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Abstract

This document describes a method and experimental results for the de-
pendability characterization of middleware implementations, and in particu-
lar failure mode analysis of CORBA ORB implementations. The aim of the
work is to provide an overall approach for identifying and quantifying failure
modes using various fault injection techniques and fault models.

Related work in dependability characterization of executive software lay-
ers is discussed. An analysis of the architecture of middleware-based systems
and their error confinement regions motivates the development of a fault
model. A number of fault injection approaches are discussed, and results
from network-based corruption experiments targeting four CORBA service
implementations are presented.
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1 Introduction

This document describes a method for characterizing the dependability of
middleware implementations, in particular, the failure modes of CORBA ORB
implementations. The aim of the work is to provide an overall method to identify
and quantify failure modes using various fault injection techniques and fault
models.

The method is based on existing work in dependability characterization. Although
a large amount of work has been carried out for the characterization of executive
software using fault injection (e.g., kernel and standard operating system), very
little work has targeted the middleware layers. The current work in the field, in
particular software-implemented fault injection techniques and tools, is reviewed
in this document because of its interest for the characterization of CORBA-based
systems.

The conventional software engineering view of a middleware is not sufficient
when considering the assessment of dependability-related properties. We present
a more detailed architectural view of a CORBA-based system, concentrating on
the identification of error confinement regions and a failure modes classification.
Based on this structural analysis, we discuss the classes of faults that can affect
such systems.

A number of fault injection techniques that simulate these fault classes are
described. We present results from one of these techniques, which measures the
impact of corrupt method invocations on a middleware implementation. These
experiments are particularly relevant to the DSoS project, since they provide
insights into the ways in which errors may propagate between component systems,
over the interconnection infrastructure. Experimental results we have obtained on
a number of CORBA implementations reveal that this impact can be significant.

The document is organized as follows: In Section 2, we discuss the objectives
of our work within DSoS, and give an overview of dependability assessment
techniques and of CORBA-based middleware.

In Section 3, we discuss some previous work in fault injection that is related to the
failure mode analysis of CORBA systems. Some results of experiments targeting
CORBA are also reported in this section.

In Section 4, we address the failure modes in middleware-based systems. This
involves discussing the architecture of a middleware system from different
viewpoints and identifying possible targets, defining fault assumptions and models,
classification of failure modes and the identification of possible fault injection
strategies.

Section 5 is devoted to the description of our method for experimentally
characterizing the dependability of CORBA ORB implementations. A number of
fault injection techniques that are well suited to this target are described.

Failure analysis of an ORB in the presence of faults 3 Deliverable IC3
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Section 6 reports on the experimental results we obtained when targeting CORBA

service implementations using network corruption techniques. In the last section,
we present some first lessons that have been learned from our work, from the
viewpoint of a DSoS system integrator, and draw some conclusions.

Failure analysis of an ORB in the presence of faults 4 Deliverable IC3
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2 Objectives and enabling technologies

In this section we present the aim of our work on middleware assessment with
respect to the DSoS project, and give an overview of dependability assessment
techniques. We conclude with a brief introduction to CORBA middleware.

2.1 Middleware assessment for DSoS

An increasingly large class of dependable systems of systems will be built on
some form of middleware infrastructure. A likely candidate for this middleware
infrastructure is the CORBA platform, a standard that is well suited to the
interconnection of heterogeneous systems, and is widely used in industry. Figure 1
illustrates possible roles for CORBA-compliant middleware in a system of systems,
both as a technology for the implementation of linking interfaces, possibly using
wrapping techniques, and as a means of interconnecting component systems.
Evidently, the dependability of this middleware layer is crucial to the dependability
of the DSoS built above it.

Avis

Hertz

Internet

Geographic

Information System

Bank

Rental

Agency

HTTP interfaces
CORBA interfaces

connection system

Figure 1: CORBA infrastructure for a system of systems

There has been little published research on the dependability of middleware-based
systems. The DSoS project aims to contribute to this issue in two ways:

• categorize and study the types of faults which can be experienced by a
middleware-based system, and the ways in which errors propagate through
the system to cause failure.

• design and implement methods to improve a middleware implementation’s
behaviour in the presence of these faults: improve error detection
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mechanisms, fail silence and robustness characteristics, using techniques
such as wrapping.

This report contributes to the first point. We present a number of approaches for
characterizing the behaviour of a middleware-based system (and in particular a
CORBA-compliant ORB implementation) in the presence of faults, and present
the results of fault injection experiments targeting several implementations of the
CORBA Name Service.

The second point is addressed in the Architecture and Design workpackage, which
includes work on the use of wrapping techniques to improve the robustness and fail
silence of component systems, and of the interconnection infrastructure. The aim
is to ensure that individual component systems have a well-defined behaviour in
the presence of faults. The Architecture and Design work is closely related to the
present deliverable; indeed, the failure mode characterization is an essential input
to the design and development of fault containment wrappers.

Our work on fault injection also provides insights into the manners in which
errors may propagate between component systems, via the connection systems.
It provides a mechanism for evaluating the probability of such error propagation,
and for characterizing their effects. It also investigates the impact of faults affecting
the communication subsystem itself. This work helps the integrator of a system of
systems answer two important questions:

• what type of dependability properties can be assumed of the interconnection
infrastructure?

• how might the dependability of a component system be affected by the
addition of DSoS-related software, implementing a linking interface?

2.2 Dependability assessment techniques

The dependability of computer systems can be assessed using either model-based
or measurement-based techniques. Modelling work allows system designers to
obtain predictions of the dependability attributes of a system, based on probabilistic
measures of the behaviour of its subsystems. These measures are useful during the
design phase, since they enable the pertinent dependability attributes of different
system configurations to be estimated, even before they are built. There is work
in the Validation workpackage that addresses this problem from a DSoS point of
view.

However, modelling techniques can only provide predictions of the dependability
attributes of a system. Once a system has been implemented and deployed,
measurement-based techniques can be applied to obtain more specific insights
and measures. There are two main measurement-based approaches to obtaining
information on a system’s dependability:

Failure analysis of an ORB in the presence of faults 6 Deliverable IC3
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• the observation of a large set of systems in operation, as in[Kalyanakrishnam
et al., 1999]. This approach relies on error information obtained either from
logs maintained by system administrators or from automatic monitoring
mechanisms provided by the system. By analysing the data, one can obtain
information on the nature and frequency of failures, and on the type of usage
that led to the failure of the component system.

A disadvantage of this approach is that failures are rare, which makes it
necessary to collect information on a large population of identical systems
over a large time span before being able to make statistically significant
analyses. It is thus poorly suited to short development cycles.

• the deliberate insertion of faults into the target system, so as to accelerate
the characterization of its behaviour in the presence of faults. These fault
injection experiments allow the system’s error detection mechanisms to
be triggered more frequently than in normal operation. They also allow
evaluation of the system’s behaviour when error detection coverage is not
perfect, as is usually the case for complex systems.

Field-based observations are complementary to fault injection experiments, since
they provide data on types of failures that can be experienced by a system, in
given operational conditions. The analysis of failure reports can be used to derive
a fault model, which is then used to develop fault injection campaigns. This
increases the likelihood that fault injection experiments are representative of real
faults experienced by the target system.

Unfortunately, there has been no reported work on field observation of failures
in middleware-based systems. This makes it difficult to validate the degree of
representivity of a given fault model for these targets.

2.3 Fault injection

Fault injection is a well-known dependability characterization technique [Arlat
et al., 1993], which studies a system’s reaction to abnormal conditions. It is a
testing approach that is complementary to analytical approaches, and which allows
the examination of system states which would not be reached by conventional
functional testing. The aim of fault injection is to simulate the effect of real faults
impacting a target system, namely the error due to the activation of a fault.

Fault injection experiments provide a number of useful results:

• an understanding of the system’s failure modes, or its behaviour in the
presence of faults;

• information on the fault tolerance mechanisms in the target system, in
particular a measurement of their coverage (the conditional probability that,
given a fault in the system, the system can tolerate it).
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A number of fault injection techniques have been developed. Most early work
concerned the injection of physical faults [Karlsson et al., 1998], radiating
electronic circuits with heavy ions, to simulate the effect of electromagnetic
radiation, or acting directly on the pins of a microprocessor to modify voltages.

