INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 N1993

MPEG98/

San Jose, February 1998

Source: 	Video & SNHC Groups

Status: 	Approved at the February 1998 MPEG meeting

Title: 	MPEG-4 Version 2 Visual Working Draft Rev 2.0

Authors: 	E. S. Jang(Main Editor),

		T. Ebrahimi, C. Horne, J. Ostermann, A. Puri, Y. Nakaya,

		and the Ad hoc Groups on Video&SNHC VM/WD Editing

Version of: 6 February, 1998

Please address any comments or suggestions to mpeg4-vm@ltssg3.epfl.ch

Contents

� TOC ₩o "1-3" �1. Introduction	� GOTOBUTTON _Toc410840121 � PAGEREF _Toc410840121 �vi��

1.1 Purpose	� GOTOBUTTON _Toc410840122 � PAGEREF _Toc410840122 �vi��

1.2 Application	� GOTOBUTTON _Toc410840123 � PAGEREF _Toc410840123 �vi��

1.3 Version Statement	� GOTOBUTTON _Toc410840124 � PAGEREF _Toc410840124 �vi��

1.4 Profiles and levels	� GOTOBUTTON _Toc410840125 � PAGEREF _Toc410840125 �vii��

1.5 Object based coding syntax	� GOTOBUTTON _Toc410840126 � PAGEREF _Toc410840126 �vii��

1.5.1 Overview of the object based nonscalable syntax	� GOTOBUTTON _Toc410840127 � PAGEREF _Toc410840127 �viii��

1.5.2 Generalized scalability	� GOTOBUTTON _Toc410840128 � PAGEREF _Toc410840128 �ix��

1.6 Error Resilience	� GOTOBUTTON _Toc410840129 � PAGEREF _Toc410840129 �x��

1. Scope	� GOTOBUTTON _Toc410840130 � PAGEREF _Toc410840130 �1��

2. Normative references	� GOTOBUTTON _Toc410840131 � PAGEREF _Toc410840131 �1��

3. Definitions	� GOTOBUTTON _Toc410840132 � PAGEREF _Toc410840132 �1��

4. Abbreviations and symbols	� GOTOBUTTON _Toc410840133 � PAGEREF _Toc410840133 �1��

5. Conventions	� GOTOBUTTON _Toc410840134 � PAGEREF _Toc410840134 �1��

6. Visual bitstream syntax and semantics	� GOTOBUTTON _Toc410840135 � PAGEREF _Toc410840135 �1��

6.1 Structure of coded visual data	� GOTOBUTTON _Toc410840136 � PAGEREF _Toc410840136 �1��

6.2 Visual bitstream syntax	� GOTOBUTTON _Toc410840137 � PAGEREF _Toc410840137 �1��

6.2.1 Start codes	� GOTOBUTTON _Toc410840138 � PAGEREF _Toc410840138 �1��

6.2.2 Visual Object Sequence and Visual Object	� GOTOBUTTON _Toc410840139 � PAGEREF _Toc410840139 �1��

6.2.3 Video Object	� GOTOBUTTON _Toc410840140 � PAGEREF _Toc410840140 �2��

6.2.4 Video Object Layer	� GOTOBUTTON _Toc410840141 � PAGEREF _Toc410840141 �3��

6.2.5 Group of Video Object Plane	� GOTOBUTTON _Toc410840142 � PAGEREF _Toc410840142 �5��

6.2.6 Video Object Plane	� GOTOBUTTON _Toc410840143 � PAGEREF _Toc410840143 �6��

6.2.7 Macroblock	� GOTOBUTTON _Toc410840144 � PAGEREF _Toc410840144 �10��

6.2.8 Block	� GOTOBUTTON _Toc410840145 � PAGEREF _Toc410840145 �13��

6.2.9 Still Texture Object	� GOTOBUTTON _Toc410840146 � PAGEREF _Toc410840146 �13��

6.2.10 Mesh Object	� GOTOBUTTON _Toc410840147 � PAGEREF _Toc410840147 �13��

6.3 Visual bitstream semantics	� GOTOBUTTON _Toc410840148 � PAGEREF _Toc410840148 �13��

6.3.1 Semantic rules for higher syntactic structures	� GOTOBUTTON _Toc410840149 � PAGEREF _Toc410840149 �13��

6.3.2 Visual Object Sequence and Visual Object	� GOTOBUTTON _Toc410840150 � PAGEREF _Toc410840150 �13��

6.3.3 Video Object	� GOTOBUTTON _Toc410840151 � PAGEREF _Toc410840151 �13��

6.3.4 Video Object Layer	� GOTOBUTTON _Toc410840152 � PAGEREF _Toc410840152 �13��

6.3.5 Group of Video Object Plane	� GOTOBUTTON _Toc410840153 � PAGEREF _Toc410840153 �19��

6.3.6 Video Object Plane	� GOTOBUTTON _Toc410840154 � PAGEREF _Toc410840154 �19��

6.3.7 Macroblock related	� GOTOBUTTON _Toc410840155 � PAGEREF _Toc410840155 �24��

6.3.8 Block related	� GOTOBUTTON _Toc410840156 � PAGEREF _Toc410840156 �27��

6.3.9 Still texture object	� GOTOBUTTON _Toc410840157 � PAGEREF _Toc410840157 �27��

6.3.10 Mesh related	� GOTOBUTTON _Toc410840158 � PAGEREF _Toc410840158 �27��

6.3.11 Face object	� GOTOBUTTON _Toc410840159 � PAGEREF _Toc410840159 �27��

7. The visual decoding process	� GOTOBUTTON _Toc410840160 � PAGEREF _Toc410840160 �27��

7.1 Video decoding process	� GOTOBUTTON _Toc410840161 � PAGEREF _Toc410840161 �27��

7.2 Higher syntactic structures	� GOTOBUTTON _Toc410840162 � PAGEREF _Toc410840162 �27��

7.3 Texture decoding	� GOTOBUTTON _Toc410840163 � PAGEREF _Toc410840163 �27��

7.4 Shape decoding	� GOTOBUTTON _Toc410840164 � PAGEREF _Toc410840164 �28��

7.5 Motion compensation decoding	� GOTOBUTTON _Toc410840165 � PAGEREF _Toc410840165 �28��

7.6 Interlaced video decoding	� GOTOBUTTON _Toc410840166 � PAGEREF _Toc410840166 �28��

7.7 Error resilient decoding	� GOTOBUTTON _Toc410840167 � PAGEREF _Toc410840167 �28��

7.8 Sprite decoding	� GOTOBUTTON _Toc410840168 � PAGEREF _Toc410840168 �28��

7.8.1 Higher syntactic structures	� GOTOBUTTON _Toc410840169 � PAGEREF _Toc410840169 �28��

7.8.2 Sprite Reconstruction	� GOTOBUTTON _Toc410840170 � PAGEREF _Toc410840170 �28��

7.8.3 Low-latency sprite reconstruction	� GOTOBUTTON _Toc410840171 � PAGEREF _Toc410840171 �28��

7.8.4 Dynamic sprite reconstruction	� GOTOBUTTON _Toc410840172 � PAGEREF _Toc410840172 �28��

7.8.5 Dynamic sprite and GMC decoding	� GOTOBUTTON _Toc410840173 � PAGEREF _Toc410840173 �30��

7.8.6 Sprite reference point decoding	� GOTOBUTTON _Toc410840174 � PAGEREF _Toc410840174 �32��

7.8.7 Warping (cf. 7.8.5 in the version 1 CD)	� GOTOBUTTON _Toc410840175 � PAGEREF _Toc410840175 �32��

7.8.8 Sample reconstruction (cf. 7.8.6 in the version 1 CD)	� GOTOBUTTON _Toc410840176 � PAGEREF _Toc410840176 �35��

7.8.9 Scalable sprite decoding (cf. 7.8.7 in the version 1 CD)	� GOTOBUTTON _Toc410840177 � PAGEREF _Toc410840177 �36��

7.9 Generalized scalable decoding	� GOTOBUTTON _Toc410840178 � PAGEREF _Toc410840178 �36��

7.10 Still texture object decoding	� GOTOBUTTON _Toc410840179 � PAGEREF _Toc410840179 �37��

7.11 Mesh object decoding	� GOTOBUTTON _Toc410840180 � PAGEREF _Toc410840180 �37��

7.12 Face object decoding	� GOTOBUTTON _Toc410840181 � PAGEREF _Toc410840181 �37��

7.13 Output of the decoding process	� GOTOBUTTON _Toc410840182 � PAGEREF _Toc410840182 �37��

8. Visual-Systems Composition Issues	� GOTOBUTTON _Toc410840183 � PAGEREF _Toc410840183 �37��

9. Profiles and Levels	� GOTOBUTTON _Toc410840184 � PAGEREF _Toc410840184 �37��

10. Annex A	� GOTOBUTTON _Toc410840185 � PAGEREF _Toc410840185 �37��

11. Annex B	� GOTOBUTTON _Toc410840186 � PAGEREF _Toc410840186 �38��

11.1 Variable length codes	� GOTOBUTTON _Toc410840187 � PAGEREF _Toc410840187 �38��

11.1.1 Macroblock type	� GOTOBUTTON _Toc410840188 � PAGEREF _Toc410840188 �38��

11.1.2 Macroblock pattern	� GOTOBUTTON _Toc410840189 � PAGEREF _Toc410840189 �40��

11.1.3 Motion vector	� GOTOBUTTON _Toc410840190 � PAGEREF _Toc410840190 �40��

11.1.4 DCT coefficients	� GOTOBUTTON _Toc410840191 � PAGEREF _Toc410840191 �40��

11.1.5 Shape Coding	� GOTOBUTTON _Toc410840192 � PAGEREF _Toc410840192 �40��

11.1.6 Sprite Coding	� GOTOBUTTON _Toc410840193 � PAGEREF _Toc410840193 �40��

11.1.7 DCT based facial object decoding	� GOTOBUTTON _Toc410840194 � PAGEREF _Toc410840194 �40��

11.2 Arithmetic Decoding	� GOTOBUTTON _Toc410840195 � PAGEREF _Toc410840195 �40��

12. Annex C	� GOTOBUTTON _Toc410840196 � PAGEREF _Toc410840196 �41��

13. Annex D	� GOTOBUTTON _Toc410840197 � PAGEREF _Toc410840197 �41��

14. Annex E	� GOTOBUTTON _Toc410840198 � PAGEREF _Toc410840198 �41��

15. Annex F	� GOTOBUTTON _Toc410840199 � PAGEREF _Toc410840199 �41��

16. Annex G	� GOTOBUTTON _Toc410840200 � PAGEREF _Toc410840200 �41��

17. Annex H	� GOTOBUTTON _Toc410840201 � PAGEREF _Toc410840201 �41��

18. Annex I	� GOTOBUTTON _Toc410840202 � PAGEREF _Toc410840202 �41��

19. Annex J	� GOTOBUTTON _Toc410840203 � PAGEREF _Toc410840203 �42��

�

�Foreword	

 (Foreword to be provided by ISO)

�Introduction	

Purpose

This Part of this specification was developed in response to the growing need for a coding method that can facilitate access to visual objects in natural and synthetic moving pictures and associated natural or synthetic sound for various applications such as digital storage media, internet, various forms of wired or wireless communication etc. The use of this specification means that motion video can be manipulated as a form of computer data and can be stored on various storage media, transmitted and received over existing and future networks and distributed on existing and future broadcast channels.

