and multime-
dia and high-speed communication sys-
tems. Some real-time systems are be-
ginning to add expert systems and other
AT technology, creating additional re-
quirements and complexities. At least
three major trends in the real-time and
embedded systems field have had a ma-
jor impact on its technology: the in-
creased growth and sophistication of
embedded systems, the development of
more scientific and technological results
for hard real-time systems, and the ad-
vent of distributed multimedia.

Most embedded systems consist of a
small microcontroller and limited soft-
ware situated within some product such
as a microwave oven or automobile.
However, with the increasing sophisti-
cation of such systems, powerful micro-
controllers and digital signal processing
(DSP) chips are commonly used, as are
off-the-shelf real-time operating sys-
tems and design and debugging tools.
Many people working with embedded
systems deal on a daily basis with sen-
sors and data acquisition technology
and systems; others construct architec-

tures based on single-board computers
(many are still 68000-based, but RISC
processors are being used more and
more) and buses such as the VME bus.
Many people are involved with the pro-
gramming and debugging of embedded
systems, largely using the C program-
ming language and cross development
and debugging platforms. Embedded
systems may or may not have real-time
constraints.

Hard real-time systems are those in
which missing an important deadline
can cause severe consequences, even
death. In this area, many fundamental
results have been developed. For exam-
ple, in real-time scheduling, rate mono-
tonic analysis has enabled careful eval-
uation of many practical systems; the
concept and analysis of competitive al-
gorithms has provided important sched-
uling bounds and limits; and on-line
planning has added flexible and dy-
namic capabilities to real-time systems.
Operating systems research has pro-
duced predictable primitives, time-con-
strained synchronization techniques,
and reservation and admission-control
paradigms. Many other results exist in
real-time architecture, fault tolerance,
communication protocols, specification
and design tools, formal verification, da-
tabases and object-oriented systems.
Emphasis on all these areas is expected
to increase in the foreseeable future.
Many hard real-time systems are em-
bedded systems.

Distributed multimedia have pro-
duced a new set of soft real-time re-
quirements. Real-time principles lie at
the heart of distributed multimedia, but
without the concomitant high reliability

Copyright © 1996, CRC Press.

ACM Computing Surveys, Vol. 28, No. 1, March 1996



206 o John A. Stankovic
requirements found in safety-critical,
hard real-time systems.

Underlying Principles. Typically, a
real-time system consists of a control-
ling and a controlled system. For exam-
ple, in an automated factory, the con-
trolled system is the factory floor with
its robots, assembling stations, and the
assembled parts, while the controlling
system is the computer and human in-
terfaces that manage and coordinate the
activities on the factory floor. Thus, the
controlled system can be viewed as the
environment with which the computer
interacts.

The controlling system interacts with
its environment using information
about the environment available from
various sensors. It is imperative that
the state of the environment as per-
ceived by the controlling system be con-
sistent with the actual state of the envi-
ronment. Hence, periodic monitoring of
the environment as well as timely pro-
cessing of the sensed information is nec-
essary.

Timing correctness requirements in a
real-time system arise because of the
physical impact of the controlling sys-
tem’s activities upon its environment
via actuators. The most common timing
constraints for tasks are periodic, aperi-
odic, and sporadic. A periodic task is
one that is activated every T units. The
deadline for each activated instance
may be less than, equal to, or greater
than the period T. An aperiodic task is
activated at unpredictable times. A spo-
radic task is an aperiodic task with the
additional constraint that there is a
minimum interarrival time between
task activations.

What happens when timing con-
straints are not met? The answer de-
pends, for the most part, on the type of
application. A real-time system that
controls a nuclear power plant or a mis-
sile cannot afford to miss timing con-
straints for critical tasks. Resources
needed for critical tasks in such systems
must be preallocated so that the tasks
can execute without delay. In many sit-

ACM Computing Surveys, Vol. 28, No. 1, March 1996

uations, however, some leeway does ex-
ist. For example, even on an automated
factory floor, if it is estimated that the
correct command to a robot cannot be
generated on time, it may be appropri-
ate to command the robot to stop (pro-
vided no other moving objects will col-
lide with it and cause a different type of
disaster) or to slow down (thereby dy-
namically generating more time to pro-
duce a correct command).

We now discuss underlying principles
in several representative areas of real-
time computing, including real-time
scheduling, real-time kernels, and dis-
tributed multimedia.

Real-time scheduling. Real-time sched-
uling is the process of creating start and
finish times for sets of tasks such that
all timing, precedence, and resource
constraints are met. Real-time schedul-
ing results in recent years have been
extensive. Theoretical results have
identified worst-case bounds for dy-
namic on-line algorithms, and complex-
ity results have been produced for
various types of assumed task-set char-
acteristics.

More applied scheduling results have
also been produced. For example, an
extensive set of improvements has been
made to the rate monotonic algorithm,
which assigns the highest priority to the
most frequent periodic task. Often a
system has both periodic and sporadic
tasks. To handle this situation, the spo-
radic server algorithm was invented.
This algorithm guarantees that the
deadlines of all periodic tasks will be
met and provides excellent response
time for the sporadic tasks. Techniques
were also created to handle the problem
of priority inversion, a situation where
a low-priority task holds a resource re-
quired by a high-priority task. A set of
algorithms that perform dynamic on-
line planning were also produced. These
algorithms have many nice properties,
including quality of service guarantees,
early warning that a deadline will be
missed, and admission control. We have



Real-Time and Embedded Systems o

also seen the development of scheduling
results for imprecise computation—a
situation where tasks obtain a greater
value the longer they execute up to
some maximum value.