Due to the complexity and the speed of modern integrated circuits, recent
research has concentrated on software-implemented fault injection (SWIFI).
In this technique, the corruption is performed by software, and can target
different components or different layers in a system (operating system kernel,
system services, middleware components, application code, system memory and
registers). This approach is very generic and flexible, since a large variety of fault
models can be used. Several studies have shown that a single bit-flip leads to
similar errors to those produced by physical fault injection techniques (e.g.,[Rimén
et al., 1994, Fuchs, 1998]), and also that they simulate errors produced by software
faults fairly faithfully [Madeira et al., 2000].

The target for the fault injection can either be the interface of a software
component, or its internal address space. Targeting the interface assesses the
component’s robustness, its ability to function correctly in the presence of invalid
inputs and stressful environmental conditions. It is a useful way of evaluating
the probability of error propagation from one system component to another, due
to their interactions. Targeting the address space assesses the impact on the
component’s behaviour of internal corruptions, resulting either from physical faults
or software faults.

2.4 Targeting CORBA middleware

Middleware is software that mediates between an application program and the
network. It manages the interaction between disparate applications across
heterogeneous computing platforms, abstracting from the programming language,
operating system and hardware, and often providing convenient access to services
such as naming, transactional processing and concurrency management.

CORBA [OMG, 2001a] is a middleware platform that focuses on interactions
between distributed objects. The standard is defined by the Object Management
Group (OMG), an industry consortium. A key principle of CORBA is its separation
of interface and implementation. Interfaces are used to specify the operations
and data types that allow access to a service; they are described in an Interface
Definition Language (OMG IDL). An interface is independent of the programming
language and operating system that is used to implement the service it describes,
and of the location where the service is provided. The software that transports
service requests between the client and the server is called the Object Request
Broker (ORB).

Figure 2 shows a client invoking a method named foo on an object hosted
on a remote computing node. The object’s semantics are implemented by a
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programming-language dependent entity called a servant. The figure shows the
different functional elements composing a CORBA middleware implementation:

• the core of the ORB, which handles marshalling of information to and from
the CORBA wire format, and communication with ORBs on remote nodes,
including request demultiplexing and concurrency management;

• a set of CORBAservices, including naming, trading, event propagation,
access control and persistency;

• on a server, an object adapter (OA) that is responsible for dispatching
incoming requests to the appropriate servant, controlling security issues and
the lifecycle of servants;

• client stubs that provide an interface to the ORB core, and implementation
skeletons that connect the object adapter to the servant (these elements are
programming language dependent, and are generated automatically from the
IDL interface);

• modules that handle dynamic invocation, providing an invocation mecha-
nism that can be used when the interface of a service was not known at
compile-time (DII1 and DSI2 modules).

• an optional Interface Repository service, which allows runtime introspection
of the IDL interfaces available in the system.

DII stub

skeletonDSI

kernel lowerware

middleware

node Bnode A

client

kernel

serv->foo(69)
servant

IOR

upperware

CORBAservices

ORB core ORB core

OA

Implementation
Repository

Figure 2: High-level view of a CORBA method invocation

1DII: Dynamic Invocation Interface, that allows clients to construct method invocations without
passing through a stub

2DSI: Dynamic Skeleton Interface, that allows servers to handle incoming dynamically
constructed requests.
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ORB implementations from different vendors, running on different platforms, are
able to interoperate by exchanging messages adhering to the General Inter-ORB
Protocol (GIOP). This specification describes the data representations, message
types and message formats to be used for communication between ORBs. GIOP
assumes that the underlying transport protocol is connection-oriented, reliable, and
can be viewed as a byte stream. The mapping of GIOP onto TCP/IP is called the
Internet Inter-ORB Protocol (IIOP).
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3 Related work

In this section, we describe previous research on fault injection for dependability
characterization. We concentrate on work that has targeted middleware
implementations, as well as executive software such as operating system kernels
and network protocol stacks. We classify fault injection techniques according to
whether they simulate faults that originate internally to a component system, or
whether they originate via its linking interface or its local interfaces[Jones et al.,
2001].

3.1 Faults internal to a component system

A fault is said to be internal when the corruption of the system’s state that it
causes originated inside the system. This encompasses programming errors that
may affect the internal data of the system, and hardware faults that may corrupt
both data and code memory segments. The most common fault model used is the
single bit-flip.

A large number of tools have been developed to automate the execution of
experiments using this fault model. Two significant examples are Xception,
developed at the University of Coimbra, Portugal [Carreira et al., 1998], and
MAFALDA, developed at LAAS-CNRS, France [Fabre et al., 2000].

There has been some work [Chung et al., 1999] investigating the impact of high-
level faults on CORBA and DCOM applications. The faults simulated are hangs
and crashes of threads, processes and computing nodes. The authors found a
significant proportion of application hangs, which led them to recommend the use
of application-level watchdog mechanisms.

We are not aware of any work on CORBA ORBs simulating finer-grained faults,
such as bitflips. However, the technique has been extensively applied for the failure
analysis of other executive software, including operating systems and language
runtimes. To illustrate the information that can be obtained from these types of
experiments, we present results extracted from campaigns applying the MAFALDA
tool to a number of COTS3 real-time microkernels, including Chorus and LynxOS.

Figure 3 illustrates results obtained by subjecting an instance of the Chorus/ClassiX
microkernel (composed of basic functional components implementing basic
services such as synchronization, memory, and scheduling) to a series of SWIFI
experiments using MAFALDA.

3COTS: Commercial Off-The Shelf
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Figure 3: Results from MAFALDA applied to Chorus (internal bitflips)

These experiments consist in selecting randomly a location in the kernel address
space and randomly flipping a bit into this memory cell. The bit is restored
as soon as the cell is read, irrespective of whether the cell contains instructions
or data. The pie diagram in Figure 3a shows the failure modes observed when
about 3000 faults (transient single bit flips) were injected in the code segment
of the standard synchronization component. Regarding the failure modes, about
50% of the errors were successfully detected by the microkernel error detection
mechanisms ("error status", "exception", "kernel debugger [KDB]"), while a hang
("system hang [SYSHANG]", "application hang [APPHANG]") occurred in 7.4%
of the cases. Nevertheless, 9% of the errors led to an incorrect service ("application
failure [APPFAIL]"). Finally, the "no observation [NO OBS]" category (29%)
corresponds to errors that had no observable consequences although the injected
faults were actually activated. Similar results can be obtained on different
kernel components such as the memory management module (Figure 3b) and the
communication management module (Figure 3c).

Section 5.1 discusses how a tool like MAFALDA could be used to characterize the
failure modes of a CORBA-based middleware implementation.

3.2 External faults at a linking interface

Another source of faults that can affect a component system is the linking interface,
through which it is connected with other systems. This form of fault injection
provides a means for measuring a system’s robustness, its ability to function
correctly in the presence of invalid inputs and stressful environmental conditions.
Robustness testing involves injecting corrupted data at the linking interface of the
system, and observing its behaviour.

In [Miller et al., 1990], the robustness of different implementations of standard
UNIX utilities was measured, by submitting them to randomly generated input.
Despite using an extremely simple failure mode classification (crash or not-crash),
this fuzz testing showed that most implementations had quite high failure rates.

The technique has also been applied to the robustness testing of POSIX-compliant
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operating systems in the context of the Ballista project [Koopman and DeVale,
1999]. This work consists of using invalid parameters in system calls, such as null
pointers, or using an incorrect sequence of system calls. It is based on a library
of corruption test cases, specialized for each data type. Figure 4 shows that all
of the 15 targeted operating systems exhibited a large proportion of non-robust
behaviours (e.g., between 18 and 34% of the tests lead to an abort failure mode).

 

Normalized failure rate (%)

AIX 4.1

FreeBSD 2.2.5

HP-UX 10.20

Linux

LynxOS

QNX 4.24

SunOS 5.5

NetBSD

 Irix 6.2

Irix 5.3

HP-UX 9.05

DUNIX 3.2 

DUNIX 4.0D

QNX 4.22 

SunOS 4.13

0 10 20 30 40 50

Abort

Restart

Silent

Catastrophic*

*

*

*

*

*

*

Figure 4: Comparison of 15 POSIX-compliant operating systems

The Ballista approach has also been applied to the robustness testing of a number of
CORBA implementations [Pan et al., 2001], with respect to corrupted invocations
of a portion of the client-side interface exposed by an ORB. For example, the
object_to_string operation, which converts an object reference into a
textual representation, is invoked with an invalid object reference, to see whether
the ORB crashes or hangs or signals an exception.