Application

The applications of this specification cover, but are not limited to, such areas as listed below:

IMM	Internet Multimedia

IVG	Interactive Video Games

IPC	Interpersonal Communications (videoconferencing, videophone, etc.)

ISM	Interactive Storage Media (optical disks, etc.)

MMM	Multimedia Mailing

NDB	Networked Database Services (via ATM, etc.)

RES	Remote Emergency Systems

RVS	Remote Video Surveillance

WMM	Wireless Multimedia

Version Statement

This specification contains the ammendments to the MPEG-4 Version 1 CD. The ammendments will include Version 2 video and SNHC tools. To clarify the Version 2 tools from the Version 1 tools, the list of the Version 2 tools are listed as follows:

Updated description of global motion compensation.

Profiles and levels

This specification is intended to be generic in the sense that it serves a wide range of applications, bitrates, resolutions, qualities and services. Furthermore, it allows a number of modes of coding of both natural and synthetic video in a manner facilitating access to individual objects in images or video, referred to as content based access. Applications should cover, among other things, digital storage media, content based image and video databases, internet video, interpersonal video communications, wireless video etc. In the course of creating this specification, various requirements from typical applications have been considered, necessary algorithmic elements have been developed, and they have been integrated into a single syntax. Hence this specification will facilitate the bitstream interchange among different applications.

This specification includes one or more complete decoding algorithms as well as a set of decoding tools. Moreover, the various tools of this specification as well as that derived from ISO/IEC 13818-2 can be combined to form other decoding algorithms. Considering the practicality of implementing the full syntax of this specification, however, a limited number of subsets of the syntax are also stipulated by means of �profile� and �level�.

A �profile� is a defined subset of the entire bitstream syntax that is defined by this specification. Within the bounds imposed by the syntax of a given profile it is still possible to require a very large variation in the performance of encoders and decoders depending upon the values taken by parameters in the bitstream.

In order to deal with this problem �levels� are defined within each profile. A level is a defined set of constraints imposed on parameters in the bitstream. These constraints may be simple limits on numbers. Alternatively they may take the form of constraints on arithmetic combinations of the parameters.

Object based coding syntax

A video object in a scene is an entity that a user is allowed to access (seek, browse) and manipulate (cut and paste). The instances of video objects at a given time are called video object planes (vops). The encoding process generates a coded representation of a vop as well as composition information necessary for display. Further, at the decoder, a user may interact with and modify the composition process as needed.

The full syntax allows coding of individual video objects in a scene as well as the traditional picture based coding., which can be thought of as a single rectangular object. Furthermore, the syntax supports both nonscalable coding and scalable coding. Thus it becomes possible to handle normal scalabilities as well as object based scalabilities. The scalability syntax enables the reconstruction of useful video from pieces of a total bitstream. This is achieved by structuring the total bitstream in two or more layers, starting from a standalone base layer and adding a number of enhancement layers. The base layer can use the non-scalable syntax and can be coded using nonscalable syntax , or in the case of picture based coding, even a different video coding standard.

To ensure the ability to access individual objects, it is necessary to achieve a coded representation of its shape. A natural video object consists of a sequence of 2D representations (at different time intervals) referred to here as vops. For efficient coding of vops, both temporal redundancies as well as spatial redundancies are exploited. Thus a coded representation of a vop includes representation of its shape, its motion and its texture.

Overview of the object based nonscalable syntax

The coded representation defined in the non-scalable syntax achieves a high compression ratio while preserving good image quality. Further, when access to individual objects is desired, the shape of objects also needs to be coded, and depending on the bandwidth available, the shape information can be coded lossy or losslessly.

The compression algorithm employed for texture data is not lossless as the exact sample values are not preserved during coding. Obtaining good image quality at the bitrates of interest demands very high compression, which is not achievable with intra coding alone. The need for random access, however, is best satisfied with pure intra coding. The choice of the techniques is based on the need to balance a high image quality and compression ratio with the requirement to make random access to the coded bitstream.

A number of techniques are used to achieve high compression. The algorithm first uses block-based motion compensation to reduce the temporal redundancy. Motion compensation is used both for causal prediction of the current vop from a previous vop, and for non-causal, interpolative prediction from past and future vops. Motion vectors are defined for each 16-sample by 16-line region of a vop or 8-sample by 8-line region of a vop as required. The prediction error, is further compressed using the discrete cosine transform (DCT) to remove spatial correlation before it is quantised in an irreversible process that discards the less important information. Finally, the shape information, motion vectors and the quantised DCT information, are encoded using variable length codes.

Temporal processing

Because of the conflicting requirements of random access to and highly efficient compression, three main vop types are defined. Intra coded vops (I-vops) are coded without reference to other pictures. They provide access points to the coded sequence where decoding can begin, but are coded with only moderate compression. Predictive coded vops (P-vops) are coded more efficiently using motion compensated prediction from a past intra or predictive coded vops and are generally used as a reference for further prediction. Bidirectionally-predictive coded vops (B-vops) provide the highest degree of compression but require both past and future reference vops for motion compensation. Bidirectionally-predictive coded vops are never used as references for prediction (except in the case that the resulting vop is used as a reference for scalable enhancement layer). The organisation of the three vop types in a sequence is very flexible. The choice is left to the encoder and will depend on the requirements of the application.

Coding of Shapes

In natural video scenes, vops are generated by segmentation of the scene according to some semantic meaning. For such scenes, the shape information is thus binary (binary shape). Shape information is also referred to as alpha plane. The binary alpha plane is coded on a macroblock basis by a coder which uses the context information, motion compensation and arithmetic coding.

For coding of shape of a vop, a bounding rectangle is first created and is extended to multiples of 16(16 blocks with extended alpha samples set to zero. Shape coding is then initiated on a 16(16 block basis; these blocks are also referred to as binary alpha blocks.

Motion representation - macroblocks

The choice of 16(16 blocks (referred to as macroblocks) for the motion-compensation unit is a result of the trade-off between the coding gain provided by using motion information and the overhead needed to represent it. Each macroblock can further be subdivided to 8(8 blocks for motion estimation and compensation depending on the overhead that can be afforded.

Depending on the type of the macroblock, motion vector information and other side information is encoded with the compressed prediction error in each macroblock. The motion vectors are differenced with respect to a prediction value and coded using variable length codes. The maximum length of the motion vectors allowed is decided at the encoder. It is the responsibility of the encoder to calculate appropriate motion vectors. The specification does not specify how this should be done.

Spatial redundancy reduction

Both source vops and prediction errors vops have significant spatial redundancy. This specification uses a block-based DCT method with optional visually weighted quantisation, and run-length coding. After motion compensated prediction or interpolation, the resulting prediction error is split into 8(8 blocks. These are transformed into the DCT domain where they can be weighted before being quantised. After quantisation many of the DCT coefficients are zero in value and so two-dimensional run-length and variable length coding is used to encode the remaining DCT coefficients efficiently.

Chrominance formats

This specification currently supports the 4:2:0 chrominance format.

Generalized scalability

The scalability tools in this specification are designed to support applications beyond that supported by single layer video. The major applications of scalability include internet video, wireless video, multi-quality video services, video database browsing etc. In some of these applications, either normal scalabilities on picture basis such as those in ISO/IEC 13818-2 may be employed or object based scalabilities may be necessary; both categories of scalability are enabled by this specification. .

Although a simple solution to scalable video is the simulcast technique that is based on transmission/storage of multiple independently coded reproductions of video, a more efficient alternative is scalable video coding, in which the bandwidth allocated to a given reproduction of video can be partially re-utilised in coding of the next reproduction of video. In scalable video coding, it is assumed that given a coded bitstream, decoders of various complexities can decode and display appropriate reproductions of coded video. A scalable video encoder is likely to have increased complexity when compared to a single layer encoder. However, this standard provides several different forms of scalabilities that address non-overlapping applications with corresponding complexities.

The basic scalability tools offered are temporal scalability and spatial scalability. Moreover, combinations of these basic scalability tools are also supported and are referred to as hybrid scalability. In the case of basic scalability, two layers of video referred to as the lower layer and the enhancement layer are allowed, whereas in hybrid scalability up to four layers are supported.

Object based Temporal scalability

Temporal scalability is a tool intended for use in a range of diverse video applications from video databases, internet video, wireless video and multiview/stereoscopic coding of video. Furthermore, it may also provide a migration path from current lower temporal resolution video systems to higher temporal resolution systems of the future.

Temporal scalability involves partitioning of vops into layers, whereas the lower layer is coded by itself to provide the basic temporal rate and the enhancement layer is coded with temporal prediction with respect to the lower layer, these layers when decoded and temporal multiplexed to yield full temporal resolution.. The lower temporal resolution systems may only decode the lower layer to provide basic temporal resolution whereas enhanced systems of future may support both layers. Furthermore, temporal scalability has use in bandwidth constrained networked applications where adaptation to frequent changes in allowed throughput are necessary. An additional advantage of temporal scalability is its ability to provide resilience to transmission errors as the more important data of the lower layer can be sent over channel with better error performance, while the less critical enhancement layer can be sent over a channel with poor error performance. Object based temporal scalability can also be employed to allow graceful control of picture quality by controlling the temporal rate of each video object under the constraint of given bit-budget.

Object based Spatial scalability

Spatial scalability is a tool intended for use in video applications involving multi quality video services, , video database browsing, internet video and wireless video., i.e., video systems with the primary common feature that a minimum of two layers of spatial resolution are necessary. Spatial scalability involves generating two spatial resolution video layers from a single video source such that the lower layer is coded by itself to provide the basic spatial resolution and the enhancement layer employs the spatially interpolated lower layer and carries the full spatial resolution of the input video source.

An additional advantage of spatial scalability is its ability to provide resilience to transmission errors as the more important data of the lower layer can be sent over channel with better error performance, while the less critical enhancement layer data can be sent over a channel with poor error performance. Further, it can also allow interoperability between various standards. Object based spatial scalability can allow better bit budgeting, complexity scalability and ease of decoding.

Hybrid scalability

There are a number of applications where neither the temporal scalability nor the spatial scalability may offer the necessary flexibility and control. This may necessitate use of temporal and spatial scalability simultaneously and is referred to as the hybrid scalability. Among the applications of hybrid scalability are wireless video, internet video, multiviewpoint/stereoscopic coding etc.

 Error Resilience

MPEG-4 provides error robustness and resilience to allow accessing of image or video information over a wide range of storage and transmission media. The error resilience tools developed for MPEG-4 can be divided into three major categories. These categories include synchronization, data recovery, and error concealment. It should be noted that these categories are not unique to MPEG-4, and have been used elsewhere in general research in this area. It is, however, the tools contained in these categories that are of interest, and where MPEG-4 makes it contribution to the problem of error resilience.

