HW SET \#7 (DUE BEFORE CLASS ON APR 7, WED)

Problem 1 (20 points) Please evaluate the shape-adaptive DCT (SA-DCT) of the following 8×8 image block

			56	50			
		80	70	40			
	40	50	77	74	43		
	21	60	70	40	50	30	
8	30	28	60	85	40		
		15	80	90			
				30			

where empty entries represent pels that are outside the object contour. Show the DCT coefficients as an 8×8 block. Note that not all the 64 coefficients will be present.

Nate The N-point D CT of $x(0), x(1), \ldots, x(N-1)$ is defined as

$$
y(m)=k_{m} \sum_{n=0}^{N-1} \cos \left[\frac{(2 n+1) m \pi}{2 N}\right] x(n) \text { where } k_{m}=\left\{\begin{array}{lc}
\sqrt{1 / N} & \text { when } m=0 \\
\sqrt{2 / N} & \text { otherwise }
\end{array}\right.
$$

Problem 2 (80 points) Quantize (and dequantize) the DCT coefficients you get in Problem 1 by the stepsize Q without the dead zone, i.e., round each coefficient to the nearest multiple of Q. Apply the Inverse SA-DCT to the quantized DCT coefficients to reconstruct the pel values (with rounding to the nearest integer). For $Q=4,8,16$, and 32 , show the reconstructed pel values as an 8×8 block similar to the one above in Problem 1, and compute the resulting PSNR (only for pels inside the object contour).

Nte The N-point Inverse D CT of $y(0), y(1), \ldots, y(N-1)$ is defined as

$$
x(n)=\sum_{m=0}^{N-1} k_{m} \cos \left[\frac{(2 n+1) m \pi}{2 N}\right] y(m) \text { where } k_{m}=\left\{\begin{array}{lc}
\sqrt{1 / N} & \text { when } m=0 \\
\sqrt{2 / N} & \text { otherwise }
\end{array}\right.
$$