Figure 5 presents results from this paper. It shows the breakdown of experimental
outcomes for the different targets. ORB implementations from three different
vendors were tested, with different versions and on different operating systems.
Their experiments show a high proportion of non-robust behaviour such as thread
hangs and crashes.

The fault model considered in this work only targets client-side operations.
In particular, activity that involves interaction between a client and a server
is not covered. Furthermore, the functionality exposed through ORB’s client-
side interface, which was targeted in this research, is mainly used during the
initialization of an application. Most of the functionality provided by an ORB
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Figure 5: Ballista project applied to ORB characterization

is in fact implicit, in the sense that it is activated without any explicit calls made by
the application level, and is thus difficult to target using this approach.

We are not aware of other characterization work on CORBA using fault
injection. Other validation efforts have used a functional testing approach
(such as the CORVAL project, which aims to test the functional correctness and
the interoperability of ORB implementations) or concentrated on performance
evaluation (e.g. [Nimmagadda et al., 1999]), without considering the presence of
faults.

3.3 External faults at a local interface

A DSoS component system [Jones et al., 2001] may also communicate with its
environment through one or more local interfaces, and may be subjected to faults
arriving through them. Examples of local interfaces are a system’s network stack,
and interfaces over which it may be providing legacy services. The types of faults
that may arrive over a local interface are protocol errors in a communication with
a remote system.

There has been work on fault injection for the characterization of the behaviour of
the networking stacks in UNIX operating systems [Dawson et al., 1997]. In this
work, faults such as message loss, delays and reordering were injected, to assess
the robustness of the protocol implementations. In [Labovitz et al., 1998], the
stability of routing protocols used on the Internet is studied.
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4 Fault pathology of CORBA-based systems

In this section we describe the architecture of a middleware-based system,
identifying the places in the system where faults may occur, grouping these faults
into classes, and classifying the types of failures that it may exhibit.

4.1 Error confinement regions in a CORBA-based system

Middleware is generally seen as a layer of software that lies between the operating
system and the application layer, as shown in Figure 2. This high-level view of an
ORB is sufficient for most CORBA development. Indeed, the CORBA specifications
are implementation-agnostic, and do not mandate any specific representation for
CORBA objects, or require any particular form of interaction with the underlying
operating system. For dependability analysis, however, more detailed knowledge
of the architecture of a CORBA-based system is necessary, particularly with
respect to the error confinement regions implied by the architecture.

CORBAservices such as naming and the interface repository are generally
implemented as daemons4. A service may run on a single computing node, or
may involve the collaboration of multiple computing nodes (federation of name
servers, for example).

A CORBA ORB can be implemented in several different ways:

• kernel-based strategy, where the ORB is provided as a service of the op-
erating system. This strategy can allow certain performance optimizations,
since the operating system knows the location of object, and can facilitate
authentication of requests.

• daemon-based strategy, where ORB functionality is provided by one
or more daemon processes, which mediate between clients and object
implementations. For example, each computing node may run an activation
daemon that is responsible for activating server processes and dispatching
incoming requests, and for routing outgoing requests to the appropriate
computing node. This implementation strategy facilitates centralized
administration, since all CORBA processes are known to the activation
daemons.

• application-resident strategy, where code implementing the ORB func-
tionality runs in the same execution context as the client and the object
implementations. The ORB is typically provided as a shared library that is
linked with CORBA applications. This is the most common implementation
strategy currently used on POSIX-like systems. In fact, even in the two

4daemon: standalone operating system process that runs in the background, providing some form
of service.
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previous implementation strategies, a certain amount of ORB functionality
is hosted in each CORBA application, to deal with the language mapping.

The kernel-resident implementation strategy protects the ORB from modification
by faulty application programs, due to the operating system’s memory protection
mechanisms. However, the ORB service constitutes an error propagation channel
for all applications on the same computing node. The daemon-based strategy
introduces a single point of failure per computing node, since failure of the
activation daemon will impact all application processes on that node. The degree
of error confinement offered by the application-resident implementation strategy
depends on the way in which CORBA objects are mapped onto the processes
and threads provided by the underlying operating system. This mapping is
(deliberately) left unspecified by the CORBA standards, and different deployment
configurations are possible:

• a dedicated computing node for each CORBA object. In this case the only
error propagation channel is through the network (and through calls to
CORBAservices). However, it is unsuited to a system comprising a large
number of lightweight objects.

• each CORBA object in a separate operating system process. This is a
heavyweight solution when large numbers of objects are required, but
provides good error confinement, since the crash of one object does not
mechanically cause the crash of other objects running on the same computing
node.

• multiple CORBA objects per operating system process. This technique,
which is called collocation, leads to several objects sharing the same address
space. The crash of one object may cause the crash of all the collocated
objects, so this choice clearly provides the least error confinement.

4.2 A fault model for CORBA-based systems

In general, information on the types of failures experienced by a class of systems,
and the rates at which they tend to occur, are obtained from field measurements.
However, we are not aware of any such study for middleware-based systems.
Consequently, we can only derive a list of the classes of faults that affect these
systems through structural analysis, by studying the architecture of a typical
system, and examining the points where faults may arise, and how they can
propagate through the system.

Figure 6 provides a more detailed view of the path taken by a remote method
invocation, from the invoking object to the servant implementing the service. The
figure shows that many different layers of software and hardware are traversed by
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Figure 6: Details of the path of a CORBA request

the request; clearly, the impact of faults affecting each layer must be taken into
account when considering the failure modes of a CORBA-based system.

The types of faults that can affect a CORBA-based distributed system can be
classified as follows:

• physical faults affecting RAM or the processor’s registers (so-called Single
Event Upsets or soft errors [Ziegler and Srinivasan, 1996]). For example,
a hardware fault may cause a bit to be flipped at one or more addresses in
memory.

• software faults (design or programming errors) at the application, middle-
ware and operating system levels. For instance, an application may pass a
NULL pointer to the middleware, or the middleware may omit checking of
error codes returned by the operating system.

• “environmental” faults, such as the interruption of network connections and
disk-full conditions.

• resource-management faults: “process aging” produces effects such as leak-
ing of memory (particularly common in CORBA applications), fragmentation
effects, exhaustion of resources such as file descriptors.

• communication faults, such as message loss, duplication, reordering or
corruption. While this class of faults is widely assumed not to affect
middleware that builds on a reliable network transport protocol, as is the
case of CORBA’s IIOP, recent research discussed below suggests that they
deserve attention.
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While a system of systems is subject to each of these fault classes, physical faults
and software faults are less specific to this DSoS context than the last three fault
classes. Consequently, our work has concentrated on studying environmental,
resource-management and communication faults.

4.3 Failure modes of an ORB

In this section, we briefly analyze the ways in which an ORB may fail, and the
impact of these types of failures on the system that builds on the middleware. We
classify the failure modes of an ORB as follows:

• crash of a process or of a thread;

• hang of a process or of a thread;

• corruption of incoming and outgoing data;

• omission and duplication of messages;

• incorrect signaling of exceptions.

The impact of these failure modes depends on the capacity of the system to detect
the failure, and on the degree to which it can mask or recover from the failure.
The most severe failure modes are those which are not detected by the system, and
which therefore allow an error to propagate from the middleware to the application
level.

As was noted in the previous section, the effect of a process or thread crash in terms
of propagation depends on the choice of mapping between CORBA objects and
execution entities. The time taken to detect a process crash or hang also depends
on the system’s configuration; in certain cases, a remote client may not detect the
failure in a reasonable time span.

Concerning exception signaling: during a CORBA method invocation, the ORB on
the client side is responsible for propagating exceptions that occurred on the server
to the application level. On the server side, the ORB is responsible for propagating
any exceptions that occur during the processing of a request to the client. If this
signaling is incorrect, either because an ORB does not signal an exception when
it should have, or because it has signaled a spurious condition, the system’s fault
tolerance mechanisms will not be activated correctly.
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5 Method and experimental techniques

In this section we describe a method for the experimental characterization of the
failure modes of a middleware implementation. This method is derived from the
fault model presented in the previous section, and from analysis of the feasibility
of different forms of failure observation and fault injection techniques. We present
a number of experimental fault injection techniques that can be used to assess the
impact of different fault classes on a middleware.

Several factors must be considered before launching a fault injection campaign:

• the fault model: which classes of errors to insert, where to insert them,
and when? The injection may be triggered by the occurrence of an event
of interest, or occur after a predetermined time period. The fault may be
transient in nature (e.g, a single bit-flip), or permanent (e.g., a stuck-at fault).

• the observations: how to monitor the system’s behaviour and classify the
failure modes? It is important that all significant events be observed, which
may be difficult in a distributed system.

• the workload: what operational profile or simulated system activity should
be applied during the experiment? The workload is evidently very dependent
on the target system. Different workloads may lead to slightly different
results, since they cause different system activation patterns.

The rest of this section presents a number of approaches for fault injection in a
CORBA environment, which simulate the different fault classes that were identified
in Section 4.2. These fault injection techniques are classified according to the
origin of the fault they simulate:

• internal faults, arising either from hardware or software faults, simulated
respectively using memory bitflips and program mutation techniques;

• faults propagating from the application level, simulated using robustness
testing and performance stress-testing;

• faults propagating from the underlying operating system, simulated using
system call interposition techniques;

• faults arriving from the network, simulated using message corruption and
reordering techniques.

5.1 Corruption of the memory space

This fault model consists of simulating the impact of faults affecting the memory
subsystem of the host computer, in regions such as the RAM, the processor’s
registers, and its I/O controllers.
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Two classes of faults can be injected:

• permanent faults, resulting from faulty memory components. These can be
stuck-at-1, stuck-at-0.

• transient faults, resulting from Single Event Upsets such as electro-magnetic
radiation. These faults are usually more difficult to detect than permanent
faults.

The trigger for the fault injection can be temporal, in which case the fault is injected
a certain number of seconds after the workload has been initialized, or spatial, in
which case the fault is injected once the targeted memory word is accessed by the
system.

The memory areas that can be targeted depend on the ORB’s implementation
strategy. Characterization of a kernel-based ORB requires injections into the
kernel’s address space, as well as the address spaces of CORBA applications.
Characterization of a daemon-based ORB will involve corruption of the memory
space of the activation daemon. For an application-resident ORB, different zones
of the process’ address space can be targeted (see Figure 7):

• the application stack and heap;

• the private code from the stubs and skeletons, that is linked with the process;

• the stack associated with the shared library;

• the code (text zone) of the shared library.

code of system libraries

code of ORB core

operating system kernel

client code server code

skeletonDII/DSI stub DII/DSI

client server

stack and heap stack and heap

Figure 7: Memory mappings in a CORBA system with an implementation-resident
ORB
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While the first three sections of the address space are private to each process, the
code of the shared library is – on modern operating systems – shared between all
processes using the same ORB on that computing node (it is read-only, so it can
be shared safely). This means that there is a potential error propagation channel
through the ORB via corruption of the shared library’s code (indeed, the same is
the case of other system libraries, which are shared by all processes).

The information on the address ranges corresponding to each zone can be obtained
from the operating system, for example by using the /proc filesystem on Linux.

As for the previous fault injection approaches, this technique requires a workload
application and failure observers. Once these elements are set up, the experimental
campaigns are similar to the targeting of other executive software components,
such as operating system kernels. Indeed, existing tools such as MAFALDA (see
Section 3.1) can be used to conduct the experiments. Measurements of factors such
as exception classes and error detection latencies can be obtained.

5.2 Program mutation techniques

This characterization technique investigates the effect of software faults. It consists
of artificially inserting bugs into the source code of the program, and observing the
behaviour of the modified candidate (called a mutant). Previous work[Daran and
Thévenod-Fosse, 1996] has shown that program mutation induces errors which are
similar in nature to the errors produced by real programming faults.

The early focus of work using this technique was testing, where mutation is used
to measure the adequacy of a set of test cases. Some more recent work[Voas and
McGraw, 1997] has investigated program mutation as a characterization technique.
This is closer to our aim, which is to identify the types of errors and failures which
can be caused by software faults, and investigate the degree to which they are
detected by the system’s error detection mechanisms.

Most work in the literature consists of injecting faults which change the value
of a literal constant, or the type of an operator (for example changing a +
operator into a -, or changing the sign of the comparison operator in a conditional
statement) [Daran and Thévenod-Fosse, 1996]. Other mutations include replacing
the name of a variable or a function by another variable or function. There has
been more recent work targeting object-oriented mutation operators [Chevalley
and Thévenod-Fosse, 2001], such as changes between deep and shallow equality
comparisons.

When applied to a middleware-based system, there are a number of different targets
for mutation:

• the IDL interface itself. For example, a parameter that used to be passed
using in conventions could be changed to inout. Mutation could also be
applied to the data structure definitions, removing an attribute in a record
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definition, or replacing an unbounded sequence by a fixed length sequence.

• the stubs and skeletons automatically generated by the IDL compiler. This
location simulates faults in the CORBA toolchain. For example, two
parameters in a method could be exchanged before being sent over the
network. If the types of the parameters are incompatible, this should be
detected at compile time.

• the source code of the shared library implementing the ORB. This location
evaluates the effect of residual software faults in the middleware itself.
Examination of the modifications made in successive releases of a particular
implementation, to determine the types of bugs that were corrected, could be
an input in the construction of a model of these faults.

• at the application level. This simulates faults made by the application
programmer. Classic fault models such as ODC [Sullivan and Chillarege,
1991], which include initialization faults and corruption of pointers, could
be used.

In the same way as the use of an object-oriented programming language introduces
new classes of software faults, which are simulated by object-oriented mutation
operators, it would be interesting to identify a number of CORBA-oriented mutation
operators which could simulate software faults specific to the use of a CORBA

ORB. For instance, memory management is notoriously tricky in a CORBA context,
when using primitive programming languages that do not provide automatic
storage management (such as C and C++), so would be a promising target for
mutation operators. Other mutation operators could involve the use of object
references.

Unfortunately, this work is necessarily programming-language specific. While the
most commonly used ORBs are implemented in C++, some are implemented in
other programming languages. Applying the same work to these ORBs would
require porting of the program mutation toolchain; the effort required for this
work would depend on the extent to which the mutation operators are specific to a
particular programming language.

5.3 Robustness testing

The robustness of a system is a measure of its ability to function correctly in
the presence of invalid inputs and stressful environmental conditions. Robustness
testing involves injecting corrupted data at the external interface of the system, and
observing its behaviour.

Robustness testing requires that the system under test present an explicit interface,
which will be targeted by the fault injector. This is problematic in the case of an
ORB, since most of the functionality provided by an ORB is implicit. Indeed, the
explicit functionality provided by an ORB is limited to the following:
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• ORB initialization: passing environment information to the ORB library and
obtaining bootstrap references for the ORB and services;

• POA5 management (on a server object): methods allowing servants to
register themselves with the object adapter, and control their lifecycle;

• policy management: dynamic changes to the way aspects such as the
concurrency model, or access control, are handled;

• the conversion of object references to and from textual representation;

• utility procedures for the creation of certain data types and lists of values.

The work reported in [Pan et al., 2001] on the robustness testing of ORBs targeted
about 20 operations in this interface. These operations constitute only a relatively
small portion of the functionality provided by an ORB, and are primarily used
during the initialization of an application. Indeed, most of the functionality
provided by an ORB is implicit, rather than resulting from explicit calls to a
public interface. Consider for example a basic CORBA method invocation in a
C++ program:

result = theObject->theMethod("argument1", 42);

The variable theObject is an instance of a class that extends classes provided
by the ORB implementation. The ORB identifies the computing node on which
the object is running, connects to a given port on that machine, serializes the
parameters of the call to a standard format, and sends them over the connection.
It then waits for the server’s response, and deserializes the reply into the variable
result, or signals a C++ exception.

All this activity is transparent to the application programmer, since the call is
syntactically identical to a standard method invocation on a local, non-CORBA

object. Given that this functionality is not exposed via an explicit interface, the
standard robustness testing approach cannot be applied.