�VERSION 2 WORKING DRAFT OF ISO/IEC 14496-2

INFORMATION TECHNOLOGY -

CODING OF AUDIO-VISUAL OBJECTS: VIDEO

Scope

Refer to the version 1 CD.

Normative references

Refer to the version 1 CD.

Definitions

Refer to the version 1 CD.

Abbreviations and symbols

Refer to the version 1 CD.

Conventions

Refer to the version 1 CD.

Visual bitstream syntax and semantics

Structure of coded visual data

Refer to the version 1 CD.	

Visual bitstream syntax

Start codes

Refer to the version 1 CD.

Visual Object Sequence and Visual Object

Refer to the version 1 CD.

Video Object

Refer to the version 1 CD.

Video Object Layer

VideoObjectLayer() {�No. of bits�Mnemonic��	video_object_layer_start_code

	/* 4 least significant bits specify video_object_layer_id value*/�32 �bslbf�� is_object_layer_identifier�1�uimsbf��	if (is_object_layer_identifier) {����	 visual_object_layer_verid�4�uimsbf��		visual_object_layer_priority�3�uimsbf��	}����	vol_control_parameters�1�bslbf��	if (vol_control_parameters)����		aspect_ratio_info�4�uimsbf��		vop_rate_code�4�uimsbf��		bit_rate�30�uimsbf��		vbv_buffer_size�18�uimsbf��		chroma_format�2�uimsbf��		low_delay �1�uimsbf��	}����	video_object_layer_shape�2�uimsbf��	vop_time_increment_resolution�15�uimsbf��	fixed_vop_rate�1�bslbf��	if (video_object_layer_shape != �binary only�) {����		if (video_object_layer_shape == �rectangular�) {����			marker_bit�1 �bslbf��			video_object_layer_width�13�uimsbf��			marker_bit�1�bslbf��			video_object_layer_height�13�uimsbf��		}����		obmc_disable�1�bslbf��		sprite_enable�12�bslbfuimsbf��		if (sprite_enable != �sprite not used�) {����			if (sprite_enable != �GMC�) {����				sprite_width�13�uimsbf��				marker_bit�1�bslbf��				sprite_height�13�uimsbf��				marker_bit�1�bslbf��				sprite_left_coordinate�13�simsbf��				marker_bit�1�bslbf��				sprite_top_coordinate�13�simsbf��				marker_bit�1�bslbf��			}����			no_of_sprite_warping_points�6�uimsbf��			sprite_warping_accuracy�2�uimsbf��			sprite_brightness_change�1�bslbf��			if (sprite_enable == �static� &&

				video_object_layer_shape == �rectangular�) {����				init_sprite_width�13�uimsbf��				marker_bit�1�bslbf��				init_sprite_height�13�uimsbf��				marker_bit�1�bslbf��				init_sprite_left_coordinate�13�simsbf��				marker_bit�1�bslbf��				init_sprite_top_coordinate�13�simsbf��			}����		}����		not_8_bit�1�bslbf��		if (not_8_ bit) {����			quant_precision�4�uimsbf��			bits_per_pixel�4�uimsbf��		}����		quant_type�1�bslbf��		if (quant_type) {����			load_intra_quant_mat�1�bslbf��			if (load_intra_quant_mat)����				intra_quant_mat�8*[2-64]�uimsbf��			load_nonintra_quant_mat�1�bslbf��			if (load_nonintra_quant_mat)����				nonintra_quant_mat�8*[2-64]�uimsbf��		}����		complexity_estimation_disable�1�bslbf��		error_resilient_disable�1�bslbf��		if (!error_resilient_disable) {����			data_partitioned�1�bslbf��			reversible_vlc�1�bslbf��		}����		scalability�1�bslbf��		if (scalability) {����			ref_layer_id�4�uimsbf��			ref_layer_sampling_direc�1�bslbf��			hor_sampling_factor_n�5�uimsbf��			hor_sampling_factor_m�5�uimsbf��			vert_sampling_factor_n�5�uimsbf��			vert_sampling_factor_m�5�uimsbf��			enhancement_type�1�bslbf��		}����	}����	random_accessible_vol�1�bslbf��	next_start_code()����	if (sprite_enable == �static�) ����		decode_init_sprite()����	do {����		if (next_bits() == group_of_vop_start_code)����			Group_of_VideoObjectPlane()����		VideoObjectPlane()����	} while ((next_bits() == group_of_vop_start_code) ||

 (next_bits() == vop_start_code)) ����}����

decode_init_sprite() {�No. of bits�Mnemonic��	VideoObjectPlane()����}����

Group of Video Object Plane

Refer to the version 1 CD.

Video Object Plane

VideoObjectPlane() {�No. of bits�Mnemonic��	vop_start_code�32�bslbf��	vop_coding_type�2�uimsbf��	do {����		modulo_time_base�1�bslbf��	} while (modulo_time_base != �0�)���� marker_bit�1�bslbf��	vop_time_increment�1-15�uimsbf�� marker_bit�1�bslbf��	vop_coded�1�bslbf��	if (vop_coded == �0�) {����		next_start_code()����		return()����	}����	if ((video_object_layer_shape != �binary only�) &&

 (vop_coding_type == �P�))����		vop_rounding_type�1�bslbf��	if (video_object_layer_shape != �rectangular�) {����		vop_width�13�uimsbf��		marker_bit�1�bslbf��		vop_height�13�uimsbf��		marker_bit�1�bslbf��		vop_horizontal_mc_spatial_ref�13�simsbf��		marker_bit�1�bslbf��		vop_vertical_mc_spatial_ref�13�simsbf��		if ((video_object_layer_shape != � binary only�) &&

 scalability && enhancement_type)����			background_composition�1�bslbf��		change_conv_ratio_disable�1�bslbf��		vop_constant_alpha�1�bslbf��		if (vop_constant_alpha)����			vop_constant_alpha_value�8�bslbf��	}����	if (video_object_layer_shape != �binary only�) {����		intra_dc_vlc_thr�3�uimsbf��		interlaced�1�bslbf��		if (interlaced) {����			top_field_first�1�bslbf��			alternate_scan�1�bslbf��		}����	}����	if (sprite_enable && vop_coding_type == �S�) {����		if (no_sprite_points > 0)����			sprite_trajectory()����		if (brightness_change_in_sprite) ����			brightness_change_factor()����		if (sprite_enable == �static�) {����			if (sprite_transmit_mode != stop) {����				do {����					sprite_transmit_mode�2�uimsbf��					if ((sprite_transmit_mode == piece) ||

					 (sprite_transmit_mode == update))����						decode_sprite_piece()����				} while (sprite_transmit_mode != stop &&

 	 sprite_transmit_mode != pause)����			}����			next_start_code()����			return()����		}����		else if (sprite_enable == �dynamic�)����			blending_factor�8�uimsbf��	}����	if (video_object_layer_shape != �binary only�) {����			vop_quant�3-9�uimsbf��		If (vop_coding_type != �I�)����			vop_fcode_forward�3�uimsbf��		If (vop_coding_type == �B�)����			vop_fcode_backward�3�uimsbf��		If (!scalability) {����			if (!error_resilience_disable) {����				if (video_object_layer_shape != �rectangular�

 && vop_coding_type != �I�)����					vop_shape_coding_type�1�bslbf��				motion_shape_texture()����				while (nextbits_bytealigned() == resync_marker) {����					video_packet_header()����					motion_shape_texture()����				}����			}����			else{����				do {����					motion_shape_texture()����				} while (nextbits_bytealigned() != �0000 0000 0000

						 					 0000 0000 000�)����			}����		}����		else {����			if (enhancement_type) {����				load_backward_shape�1�bslbf��				if (load_backward_shape) {����					backward_shape_width�13�uimsbf��					backward_shape_ height�13�uimsbf��					backward_shape_horizontal_mc_spatial_ref�13�simsbf��					marker_bit�1�bslbf��					backward_shape_vertical_mc_spatial_ref�13�simsbf��					backward_shape()����					load_forward_shape�1�bslbf��					if (load_forward_shape) {����						forward_shape_width�13�uimsbf��						forward_shape_height�13�uimsbf��						forward_shape_horizontal_mc_spatial_ref�13�simsbf��						marker_bit�1�bslbf��						forward_shape_vertical_mc_spatial_ref�13�simsbf��						forward_shape()����					}����				}����			}����			ref_select_code�2�uimsbf��			motion_shape_texture()����		}����	}����	Else����		Motion_shape_texture()����	next_start_code()����}����

video_packet_header() {�No. of bits�Mnemonic�� next_resync_marker()����	resync_marker�17-23�uimsbf��	macroblock_number�1-14�vlclbf��	quant_scale�5�uimsbf��	header_extension_code�1�uimsbf�� if (header_extension_code) {���� do {����		 modulo_time_base�1�bslbf�� } while (modulo_time_base != �0�)����	 marker_bit�1�bslbf��	 vop_time_increment�1-15�bslbf��	 marker_bit�1�uimsbf��	 vop_coding_type�2�uimsbf�� if (vop_coding_type != �I�)����	 vop_fcode_forward�3�uimsbf�� if (vop_coding_type == �B�)����	 vop_fcode_backward�3�uimsbf�� }����}����Motion Shape Texture

Refer to the version 1 CD.

Sprite coding

Refer to the version 1 CD.

Macroblock

macroblock() {�No. of bits�Mnemonic��	if (vop_coding_type != �B�) {����		if (video_object_layer_shape != �rectangular�) ����			mb_binary_shape_coding()����		if (video_object_layer_shape != �binary only�) {����			if (!transparent_mb()) {����				if (vop_coding_type != �I�))����					not_coded�1�bslbf��				if (!not_coded || vop_coding_type == �I�) {����					mcbpc�1-9�vlclbf��					if ((sprite_enable == �dynamic� ||

					 sprite_enable == �GMC�) &&

					 vop_coding_type == �S� &&

					 (derived_mb_type == 0 ||

					 derived_mb_type == 1))����						mcsel�1�bslbf��					if (derived_mb_type == 3 ||

					 derived_mb_type == 4)����						ac_pred_flag�1�bslbf��					if (derived_mb_type != �stuffing�)����						cbpy�2-6�vlclbf��					else����						return()����					if (derived_mb_type == 1 ||

					 derived_mb_type == 4)����						dquant�2�uimsbf��					if (interlaced)����						interlaced_information()����					if (!(ref_select_code==�11� && scalability)) {����						if (derived_mb_type == 0 ||

					 derived_mb_type == 1) {����							if ((sprite_enable == �dynamic� ||

								sprite_enable == �GMC�) &&

								vop_coding_type == �S�) {����								if (!mcsel)����									motion_vector()����							}����							else {����								motion_vector()����								if (interlaced) ����									motion_vector()����							}����						}����						if (derived_mb_type == 2) {����							for (j=0; j < 4; j++)����								if (!transparent_block(j))����									motion_vector()����						}����					}����					for (i = 0; i < block_count; i++)����						block(i)����				}����			}����		}����	}����	else if (co_located_not_coded != 1 || (ref_select_code == �00�

 && scalability)) {����		if (video_object_layer_shape != �rectangular�)����			mb_binary_shape_coding()����		if (video_object_layer_shape != �binary only�) {����			if (!transparent_mb()) {����				modb�1-2�vlclbf��				if (!(modb == 0 && ref_select_code == �00� &&

				 scalability)) {����					if (modb > 0)����						mb_type�1-4�vlclbf��					if (modb == 2)����						cbpb�6�uimsbf��					if (ref_select_code != �00� || !scalability) {����						if (mb_type != �1� && cbpb!=0)����							dquant�2�uimsbf��						if (interlaced)����							interlaced_information()����						if (mb_type == �01� ||

						 mb_type == �0001�) {����							motion_vector(�forward�)����							if (interlaced)����								motion_vector(�forward�)����						}����						if (mb_type == �01� || mb_type == �001�) {����							motion_vector(�backward�)����							if (interlaced)����								motion_vector(�backward�)����						}����						if (mb_type == �1�)����							motion_vector(�direct�)����					}����					if (ref_select_code == �00� && scalability &&

					 cbpb !=0) {����						dquant�2�uimsbf��						if (mb_type == �01� || mb_type == �1�)����							motion_vector(�forward�)����					}����					for (i = 0; i < block_count; i++)����						block(i)����				}����			}����		}����	}����}����

MB Binary Shape Coding

Refer to the version 1 CD.

