Fault Tolerance Architecture

[image: image1.emf]Executive1

TrafficControlServer1

Executive2

TrafficControlServer2

Database

Replication Manager

is_alive

become_primary

is_alive

process

Physical machine

interface

is_alive

is_alive

become_primary

Legends:

EventNotify

EventNotify

Replication Manager’s responsibility:
1. Server Status Detector
Mechanisms:

a) Periodically (every 1s) calls TrafficControlServer is_alive interface to detect if servers crashed
b) Get notification (1. server starts up or 2. server crashes) through EventNotify interface from Executives.
Rationale: The combination of these methods could detect the current status of the two servers efficiently.
2. Fault Handling
Mechanisms:

a) Maintain the global status of two servers as shown in following state machine.

[image: image2.emf]leave1/2_become_primary

leave2/1_become_primary

leave2

leave1

join1

join2

Join2/2_become_primary

Join1/1_become_primary

<>

<1 is online>

<2 is online>

<1,2 are online>

b) Makes the decision that who will become the primary. The state transfer is shown in following figure.

[image: image3.emf]Leave1/2_become_primary

Leave2/1_become_primary

leave1

leave2

leave2

leave1

join1

join2

Join2/2_become_primary

Join1/1_become_primary

<no primary>

<1 is the

primary, 2 is

down>

<2 is the

primary, 1 is

down>

<1 is the

primary, 2 is

backup>

<2 is the

primary, 1 is

backup>

 Note that for both state diagrams:
i. The state transition labels are in “event/action” format.

ii. Whenever the state is in the middle of a transition, the state machine will be blocked to receive the other events. Note that this state machine can not handle error efficiently in case of two servers are simultaneously shutdown.
Executive’s responsibility:
1. Automatically restart the AirTrafficControl as its child process when it crashed.
2. Notify ReplicationManager when the TrafficControlServer is detected to be crashed.
Server’s responsibility:
1. Implements the AirTrafficControl interface.
2. Implements is_alive function (return true whenever it is ready to become primary).

3. Implements become_primary function to read the states from database then becomes the primary.
Summary:
1. The TrafficControlServer is replicated with 2 with different names: TrafficControlServer1 and TrafficControlServer2. Note that replicas should be on the different machines with their servers but not on the sacred machine.
2. Our design does not replicate following components:

 - Executives because it just monitor the TrafficControlServer in the same machine, so that it makes no sense to replicate it to another machine.
 - Replication Manager, Naming Service, and databases on a sacred machine.
3. The system is designed to tolerate 1 fault at a time. Several faults happens at the same time will be handled separately.
4. The system can tolerate any number of faults if:

 - they occur not simultaneously

 - at least one working replica is guaranteed to be around,

 - sacred machine doesn’t crash,

 - fault is of type COMM_FAILURE or killing a non-sacred process. We don’t handle faults caused by software design flaws.
Page 3 of 3

_1109166746.vsd
state�

�

<>�

<1 is online>�

<2 is online>�

<1,2 are online>�

Join1/1_become_primary�

Join2/2_become_primary�

join2�

join1�

leave1�

leave2�

leave2/1_become_primary�

leave1/2_become_primary�

_1109174847.vsd

ActorClass�

�

�

�

�

�

�

�

c�

�

state�

�

Executive1�

TrafficControlServer1�

�

Executive2�

�

TrafficControlServer2�

Database�

Replication Manager�

�

�

EventNotify�

is_alive
become_primary�

is_alive�

�

process�

Physical machine�

interface�

is_alive�

is_alive
become_primary�

Legends:�

�

EventNotify�

Thread�

�

<>�

<1>�

<2>�

<1,2>�

Join1/1_become_primary�

Join2/2_become_primary�

join2�

join1�

leave1�

leave2�

leave2/1_become_primary�

leave1/2_become_primary�

_1109166517.vsd
state�

�

<no primary>�

<1 is the primary, 2 is down>�

<2 is the primary, 1 is down>�

<1 is the primary, 2 is backup>�

Join1/1_become_primary�

Join2/2_become_primary�

join2�

join1�

leave1�

leave2�

leave2�

leave1�

<2 is the primary, 1 is backup>�

Leave2/1_become_primary�

Leave1/2_become_primary�

