Fault Tolerance Architecture 
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Replication Manager’s responsibility:
1. Server Status Detector
Mechanisms:

a) Periodically (every 1s) calls TrafficControlServer is_alive interface to detect if servers crashed
b) Get notification (1. server starts up or 2. server crashes) through EventNotify interface from Executives.
Rationale: The combination of these methods could detect the current status of the two servers efficiently. 
2. Fault Handling
Mechanisms:

a) Maintain the global status of two servers as shown in following state machine.
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b) Makes the decision that who will become the primary. The state transfer is shown in following figure.
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 Note that for both state diagrams:
i. The state transition labels are in “event/action” format.

ii. Whenever the state is in the middle of a transition, the state machine will be blocked to receive the other events. Note that this state machine can not handle error efficiently in case of two servers are simultaneously shutdown.
Executive’s responsibility:
1. Automatically restart the AirTrafficControl as its child process when it crashed.
2. Notify ReplicationManager when the TrafficControlServer is detected to be crashed.
Server’s responsibility:
1. Implements the AirTrafficControl interface.
2. Implements is_alive function (return true whenever it is ready to become primary).

3. Implements become_primary function to read the states from database then becomes the primary.
Summary:
1.  The TrafficControlServer is replicated with 2 with different names: TrafficControlServer1 and TrafficControlServer2. Note that replicas should be on the different machines with their servers but not on the sacred machine.
2.  Our design does not replicate following components:

    - Executives because it just monitor the TrafficControlServer in the same machine, so that it makes no sense to replicate it to another machine.
    - Replication Manager, Naming Service, and databases on a sacred machine.
3.  The system is designed to tolerate 1 fault at a time. Several faults happens at the same time will be handled separately.
4.  The system can tolerate any number of faults if:

    - they occur not simultaneously

    - at least one working replica is guaranteed to be around, 

    - sacred machine doesn’t crash,

    - fault is of type COMM_FAILURE or killing a non-sacred process. We don’t handle faults caused by software design flaws.
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