Motion vector

Refer to the version 1 CD.

Interlaced Information

Refer to the version 1 CD.

Block

Refer to the version 1 CD.

Still Texture Object

Refer to the version 1 CD.

Mesh Object

Refer to the version 1 CD.

Visual bitstream semantics

Semantic rules for higher syntactic structures

Refer to the version 1 CD.

Visual Object Sequence and Visual Object

Refer to the version 1 CD.

Video Object

Refer to the version 1 CD.

Video Object Layer

video_object_layer_start_code -- The video_object_layer_start_code is a string of 32 bits. The first 28 bits are �0000 0000 0000 0000 0000 0001 0010� in binary and the last 4-bits represent one of the values in the range of �0000� to �1111� in binary. The video_object_layer_start_code marks a new video object layer.

is_visual_object_identifier � This is a 1-bit code which when set to �1� indicates that version identification and priority is specified for the visual object layer. When set to �0�, no version identification or priority needs to be specified.

visual_object_layer_verid � This is a 4-bit code which identifies the version number of the visual object layer. It takes values between 1 and 15, a zero value is disallowed.

video_object_layer_priority � This is a 3-bit code which specifies the priority of the video object layer. It takes values between 1 and 7, with 1 representing the highest priority and 7, the lowest priority. The value of zero is reserved.

vol_control_parameters � This a one-bit flag which when set to �1� indicates presence of following vol control parameters.

{Editors Note: The following vol control parameters are being discussed:

**aspect_ratio_info -- TBD

** vop_rate_code -- TBD

** bit_rate -- TBD

** vbv_buffer_size -- TBD

** chroma_format � TBD

** low delay -- TBD

When set to �0�, it indicates that the video object layer may contain B-vops that cause reordering delay.

This flag is not used during the decoding process and therefore can be ignored by decoders, but it is necessary to define and verify the compliance of low-delay bitstreams.}

video_object_layer_id -- This is given by the last 4-bits of the video_object_layer_start_code. The video_object_layer_id uniquely identifies a video object layer.

video_object_layer_shape -- This is a 2-bit integer defined in � REF _Ref372600353 ₩* MERGEFORMAT �Table 6-1�. It identifies the shape type of a video object layer.

Table � STYLEREF 1 ₩n �6�-� SEQ Table ₩* ARABIC �1� Video Object Layer shape type

shape format�Meaning��00�rectangular��01�binary��10�binary only��11�reserved��vop_time_increment_resolution -- This is a 15-bit unsigned integer that indicates the resolution in terms of ticks in terms within one modulo time (one second in this case). The zero value is forbidden.

fixed_vop_rate -- This is a one-bit flag which when set to �1� indicates that all vops are coded with a fixed frame rate.

video_object_layer_width -- The video_object_layer_width is a 13-bit unsigned integer representing the width of the displayable part of the luminance component in pixel units.

video_object_layer_height -- The video_object_layer_height is a 13-bit unsigned integer representing the height of the displayable part of the luminance component in pixel units.

obmc_disable -- This is a one-bit flag which when set to �1� disables overlapped block motion compensation.

sprite_enable -- This is a one-bit flag which when set to �1� indicates the presence of sprites.sprite_enable � This is a two-bit unsigned integer which indicates the usage of sprite coding or global motion compensation (GMC). Table 6-7 shows the meaning of various codewords.

Table 6-33	Meaning of sprite_enable codewords

Sprite_enable�Sprite Coding Mode��00�sprite not used��01�static (Basic/Low Latency)��10�dynamic��11�GMC (Global Motion Compensation)��

sprite_width � This is a 13-bit unsigned integer which identifies the horizontal dimension of the sprite.

sprite_height -- This is a 13-bit unsigned integer which identifies the vertical dimension of the sprite.

sprite_left_coordinate � This is a 13-bit signed integer which defines the left-edge of the sprite.

sprite_top_coordinate � This is a 13-bit signed integer which defines the top edge of the sprite.

no_of_sprite_warping_points � This is a 6-bit unsigned integer which represents the number of points used in sprite warping. When its value is 0 and when sprite_enable is set to �1�, warping is identity (stationary sprite) and no coordinates need to be coded. When its value is 4, perspective transform is used. When its value is 1,2 or 3, affine transform is used. Further, the case of value 1 is separated as a special case from that of values 2 or 3. � REF _Ref400094936 ₩* MERGEFORMAT �Table 6-2� shows the various choices.

Table � STYLEREF 1 ₩n �6�-� SEQ Table ₩* ARABIC �2� Number of point and implied warping function

Number of points�warping function��0� Stationary��1�Translation��2,3�Affine��4�Perspective��

sprite_warping_accuracy � This is a 2-bit code which indicates the quantization accuracy of motion vectors used in the warping process for sprites. � REF _Ref400095092 ₩* MERGEFORMAT �Table 6-3� shows the meaning of various codewords

Table � STYLEREF 1 ₩n �6�-� SEQ Table ₩* ARABIC �3� Meaning of sprite warping accuracy codewords

code�sprite_warping_accuracy��00� � pixel��01�� pixel��10�1/8 pixel��11�1/16 pixel��

sprite_brightness_change � This is a one-bit flag which when set to �1� indicates a change in brightness during sprite warping, alternatively, a value of �0� means no change in brightness.

encode_init_sprite():

It uses VideoObjectPlane () to encode the initial sprite piece as an I-VOP, vop_coding_type is set to �I�. Consisting of multiples of 16x16 macroblocks, the initial sprite piece is the portion of the sprite object needed to reconstruct the first few frames, as dictated by the decoding requirements. The upper left corner of the initial sprite piece is offset by multiples of 16-pixel units from the top left of the sprite object.

send_mb():

This function returns 1 if the current macroblock has already been sent previously and �not coded�. Otherwise it returns 0.

quant_type -- This is a one-bit flag which when set to �1� indicates MPEG-style quantization. If it is set to �0� then H.263-style quantization is selected.

In MPEG-style quantization, two matrices are used, one for intra blocks the other for non-intra blocks.

The default matrix for intra blocks is:

8�17�18�19�21�23�25�27��17�18�19�21�23�25�27�28��20�21�22�23�24�26�28�30��21�22�23�24�26�28�30�32��22�23�24�26�28�30�32�35��23�24�26�28�30�32�35�38��25�26�28�30�32�35�38�41��27�28�30�32�35�38�41�45��The default matrix for non-intra blocks is:

16�17�18�19�20�21�22�23��17�18�19�20�21�22�23�24��18�19�20�21�22�23�24�25��19�20�21�22�23�24�26�27��20�21�22�23�25�26�27�28��21�22�23�24�26�27�28�30��22�23�24�26�27�28�30�31��23�24�25�27�28�30�31�33��

load_intra_quant_mat -- This is a one-bit flag which is set to �1� when intra_quant_mat follows. If it is set to �0� then there is no change in the values that shall be used.

intra_quant_mat -- This is a list of 2 to 64 eight-bit unsigned integers. The new values are in zigzag scan order and replace the previous values. A value of 0 indicates that no more values are transmitted and the remaining, non-transmitted values are set equal to the last non-zero value. The first value shall always be 8.

load_nonintra_quant_mat -- This is a one-bit flag which is set to �1� when nonintra_quant_mat follows. If it is set to �0� then there is no change in the values that shall be used.

nonintra_quant_mat -- This is a list of 2 to 64 eight-bit unsigned integers. The new values are in zigzag scan order and replace the previous values. A value of 0 indicates that no more values are transmitted and the remaining, non-transmitted values are set equal to the last non-zero value. The first value shall not be 0.

complexity_estimation_disable � This is a one-bit flag which disables complexity estimation header in each vop.

init_sprite_width -- This is a 13-bit unsigned integer (in multiples of 16-pixel units) which defines the horizontal dimension of the initial sprite.

init_sprite_height -- This is a 13-bit unsigned integer (in multiples of 16-pixel units) which defines the vertical dimension of the initial sprite.

init_sprite_left_coordinate -- This is a 13-bit unsigned integer which defines the offset between the left edge of the initial sprite and the left edge of the sprite object. It is given in multiples of 16-pixel units.

init_sprite_top_coordinate -- This is a 13-bit unsigned integer which defines the offset between the top edge of the initial sprite and the top edge of the sprite object. It is given in multiples of 16-pixel units.

error_resilient_disable -- This is a one-bit flag which when set to �1� indicates that the error resilient mode is disabled. If it is set to �0� then error resilient mode is enabled.

data_partitioning -- This is a one-bit flag which when set to �1� indicates that the macroblock data is rearranged differently, specifically, motion vector data is separated from the texture data (i.e., DCT coefficients).

reversible_vlc -- This is a one-bit flag which when set to �1� indicates that the reversible variable length tables should be used when decoding DCT coefficients. These tables can only be uses when data_partition flag is enabled.

scalability -- This is a one-bit flag which when set to �1� indicates if the current layer uses scalable coding. If the current layer is used as base-layer this flag is set to �0�.

ref_layer_id -- This is a 4-bit unsigned integer with value between 0 and 15. It indicates the layer to be used as reference for prediction(s) in the case of scalability.

ref_layer_sampling_direc -- This is a one-bit flag which when set to �1� indicates that the resolution of the reference layer (specified by reference_layer_id) is higher than the resolution of the layer being coded. If it is set to �0� then the reference layer has the same or lower resolution then the resolution of the layer being coded.

hor_sampling_factor_n -- This is a 5-bit unsigned integer which forms the numerator of the ratio used in horizontal spatial resampling in scalability. The value of zero is forbidden.

hor_sampling_factor_m -- This is a 5-bit unsigned integer which forms the denominator of the ratio used in horizontal spatial resampling in scalability. The value of zero is forbidden.

vert_sampling_factor_n -- This is a 5-bit unsigned integer which forms the numerator of the ratio used in vertical spatial resampling in scalability. The value of zero is forbidden.

vert_sampling_factor_m -- This is a 5-bit unsigned integer which forms the denominator of the ratio used in vertical spatial resampling in scalability. The value of zero is forbidden.

enhancement_type -- This is a 1-bit flag which is set to �1� when the current layer enhances the partial region of the reference layer. If it is set to �0� then the enhancement layer enhances the entire region of the reference layer. The default value of this flag is �0�.

random_accessible_vol -- This flag may be set to �1� to indicate that every VOP in this VOL is individually decodable. If all of the VOPs in this VOL are intra-coded VOPs and some more conditions are satisfied then random_accessible_vol may be set to �1�. random_accessible_vol may be omitted from the bitstream (by setting random_access_flag to �0�) in which case it shall be assumed to have the value zero. The flag random_accessible_vol is not used by the decoding process. random_accessible_vol is intended to aid random access or editing capability. This shall be set to �0� if any of the VOPs in the VOL are non-intra coded or certain other conditions are not fulfilled.