This implicit functionality provided by the ORB can be broken down into a number
of categories:

• interaction with the application programming language: implementing mar-
shalling and demarshalling code, handling object creation and destruction,
exception handling;

• network-related processing: resolving the addresses of hosts, establishing
network connections, sending and receiving information from remote hosts;

5POA: Portable Object Adapter, responsible for dispatching incoming method invocations to the
correct servant, and for controlling the lifecycle of servants
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• handling concurrency according to requested policy, in cooperation with the
operating system;

• resource management: allocating and freeing buffers, etc.

We would like to apply robustness evaluation techniques to these classes of
functionality. Since they are not accessible through a standard interface, we
propose to generate synthesized interfaces that can serve as targets for fault
injection. The purpose of these synthesized interfaces is to provide a way of
activating the implicit functionality provided by an ORB. Ideally, we would like
to be able to activate each class of implicit functionality individually, to obtain
detailed failure mode information. However, it is not possible to isolate certain
functional classes from the others – almost all interactions with an ORB will make
use of the marshalling and networking functionality, for instance.

The following requirements should be satisfied by the synthesized interfaces and
the corresponding service implementation:

• they should use all the different data types that can be defined in OMG IDL,
including compound data types such as structures;

• they should include operations with arguments and return values that cover
the possible combinations of these data types, including the different
argument passing conventions (in, out and inout);

• given the large number of test cases implied by the two preceding
requirements, the injection code targeting these synthesized interfaces
should be generated automatically. Likewise, it should be possible
automatically to generate a workload application for a given interface
(clearly, this will severely limit the semantic level of the services which we
can target);

• the service implementation should be deterministic, so that failure of the
service can be detected automatically at the application level;

• the service should be dependent on the history of previous invocations (i.e., it
should not be stateless). If the service depends on some internal state, there is
a greater probability of faults propagating to the interface than if the service
were stateless.

These requirements can be met by a delayed echo service, consisting of operations
that take any number and type of arguments, and return the arguments supplied
by the previous call to the service. This service can be implemented for arbitrary
method signatures, is deterministic, and is not stateless.

A fault injection campaign using this approach consists of the following steps:
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• generate an interface with some combination of data type definitions and
operation signature. Since the set of possible interfaces is infinite, the
generation process is probably random, possibly weighted.

• generate corresponding implementations for the service, the workload, the
fault injector, and the fault observer.

• invoke the service with corrupted parameter values, and observe the service’s
behaviour.

The generation of parameters for the invocations of the service is a well-known
problem in functional testing. There are a number of possible techniques, including
statistical generation [Thévenod-Fosse et al., 1991]. The corruption of these
parameters is necessarily dependent on their type, and on the programming
language mapping. Many OMG IDL types are “incorruptible”, in the sense that
all the bit sequences that can be represented in memory have a valid representation
in the given type. Certain types, however, have a restricted domain, and can thus
be subjected to out-of-range corruption.

The interfaces, service implementations and workload described above can be
reused for a number of the fault injection techniques described in the following
sections.

5.3.1 Performance stress-testing

Another form of robustness testing is performance stress testing, where the
unexpected inputs to the system consist of an unusually intense activity of the
workload. These performance tests evaluate the scalability of the service, in terms
of the average response time and jitter, as a function of the number of incoming
requests per second, and also as a function of the complexity of the request.

This approach is particularly well suited to the characterization of CORBAservice
implementations, since their level of performance can affect the whole system of
systems, and timely responses may be critical for services such as Notification6.

5.4 Syscall interposition techniques

This fault model investigates fault propagation to the middleware from the
operating system kernel and system libraries. The failure at the operating system
level can have resulted from various types of faults, both hardware and software.

The middleware layer depends on services provided by the operating system
kernel, such as networking, scheduling of threads, and stable storage provided

6The CORBA Notification Service provides a publish/subscribe infrastructure that mediates
between event producers and event consumers, according to certain Quality of Service policies.
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through the file system. There are a number of ways for an error to propagate
from the operating system to the middleware7:

• returning an error code from a system call. Indeed, most system calls
return a status code indicating whether the requested operation completed
successfully. If not, the application can read an integer code that indicates
the reason for the failure.

• signalling an exception: the program’s execution is interrupted by the arrival
of a signal. If the application has registered a handler for this signal, it has
the opportunity to run the related code; otherwise the application is aborted
by the operating system. For example, the ALRM signal is used to notify an
application that a timeout has expired.

• taking too long to complete a certain system call (for hard real time
applications).

• corrupting data during input/output operations, for example while reading
and writing to stable storage.

• failing to inform the application that some event has occurred. For instance,
applications can use the select system call to sleep until activity is
detected on a set of file descriptors. If the operating system does not wake
up the application, it won’t handle incoming messages.

A robust middleware implementation should be able to handle (certain classes of)
failures of the operating system gracefully. In many cases, this would involve
signalling an exception to the application level, to allow any error recovery
mechanisms to be executed. The response to certain types of exceptional
conditions is specified by the CORBA standard. For example, a NO_MEMORY
CORBA exception must be used to signal a problem with dynamic memory
allocation, and a PERSIST_STORE exception to signal a problem with persistent
storage on the server.

A campaign using this fault injection technique consists of observing the effects
of these unexpected operating system behaviours at the middleware level. The
experimental testbed includes a system call interposition layer, which is able to
intercept a given system call made by the middleware. Instead of propagating this
call to the operating system kernel, the interposition layer returns – possibly after
a certain delay– an error code to the middleware. The behaviour of the middleware
is then observed, from both the application level – is an exception raised, or
is the fault masked – and from the operating system level, to see whether the
system call is repeated (providing information on the middleware’s error recovery
mechanisms).

7In the following we use terminology from the POSIX standard, though similar concepts exist in
most modern operating systems.
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The fault injection campaign could be run randomly, by arbitrarily selecting the
targeted system call for each run. However, more interesting analysis of the
experimental outcomes can be obtained by targeting specific system calls, when
the middleware is in a known state. Using this approach, it is possible to determine
what activity the middleware was involved in when the fault was injected, and
examine the corresponding source code to isolate portions of code that could be
made more robust.

A particularly common activity in CORBA middleware is the exchange of a number
of messages with a remote host. This activity results in a certain trace of system
calls, which is represented in Figure 8.

ddress resolution

dnsfd = socket(...)

send(dnsfd, symbolic-address)

recvfrom(dnsfd, ...)

close(dnsfd)

fd = socket(...)

connect(fd, ...)

setsockopt(fd, ...) fcntl(fd, ...) send(fd, ...) recv(fd, ...)

close(fd)

Figure 8: System call graph for a network communication

The initial part of the activity resolves the target host’s symbolic name into a
numerical network address. The middleware then creates a communication socket
to this address, which it accesses via a numerical descriptor, and optionally sets
various flags on the socket. It then sends and receives messages using this
descriptor, and finally closes it.

In order to use the syscall interposition technique to target specific middleware
activities, the following information must be available:

• a description of the operating system’s service interface, listing the signature
of each system call (including the types of its parameters and the return
value) and the meaning of each of the error codes which can be generated
by that system call. This information is available in the operating system’s
programming manual.
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• a list of activity graphs for the target ORB implementation. The system call
traces can be generated using a tool such as truss8.

• a workload and failure observer. Those developed for the robustness testing
approach (see Section 5.3) can be reused in this context.

A fault injection campaign for this fault model involves targeting each activity
graph. For each activity graph, a given sequence of system calls is selected. Then
one system call within this sequence is selected for corruption. For this system
call, one of the possible failure modes is selected. A syscall interposition layer
is generated for that syscall and fault activation sequence. The interposition layer
will detect the targeted sequence of syscalls, which becomes the trigger for the
injection.

5.5 Network-level faults

This fault model consists of simulating the effect of faults affecting the
communication subsystem. This approach is particularly interesting in a DSoS
context, since it provides information on the way in which errors may propagate
between component systems, through the communication infrastructure.

This approach investigates the impact of corrupt method invocations arriving over
the network. It consists of sending a corrupted request to the target, and observing
its behaviour. This fault model simulates three different classes of faults:

• transient physical faults in the communication subsystem, resulting for
example from faulty memory banks in routers, or faulty DMA transfers with
the network interface card. Network corruption, even over reliable transport
protocols such as TCP (on which IIOP is based), is more frequent than is
commonly assumed. Based on analysis of traffic traces on a LAN and the
Internet, [Stone and Partridge, 2000] reports that approximately one packet
in 32000 fails the TCP checksum, and that between one in a few millions
and one in 10 billion packets are delivered corrupted to the application level.
This is because the 16-bit checksum used in TCP is not able to detect certain
errors. While this proportion is very small, it is non-negligible given the high
capacity of modern LANs.