Real-time kernels. Operating systems
must provide basic support for predict-
ably satisfying real-time constraints, for
fault tolerance and distribution, and for
integrating time-constrained resource al-
locations and scheduling across a spec-
trum of resource types, including sensor
processing, communications, CPU, mem-
ory, and other forms of I/O. At least three
issues need to be addressed:

—The time dimension must be elevated
to a central principle of the system,
not simply left as an afterthought.

—The basic paradigms found in today’s
general-purpose distributed operating
systems must change. Currently, they
are based on the notion that applica-
tion tasks request resources as if they
were random processes; operating
systems are designed to expect ran-
dom inputs and to display good aver-
age-case behavior. The new paradigm
must be based on the delicate balance
of flexibility and predictability: the
system must remain flexible enough
to allow a highly dynamic and adap-
tive environment, but at the same
time be able to predict and possibly
avoid resource conflicts so that timing
constraints can be met.

—A highly integrated and time-con-
strained resource allocation approach
is necessary to address timing con-
straints, predictability, adaptability,
correctness, safety, and fault toler-
ance.

Real-time kernels are also being ex-
tended to operate in highly cooperative
multiprocessor and distributed system
environments. In such systems, sets of
communicating tasks (possibly located
across a network) must be scheduled to
complete before a deadline, accounting
for all system overheads, such as mes-
sage copying and message transmission

207

over the network. This is known as end-
to-end scheduling.

The Mars project [Kopetz 1989], the
Spring project [Stankovic 1991], and a
project at the University of Michigan
[Shin 1991] are all attempting to solve
distributed end-to-end scheduling. The
Mars project uses an a priori analysis
and then statically schedules and re-
serves resources so that distributed exe-
cution can be guaranteed to make its
deadline. The Spring approach supports
dynamic requests for real-time virtual
circuits (guaranteed delivery time) and
real-time datagrams (best-effort deliv-
ery) integrated with CPU scheduling so
as to guarantee application-level end-to-
end timing requirements. Spring uses a
distributed reflective memory based on
a fiber optic ring to achieve the lower-
level predictable communication proper-
ties. The Michigan work also supports
dynamic real-time virtual circuits and
datagrams, but is based on a general
multi-hop communication subnet.

Regarding the portability of applica-
tions, many real-time UNIX operating
systems are appearing [Furht 1991],
and a standard for real-time operating
systems, RT POSIX, is being developed
[Gallmeister 1995]. While such stan-
dards facilitate porting the code, how to
assess the timing properties of the
ported application is still an open issue.

Distributed multimedia. Many real-
time control applications, such as agile
manufacturing and process control, op-
erate in highly nondeterministic envi-
ronments under timing constraints of
many types. Significant improvements
can be made by embedding continuous
and multimedia support in these appli-
cations. For example, in agile manufac-
turing, remote factories, each consisting
of many automated workcells, must co-
ordinate to handle new strategies for
incoming product orders, to design new
products, to schedule just-in-time deliv-
eries of manufactured components, to
monitor the plant operations, and to
solve difficult manufacturing floor prob-
lems collaboratively.

ACM Computing Surveys, Vol. 28, No. 1, March 1996



208 o John A. Stankovic

To implement solutions cost-effec-
tively and give multimedia applications
direct access to plant operational data,
it is envisioned that the same comput-
ers would control the time-constrained
operations in and across the workcells
and support multimedia [Guha 1995].
The backbone network would likely be
ATM. Distributed multimedia over ATM
networks has enormous potential to
provide these applications with telecon-
ferencing for real-time coordination and
collaborative design, as well as visual
access via cameras to remote and local
plant operations. These applications
would also benefit from a distributed
real-time database that contains sensor
information and the values of control
variables, both constrained by temporal
validity intervals, plant operational
data, information on availability of raw
materials, inventory of products, cus-
tomer orders, and so on. The confluence
of real-time databases, multimedia, and
real-time control has great potential for
moving application areas such as manu-

ACM Computing Surveys, Vol. 28, No. 1, March 1996

facturing and process control into the
next generation.

REFERENCES

FuraT, B., GROSTICK, D., GLUCH, D., RABBAT, G,
PARKER, J., AND MCROBERTS, M. 1991. Real-
Time Unix Systems, Design and Application
Guide. Kluwer Academic, Boston, MA.

GALLMEISTER, B. 1995. POSIX.4: Programming
for the Real World. O'Reilly and Associates,
Sebastopol, CA.

GUHA, A., PavaN, A., Liu, J., RASTOGI, A., AND
STEEVES, T. 1995. Supporting real-time and
multimedia applications on the Mercury test-
bed. IEEE J. Select. Areas Commun. 13, 4,
749-763.

KopreTz, H., DAMM, A., Koza, C., AND MULOZZANI,
D. 1989. Distributed fault tolerant real-time
systems: The Mars approach. IEEE Micro 9, 1,
25-40.

SHIN, K. 1991. HARTS: A distributed real-time
architecture. IEEE Computer 24, 5, 25-35.
StanNkovic, J. 1988. Misconceptions about real-
time computing: A serious problem for next
generation systems. IEEE Computer 21, 10,

10-19.

STANKOVIC, J. AND RAMAMRITHAM, K. 1991. The
Spring kernel: A new paradigm for real-time
systems. IEEE Software 8, 3, 62-72.