{Editors note: Detailed condition to enable this functionality should be described at the next meeting.}

not_8_bit

This one bit flag is set when the video data precision is not 8 bits per pixel.

quant_precision

This field specifies the number of bits used to represent quantiser parameters. Values between 3 and 9 are allowed. When not_8_bit is zero, and therefore quant_precision is not transmitted, it takes a default value of 5.

bits_per_pixel

This field specifies the video data precision in bits per pixel. It may take different values for different video object layers within a single video object. A value of 12 in this field would indicate 12 bits per pixel. This field may take values between 4 and 12.

When not_8_bit is zero and bits_per_pixel is not present, the video data precision is always 8 bits per pixel, which is equivalent to specifying a value of 8 in this field.

Group of Video Object Plane

Refer to the version 1 CD.

Video Object Plane

vop_start_code -- This is the bit string �000001B6� in hexadecimal. It marks the start of a video object plane.

vop_coding_type -- The vop_coding_type identifies whether a vop is an intra-coded vop (I), predictive-coded vop (P), bidirectionally predictive-coded vop (B) or sprite coded vop (S). The meaning of vop_coding_type is defined in � REF _Ref400094015 ₩* MERGEFORMAT �Table 6-4�.

Table � STYLEREF 1 ₩n �6�-� SEQ Table ₩* ARABIC �4� Meaning of vop_coding_type

vop_coding_type�coding method��00�intra-coded (I)��01�predictive-coded (P)��10�bidirectionally-predictive-coded (B)��11�sprite (S)��modulo_time_base -- This represents the local time base in one second resolution units (1000 milliseconds). This is thus a time marker and consist of a number of consecutive �1� followed by a �0�. It indicates the number of seconds elapsed since the synchronization point marked by last encoded/decoded modulo_time_base.

vop_time_increment � This value represents the absolute vop_time_increment from the synchronization point marked by the modulo_time_base measured in the number of clock ticks. It can take a value in the range of [0,vop_time_increment_resolution). The number of bits representing the value is calculated as the minimum number of bits required to represent the above range. The local time base in the units of seconds is recovered by dividing this value by the vop_time_increment_resolution.

vop_coded -- This is a 1-bit flag which when set to �0� indicates that no subsequent data exists for the VOP. In this case, the following decoding rule applies: For an arbitrarily shaped VO (i.e. when the shape type of the VO is either �binary� or �binary only�), the alpha plane of the reconstructed VOP shall be completely transparent. For a rectangular VO (i.e. when the shape type of the VO is �rectangular�), the corresponding rectangular alpha plane of the VOP, having the same size as its luminance component, shall be completely transparent. If there is no alpha plane being used in the decoding and composition process of a rectangular VO, the reconstructed VOP is filled with the respective content of the immediately preceeding VOP for which vop_coded!=0.

vop_rounding_type -- This is a one-bit flag which signals the value of the parameter rounding_control used for pixel value interpolation in motion compensation for P-VOPs. When this flag is set to �0�, the value of rounding_control is 0, and when this flag is set to �1�, the value of rounding_control is 1. When vop_rounding_type is not present in the VOP header, the value of rounding_control is 0.

The encoder should control vop_rounding_type so that each P-vop have a different value for this flag from its reference vop for motion compensation. vop_rounding_type can have an arbitrary value if the reference picture is an I-vop.

sprite_transmit_mode � This is a 2-bit code which signals the transmission mode of the sprite object. At video object layer initialization, the code is set to �piece� mode. When all object and quality update pieces are sent for the entire video object layer, the code is set to the �stop�mode. When an object piece is sent, the code is set to �piece� mode. When an update piece is being sent, the code is set to the �update� mode. When all sprite object pieces andquality update pieces for the current vop are sent, the code is set to �pause� mode. � REF _Ref400093906 ₩* MERGEFORMAT �Table 6-5� shows the different sprite transmit modes.

Table � STYLEREF 1 ₩n �6�-� SEQ Table ₩* ARABIC �5� Meaning of sprite transmit modes

code�sprite_transmit_mode��00�stop��01�piece��10�update��11�pause��vop_width -- This is a 13-bit unsigned integer which specifies the horizontal size, in pixel units, of the rectangle that includes the vop. A zero value is forbidden.

vop_height -- This is a 13-bit unsigned integer which specifies the vertical size, in pixel units, of the rectangle that includes the vop. A zero value is forbidden.

vop_horizontal_mc_spatial_ref -- This is a 13-bit signed integer which specifies, in pixel units, the horizontal position of the top left of the rectangle defined by horizontal size of vop_width. This is used for decoding and for picture composition.

marker_bit -- This is one-bit that shall be set to 1. This bit prevents emulation of start codes.

vop_shape_coding_type � This is a 1 bit flag which specifies whether inter shape decoding is to be carried out for the current P vop. If vop_shape_coding_type is equal to �0�, intra shape decoding is carried out, otherwise inter shape decoding is carried out.

vop_vertical_mc_spatial_ref -- This is a 13-bit signed integer which specifies, in pixel units, the vertical position of the top left of the rectangle defined by vertical size of vop_width. This is used for decoding and for picture composition.

background_composition -- This flag only occurs when scalability flag has a value of �1�. The default value of this flag is �1�. This flag is used in conjunction with enhancement_type flag. If enhancement_type is �1� and this flag is �1�, background composition specified earlier is performed. If enhancement type is �1� and this flag is �0�, any method can be used to make a background for the enhancement layer. Further, if enhancement type is �0� no action needs to be taken as a consequence of any value of this flag.

change_ratio_disable � This is a 1-bit flag which when set to �1� indicates that conv_ratio is not sent at the macroblock layer and is assumed to be 1 for all the macroblocks of the vop. When set to �0�, the conv_ratio is coded at macroblock layer.

intra_dc_vlc_thr -- This is a 3-bit code allows a mechanism to switch between two VLC�s for coding of Intra DC coefficients as per � REF _Ref397770090 ₩* MERGEFORMAT �Table 6-6�.

Table � STYLEREF 1 ₩n �6�-� SEQ Table ₩* ARABIC �6� Meaning of intra_dc_vlc_thr

index�meaning of intra_dc_vlc_thr�code��0�Use Intra DC VLC for entire VOP�000��1�Switch to Intra AC VLC at running Qp >=13�001��2�Switch to Intra AC VLC at running Qp >=15�010��3�Switch to Intra AC VLC at running Qp >=17�011��4�Switch to Intra AC VLC at running Qp >=19�100��5�Switch to Intra AC VLC at running Qp >=21�101��6�Switch to Intra AC VLC at running Qp >=23�110��7�Use Intra AC VLC for entire VOP�111��Where running Qp is defined as Qp value used for immediately previous coded macroblock.

interlaced -- This is a 1-bit flag which being set to �1� indicates that the VOP may contain interlaced video. When this flag is set to �0�, the VOP is of non-interlaced (or progressive) format.

top_field_first -- This is a 1-bit flag which when set to �1� indicates that the top field (i.e., the field containing the top line) of reconstructed VOP is the first field to be displayed (output by the decoding process). When top_field_first is set to �0� it indicates that the bottom field of the reconstructed VOP is the first field to be displayed.

alternate_vertical_scan_flag -- This is a 1-bit flag which when set to �1� indicates the use of alternate vertical scan for interlaced vops.

blending_factor � This is an 8-bit unsigned integer which defines a blending parameter used in online sprite generation. This codeword is present only when sprite_enable == �dynamic.� The blending parameter is obtained by dividing blending_factor by 254, and takes values between [0, 1].

vop_quant -- This is an unsigned integer which specifies the absolute value of quant to be used for dequantizing the next macroblock. The default length is 5-bits which carries the binary representation of quantizer values from 1 to 31 in steps of 1.

vop_fcode_forward -- This is a 3-bit unsigned integer taking values from 1 to 7; the value of zero is forbidden. It is used in decoding of motion vectors.

vop_fcode_backward -- This is a 3-bit unsigned integer taking values from 1 to 7; the value of zero is forbidden. It is used in decoding of motion vectors.

vop_shape_coding_type -- This is a 1-bit flag which when set to �0� indicates the shape coding is INTRA. When inter_prediction_shape is set to �1� indicates the shape coding is INTER.

resync_marker -- This is a binary string of at least 16 zero�s followed by a one�0 0000 0000 0000 0001�. The length of this resync marker is dependent on the value of vop_fcode_forward, for a P-VOP, and the larger value of either vop_fcode_forward and vop_fcode_backward. The relationship between the length of the resync_marker and appropriate fcode is given by 16 + fcode. The resync_marker is (15+fcode) zeros followed by a one. It is only present when error_resilient_disable flag is set to �0�. A resync marker shall only be located immediately before a macroblock and aligned with a byte

macroblock_number -- This is a variable length code with length between 1 and 14 bits and is only present when error_resilient_disable flag is set to �0�. It identifies the macroblock number within a vop. The number of the top-left macroblock in a vop shall be zero. The macroblock number increases from left to right and from top to bottom. The actual length of the code depends on the total number of macroblocks in the vop calculated according to � REF _Ref372636386 ₩* MERGEFORMAT �Table 6-7�, the code itself is simply a binary representation of the macroblock number.