• propagation to the target of a fault that occurred on a remote computing
node interacting with the target. The fault may have affected the remote
operating system kernel, its protocol stack implementation, or the remote
ORB, leading to the emission of a corrupted request.

• malicious faults, such as denial of service attacks against the target. Given
the pivotal role of the name service in most CORBA-based systems, an

8See Figure 14 for an example of the type of information provided by this tool.

Failure analysis of an ORB in the presence of faults 28 Deliverable IC3



Dependable Systems of Systems IST-1999-11585

attacker who can crash the service may be able to cause the entire system
to fail. We note, however, that most CORBA systems will be deployed on
private networks where all parties can be assumed to be trustworthy.

The types of errors that could be investigated include single bitflips, and the zeroing
of successive bytes in a message. These are among the most common patterns of
corruption identified in [Stone and Partridge, 2000], and we assume that they are
representative of error propagation from remote nodes.

There are several possible means of injecting these faults. We could use dedicated
network hardware, but this is cumbersome and expensive. Using software-
implemented fault injection, faults could be injected at the protocol transport layer
(for example by instrumenting the operating system’s network stack, as in[Dawson
and Jahanian, 1995]). However, there is a very high probability that this form
of corruption is detected by the remote host’s network stack, and therefore not
delivered to the middleware. Consequently, it would be more efficient to inject the
fault at the application level (see Figure 9), before the data is encapsulated by the
transport layer. These experiments simulate the proportion of corrupt packets that
TCP incorrectly delivers as being valid.

Presentation
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Datalink
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Application
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Figure 9: Protocol levels in CORBA

5.5.1 Network protocol faults

As well as considering faults that corrupt the data contained in incoming messages,
it would be interesting to consider the impact of higher-level faults, which affect
the semantics of the message rather than its syntactical information.

We do not investigate protocol faults that occur at the transport level of the network
protocol stack, since these will be handled by the operating system’s networking

Failure analysis of an ORB in the presence of faults 29 Deliverable IC3



Dependable Systems of Systems IST-1999-11585

stack rather than by the middleware. Rather, we concentrate on protocol faults
at the level of GIOP, and more specifically IIOP, its mapping onto TCP (see
Figure 9). The types of unexpected conditions to which we can expose a target
implementation include:

• The reception of unexpected GIOP messages. For example, GIOP specifies
a LocateReply message type, which is sent in response to a LocateRequest
message. An injected fault could consist of sending LocateReply message
to an object, without it having emitted a corresponding LocateRequest
message.

• The reception of GIOP messages containing strange request-ids. Each GIOP
message contains a request-id, which is a numerical identifier for the request.
This request-id is then used in the response, to identify a response with a
request. The target could be sent dummy responses containing request-ids
that it didn’t send. Additionally, the effect of request-id duplication could
be studied (the receiving ORB should drop messages containing request-ids
that it has already handled).

• The reception of GIOP messages whose IORs contain unusual service
contexts. The service context is used by the ORB to contain connection-
related information (such as a session key, or the identifier of the character
set negotiated upon establishing the network connection).
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6 Experimental framework and results

In this section, we present the results of work carried out at LAAS using the
network-level corruption fault model described in Section 5.5. Our motivation
for selecting this fault model from the list of techniques presented in the previous
section, for our initial experimental work, is its relevance in the context of the DSoS
project. Our experiments aid a system integrator in the selection of a middleware
implementation to be used in wrapping and as a support for the interconnection
infrastructure, by assessing the robustness of different candidate implementations.
Furthermore, the method provides a means of characterizing the nature and the
likelihood of error propagation between component systems, through a CORBA-
based interconnection infrastructure.

These experiments targeted different implementations of the CORBA Name
Service [OMG, 2001b]. This service provides a hierarchical directory for object
references, allowing server applications to register a service under a symbolic
name, and clients to obtain references by resolving a name.

We chose this target since its standardized interface makes it easy to compare
different implementations of the service. Furthermore, the Name Service may
constitute a single point of failure in a CORBA-based system: while it is possible to
deploy applications without using a naming or trading service, by allocating object
references statically, most systems require the dynamism provided by this service.

The same failure mode characterization techniques could be applied to other
CORBA services, as well as to user services implemented on CORBA. We also
believe that the failure modes exhibited by a vendor’s implementation of the name
service will also be present, to a significant extent, in other applications built using
the vendor’s CORBA ORB. Indeed, a vendor’s name service implementation is
typically composed of a certain amount of application code implementing the
service-specific functionality, which is linked with the vendor’s shared library
implementing its ORB. A significant proportion of the robustness failings we have
observed are relatively low level, and thus more likely to come from the ORB
library than from the application code; we would therefore expect that they will
also be present in other applications using the ORB.

6.1 Failure modes

Although the classification of failure modes may depend on the target component,
the various possible outcomes of a component’s behaviour in the presence of faults
are similar. Roughly speaking, either the fault is successfully detected by various
error detection mechanisms (behavioural checks, executable assertions, hardware
mechanisms, etc.) and signalled by different means (error status, exceptions,
interrupts, etc.) to the interacting components, or it is not.

The latter case is the more difficult to classify. The first possible situation is
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the crash or the hang of the target component. Observing this situation involves
external mechanisms that control the liveness of the component under test. When
no crash or hang are observed, then more subtle mechanisms must be used to
distinguish the correct outcomes of the target. In testing, this is known as the
notion of Oracle. This Oracle must be defined beforehand and is part of both the
activation profile of the component under test and the fault injection campaign at
runtime. Indeed, during a test experiment, the outputs of the component must be
obtained to be compared (at the end) to the Oracle. This is the only way to detect
incorrect behaviour of the target component during the test phase, when built-in
error detection mechanisms fail.

We classify the experimental outcomes for injections targeting the name service as
follows:

• kernel crash: the computing node (or nodes) hosting the service becomes
inaccessible from the network. We test for this condition by attempting to
execute a command from a remote machine.

• service crash: attempts to establish a network connection to the service are
refused. Typically this means that the process implementing the service has
died.

• service hang: the service accepts the incoming connection, but does not reply
within a given time span. Note that this does not necessarily mean that other
clients of the service are blocked, since processing may continue in other
threads.

• application failure (error propagation to the application level): the service
starts returning erroneous results to clients. We assume conservatively that
error propagation to the application causes an application failure.

• Exception: an invocation of the service results in a CORBA exception being
raised. We distinguish between System Exceptions (which come from the
ORB) and User Exceptions (which are raised at the application level).

The observation of these failure modes is a crucial issue in a fault injection
campaign. It is difficult to achieve 100% coverage of the error detection
mechanisms, so some failures may be undetected. In particular, since all fault
injection experiments are finite in time, it is possible for an injected fault not to
lead to any observable effect during the duration of the experiment. This does not
necessarily mean that the fault has no effect, since its effect may be postponed after
the end of the observation period (notion of error latency).

These failure modes are not equivalent from a dependability point of view.
Signalling an exception is the “best” experimental outcome, since the service
remains available to other users, and the application can decide on the
most appropriate recovery action, such as retrying the operation (in the case

Failure analysis of an ORB in the presence of faults 32 Deliverable IC3



Dependable Systems of Systems IST-1999-11585

of a TRANSIENT exception) or deciding to use an alternative service (for
COMM_FAILURE). It is important that the exception provide as much information
as possible; COMM_FAILURE is more useful than UNKNOWN, since in the latter
case the application has less information on which to base its recovery strategy.

The most serious failure mode is error propagation to the application level; indeed,
any fault tolerance mechanisms implemented at the application level will not be
activated, and the error is free to propagate to the system’s service interface. The
kernel and service crash and hang failure modes, while not positive outcomes,
are considered less serious, since they can be detected by system-dependent
mechanisms such as watchdog timers.

6.2 Experimental setup

The infrastructure we use to support our fault injection experiments is shown in
Figure 10. It consists of the following components:

• the workload application, which activates the target service’s functionality
(the workload runs on a different computing node from the service);

• the fault injector, which sends a corrupted request to the target once the
workload has been running for a certain time span;

• monitoring components, which observe the behaviour of the target and log
their observations to an SQL database;

• offline data analysis tools, to identify the various failure modes by examining
the data collected by the monitoring components.

logging

bind(), resolve(), unbind()

controller

workload

corrupt resolve()

database

service

target

Figure 10: Experimental configuration of our testbed
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Our workload application repeatedly constructs a naming graph, resolves names
against this graph, and then destroys the graph. Since the graph is constructed
in a deterministic way, the workload is able to check that the results returned by
the service are correct (it plays the rôle of oracle with respect to the functional
specification of the service). If the workload detects an anomaly in the operation
of the target service, such as an incorrect result, this is signalled as an application
failure. If it receives an exception from the target, it signals the appropriate
exception outcome.

Each experiment corresponds to a single injected fault. A controller process
launches the target service and obtains its object reference (in the implementations
which we have targeted, the name service is implemented as a Unix dæmon). It
then starts the workload application, passing it the service’s reference. After 20
seconds, the fault injector sends a corrupted resolve request to the target service
(for a name which has not been given a binding) and waits for the reply. The
expected reply is a NotFound exception raised by the naming service. If no
reply arrives within 20 seconds, a ServiceHang failure mode is signalled. At the
end of the experiment, the monitoring components check for the presence of the
different failure modes by trying to launch a command on the target host, checking
for returned exceptions, etc.

For each targeted implementation, a fault injection campaign involves running an
experiment for each bit or byte position in the resolve request. A campaign lasts
around 48 hours per target for the bitflip fault model.

This fault injection technique is very portable, since the only implementation-
specific component in our testbed is the code responsible for launching the target
implementation. The technique is also non intrusive, and does not require any
instrumentation of the targeted service.

6.3 Target implementations

We have carried out our experiments on four implementations of the CORBA Name
Service:

• omniORB 2.8, by AT&T Laboratories, Cambridge. Freely available under
the GNU General Public Licence, and implemented in C++;

• ORBit 0.5.0, also available under the GNU General Public Licence, and
implemented in C;

• ORBacus 4.0.4, a commercial product from Object Oriented Concepts,
implemented in C++;

• the tnameserv bundled with version 1.3 of Sun’s Java SDK.

All experiments were carried out on workstations running the Solaris 2.7 operating
system, connected by a 100Mb/s Ethernet LAN. While we tried to make the
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experimental conditions as similar as possible across implementations, a number
of factors require particular attention:

• persistence: the omniORB implementation maintains log files so as to
provide persistence across service shutdowns. To ensure a fresh environment
for each experiment, we erase these log files before starting the service. The
ORBacus implementation can be configured to use log files, but we do not
enable them in our experiments. The two other tested implementations do
not support persistence.

• number of experiments: we perform experiments for each bit or byte position
in the corrupted method invocation. CORBA method invocations contain
an ORB-dependent parameter called the service context (which can be
used to propagate implementation-specific data and implicitly propagate
transactions). The size of this parameter differs slightly between ORB
implementations, so the exact number of experiments changes slightly from
target to target.

• the ORBit implementation defaults to using non-interoperable object
references. We configured it to use standard IIOP profiles.

In certain experiments, we observe several failure modes: for example a service
crash will generally result in clients of the service receiving an exception indicating
that a communication error has occurred. In the figures presented below, the failure
modes are classified according to gravity, and for each experiment the most serious
mode observed by the testbed is selected.

6.4 Analysis of results

In this section we present the results of our fault injection experiments, for both
the double-zero and bitflip fault models. More general analysis from a dependable
system integrator’s perspective is presented in Section 6.5.

Figure 11 compares the experimental outcomes for each target implementation, for
the double-zero fault model (where two successive octets of the message are set
to zero). The three outcomes to the left of the legend are “bad”, whereas those
on the right indicate robust behaviour. The outcomes whose names in the legend
are in capital letters correspond to CORBA SystemExceptions. The NotFound
outcome is a CORBA application-level exception raised by the naming service
when it cannot resolve a name; this is the expected behaviour of the service for
our experiments. The sum of the vertical bars for each target is 100%.
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Figure 11: Experimental outcomes for double-octet zeroing fault model

A first remark is that we have not observed any cases of error propagation to the
application level, which is a positive point. However, there are a relatively large
proportion of service hangs and crashes.

As stated earlier, our service hang failure mode does not imply that other clients
of the naming service are blocked; we only consider the time taken to reply to the
corrupted invocation. However, given its relative frequency, it is one of the most
serious dependability problems we have identified. The upcoming CORBA 2.4
specification allows clients to specify timeouts on their requests, which would
be helpful for detecting this type of situation without resorting to application-
level watchdog mechanisms. Some of the implementations tested already support
these interfaces or provide similar mechanisms (but they were not activated in our
experiments).

Examining the details of the breakdown of CORBA exceptions, we observe that
the Java implementation raises very few COMM_FAILURE exceptions, but a larger
proportion of UNKNOWN exceptions (this exception is raised by an ORB when it
detects an error in the server execution whose cause it cannot determine – for
example, in Java, an attempt to dereference a null pointer). UNKNOWN is a less
useful exception to signal to the application layer, since it conveys no information
on the cause of the exception, so from this point of view the Java ORB can
be considered less robust. The ORBacus service raises a greater proportion of
MARSHAL exceptions, which indicates that its marshalling code does more error
checking than other implementations (a positive point from a robustness point of
view); ORBit does not raise MARSHAL exceptions.

The proportion of OBJECT_NOT_EXIST exceptions, which the ORB uses to
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signal that the object reference against which the method was invoked does not
exist, is very similar between implementations. This is to be expected, since an
ORB is required to check the validity of this value before dispatching the method
invocation to the appropriate servant. A similar remark can be made for the
BAD_OPERATION exception.

6.4.1 Differences between fault models

Figure 12 shows the experimental outcomes for each target implementation for the
bitflip fault model. The results differ slightly from those for the double-zero fault
model. The first difference between the results from the two fault models is the
appearance of a InvalidName exception which is not provoked by the double-
zero fault model. This exception is raised by the naming service either when the
name it is asked to resolve is empty, or –more likely in our case– when the name
contains an invalid character.

javaORB omniORB ORBacus ORBit
0

10

20

30

40

50

ServiceCrash
ServiceHang
UNKNOWN

COMM FAILURE
BAD OPERATION
MARSHAL
OBJECT NOT EXIST
NotFound

Figure 12: Experimental outcomes for bitflip fault model

A second observation is that the bitflip fault model results in a greater proportion
of MARSHAL and NotFound exceptions. In the latter case, the difference is likely
to be due to the service masking certain errors. Indeed, certain bits in an IIOP
message are unused. For example, the byte order of a message is represented by a
zero or a one marshalled into an octet; seven of these bits are not significant, and so
their corruption may not be detected by the ORB. In contrast, a double-zero error
is unlikely to escape the notice of the ORB.

Certain other phenomena, such as the small proportion of COMM_FAILURE and
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BAD_OPERATION exceptions raised by JavaORB for the bitflip fault model,
would require deep analysis of the source code to explain.

6.4.2 Influence of the error position

Figures 11 and 12 aggregate the results of faults injected at each possible position
in the message. It is also interesting to examine the failure modes as a function of
the position in the message where the fault was injected. Figure 13 shows the most
common experimental outcomes for certain regions of the message9.

operation arguments

requesting_principalobject-key operation...

32 640

#\G #\P#\O#\I

168

message-length

48

IIOP header

GIOP-version
byte-order

message-type

service-context...
response-expected?

OBJECT_NOT_EXIST
MARSHAL

BAD_OPERATION

COMM_FAILURE

ServiceHang

ServiceCrash

Figure 13: Format of a GIOP message

When the fault affects the part of the message which identifies the invoked
operation, primarily BAD_OPERATION exceptions are signalled, as would be
expected. Similarly, faults injected in the first few bytes of the IIOP request (which
contain a special signature which identifies the message type) result mainly in
COMM_FAILURE exceptions.

When the fault affects the header bits encoding the message’s length, we mostly
observe service hangs. Given that there are 32 bits to encode the message length,
and that our messages are relatively short (around 900 bits), a bitflip in this zone
(normally set to zero) is likely to increase the announced message length, so the
service waits to read more data than will actually arrive.

6.4.3 Internal error checking mechanisms

The ORBacus service was compiled in its default configuration, without
deactivating internal “can’t happen” assertions. When these assertions fail, the
program voluntarily exits using the abort procedure. This leads to ORBacus

9The data in the figure is valid for all the targeted implementations
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showing a relatively high proportion of service failures, some of which could be
avoided by using a different configuration. The omniORB implementation can be
configured at runtime to abort when it detects an internal error, but we did not
enable this feature.

6.4.4 System call trace analysis

Our testbed allows us to obtain system call traces and execution stack backtraces of
the target process. These show that different middleware implementations activate
the operating system in different ways. For instance, the ORBacus implementation
makes a large number of lwp_mutex and lwp_sema calls, which enable the
synchronization of threads, whereas the omniORB implementation uses a much
narrower range of system calls, primarily for reading and writing to the network
and to its log file.

The system call traces also illustrate differences in the level of internal error
checking between ORB implementations. For example, when faults are injected
into certain bit positions, the ORBit implementation causes a segmentation
violation while decoding the corrupted message, and is forcibly aborted by the
operating system. In contrast, the ORBacus implementation sometimes detects the
corruption internally, and is able to print a warning message indicating the position
in the program where the error was detected, before voluntarily aborting. This lack
of internal error checking is an implementation decision for ORBit, whose primary
design goals are high performance and a small footprint.

Figure 14 shows output from the truss tool on Solaris, for the ORBit
segmentation violation described above. The tool generates a trace of the
interaction between the operating system and a process, showing the system calls
performed by the process with their arguments, machine faults incurred by the
process and the signals delivered to it by the operating system kernel. The trace
shows that after having read a GIOP request from the network, the name service
attempts to access memory outside of its address space, receives a segmentation
violation signal, and is aborted by the operating system.
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fcntl(7, F_SETFL, 0x00000082) = 0
poll(0xFFBEF300, 3, -1) = 1
read(7, " G I O P01\001\0 U\0\0\0", 12) = 12
read(7, "\0\0\0\001\0\0\001\0\0\0".., 85) = 85

Incurred fault #6, FLTBOUNDS %pc = 0x00014274
siginfo: SIGSEGV SEGV_MAPERR addr=0x6E7A1124

Received signal #11, SIGSEGV [caught]
siginfo: SIGSEGV SEGV_MAPERR addr=0x6E7A1124

siginfo: SIGSEGV SEGV_MAPERR addr=0x6E7A1124
[...]

getpid() = 26780 [26779]
kill(26780, SIGABRT) = 0

Received signal #6, SIGABRT [caught]
siginfo: SIGABRT pid=26780 uid=3905

fstat(3, 0xFFBED8E0) = 0
[...]

llseek(0, 0, SEEK_CUR) = 0
_exit(1)

Figure 14: truss output showing an ORBit segmentation violation

6.5 Analysis from an integrator’s point of view

The experimental results presented in Section 6 show a relatively large variability
of behaviour of the target candidates in the presence of faults. This demonstrates
that, although the service’s interface is standardized, a particular candidate’s
behaviour depends on the design and implementation decisions made by the
vendor. In this section, we adopt the viewpoint of a system integrator who must
select a candidate implementation for a safety critical system.

As such, we rank first candidates that deliver relevant error reporting information,
i.e., those which exhibit fewer service hangs and UNKNOWN exceptions. These are
the most problematic failure modes when deciding on fault tolerance strategies and
error recovery mechanisms that can meet the system’s dependability requirements.

By grouping all the exceptions except for UNKNOWN together, we obtain the
percentages for the bitflip fault model shown in Table 1.

Table 1: Ranking of service implementations

Implementation Exception UNKNOWN Service Hang Service Crash
ORBacus 88.0 1.3 6.1 4.6
omniORB 79.5 0.6 19.3 0.6

ORBit 76.6 0.0 15.8 7.6
Java SDK 58.0 20.3 20.7 1.0
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From this viewpoint, the ORBacus and omniORB implementations exhibit the
safest behaviour: more significant exceptions are reported, i.e., fewer UNKNOWN
exceptions, and there is a smaller proportion of service hangs. ORBacus has
a relatively high rate of service failure, which (as discussed in Section 6.4.3)
is partly due to the configuration we chose. This type of reaction to abnormal
situations is not necessarily a negative point from a dependability viewpoint.
Many fault tolerance strategies, particularly in a distributed computing context,
make a fail silence assumption, which requires components to produce either
correct results, or none. Silent failures can successfully be handled by replication,
either by using identical copies located on different sites, to deal with physical
or environmental faults [Powell, 1991], or by using diversified copies to protect
against software faults [Avizienis, 1975, Randell, 1975, Laprie et al., 1990].

We also observed in the experiments that the behaviour depends on the fault model.
The results obtained with double zeroing and bitflips lead to a different statistical
distribution of the failure modes. However, the resulting numbers do not disturb
the ranking given in Table 1. Many issues can influence the observed results.
Nevertheless both types of experiments leading to the same conclusions reinforce
the confidence one can have in the ranking.

Clearly, many other aspects of middleware dependability must be taken into
account in the final selection of a candidate. In particular, the effects of other
classes of faults need to be investigated. From this viewpoint, the work done by
the Ballista project [Pan et al., 2001], which uses a different fault model and targets
a different part of the middleware, is complementary to ours.
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7 Conclusions and future work

This document proposes a method for the failure mode analysis of CORBA-based
systems. This method relies essentially on conventional fault injection techniques
and on a clear identification of possible targets in a middleware implementation.
Although the CORBA standard defines the features that must be provided by
CORBA ORB implementations, their implementation may vary significantly from
one vendor to another. From a dependability viewpoint, the design strategy
and the implementation of the standard are of prime importance. Clearly, a
middleware such as CORBA includes several facets that make the characterisation
quite difficult. We analysed the various components and possible targets in a
CORBA middleware and justified the use of a particular fault injection technique.
In the context of DSoS, the analysis of failure modes targeting sensitive services
using network corruption seemed the most relevant, and was the first to be tackled.
Experiments have been carried out to obtain significant results on a number of
CORBA implementations. These results show the various possible behaviours that
can be observed and their impact in a system of systems, from a dependability
viewpoint. The insights revealed by these experiments are novel and useful inputs
to develop error confinement wrappers (cf Section 4 of DSoS deliverable IC2).

We have presented an experimental robustness evaluation method for CORBA-
based services, and discuss results of experiments targeting four implementations
of the CORBA Name Service. These experiments can be carried out on any CORBA

service or user-defined service on top of CORBA. The choice of the Naming
Service was justified by its essential role in a CORBA distributed system. It is
worth noting that these experiments also evaluate the effect of corrupted method
invocations at the middleware level.

The implementations we have tested show a non-negligible number of robustness
weaknesses, but we have not observed any failures corresponding to the
propagation of an error from the middleware to the application level. Our results
suggest that the robustness of CORBA-based systems would be enhanced by the
addition of an (application-level) checksum to GIOP. The achieved failure mode
characterization aids in the selection of a candidate middleware implementation for
critical systems, and helps DSoS system integrators decide on the error detection
and recovery mechanisms, fault tolerance strategies and architectural solutions
that are needed to meet dependability requirements. Our technique is non-
intrusive, and (thanks to the transparency provided by CORBA) easy to port, both
to new implementations of the service, and to alternative operating environments
(operating system, hardware platform). The approach could also be applied for
the failure modes characterization of other CORBA services, by modifying the
workload and the fault injector.

This method will be used to carry out other experiments and obtain more results
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regarding the failure modes of a CORBA-based system10. First, fault injection
will be performed within several target components composing the middleware
using bit-flip fault injection techniques targeting memory segments (simulation
of hardware faults, as described in Section 5.1). Second, we will address the
robustness of implicit functions of an ORB using an ad hoc interface to these
functions. The robustness of these essential functions will be evaluated using
parameter fault injection techniques (cf Section 5.3). Third, we plan to examine
the influence of faults propagating from the operating system to the middleware, as
described in Section 5.4. The extension of the experiments carried out will provide
useful inputs to the definition of error confinement wrappers.
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