Table � STYLEREF 1 ₩n �6�-� SEQ Table ₩* ARABIC �7� Length of macroblock_number code

length of macroblock_number code�(vop_width//16) (vop_height//16)��1�1-2��2�3-4 ��3�5-8 ��4�9-16��5�17-32��6�33-64��7�65-128��8�129-256��9�257-512��10�513-1024��11�1025-2048��12�2049-4096��13�4097-8192��14�8193-16384��quant_scale � This is an unsigned integer which specifies the absolute value of quant to be used for dequantizing the next macroblock. The default length is 5-bits.

motion_marker -- This is a 17-bit binary string �1 1111 0000 0000 0001�. It is only present when error_resilient_disable flag is set to �0� and the data_partitioning flag is set to �1�. It is used in conjunction with the resync_marker fields, macroblock_number, quant_scale and header_extension_code, a motion_marker is inserted after the motion data (prior to the texture data). The motion_marker is unique from the motion data and enables the decoder to determine when all the motion information has been received correctly.

dc_marker -- This is a 19 bit binary string �110 1011 0000 0000 0001�. It is present when the error_resilient_disable flag is set to �0� and the data_partitioning flag is set to �1�. It is used for I-VOPs only, in conjunction with the resync_marker field, macroblock_number, quant_scale and header_extension_code. A dc_marker is inserted into the bitstream after the mcbpc, dquant and dc data but before the ac_pred flag and remaining texture information.

header_extension_code -- This is a 1-bit flag which when set to �1� indicates the prescence of additional fields in the header. When header_extension_code is is se to �1�, modulo_time_base, vop_time_increment and vop_coding_type are also included in the video packet header. Furthermore, if the vop_coding_type is equal to either a P or B vop, the appropriate fcodes are also present.

load_backward_shape -- This is a one-bit flag which when set to �1� implies that the backward shape of the previous vop is copied to the forward shape for the current vop and the backward shape of the current vop is decoded from the bitstream. When ths flag is set to �1�, the forward shape of the previous vop is copied to the forward_shape of the current vop and the backward shape of the previous vop is copied to the backward shape of the current vop.

load_forward_shape -- This is a one-bit flag which when set to �1� implies that the forward shape is decoded from the bitstream.

ref_select_code -- This is a 2-bit unsigned integer which specifies prediction reference choices for P- and B-vops in enhancement layer with respect to decoded reference layer identified by ref_layer_id. The meaning of allowed values is specified in � REF _Ref400096213 ₩* MERGEFORMAT �Error! Reference source not found.� and � REF _Ref400096246 ₩* MERGEFORMAT �Error! Reference source not found.�.

Shape coding

Refer to the version 1 CD.

Sprite coding

Refer to the version 1 CD.

Macroblock related

not_coded -- This is a 1-bit flag which signals if a macroblock is coded or not. When set to�1� it indicates that a macroblock is not coded and no further data is included in the bitstream for this macroblock; decoder shall treat this macroblock as �inter� with motion vector equal to zero and no DCT coefficient data. When set to �1� it indicates that the macroblock is coded and its data is included in the bitstream.

mcbpc -- This is a variable length code that is used to derive the macroblock type and the coded block pattern for chrominance . It is always included for coded macroblocks. � REF _Ref393696173 ₩* MERGEFORMAT �Error! Reference source not found.� and � REF _Ref393696211 ₩* MERGEFORMAT �Error! Reference source not found.� list all allowed codes for mcbpc in I- and P-vops respectively.

mcsel � This is a 1-bit flag that specifies the reference image of each macroblock in S-VOPs. This flag is present only when the sprite_enable == �dynamic� or �GMC,� the vop_coding_type == �S�, and the macroblock type specified by the MCBPC is INTER or INTER+Q. mcsel indicates whether the dynamic sprite or the previous reconstructed VOP is referred to when sprite_enable == �dynamic.� mcsel also indicates whether the global motion compensated image or the previous reconstructed VOP is referred to when sprite_enable == �GMC.� This flag is set to �1� when prediction from the sprite or GMC is used for the macroblock, and is set to �0� if local MC is used. If mcsel = �1�, local motion vectors are not transmitted. In the case when this field does not exist for inter marcroblocks with not_coded == �1� the default value for this field is �1� (i.e. prediction using the sprite or the global motion compensated image).

ac_pred_flag -- This is a 1-bit flag which when set to �1� indicates that either the first row or the first column of ac coefficients are differentially coded for intra coded macroblocks.

modb -- This is a variable length code present only in coded macroblocks of B-vops. It indicates whether mb_type and/or cbpb information is present for a macroblock. The codes for modb are listed in � REF _Ref402819202 ₩* MERGEFORMAT �Table 11-1	Macroblock types and included data elements for I-, and P-, and S-vops in combined motion-shape-texture coding

vop type�mb type�Name�not_coded�mcbc�mcsel�cbpy�dquant�mvd�mvd2-4��P�not coded�-�1��������P�0�inter�1�1��1��1���P�1�inter+q�1�1��1�1�1���P�2�inter4v�1�1��1��1�1��P�3�intra�1�1��1�����P�4�intra+q�1�1��1�1����P�stuffing�-�1�1�������I�3�intra��1��1�����I�4�intra+q��1��1�1����I�stuffing�-��1�������S�not coded�-�1��������S�0�inter�1�1�1�1��1���S�1�inter+q�1�1�1�1�1�1���S�3�intra�1�1��1�����S�4�intra+q�1�1��1�1����S�stuffing�-�1�1�������	Note: �1� means that the item is present in the macroblock

Table 11-2�.

mb_type -- This variable length code is present only in coded macroblocks of B-vops. Further, it is present only in those macroblocks for which one motion vector is included. The codes for mb_type are shown in � REF _Ref393783715 ₩* MERGEFORMAT �Table 11-4� for B-vops for no scalability and in � REF _Ref393783744 ₩* MERGEFORMAT �Table 11-5� for B-vops with scalability.

cbpb -- This is a 3 to 6 bit code representing coded block pattern in B-vops, if indicated by modb. Each bit in the code represents a coded/no coded status of a block; the leftmost bit corresponds to the top left block in the macroblock. For each non-transparent blocks with coefficients, the corresponding bit in the code is set to �1�.

dquant -- This is a 2-bit code which specifies the change in the quantizer, quant, for I- and P-vops. � REF _Ref397773921 ₩* MERGEFORMAT �Table 6-8� lists the codes and the differential values they represent. The value of quant lies in range of 1 to 31; if the value of quant after adding dquant value is less than 1 or exceeds 31, it shall be correspondingly clipped to 1 and 31.

Table � STYLEREF 1 ₩n �6�-� SEQ Table ₩* ARABIC �8� dquant codes and corresponding values

dquant code�value��00�-1��01�-2��10�1��11�2��dbquant -- This is a variable length code which specifies the change in quantizer for B-vops. � REF _Ref397774111 ₩* MERGEFORMAT �Table 6-9� lists the codes and the differential values they represent. If the value of quant after adding dbquant value is less than 1 or exceeds 31, it shall be correspondingly clipped to 1 and 31.

Table � STYLEREF 1 ₩n �6�-� SEQ Table ₩* ARABIC �9� dbquant codes and corresponding values

dbquant code�value��10�-2��0�0��11�2��{ Editors note: the following syntax elements description will be removed/updated}

mvd -- This consists of a pair of variable length codes, the first representing differential horizontal component of motion vector and the second representing differential vertical component of motion vector. The mvd is included for all inter macroblocks. � REF _Ref393783444 ₩* MERGEFORMAT �Error! Reference source not found.� lists the codes and the values they represent.

mvd2, mvd3, mvd4 � These are three pairs of variable length codes the presence of which is indicated by vop_prediction_type and by mcbpc. Each pair consists of a code for the differential horizontal component of motion and the second for the differential vertical component of motion. The code table employed is the same as that used for mvd. The mvd2-4 are only present when 8(8 block motion compensation is used.

mvdf � This is a pair of variable length codes representing the respective differential horizontal and differential vertical components of the forward motion vector of a macroblock in a B-VOP. The code table employed is the same as that used for mvd.

mvdb -- This is a pair of variable length codes representing the respective differential horizontal and differential vertical components of the backward motion vector of a macroblock in a B-VOP. The code table employed is the same as that used for mvd.

mvdd -- This is a pair of variable length codes representing the respective horizontal and vertical components of the delta motion vector of a macroblock in a B-VOP. It is used for correction of scaled motion vector of P-vop for application to a macroblock in B-vop. The code table employed is the same as that used for mvd.

Coded block pattern for luminance (CBPY) (Variable length)

Refer to the version 1 CD.

Motion vector

Refer to the version 1 CD.

Interlaced Information

Refer to the version 1 CD.

Block related

Refer to the version 1 CD.

Still texture object

Refer to the version 1 CD.

Shape Object decoding

Refer to the version 1 CD.

Mesh related

Refer to the version 1 CD.

Face object

Refer to the version 1 CD.

The visual decoding process

Refer to the version 1 CD.

Video decoding process

Refer to the version 1 CD.

Higher syntactic structures

Refer to the version 1 CD.

Texture decoding

Refer to the version 1 CD.

Shape decoding

Refer to the version 1 CD.

Motion compensation decoding

Refer to the version 1 CD.

Interlaced video decoding

Refer to the version 1 CD.

Error resilient decoding

Refer to the version 1 CD.

Sprite decoding

Refer to the version 1 CD.

Higher syntactic structures

Refer to the version 1 CD.

Sprite Reconstruction

Refer to the version 1 CD.

Low-latency sprite reconstruction

Refer to the version 1 CD.

Dynamic sprite reconstruction

The current WD allows a sprite to be dynamically and progressively reconstructed on-line at the decoder by incorporating the content of new decoded S-VOPs, it is referred to as dynamic sprite. This dynamic sprite is then used as a reference picture in motion compensation.

The sprite is initialized with the first decoded I-VOP. Subsequently, the sprite at the previous time instant is warped and aligned with respect to the current decoded S-VOP using the warping transform as defined in clause 7.8.7. The current decoded S-VOP is then blended into the sprite to form the updated current sprite. The process is depicted below

�EMBED Unknown���

Figure 7-45. The process to build the dynamic sprite

Initialization

The luminance and alpha plane data of a sprite are first initialized to 0. Similarly, the chrominance data of a sprite is initialized to 128.

The first VOP which shall be an I-VOP is then copied into the sprite. More precisely, for any pixel (i, j) inside the VOP boundary, the value SY(i'=i, j�=j) of the sprite luminance sample, the value SA(i'=i, j�=j) of the sprite alpha plane sample, and the value SC(ic'=ic, jc�=jc) of the sprite chrominance sample are defined as

	SY (i', j�) = Y (i, j),

	SA (i', j�) = 255,

	SC (ic', jc�) = C (ic, jc),

where Y (i, j) is the value of the decoded VOP luminance sample and C(ic, jc) is the value of the decoded VOP chrominance sample.

Updating

Subsequently, the sprite is updated by incorporating each decoded S-VOP. Specifically, the previous sprite is warped as defined in clause 7.8.7 and the current decoded S-VOP is blended into it resulting in the updated sprite.

The warped sprite is obtained by warping the previous sprite as follows. For any pixel (i', j�), the value SY(i', j�) of the warped sprite luminance sample, the value SA(i', j�) of the warped sprite alpha plane sample, and the value SC(ic', jc�) of the warped sprite chrominance sample are defined as

	SY(i', j�) = PSY(F(i', j�), G(i�,j�)),

	SA(i', j�) = PSA(F(i', j�), G(i�,j�)),

	SC(ic', jc�) = PSC(Fc(ic', jc�), Gc(ic', jc�)),

where PSY(i', j�) is the value of the previous sprite luminance sample, PSA(i', j�) is the value of the previous sprite alpha plane sample, PSC(ic', jc�) is the value of the previous sprite chrominance sample, and (F(i', j�), G(i', j�)) and (Fc(ic', jc�), Gc(ic', jc�)) are computed using single-pel accuracy warping as described in clause 7.8.7.2.

 The current S-VOP is then blended with the warped sprite. The resulting sprite is obtained by a weighted sum of the warped sprite and the current S-VOP or by copying the S-VOP content for pixels where the warped sprite is still virgin. Specifically, for any pixel (i, j) inside the VOP boundary, the value SY(i'=i, j�=j) of the sprite luminance sample, the value SA(i'=i, j�=j) of the sprite alpha plane sample, and the value SC(ic'=ic, jc�=jc) of the sprite chrominance sample are updated as follows:

When (SA(i', j�) == 255)

	SY(i', j�) = ((254 (blending_factor) SY(i', j�) + blending_factor Y (i, j)) // 254,

	SC(ic', jc�) = ((254 (blending_factor) SC(ic', jc�) + blending_factor C (ic, jc)) // 254,

otherwise

	SY(i', j�) = Y (i, j),

	SA(i', j�) = 255,

	SC(ic', jc�) = C (ic, jc),

where Y (i, j) is the value of the decoded S-VOP luminance sample and C(ic, jc) is the value of the decoded S-VOP chrominance sample.

Dynamic sprite and GMC decoding

Dynamic sprite and GMC prediction

When mcsel == �1�, the MB pixels are predicted using the dynamic sprite (sprite_enable==�dynamic�) or GMC (sprite_enable == �GMC�) prediction. In the case of dynamic sprite, the prediction is obtained by warping of the sprite content, whereas in GMC it is obtained by warping of the previous decoded VOP. The resulting residual is encoded as for interframe motion compensation. The prediction is performed using sub-pel warping described in clause 7.8.7.1 and sample reconstruction described in clause 7.8.8.

Texture and shape decoding in S-VOP

Decoding of shape in S-VOP follows the same rule as shape decoding in P-VOP. Global warping parameters are not used for shape decoding in S-VOP. Macroblocks with mcsel == �1� are regarded as intra-coded macroblocks in shape motion vector decoding since they do not have their own motion vectors.

Overlapped block MC is disabled over the border between macroblocks with different values for mcsel.

Motion vector decoding

Motion vectors of macroblocks with mcsel == �0� in S-VOPs are decoded using the same rules as P-VOPs. Although macroblocks with mcsel == �1� do not have their own block motion vectors, they have pel-wise motion vectors for sprite warping obtained from global motion parameters. The candidate motion vector predictor from the reference macroblock with mcsel == �1� is obtained as the averaged value of the pel-wise motion vectors in the macroblock.

�EMBED Unknown���

MVx(x,y):	Horizontal motion vector at (x,y)

MVy(x,y):	Vertical motion vector at (x,y)

Nb:		Number of pixels in the reference block

AMVx:		Averaged value of horizontal motion vectors in the block

AMVy:		Averaged value of vertical motion vectors in the block

Here,

Since the AMVs have fractional values, they are quantized to half-pel integer using �//� operator. For example, values within [0.0, 0.25) are rounded to 0, [0.25, 0.75) are rounded to 0.5, and [0.75, 1.0] are rounded to 1.0.

If the quantized AMV is outside the motion vector range specified by f_code, it is clipped in the range.

The operation above is performed independently for horizontal and vertical components.

For example, if the left block is coded in Dynamic Sprite or GMC (� REF _Ref410198453 ₩h ��Figure 7-46�), the candidate predictor is obtained as the averaged value of the pel-wise motion vectors in the left block.

�

Figure 7-46 Pel-wise motion vectors of Sprite/GMC blocks.

Sprite reference point decoding

The syntatic elements in encode_sprite_trajectory () and below shall be interpreted as specified in clause 6. du[i] and dv[i] (0 =< i < no_sprite_point) specifies the mapping between indexes of some reference points in the VOP and the corresponding reference points in the sprite. These points are referred to as VOP reference points and sprite reference points respectively in the rest of the specification.

The index values, i0� and j0�, for of the left top sprite reference points shall be calculated as follows:

	(i0�, j0�) = (s / 2) (2 i0 + du[0], 2 j0 + dv[0]), 	when sprite_enable == �static�, and

	(i0�, j0�) = (s / 2) (2 i0 + du[0] + 2 vop_horizontal_mc_spatial_ref,

		2 j0 + dv[0] + 2 vop_vertical_mc_spatial_ref), 	otherwise,

and the index values, i1�, j1� i2�, j2� i3�, and j3�, of the other sprite reference points shall be calculated as:

	(i1�, j1�) = (s / 2) (2 j1 + du[1] + du[0], 2 j1 + dv[1] + dv[0])

	(i2�, j2�) = (s / 2) (2 j2 + du[2] + du[0], 2 j2 + dv[2] + dv[0])

	(i3�, j3�) = (s / 2) (2 j3 + du[3] + du[2] + du[1] + du[0], 2 j3 + dv[3] + dv[2] + dv[1] + dv[0])

where i0�, j0�, etc are integers in �EMBED Equation.2��� pel accuracy, where s is specified by sprite_warping_accuracy. Only the index values with substcripts less than no_sprite_point need to be calculated.

When no_of_sprite_warping_points == 2 or 3, the index values for the virtual sprite points are additionally calculated as follows:

	(i1��, j1��) = (16 (i0 + W�) + ((W (W�) (r i0� (16 i0) + W� (r i1� (16 i1)) // W,

		16 j0 + ((W (W�) (r j0� (16 j0) + W� (r j1� (16 j1)) // W)

	(i2��, j2��) = (16 i0 + ((H (H�) (r i0� (16 i0) + H� (r i2� (16 i2)) // H,

		16 (j0 + H�) + ((H (H�) (r j0� (16 j0) + H� (r j2� (16 j2)) // H)

where i1��, j1��, i2��, and j2�� are integers in �EMBED Unknown��� pel accuracy, and r = 16/s. W� and H� are defined as:

W� = 2(, H� = 2(, W� (W, H� (H, (> 0, (> 0, both (and (and are integers.

The calculation of i2��, and j2�� is not necessary when no_of_sprite_warping_points == 2.

Warping (cf. 7.8.5 in the version 1 CD)

For any pixel (i, j) inside the VOP boundary, (F(i, j), G(i, j)) and (Fc(ic, jc), Gc(ic, jc)) are computed as described in the followingclause 7.8.7.1 or 7.8.7.2. These quantities are then used for sample reconstruction as specified in clause 7.8.67. The following notations are used to simplify the description:

I = i - i0,

J = j - j0,

Ic = 4 ic - 2 i0 + 1,

Jc = 4 jc - 2 i0 + 1,

Sub-pel accuracy warping described in clause 7.8.7.1 is always used when sprite_enable == �static� or sprite_enable == �GMC�. When sprite_enable == �dynamic�, single-pel accuracy warping decsribed in clause 7.8.7.2 is used for updating the sprite, and sub-pel accuracy warping is used for prediction.

Sub-pel accuracy warping

When no_of_sprite_warping_point == 0,

 (F(i, j), G(i, j)) 	= 	(s i, s j),

(Fc(ic, jc), Gc(ic, jc)) 	= 	(s ic, s jc).

When no_of_sprite_warping_point == 1,

 (F(i, j), G(i, j)) 	= 	(i0� + s i, j0� + s j),

(Fc(ic, jc), Gc(ic, jc)) 	= 	(s ic + i0� /// 2, s jc + j0� /// 2).

When no_of_sprite_warping_points == 2,

(F(i, j), G(i, j)) 	= 	(i0� + (((r i0� + i1��) I + (r j0� (j1��) J) /// (W� r) ,

		j0� + (((r j0� + j1��) I + ((r i0� + i1��) J) /// (W� r)),

(Fc(ic, jc), Gc(ic, jc)) 	= 	((((r i0� + i1 ��) Ic + (r j0� (j1��) Jc + 2 W� r i0� (16W�) /// (4 W� r),

		(((r j0� + j1��) Ic + ((r i0� + i1��) Jc + 2 W� r j0� (16W�) /// (4 W� r)).

According to the definition of W� and H� (i.e. W�� = 2(and H� = 2(), the divisions by �///� in these functions can be replaced by binary shift operations.

When no_of_sprite_warping_points == 3,

(F(i, j), G(i, j)) 	= 	(i0� + (((r i0� + i1��) H� I + ((r i0�+ i2��)W� J) /// (W�H�r),

		j0� + (((r j0� + j1��) H� I + ((r j0�+ j2��)W� J) /// (W�H�r)),

(Fc(ic, jc), Gc(ic, jc)) 	= 	((((r i0� + i1��) H� Ic + ((r i0�+ i2��)W� Jc + 2 W�H�r i0� (16W�H�) /// (4W�H�r),

		(((r j0� + j1��) H� Ic + ((r j0�+ j2��)W� Jc + 2 W�H�r j0� (16W�H�) /// (4W�H�r)).

According to the definition of W� and H�, the computation of these functions can be simplified by dividing the denominator and numerator of division beforehand by W� (when W� < H�) or H� (when W� (H�). As in the case of no_of_sprite_warping_points == 2, the divisions by �///� in these functions can be replaced by binary shift operations.

When no_of_sprite_warping_point == 4,

 (F(i, j), G(i, j)) 	= 	((a i + b j + c) /// (g i + h j + D W H),

		(d i + e j + f) /// (g i + h j + D W H)),

(Fc(ic, jc), Gc(ic, jc)) 	= 	((2 a Ic + 2 b Jc + 4 c ((g Ic + h Jc + 2 D W H) s) /// (4gIc +4 hJc +8D W H),

		(2 d Ic + 2 e Jc + 4 f ((g Ic + h Jc + 2 D W H) s) /// (4 g Ic +4 hJc +8D W H))

where

	g = ((i0� (i1� (i2� + i3�) (j2� (j3�) ((i2� (i3�) (j0� (j1� (j2� + j3�)) H ,

	h = ((i1� (i3�) (j0� (j1� (j2� + j3�) ((i0� (i1� (i2� + i3�) (j1� (j3�)) W ,

	D = (i1� (i3�) (j2� (j3�) ((i2� (i3�) (j1� (j3�),

	a = D (i1� (i0�) H + g i1� ,

	b = D (i2� (i0�) W + h i2�,

	c = D i0� W H,

	d = D (j1� (j0�) H + g j1�,

	e = D (j2� (j0�) W + h j2�,

	f = D j0� W H.

The implementor should be aware that a 32bit register may not be sufficient for representing the denominator or the numerator in the above transform functions for affine and perspective transform. The usage of a 64 bit floating point representation should be sufficient in such case.

Single-pel accuracy warping

When no_of_sprite_warping_points == 0,

(F(i, j), G(i, j)) 	= 	(s i, s j),

(Fc(ic, jc), Gc(ic, jc)) 	= 	(s ic, s jc).

When no_of_sprite_warping_points == 1,

(F(i, j), G(i, j)) 	= 	((i + i0� /// s) s, (j + j0� /// s) s),

(Fc(ic, jc), Gc(ic, jc)) 	= 	((ic + i0� /// (2s)) s, (jc + j0� /// (2s)) s).

When no_of_sprite_warping_points == 2,

(F(i, j), G(i, j)) 	= 	(((W� r i0� + ((r i0� + i1��) I + (r j0� (j1��) J) /// (16W�)) s,

		((W� r j0� + ((r j0� + j1��) I + ((r i0� + i1��) J) /// (16W�)) s),

(Fc(ic, jc), Gc(ic, jc)) 	= 	(((((r i0� + i1 ��) Ic + (r j0� (j1��) Jc + 2 W� r i0� (16W�) /// (64W�)) s,

		((((r j0� + j1��) Ic + ((r i0� + i1��) Jc + 2 W� r j0� (16W�) /// (64W�)) s).

According to the definition of W� and H� (i.e. W�� = 2(and H� = 2(), the divisions by �///� in these functions can be replaced by binary shift operations.

When no_of_sprite_warping_points == 3,

(F(i, j), G(i, j)) 	= 	(((W�H�r i0� + ((r i0� + i1��) H� I + ((r i0�+ i2��)W� J) /// (16W�H�)) s,

		((W�H�r j0� + ((r j0� + j1��) H� I + ((r j0�+ j2��)W� J) /// (16W�H�)) s),

(Fc(ic, jc), Gc(ic, jc)) 	= 	(((((r i0� + i1��) H� Ic + ((r i0�+ i2��)W� Jc + 2 W�H�r i0� (16W�H�) /// (64W�H�))s,

		((((r j0� + j1��) H� Ic + ((r j0�+ j2��)W� Jc + 2 W�H�r j0� (16W�H�) /// (64W�H�))s).

According to the definition of W� and H�, the computation of these functions can be simplified by dividing the denominator and numerator of division beforehand by W� (when W� < H�) or H� (when W� (H�). As in the case of no_of_sprite_warping_points == 2, the divisions by �///� in these functions can be replaced by binary shift operations.

When no_of_sprite_warping_points == 4,

 (F(i, j), G(i, j)) 	= 	(((a i + b j + c) /// ((g i + h j + D W H)s)) s,

		((d i + e j + f) /// ((g i + h j + D W H)s)) s),

(Fc(ic, jc), Gc(ic, jc)) 	= 	(((2 a Ic + 2 b Jc + 4 c ((g Ic + h Jc + 2 D W H) s) /// ((4 g Ic + 4 h Jc + 8 D W H)s)) s,

		((2 d Ic + 2 e Jc + 4 f ((g Ic + h Jc + 2 D W H) s) /// ((4 g Ic + 4 h Jc + 8 D W H)s)) s)

where the values of parameters g, h, D, a, b, c, d, e, and f are defined as described in clause 7.8.6.1.

The implementor should be aware that a 32bit register may not be sufficient for representing the denominator or the numerator in the above transform functions for affine and perspective transform. The usage of a 64 bit floating point representation should be sufficient in such case.

Sample reconstruction (cf. 7.8.6 in the version 1 CD)

This clause defines the process to compute the reconstructed value samples in the current decoded VOP (sprite_enable==�static�) or to compute the dynamic sprite/GMC predicted value samples (sprite_enable==�dynamic� or sprite_enable==�gmc�).

The reconstructed or predicted value Y of the luminance sample (i, j) in the currently decoded VOP shall be defined as

Y = ((s - rj)((s �ri) Y00 + ri Y01) + rj ((s - ri) Y10 + ri Y11)) // s2,

where Y00, Y01, Y10, Y11 represent the sprite (sprite_enable== �static� or sprite_enable== �dynamic�) or the previous VOP (sprite_enable== �GMC�) luminance sample at (F(i, j)////s, G(i, j)////s), (F(i, j)////s + 1,G(i, j)////s), (F(i, j)////s, G(i, j)////s + 1), and (F(i, j)////s + 1,G(i, j)////s + 1) respectively, and ri =F(i, j) �F(i, j)////s and rj =G(i, j) � G(i, j)////s. � REF _Ref402679520 ₩* MERGEFORMAT �Figure � illustrates this process.

In case any of Y00, Y01, Y10 and Y11 lies outside the sprite (sprite_enable== �static� or sprite_enable== �dynamic�) or the previous VOP (sprite_enable== �GMC�) luminance binary mask, it shall be obtained by the padding process as defined in section � REF _Ref404676197 ₩n �Error! Reference source not found.�.

When brightness_change_in_sprite == 1, the final reconstructed or predicted luminance sample (i, j) is further computed as Y = Y * (brightness_change_factor * 0.01 + 1), clipped to the range of [0, 255].

Similarly, the reconstructed or predicted value C of the chrominance sample (ic, jc) in the currently decoded VOP shall be define as

C = ((s - rj)((s �ri) C00 + ri C01) + rj ((s - ri) C10 + ri C11)) // s2,

where C00, C01, C10, C11 represent the sprite (sprite_enable== �dynamic�) or the previous VOP (sprite_enable== �GMC�) chrominance sample at (Fc(ic, jc)////s, Gc(ic, jc)////s), (Fc(ic, jc)////s + 1, Gc(ic, jc)////s), (Fc(ic, jc)////s, Gc(ic, jc)////s + 1), and (Fc(ic, jc)////s + 1, Gc(ic, jc)////s + 1) respectively, and ri = Fc(ic, jc) � Fc(ic, jc))////s and rj = Gc(ic, jc) � Gc(ic, jc)////s. In case any of C00, C01, C10 and C11 lies outside the sprite chrominance binary mask, it shall be obtained by the padding process as defined in section � REF _Ref404676197 ₩n �Error! Reference source not found.�.

When sprite_enable == �static�, tThe reconstructed value of luminance binary mask sample BY(i,j) shall be computed following the identical process for the luminance sample. However, corresponding binary mask sample values shall be used in place of luminance samples Y00, Y01, Y10, Y11. Assume the binary mask sample opaque is equal to 255 and the binary mask sample transparent is equal to 0. If the computed value is bigger or equal to 128, BY(i, j) is defined as opaque. Otherwise, BY (i, j) is defined as transparent. The chrominance binary mask samples shall be reconstructed by downsampling of the luminance binary mask samples as specified in � REF _Ref404677554 ₩n �Error! Reference source not found.�.

�EMBED Unknown���

Figure 7-28 Pixel value interpolation (it is assumed that sprite samples are located on an integer grid).

Scalable sprite decoding (cf. 7.8.7 in the version 1 CD)

Refer to the version 1 CD.

Generalized scalable decoding

Refer to the version 1 CD.

Still texture object decoding

Refer to the version 1 CD.

Mesh object decoding

Refer to the version 1 CD.

Face object decoding

Refer to the version 1 CD.

Output of the decoding process

Refer to the version 1 CD.

Visual-Systems Composition Issues

Refer to the version 1 CD.

Profiles and Levels

Refer to the version 1 CD.

Annex A

Coding Transforms

Refer to the version 1 CD.

�Annex B

Variable length codes and Arithmetic Decoding

(This annex forms an integral part of the committee draft of this International Standard)

Variable length codes

Macroblock type

Table 11-� SEQ Table ₩* ARABIC ₩r 1 �1�	Macroblock types and included data elements for I-, and P-, and S-vops in combined motion-shape-texture coding

vop type�mb type�Name�not_coded�mcbc�mcsel�cbpy�dquant�mvd�mvd2-4��P�not coded�-�1��������P�0�inter�1�1��1��1���P�1�inter+q�1�1��1�1�1���P�2�inter4v�1�1��1��1�1��P�3�intra�1�1��1�����P�4�intra+q�1�1��1�1����P�stuffing�-�1�1�������I�3�intra��1��1�����I�4�intra+q��1��1�1����I�stuffing�-��1�������S�not coded�-�1��������S�0�inter�1�1�1�1��1���S�1�inter+q�1�1�1�1�1�1���S�3�intra�1�1��1�����S�4�intra+q�1�1��1�1����S�stuffing�-�1�1�������	Note: �1� means that the item is present in the macroblock

Table � STYLEREF 1 ₩n �11�-� SEQ Table ₩* ARABIC �2� Macroblock types and included data elements for a P-VOP (scalability && ref_select_code == �11�)

VOP Type�Index�Name�COD�MCBPC�MCSEL�CBPY�DQUANT�MVD�MVD2-4��P�not coded�-�1��������P�1�INTER�1�1��1�����P�2�INTER+Q�1�1��1�1����P�3�INTRA�1�1��1�����P�4�INTRA+Q�1�1��1�1����P�stuffing�-�1�1�������	Note: �1� means that the item is present in the macroblock

Table � STYLEREF 1 ₩n �11�-� SEQ Table ₩* ARABIC �3� --- VLC table for MODB in combined motion-shape-texture coding

Code�cbpb�mb_type��0����10��1��11�1�1��

Table � STYLEREF 1 ₩n �11�-� SEQ Table ₩* ARABIC �4� --- MBTYPES and included data elements in coded macroblocks in B-vops (ref_select_code != �00�||scalability==�0�) for combined motion-shape-texture coding

Code�dquant�mvdf�mvdb�mvdb�MBTYPE��1����1�direct��01�1�1�1��interpolate mc+q��001�1��1��backward mc+q��0001�1�1���forward mc+q��

Table � STYLEREF 1 ₩n �11�-� SEQ Table ₩* ARABIC �5� --- MBTYPES and included data elements in coded macroblocks in B-vops (ref_select_code == �00�&&scalability!=�0�) for combined motion-shape-texture coding

Code�dquant�mvdf�mvdb�MBTYPE��01�1�1��interpolate mc+q��001�1���backward mc+q��1�1�1��forward mc+q��

Macroblock pattern

Refer to the version 1 CD.

Motion vector

Refer to the version 1 CD.

DCT coefficients

Refer to the version 1 CD.

Shape Coding

Refer to the version 1 CD.

Sprite Coding

Refer to the version 1 CD.

DCT based facial object decoding

Refer to the version 1 CD.

Arithmetic Decoding

Refer to the version 1 CD.

:

Annex C

Face object decoding tables and definitions

Refer to the version 1 CD.

Annex D

Video buffering verifier

Refer to the version 1 CD.

Annex E

Features supported by the algorithm

Refer to the version 1 CD.

Annex F

Preprocessing and Postprocessing

Refer to the version 1 CD.

Annex G

Profile and level restrictions

Refer to the version 1 CD.

Annex H

Visual Bitstream Syntax in MSDL-S

Refer to the version 1 CD.

Annex I

Patent statements

Refer to the version 1 CD.

Annex J

Bibliography

Refer to the version 1 CD.

ISO/IEC 14496-2	 Version 2 Visual Working Draft

 ISO/IEC 14496-2	 Version 2 Visual Working Draft

�PAGE �vi�

	V2WD1.0

�PAGE �xi�

	V2WD1.0	

ISO/IEC 14496-2	Committee Draft

 ISO/IEC 14496-2	Committee Draft			

�	

		�

