INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND ASSOCIATED AUDIO INFORMATION

ISO/IEC JTC1/SC29/WG11

MPEG98/N1992

San Jose, February 1998

Source: Video Group

Status: Draft in Progress

Title: MPEG-4 Video Verification Model Version 10.0

Editor: Touradj Ebrahimi

�

Please address all comments or suggestions to the ad hoc group on MPEG-4 video VM editing mail reflector ‘mpeg4-vm@ltssg3.epfl.ch’.

�Table of Contents

� TOC \o "1-3" �1	Introduction	� PAGEREF _Toc410472487 \h ��9�

2	Video Object Plane (VOP)	� PAGEREF _Toc410472488 \h ��11�

2.1	VOP Definition	� PAGEREF _Toc410472489 \h ��11�

2.2	VOP format	� PAGEREF _Toc410472490 \h ��12�

2.2.1	Test sequences library	� PAGEREF _Toc410472491 \h ��12�

2.2.2	Filtering process	� PAGEREF _Toc410472492 \h ��14�

2.2.3	VOP file format	� PAGEREF _Toc410472493 \h ��17�

2.2.4	Coding of test sequences whose width and height are not integral multiples of 16	� PAGEREF _Toc410472494 \h ��17�

3	Encoder Definition	� PAGEREF _Toc410472495 \h ��18�

3.1	Overview	� PAGEREF _Toc410472496 \h ��18�

3.1.1	VOP formation	� PAGEREF _Toc410472497 \h ��19�

3.2	Shape Coding	� PAGEREF _Toc410472498 \h ��20�

3.2.1	Overview	� PAGEREF _Toc410472499 \h ��20�

3.2.2	Abbreviations	� PAGEREF _Toc410472500 \h ��20�

3.2.3	Mode Decision	� PAGEREF _Toc410472501 \h ��21�

3.2.4	Motion estimation and compensation	� PAGEREF _Toc410472502 \h ��23�

3.2.5	Size conversion (Rate control)	� PAGEREF _Toc410472503 \h ��25�

3.2.6	Binary Alpha Block Coding	� PAGEREF _Toc410472504 \h ��30�

3.2.7	Grey Scale Shape Coding	� PAGEREF _Toc410472505 \h ��34�

3.3	Motion Estimation and Compensation	� PAGEREF _Toc410472506 \h ��39�

3.3.1	Padding Process	� PAGEREF _Toc410472507 \h ��39�

3.3.2	Basic Motion Techniques	� PAGEREF _Toc410472508 \h ��43�

3.3.3	Unrestricted Motion Estimation/Compensation	� PAGEREF _Toc410472509 \h ��49�

3.3.4	Advanced prediction mode	� PAGEREF _Toc410472510 \h ��50�

3.3.5	Interlaced Motion Compensation	� PAGEREF _Toc410472511 \h ��53�

3.4	Texture Coding	� PAGEREF _Toc410472512 \h ��54�

3.4.1	Low Pass Extrapolation (LPE) Padding Technique	� PAGEREF _Toc410472513 \h ��54�

3.4.2	Adaptive Frame/Field DCT	� PAGEREF _Toc410472514 \h ��55�

3.4.3	DCT	� PAGEREF _Toc410472515 \h ��56�

3.4.4	SA-DCT	� PAGEREF _Toc410472516 \h ��57�

3.4.5	H263 Quantization Method	� PAGEREF _Toc410472517 \h ��60�

3.4.6	MPEG Quantization Method	� PAGEREF _Toc410472518 \h ��61�

3.4.7	Intra DC and AC Prediction for I-VOP and P-VOP	� PAGEREF _Toc410472519 \h ��66�

3.4.8	VLC encoding of quantized transform coefficients	� PAGEREF _Toc410472520 \h ��69�

3.5	Prediction and Coding of B-VOPs	� PAGEREF _Toc410472521 \h ��71�

3.5.1	Direct Coding	� PAGEREF _Toc410472522 \h ��71�

3.5.2	Forward Coding	� PAGEREF _Toc410472523 \h ��74�

3.5.3	Backward Coding	� PAGEREF _Toc410472524 \h ��74�

3.5.4	Bidirectional Coding	� PAGEREF _Toc410472525 \h ��74�

3.5.5	Mode Decisions	� PAGEREF _Toc410472526 \h ��74�

3.5.6	Motion Vector Coding	� PAGEREF _Toc410472527 \h ��75�

3.6	Error Resilience	� PAGEREF _Toc410472528 \h ��76�

3.6.1	Introduction	� PAGEREF _Toc410472529 \h ��76�

3.6.2	Recommended Modes of Operation	� PAGEREF _Toc410472530 \h ��78�

3.7	Rate Control	� PAGEREF _Toc410472531 \h ��82�

3.8	Generalized Scalable Encoding	� PAGEREF _Toc410472532 \h ��86�

3.8.1	Spatial Scalability Encoding	� PAGEREF _Toc410472533 \h ��87�

3.8.2	Temporal Scalability Encoding	� PAGEREF _Toc410472534 \h ��89�

3.9	Sprite Coding and Global Motion Compensation	� PAGEREF _Toc410472535 \h ��93�

3.9.1	Introduction	� PAGEREF _Toc410472536 \h ��93�

3.9.2	Location of Reference Points	� PAGEREF _Toc410472537 \h ��95�

3.9.3	Definition of Transform Functions	� PAGEREF _Toc410472538 \h ��97�

3.9.4	Sprite Generation	� PAGEREF _Toc410472539 \h ��100�

3.9.5	Encoding	� PAGEREF _Toc410472540 \h ��103�

3.10	Texture Coding Mode	� PAGEREF _Toc410472541 \h ��109�

3.10.1	Basic Principle of the Encoder	� PAGEREF _Toc410472542 \h ��112�

3.10.2	Discrete Wavelet Transform	� PAGEREF _Toc410472543 \h ��113�

3.10.3	Coding of the lowest subband	� PAGEREF _Toc410472544 \h ��114�

3.10.4	ZeroTree Coding of the Higher Bands	� PAGEREF _Toc410472545 \h ��115�

3.10.5	Quantization	� PAGEREF _Toc410472546 \h ��116�

3.10.6	Zero Tree Scanning	� PAGEREF _Toc410472547 \h ��117�

3.10.7	Entropy coding	� PAGEREF _Toc410472548 \h ��118�

4	Bitstream Syntax	� PAGEREF _Toc410472549 \h ��119�

4.1	Definitions	� PAGEREF _Toc410472550 \h ��119�

4.2	General Structure	� PAGEREF _Toc410472551 \h ��120�

4.3	Video Session Class	� PAGEREF _Toc410472552 \h ��121�

4.3.1	Video Session Class	� PAGEREF _Toc410472553 \h ��121�

4.4	Video Object Class	� PAGEREF _Toc410472554 \h ��122�

4.4.1	Video Object	� PAGEREF _Toc410472555 \h ��122�

4.5	Video Object Layer Class	� PAGEREF _Toc410472556 \h ��123�

4.5.1	Video Object Layer	� PAGEREF _Toc410472557 \h ��123�

4.6	Group Of VOPs class	� PAGEREF _Toc410472558 \h ��135�

4.6.1	Syntax of Group of VideoObjectPlane	� PAGEREF _Toc410472559 \h ��135�

4.7	VideoObjectPlane Class	� PAGEREF _Toc410472560 \h ��137�

4.7.1	VideoObjectPlane	� PAGEREF _Toc410472561 \h ��137�

4.8	Shape coding	� PAGEREF _Toc410472562 \h ��158�

4.9	Motion Shape Texture	� PAGEREF _Toc410472563 \h ��160�

4.9.1	Combined Motion Shape Texture	� PAGEREF _Toc410472564 \h ��160�

4.9.2	Separate Motion Shape Texture Syntax for I-, P-, and B-VOPs	� PAGEREF _Toc410472565 \h ��160�

4.10	Texture Object Layer Class	� PAGEREF _Toc410472566 \h ��170�

4.10.1	Texture Object Layer	� PAGEREF _Toc410472567 \h ��170�

5	Decoder Definition	� PAGEREF _Toc410472568 \h ��175�

5.1	Overview	� PAGEREF _Toc410472569 \h ��175�

5.2	Shape decoding	� PAGEREF _Toc410472570 \h ��175�

5.3	Decoding of Escape Code	� PAGEREF _Toc410472571 \h ��175�

5.4	Temporal Prediction Structure	� PAGEREF _Toc410472572 \h ��176�

5.5	Generalized Scalable Decoding	� PAGEREF _Toc410472573 \h ��176�

5.5.1	Spatial Scalability Decoding	� PAGEREF _Toc410472574 \h ��178�

5.5.2	Temporal Scalability Decoding	� PAGEREF _Toc410472575 \h ��178�

5.6	Compositer Definition	� PAGEREF _Toc410472576 \h ��180�

5.7	Flex_0 Composition Layer Syntax	� PAGEREF _Toc410472577 \h ��180�

5.7.1	Bitstream Syntax	� PAGEREF _Toc410472578 \h ��180�

5.7.2	Parameter Semantics	� PAGEREF _Toc410472579 \h ��181�

6	Appendix A: Combined Motion Shape Texture Coding	� PAGEREF _Toc410472580 \h ��183�

6.1	Macroblock Layer	� PAGEREF _Toc410472581 \h ��183�

6.1.1	Coded macroblock indication (COD) (1 bit)	� PAGEREF _Toc410472582 \h ��184�

6.1.2	Macroblock type & Coded block pattern for chrominance (MCBPC) (Variable length)	� PAGEREF _Toc410472583 \h ��184�

6.1.3	MC reference indication (MCSEL) (1bit)	� PAGEREF _Toc410472584 \h ��187�

6.1.4	Intra Prediction Acpred_flag (1bit)	� PAGEREF _Toc410472585 \h ��187�

6.1.5	Coded block pattern for luminance (CBPY) (Variable length)	� PAGEREF _Toc410472586 \h ��188�

6.1.6	Quantizer Information (DQUANT) (1 or 2 bits)	� PAGEREF _Toc410472587 \h ��188�

6.1.7	Interlaced video coding information (Interlaced_information)	� PAGEREF _Toc410472588 \h ��190�

6.1.8	Motion Vector Coding	� PAGEREF _Toc410472589 \h ��191�

6.1.9	Motion vector data (MVD) (Variable length)	� PAGEREF _Toc410472590 \h ��192�

6.1.10	Motion vector data (MVD2-4) (Variable length)	� PAGEREF _Toc410472591 \h ��194�

6.1.11	Macroblock mode for B-blocks (MODB) (Variable length)	� PAGEREF _Toc410472592 \h ��194�

6.1.12	Macroblock Type (MBTYPE) for Coded B-VOPs (Variable length)	� PAGEREF _Toc410472593 \h ��194�

6.1.13	Coded block pattern for B-blocks (CBPB) (3-6 bits)	� PAGEREF _Toc410472594 \h ��195�

6.1.14	Quantizer Information for B-Macroblocks (DQUANT) (2 bits)	� PAGEREF _Toc410472595 \h ��195�

6.1.15	Motion vector data for Forward Prediction (MVDf) (Variable length)	� PAGEREF _Toc410472596 \h ��196�

6.1.16	Motion vector data for Backward Prediction (MVDb) (Variable length)	� PAGEREF _Toc410472597 \h ��196�

6.1.17	Motion vector data for Direct Prediction (MVDB) (Variable length)	� PAGEREF _Toc410472598 \h ��196�

6.2	Block Layer	� PAGEREF _Toc410472599 \h ��196�

6.2.1	DC Coefficient for INTRA blocks (INTRADC) (Variable length)	� PAGEREF _Toc410472600 \h ��196�

6.2.2	Transform coefficient (TCOEF) (Variable length)	� PAGEREF _Toc410472601 \h ��199�

6.2.3	Encoding of escape code	� PAGEREF _Toc410472602 \h ��199�

6.3	Remultiplexing of Combined Motion Texture Coding Mode for Error Resilience	� PAGEREF _Toc410472603 \h ��205�

7	Appendix B: Transform coefficient (TCOFF) (Variable length)	� PAGEREF _Toc410472604 \h ��207�

8	Appendix C: Definition of Post- filter	� PAGEREF _Toc410472605 \h ��213�

8.1	Deblocking filter	� PAGEREF _Toc410472606 \h ��213�

8.2	Deringing filter	� PAGEREF _Toc410472607 \h ��214�

8.2.1	Threshold determination	� PAGEREF _Toc410472608 \h ��215�

8.2.2	Index acquisition	� PAGEREF _Toc410472609 \h ��215�

8.2.3	Adaptive smoothing	� PAGEREF _Toc410472610 \h ��215�

9	Appendix D: Off-Line Sprite Generation	� PAGEREF _Toc410472611 \h �Error! Bookmark not defined.�

9.1	Perspective Motion Estimation	� PAGEREF _Toc410472612 \h ��218�

9.2	Sprite Generation Using the Perspective Motion Estimation	� PAGEREF _Toc410472613 \h ��220�

9.3	C++ Sample Code	� PAGEREF _Toc410472614 \h ��221�

10	Appendix E: C-source code for feathering filter	� PAGEREF _Toc410472615 \h ��218�

11	Appendix F: Probability tables for shape coding(CAE)	� PAGEREF _Toc410472616 \h ��229�

12	Appendix G: Arithmetic encoding/decoding codes for shape coding	� PAGEREF _Toc410472617 \h ��235�

12.1	Structures and Typedefs	� PAGEREF _Toc410472618 \h ��235�

12.2	Encoder Source	� PAGEREF _Toc410472619 \h ��235�

12.3	Decoder Source	� PAGEREF _Toc410472620 \h ��237�

13	Appendix H: Core Experiments	� PAGEREF _Toc410472621 \h �Error! Bookmark not defined.�

14	Version 2	� PAGEREF _Toc410472622 \h ��240�

14.1	Coding Arbitrarily Shaped Texture	� PAGEREF _Toc410472623 \h ��247�

14.1.1	Shape Adaptive Wavelet Transform	� PAGEREF _Toc410472624 \h ��247�

14.1.2	Modified Zero-Tree Coding According to Decomposed Mask	� PAGEREF _Toc410472625 \h ��251�

14.1.3	Texture Object Layer Class	� PAGEREF _Toc410472626 \h ��251�

14.2	Scalable shape coding	� PAGEREF _Toc410472627 \h ��253�

14.2.1	Spatial Scalable Coding	� PAGEREF _Toc410472628 \h ��253�

14.2.2	Prediction with the context probability tables	� PAGEREF _Toc410472629 \h ��259�

14.2.3	Quality(SNR) Scalable Coding	� PAGEREF _Toc410472630 \h ��259�

14.2.4	Region- (or Content-) based Scalable Coding	� PAGEREF _Toc410472631 \h ��259�

14.2.5	Syntax	� PAGEREF _Toc410472632 \h ��259�

14.2.6	APPENDIX A: Probability Tables	� PAGEREF _Toc410472633 \h ��261�

14.3	Matching pursuit inter texture coding mode	� PAGEREF _Toc410472634 \h ��262�

14.3.1	Introduction to Matching Pursuit mode	� PAGEREF _Toc410472635 \h ��262�

14.3.2	INTRA Frame Coding	� PAGEREF _Toc410472636 \h ��262�

14.3.3	Motion Compensation	� PAGEREF _Toc410472637 \h ��262�

14.3.4	Prediction Error Encoding Using Matching Pursuit	� PAGEREF _Toc410472638 \h ��262�

14.3.5	Rate Control (informative)	� PAGEREF _Toc410472639 \h ��267�

14.3.6	Bitstream Syntax	� PAGEREF _Toc410472640 \h ��268�

14.3.7	Matching pursuit VLC Tables	� PAGEREF _Toc410472641 \h ��269�

14.4	Arbitrary shaped spatial scalability	� PAGEREF _Toc410472642 \h ��277�

14.4.1	Semantics for Object Based Scalability	� PAGEREF _Toc410472643 \h ��277�

14.4.2	Padding and upsampling process	� PAGEREF _Toc410472644 \h ��277�

14.4.3	Location of VOP	� PAGEREF _Toc410472645 \h ��277�

14.4.4	Background composition	� PAGEREF _Toc410472646 \h ��278�

14.5	Multiple Video Object Rate Control	� PAGEREF _Toc410472647 \h ��278�

14.5.1	Initialization	� PAGEREF _Toc410472648 \h ��279�

14.5.2	Quantization level calculation for I-frame and first P-frame	� PAGEREF _Toc410472649 \h ��279�

14.5.3	Post-Encoding Stage	� PAGEREF _Toc410472650 \h ��281�

14.5.4	Pre-Encoding Stage	� PAGEREF _Toc410472651 \h ��282�

14.5.5	Modes of Operation	� PAGEREF _Toc410472652 \h ��284�

14.5.6	Shape Rate Control	� PAGEREF _Toc410472653 \h ��285�

14.5.7	Summary	� PAGEREF _Toc410472654 \h ��285�

14.6	Joint Macroblock-Layer Rate Control	� PAGEREF _Toc410472655 \h ��285�

14.6.1	Rate-Distortion Model	� PAGEREF _Toc410472656 \h ��286�

14.6.2	Target number of bits for each macroblock	� PAGEREF _Toc410472657 \h ��286�

14.6.3	The Macroblock Rate Control Technique	� PAGEREF _Toc410472658 \h ��287�

14.7	Boundary block merging (BBM)	� PAGEREF _Toc410472659 \h ��288�

14.8	Adaptive 3D VLC for intra block coding	� PAGEREF _Toc410472660 \h ��289�

14.8.1	Coded Block Pattern for Luminance Block	� PAGEREF _Toc410472661 \h ��289�

14.8.2	Block	� PAGEREF _Toc410472662 \h ��290�

14.8.3	Instantaneous Power Matching (IPM) Scan for Intra Blocks	� PAGEREF _Toc410472663 \h ��291�

14.8.4	Initial State Pattern for I-Blocks	� PAGEREF _Toc410472664 \h ��291�

14.8.5	Zone	� PAGEREF _Toc410472665 \h ��295�

14.8.6	Intra Horizontal-Vertical Zone (Zone 1 and Zone 2) DCT VLC Tables	� PAGEREF _Toc410472666 \h ��297�

14.8.7	Diagonal Zone (Zone 3 and Zone 4) Intra DCT VLC Tables	� PAGEREF _Toc410472667 \h ��302�

14.9	Dynamic Resolution Conversion	� PAGEREF _Toc410472668 \h ��306�

14.9.1	Algorithm Overview of Dynamic Resolution Conversion	� PAGEREF _Toc410472669 \h ��306�

14.9.2	Encoder Module Specification	� PAGEREF _Toc410472670 \h ��308�

14.9.3	Decoder Module Specification	� PAGEREF _Toc410472671 \h ��317�

15	MPEG-4 video version management	� PAGEREF _Toc410472672 \h ��326�

�

1	Introduction

MPEG-4 video aims at providing standardized core technologies allowing efficient storage, transmission and manipulation of video data in multimedia environments. This is a challenging task given the broad spectrum of requirements and applications in multimedia. In order to achieve this broad goal rather than a solution for a narrow set of applications, functionalities common to clusters of applications are under the scope of consideration. Therefore, video activities in MPEG-4 aim at providing solutions in the form of tools and algorithms enabling functionalities such as efficient compression, object scalability, spatial and temporal scalability, error resilience. The standardized MPEG-4 video will provide a toolbox containing tools and algorithms bringing solutions to the above mentioned functionalities and more.

To this end, the approach taken relies on a content based visual data representation. In contrast to current state-of-the-art techniques, within this approach, a scene is viewed as a composition of Video Objects (VO) with intrinsic properties such as shape, motion, and texture . It is believed that such a content based representation is a key to enable interactivity with objects for a variety of multimedia applications. In such applications, a user can access arbitrarily shaped objects in the scene and manipulate these objects.

The current focus of MPEG-4 video is the development of Video Verification Models (VMs) which evolve through time by means of core experiments. The Verification Model is a common platform with a precise definition of encoding and decoding algorithms which can be presented as tools addressing specific functionalities. New algorithms/tools are added to the VM and old algorithms/tools are replaced in the VM by successful core experiments.

So far, MPEG-4 video group has focused its efforts on a single Verification Model which has gradually evolved from version 1.0 to version 7.0, and in the process has addressed increasing number of desired functionalities, namely, content based object and temporal scalabilities, spatial scalability, error resilience, and compression efficiency. The encoding and decoding process is carried out on the instances of Video Objects called Video Object Planes (VOPs). Object based temporal scalability and spatial scalability can be achieved by means of layers known as Video Object Layers (VOLs) which represent either the base layer or enhancement layers of a VOP.

The current core experiments in the video group cover the following major classes of tools and algorithms:

Compression efficiency

For most applications involving digital video, such as video conferencing, internet video games or digital TV, coding efficiency is essential. MPEG-4 is currently evaluating over a dozen methods intended to improve the coding efficiency of existing standards.

Error resilience

The ongoing work in error resilience addresses the problem of accessing video information over a wide range of storage and transmission media. In particular, due to the rapid growth of mobile communications, it is extremely important that access is available to audio and video information via wireless networks. This implies a need for useful operation of audio and video compression algorithms in error-prone environments at low bit-rates (i.e., less than 64 kbps). Currently being evaluated within MPEG-4 Video Group are tools for video compression which address both the band limited nature and error resiliency aspects of the problem of providing access over wireless networks.

Shape and alpha map coding

The shape of an 2D object is described by alpha maps. Multilevel alpha maps are frequently used to blend different layers of image sequences for the final film. Other applications that benefit from associating binary alpha maps with images are content based image representations for image data bases, interactive games, surveillance, and animation.

Arbitrarily shaped region texture coding

Coding of texture for arbitrarily shaped regions is required for achieving an efficient texture representation for arbitrarily shaped objects. Hence, these algorithms are used for objects whose shape is described with an alpha map.

Multifunctional coding tools and algorithms

Multifunctional coding is aiming to provide tools to support a number of content based as well as other functionalities. For instance, for internet and database applications object based spatial and temporal scalabilities are provided for content based access. Likewise, for mobile multimedia applications, spatial and temporal scalabilities are essential for channel bandwidth scaling for robust delivery. Multifunctional coding also addresses multi-view and stereoscopic applications as well as representations that enable simultaneous coding and tracking of objects for surveillance and other applications. Besides, the aforementioned applications, a number of tools are being developed for segmentation of a video scene into objects and for coding noise suppression.

2	Video Object Plane (VOP)

2.1	VOP Definition

The Video Object (VO) correspond to entities in the bitstream that the user can access and manipulate (cut, paste...). Instances of Video Object in given time are called Video Object Plane (VOP). The encoder sends together with the VOP, composition information (using composition layer syntax) to indicate where and when each VOP is to be displayed. At the decoder side the user may be allowed to change the composition of the scene displayed by interacting on the composition information.

At the encoder:

�

At the decoder:

�

Figure � SEQ Figure * ARABIC �1�: VM Encoder and Decoder Structure

The VOP can be a semantic object in the scene : it is made of Y, U, V components plus shape information. In MPEG-4 video test sequences, the VOP were either known by construction of the sequences (hybrid sequences based on blue screen composition or synthetic sequences) or were defined by semi-automatic segmentation. In the first case, the shape information is represented by an 8 bit component, used for composition (see Section � REF _Ref392489077 \r �0�). In the second case, the shape is a binary mask. Both cases are currently considered in the encoding process. The VOP can have arbitrary shape.

The exact method used to produce the VOP from the video sequences is not described in this document.

When the sequence has only one rectangular VOP of fixed size displayed at fixed interval, it corresponds to the frame-based coding technique.

2.2	VOP format

This section describes the input library, the filtering process and the formation of the VOP.

Section � REF _Ref364785217 \n �2.2.1� describes the test sequences library. Section � REF _Ref364785238 \n �2.2.2� describes the suggested downsampling process from ITU-R 601 format to SIF, CIF and QCIF formats. In this section, the acronym SIF is used to designate the 352x240 and 352x288 formats at 30 Hz and 25 Hz, respectively, while CIF designates only the 352x288 format at 30 Hz. Section � REF _Ref364785268 \n �2.2.3� describes the VOP format.

2.2.1	Test sequences library

All the test sequences will be available in either 50 Hz or 60 Hz ITU-R 601 formats. The input library from the November ‘95 and January ‘96 test was adopted here. As the VM evolves it is expected that more representative sets of input source will become available. The distributed files format for the input sources are as follows:

1) Luminance and chrominance (YUV) - ITU-R 601 format containing luminance and chrominance data

one or more file per sequence;

no headers

supply number of files and size in separate README file

chain all frames without gaps

for each frame, chain Y, U, V data without gaps

write component data from 1st line, 1st pixel, from left to right, top to bottom, down to last line, last pixel.

2) Segmentation Masks - The format for the exchange of the mask information is similar to the one used for the images, i.e. a segmentation mask has a format similar to ITU-R 601 luminance, where each pixel has a label identifying the region it belongs to (label values are 0,1,2, ...). A segmentation may have a maximum of 256 segments (regions). Whenever possible, the segments should have a semantic meaning and will correspond to the VOP.

3) Grey Scale Alpha Plane files - ITU-R 601 format - containing the alpha values. The same format as the ITU-R 601 luminance file is used. All values between 0 and 255 may be used. For the layered representation of a sequence, each layer has its own YUV and alpha files.

The test sequences library is separated into the following classes:

Class A: Low spatial detail and low amount of movement

Class B: Medium spatial detail and low amount of movement or vice versa

Class C: High spatial detail and medium amount of movement or vice versa

Class D: Stereoscopic

Class E: Hybrid natural and synthetic

Class F: 12-bit video sequences

The following table lists the input sequences, their format and the available files.

Sequence Name�Class�Input Format�YUV files�Alpha files�Segment Mask Available��Mother & daughter�A�ITU-R 601 (60Hz)�1�0�0��Akiyo�A�ITU-R 601 (60Hz)�2+1�1�2��Hall Monitor�A�ITU-R 601 (60Hz)�1�0�3��Container Ship�A�ITU-R 601 (60Hz)�1�0�6��Sean�A�ITU-R 601 (60Hz)�1�0�3��Foreman �B�ITU-R 601 (50Hz)�1�0�0��News�B�ITU-R 601 (60Hz)�4+1�3�4��Silent Voice�B�ITU-R 601 (50Hz)�1�0�0��Coastguard�B�ITU-R 601 (60Hz)�1�0�4��Bus�C�ITU-R 601 (60Hz)�1�0�0��Table Tennis�C�ITU-R 601 (50Hz)�1�0�0��Stefan�C�ITU-R 601 (60Hz)�1�0�2��Mobile & Calendar�C�ITU-R 601 (60Hz)�1�0�0��Basketball�C�ITU-R 601 (50Hz)�1�0�0��Football�C�ITU-R 602 (60Hz)�1�0�0��Cheerleaders�C�ITU-R 601 (60Hz)�1�0�0��Tunnel�D�ITU-R 601 (50Hz)�2x1�0�0��Fun Fair�D�ITU-R 601 (50Hz)�2x1�0�0��Children�E�ITU-R 601 (60Hz)�3+1�2�3��Bream�E�ITU-R 601 (60Hz)�3+1�2�3��Weather�E�ITU-R 601 (60Hz)�2+1�1�2��Destruction�E�ITU-R 601 (60Hz)�11+1�10�0��Ti1�F�176x144 (15Hz)�1�0�0��Man1sw�F�272x136 (15Hz)�1�0�0��Hum2sw�F�272x136 (15Hz)�1�0�0��Veh2sw�F�272x136 (15Hz)�1�0�0��labview�F�176x144 (60Hz)�1�0�0��hallway�F�176x144 (60Hz)�1�0�0��Table � SEQ Table * ARABIC �1� Lists of input library files

Note: 	N+1 indicates that the sequence consists of N layers and the composed sequence.

	Nx1 indicates the the sequences consists of N views.

Extension to higher than 8 bit video

In meeting the surveillance applications envisaged for MPEG 4, it is necessary to be able to code efficiently video from a range of sensors. Many of these sensors generate video that does not conform to the traditional digital video formats, in which each pixel comprises a luminance component and two chrominance components, each of which is represented with a precision of 8 bits. Many surveillance sensors, such as a range of commercially available thermal imaging sysems, generate digital video that is represented with a precision of up to 12 bits. Often, this video contains only a luminance component.

It is often necessary to display 12-bit video on systems that have only a dynamic range of 8 bits. It has been found that the following methods are useful:

truncation of each pixel of 12-bit video to 8-bits,

a linear mappping of the full range of pixel values present in a picture or sequence to the range 0 - 255, and

a linear mapping of some part of the range of pixel values present in a picture or sequence to 0 - 255, with all pixels outside below this range being mapped to zero and all those above to 255.

In moving from traditional video formats to coding video from these surveillance sensors, a number of changes are required in both encoders and decoders. The changes required in the encoder definition can be summarized as follows:

definition of a data format for video with more than 8 bits per pixel

redefinition of certain thresholds used in mode decisions (e. g. the inter / intra decision)

The changes required in the syntax and decoder definition can be summarized as follows:

addition of a field to indicate the pixel depth,

changing the size in bits of the transmitted quantizer parameter such that it depends on the pixel depth,

extension of tables for intra DC prediction to allow larger prediction ifferences to be transmitted.

Even though it is possible that coding of 12-bit video will result in the generation of DCT frequency coefficients that lie outside the range of coefficients that can be represented using current VLC tables, this has not been observed to be a problem, and hence these tables remain unchanged.

Other features of the current VM, such as scalability, are not directly effected.

Test sequences for n-bit coding with n>8 are luminance only, and use two bytes for each pixel value. The least significant n bits contain the luminance value for the pixel. Sequences may be provided with any frame size. The frame height and width is specified in the README file. Alpha files and segmentation masks have the same format as for conventional video.

A range of sequences is used for evaluating 12-bit video. They are reported in Table 1 as class F sequences.

2.2.2	Filtering process

The filtering process for YUV is based on the document [MPEG95/0322] . The filtering process for alpha planes (A) is based on the document [MPEG95/0393]. Software for performing the filtering process was distributed and can also be obtained from MPEG ftp site 'drop.chips.ibm.com:Tampere/Contrib/m0896.zip'.

In the first step, the first field of a picture is omitted (both luminance and chrominance). Then the physically centred 704x240/288 and 352x240/288 pixels are extracted. This format is used to create all the smaller formats using the filters listed in � REF _Ref392489137 �Table 2� and following the steps described below.

�Factor�Tap no.�Filter taps�Divisor��A�1/2�1�5,11,11,5�32��B�1/2�1�2,0,-4,-3,5,19,26,19,5,-3,-4,0,2�64��C�1/4�1�-5,-4,0,5,12,19,24,26,24,19,12,5,0,-4,-5�128��D�6/5�1�-16,22,116,22,-16�128����2�-23,40,110,1�128����3�-24,63,100,-11�128����4�-20,84,84,-20�128����5�-11,100,63,-24�128����6�1,110,40,-23�128��E�3/5�1�-24,-9,88,146,88,-9,-24�256����2�-28,17,118,137,53,-26,-15�256����3�-15,-26,53,137,118,17,-28�256��F�1/2�1�-12, 0, 140, 256, 140, 0, -12�512��Table � SEQ Table * ARABIC �2� Filter taps for downsampling

ITU-R 601 to CIF / SIF

 For Y

	704x240 - B -> 352x240 - D -> 352x288

	704x288 - B -> 352x288	

 For U and V

	352x240 - B -> 176x240 - D -> 176x288 - A -> 176x144

	352x288 - B -> 176x288 - A -> 176x144

 For A

	704x240 - F -> 352x240 - D -> 352x288

	704x288 - F -> 352x288	

ITU-R 601 to QCIF

 For Y and A

	704x240 - C -> 176x240 - E -> 176x144

	704x288 - C -> 176x288 - B -> 176x144

 For U and V

	352x240 - C -> 88x240 - E -> 88x144 - A -> 88x72

	352x288 - C -> 88x288 - B -> 88x144 - A -> 88x72

The resulting position of the chrominance relative to the luminance is as follows :

x			x			x			x

o						o

x			x			x			x

x			x			x			x

o						o

x			x			x			x

where x : luminance, o : chrominance

Figure � SEQ Figure * ARABIC �2�: Position of chrominance samples after filtering

Notes:	The 4:2:2 to 4:2:0 conversion is done in the last step because then the correct position of the chroma samples can be preserved.

	For input sequences in 4:2:0 format a conversion from 4:2:0 to 4:2:2 is performed before the filtering process starts. The interpolation filter is (1,3,3,1) as specified in document [WG11/N0999].

	Filtering of border pixels: When some of the filter taps fall outside the active picture area then the edge pixel is repeated into the blanking area.

All test sequences of class F are coded at the same resolution as they are supplied. Hence, the filters specified for downsampling in this section are not required.

2.2.2.1	Processing of grey scale alpha planes

The downsampling process for alpha planes is the same as for luminance (Y). However, for alpha planes a different filter is used for horizontal 2-to-1 filtering. This filter preserves more the high frequency band and therefore maintains a sharp edge for alpha planes.

For the grey scale alpha planes in Class E sequences all the values below a certain threshold are set to 0.

The following threshold values are recommended:

Sequence�VOP�Name�Threshold��children�VOP0�children_0�-���VOP1�children_1�64���VOP2�children_2�64��weather�VOP0�weather_0�-���VOP1�weather_1�64��bream�VOP0�bream_0�-���VOP1�bream_1�64���VOP2�bream_2�64��destruction�VOP0�destruction_0�-���VOP1�destruction_1�64���VOP2�destruction_2�64���VOP3�destruction_3�64���VOP4�destruction_4�64���VOP5�destruction_5�64���VOP6�destruction_6�64���VOP7�destruction_7�64���VOP8�destruction_8�32���VOP9�destruction_9�64���VOP10�destruction_10�64��Table � SEQ Table * ARABIC �3� Threshold values for Class E sequences

2.2.2.2	Processing of segmentation mask

The segmentation mask is first converted to binary alpha planes.

An object can occupy one or more segments in the segmentation mask. The binary shape information is set to '255' for all pixels that have the label values of the selected segments. All other pixels are considered outside the object and are given a value of '0'.

The downsampling process for the binary alpha plane follows that of the grey scale alpha planes. A threshold of 128 is selected. All filtered values below this threshold are set to '0', whereas all filtered values above the threshold are set to '255'.

2.2.3	VOP file format

The following is the VOP file format. Each VOP consists of a down sampled Y,U and V data file and the alpha plane as specified in Section � REF _Ref364785295 \n �2.2.2�. For simplicity the same alpha file format is used for binary as well as grey scale shape information. For binary shape information the value of 0 is used to indicate a pixel outside of the object and the value of 255 is used to indicate a pixel inside the object. For grey scale shape information the whole range of values between 0 and 255 is used. VOP0 is a special case where the alpha values are all 255.

2.2.4	Coding of test sequences whose width and height are not integral multiples of 16

In order to code test sequences whose width and height are not integer multiples of 16 (macroblock size), the width and height of these sequences are first extended to be the smallest integral multiples of 16. The extended areas of the images are then padded using a repetetive padding technique described in Section � REF _Ref394400057 \r \h ��3.3.1�.

3	Encoder Definition

3.1	Overview

� REF _Ref364782061 * MERGEFORMAT �Figure 3� presents a general overview of the VOP encoder structure. The same encoding scheme is applied when coding all the VOPs of a given session.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �3�: VOP encoder structure.

The encoder is mainly componed of two parts : the shape coder and the traditional motion & texture coder applied to the same VOP. The VOP is represented by means of a bounding rectangle as described further. The phase between the luminance and chrominance samples of the bounding rectangle has to be correctly set according to the 4:2:0 format, as shown in � REF _Ref364782120 * MERGEFORMAT �Figure 4�. Specifically the top left coordinate of the bounding rectangle should be rounded to the nearest even number not greater than the top left coordinates of the tightest rectangle. Accordingly, the top left coordinate of the bounding rectangle in the chrominace component is that of the luminance divided by two.

For the purposes of texture padding, motion padding and composition described further, the chrominance alpha plane is created from the luminance alpha plane by a conservative subsampling process. In the case of a binary alpha plane, this ensures that there is always a chroma sample where there is at least one luma sample inside the VOP.

Binary alpha plane: For each 2x2 neighbourhood of luminance alpha pixels, the associated chroma alpha pixel is set to 255 if any of the four luminance alpha pixles are equal to 255.

Greyscale alpha plane: For each 2x2 neighbourhood of luminance alpha pixels, the associated chroma alpha pixel is set to the rounded average of the four luminance alpha pixels.”

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �4�: Luminance versus chrominance bounding box positionning

3.1.1	VOP formation

The shape information is used to form a VOP. By using the following procedure, the minimum number of macroblocks that contain the object will be attained to get a higher coding efficiency.

1	Generate the tightest rectangle with even numbered top left position as described in section � REF _Ref392489259 \r �3.1�

2	If the top left position of this rectangle is the same as the origin of the image frame, skip the formation procedure.

2.1	Form a control macro block at the top left corner of the tightest rectangle as shown in � REF _Ref368884405 �Figure 5�.

2.2	Count the number of macroblocks that completely contain the object, starting at each even numbered point of the control macroblock. Details are as follows:

2.2.1	Generate a bounding rectangle from the control point to the right bottom side of the object which consists of multiples of 16x16 blocks.

2.2.2	Count the number of macroblocks in this bounding rectangle, which contain at least one object pel. It is sufficient to take into account only the boundary pels of a macroblock.

2.3	Select that control point, that results in the smallest number of macroblocks for the given object.

2.4	Extend the top left coordinate of the tightest rectangle generated in � REF _Ref368884405 �Figure 5�. to the selected control coordinate. This will create a rectangle that completely contains the object but with the minimum number of macroblocks in it. The VOP horizontal and vertical spatial references are taken directly from the modified top-left coordinate.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �5�: Intelligent VOP Formation

3.2	Shape Coding

This section describes the coding methods for binary and grey scale shape information. The shape information is hereafter referred to as alpha planes. Binary alpha planes are encoded by modified CAE while grey scale alpha planes are encoded by motion compenstaed DCT similar to texture coding. An alpha plane is bounded by a rectangle that includes the shape of a VOP, as described in Section � REF _Ref392489371 \r �3.1.1�. The bounding rectangle of the VOP is then extended on the right-bottom side to multiples of 16x16 blocks. The extended alpha samples are set to zero. The extended alpha plane is partitioned into blocks of 16x16 samples (hereafter referred to as alpha blocks) and the encoding/decoding process is done per alpha block.

If the pixels in a macroblock are all transparent (all zero), the macroblock is skipped before motion and/or texture coding. No overhead is required to indicate this mode since this transparency information can be obtained from shape coding. This skipping applies to all I-, P-. and B-VOP’s.

3.2.1	Overview

This section describes the methods by which binary alpha planes are encoded. A binary alpha plane can be encoded in INTRA mode for I-VOPs and in INTER mode for P-VOPs and B-VOPs. The methods used are based on binary alpha blocks and the principal methods are block-based context-based arithmetic encoding and block-based motion compensation.

3.2.2	Abbreviations

BAB			Binary Alpha Block

CAE			Content-based Arithmetic Encoding

BAC			Binary Arithmetic Code

CR			The Conversion Ratio

MVPs			Motion Vector Prediction for shape

MVDs			Motion Vector Difference for shape

4x4 sub-blocks	Elementary block of subdivided BAB.

AlphaTH		A threshold used when comparing two 4x4 sub-blocks.

3.2.3	Mode Decision

This section describes how to decide upon a suitable coding mode for each BAB in the binary alpha map.

3.2.3.1	BAB Accepted Quality (ACQ)

In several areas of the mode decision, it is necessary to ascertain whether a BAB has an accepted quality under some specified lossy coding conditions. This section defines the criterion for ‘accepted quality’.

The criterion is based on a 4x4 pixel block (PB) data structure. Each BAB is composed of 16 PBs as illustrated in � REF _Ref392670886 \h ��Figure 6�.

x x x x

x x x x

x x x x

x x x x�x x x x

x x x x

x x x x

x x x x�x x x x

x x x x

x x x x

x x x x�x x x x

x x x x

x x x x

x x x x��x x x x

x x x x

x x x x

x x x x�x x x x

x x x x

x x x x

x x x x�x x x x

x x x x

x x x x

x x x x�x x x x

x x x x

x x x x

x x x x��x x x x

x x x x

x x x x

x x x x�x x x x

x x x x

x x x x

x x x x�x x x x

x x x x

x x x x

x x x x�x x x x

x x x x

x x x x

x x x x��x x x x

x x x x

x x x x

x x x x�x x x x

x x x x

x x x x

x x x x�x x x x

x x x x

x x x x

x x x x�x x x x

x x x x

x x x x

x x x x��Figure � SEQ Figure * ARABIC �6�: A BAB consists of 16 PBs

Given the current original binary alpha block i.e. BAB and some approximation of it i.e. BAB’, it is possible to define a function

ACQ(BAB’) = MIN(acq1,acq2, …….acq1)

where,

	acqi 	= 0 if SAD_PBi>16*alpha_th

		= 1, otherwise

and SAD_PBi (BAB,BAB’) is defined as the sum of absolute differences for PB i, where an opaque pixel has value of 255 and a transparent pixel has value of 0.

The parameter alpha_th has values {0,16,32,64....256}. If alpha_th=0, then encoding will be lossless. A value of alpha_th=256 means that the accepted distortion is maximal i.e. in theory, all alpha pixels could be encoded with an incorrect value.

3.2.3.2	BAB Coding Modes

Each BAB is coded according to one of seven different modes listed below.

MVDs==0 && No Update

MVDs!=0 && No Update

all_0

all_255

intraCAE

MVDs==0 && interCAE

MVDs!=0 && interCAE

	MVDs stands for motion vector difference of shape (see section XXX)

	In I-VOP, only the coding modes “all_0”, “all_255” and “intraCAE” are allowed.

3.2.3.3	Decision Pseudo Code

The mode decision for each BAB is made according to the following pseudo-code.

if (ACQ(BAB0) && ACQ(BAB255)) {

/* this is to allow for proper operation when alpha_th is equal to 256 */

	if (#OPAQUE_PIXELS >= 128)

		mode = all_255;

	else

		 mode = all_0;

}

else{

	if (VOP_prediction_type!=’00’){

	/* not an I_VOP */

		if (ACQ(BAB0)) mode = all_0;

		else if (ALL0(MC_BAB)) mode = coded;

		else if (!ACQ(MC_BAB)) mode = coded;

		else if (ACQ(BAB255) && (mvds!=0 || !ACQ(MC_BAB))) mode = all_255;

		else if (ALL255(BAB) && !ALL255(MC_BAB)) mode = all_255;

		else mode = not_coded.

	}

	else{

		if (ACQ(BAB0)) mode = all_0;

		else (ACQ(BAB255)) mode = all_255;

		else mode = coded;

	}

}

Notes: ACQ(BABX) means that BABX has an accepted quality.

	ALL0(BABX) means that BABX is all0.

	ALL255(BABX) means that BABX is all255.

	BAB0 is a BAB containing only zero-valued pixels.

	BAB255 is a BAB containing only 255-valued pixels.

	Mode = coded means that intraCAE or interCAE (in the case of P/B VOPs) is used.

 Mode = not_coded means that ‘MVDs==0 && No Update’ or ‘MVDs!=0 && No Update’ is used.

3.2.4	Motion estimation and compensation

3.2.4.1	OverView

VOP level size conversion is carried out before motion estimation (ME) and motion compensation (MC).

MVs (Motion Vector of shape) is used for MC of shape.

Overlapped MC, half sample MC and 8x8 MC are not carried out.

In the case that the region outside VOP is referred, the value for it is set to 0.

For B-VOPs, forward MC is used and neither backward MC nor interpolated MC is used.

3.2.4.2	Motion Estimation(ME)

�

Figure �seq Figure * Arabic �7�: Candidates for MVPs

The procedure of ME consists of two steps: first to determine MVPs and then to compute MVs accordingly.

3.2.4.2.1	Motion Vector Predictor for shape (MVPs)

MVPs is determined by referring certain candidate MV of shape (MVs) and MV of texture around the MB corresponding to the current shape block. They are located and denoted as shown in � REF _Ref392489486 �Figure 7� where MV1, MV2 and MV3 are rounded to integer. By looking into MVs1, MVs2, MVs3, MV1, MV2 and MV3 in this order, MVPs is determined by taking the first encountered MV that is valid. If no candidate MV is valid, MVPs is regarded as 0.

In the case that separate_motion_shape_texture is ‘1’ or VOP_prediction_type indicates B-VOP or VOP_CR is ½, MVPs is determined only considering MV of shape (MVs1, MVs2 and MVs3) as the candidates.

3.2.4.2.2	Detection of MV for shape(MVs)

Based on MVPs determined above, MVs is computed by the following procedure.

The MC error is computed by comparing the BAB indicated by the MVPs and current BAB. If the computed MC error is less or equal to 16xAlphaTH for any 4x4 sub-blocks, the MVPs is directly employed as MVs, and the procedure terminates.

If the above condition is not satisfied, MV is searched around the prediction vector MVPs while computing 16x16 MC error (SADs) by comparing the BAB indicated by the MV and current BAB. The search range is +/- 16 pixels around MVPs along both horizontal and vertical directions. The MV that minimizes the SADs is taken as MVs and this is further interpreted as MV Difference for shape (MVDs), i.e. MVDs=MVs-MVPs.

Note the following procedures in special occasions in the search.

If more than one MVs minimize SADs by an identical value, the MVDs that minimizes the Q, the code length of MVDs (see below), is selected.

If more than one MVs minimize SADs by an identical value with an identical Q, MVDs with smaller vertical element is selected. If the vertical elements are also the same, MVDs with smaller horizontal element is selected.

Q	= 2x(Absolute value of MVDs in the horizontal direction)

		+ 2x(Absolute value of MVDs in the vertical direction)

		+ 2-(One bit) where

	One bit = 1 (Horizontal element of MVDs is 0),

	One bit = 0 (Otherwise).

3.2.4.3	Motion Compensation (MC)

For each 16x16 BAB, motion compensation is carried out according to the MVs.

Motion compensated block is, for the computation of INTER contexts, constructed from the 16x16 BAB and a border of width 1 around the 16x16 BAB (see �ref _Ref385102373 * Mergeformat �Figure 8�). In the figure, the light grey area corresponds to the 16x16 MC BAB and the dark grey area corresponds to the border. Pixels in the 16x16 MC BAB and the border are obtained by simple MV displacement. If the displaced position is outside the binary alpha map, then these pixels are assumed to be zero.

x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x��Figure �seq Figure * Arabic �8� : Bordered MC BAB

3.2.5	Size conversion (Rate control)

Rate control and rate reduction is realized through size-conversion of the binary alpha information. The size conversion process consists of the following two steps.

3.2.5.1	VOP level size conversion

The size conversion ratio is indicated by VOP_CR which takes either 1 or 1/2. When VOP_CR is 1/2, the size-conversion is carried out at VOP level. The original bounding box (section � REF _Ref392671751 \r \h ��3.1.1�) of the binary alpha information is extended to multiples of 16/VOP_CR. The extended alpha values are set to zero.

3.2.5.1.1	Down-sampling

The extended shape bounding box is divided into square blocks of (16/VOP_CR) pixels. And each square block is size-converted using the same down-sampling method as in the block level size conversion method.

3.2.5.1.2	Shape coding

The down sampled shape is divided into 16x16 samples BABs. Each down-sampled 16x16 BAB is coded by block based shape coding method. It means that if AlphaTH is greater than zero and CR is decided to 1/2, 16x16 down-sampled BAB is down-sampled again.

In the case that VOP_CR = 1/2, the local decoded shape which is size-converted at VOP level is stored in the frame memory of the shape frame. For the shape motion estimation and compensation, if VOP_CR of reference shape VOP is not equal to that of current shape VOP, the reference shape frame (not VOP) is size-converted corresponding to the current shape VOP.

For P-VOPs, the following procedures are carried out if VOP_CR = 1/2.

The components of shape motion vector are measured on the down sampled shape frame.

MVPs is calculated only using shape motion vector, MVs1, MVs2 and MVs3.

Search range of shape motion vector is +/- 16 samples around MVPs.

3.2.5.1.3	Up-sampling

Each 16x16 sampled BAB is size converted using the same up-sampling process as in the block level size conversion method (section � REF _Ref392671941 \r \h � * MERGEFORMAT �3.2.5.2�). The process of up-sampling is carried out so that the size-converted shape can be utilized for the texture coding.

3.2.5.2	Block level size conversion

When required, the size-conversion is carried out for every BABs except for “All_0”, “All_255” and “No Update”. The conversion ratio (CR) is 1/4, 1/2 or 1 (the original size).

� REF _Ref392489632 �Figure 11� shows the procedure of size-conversion. Each MxM BAB is down-sampled to (MxCR)x(MxCR), and then up-sampled back to MxM. Following filters are used for down and up sampling. Note that “1” corresponds to “opaque” and “0” to “transparent”.

3.2.5.2.1	Down sampling

CR = 1/2 (from “O” to “X” in � REF _Ref392489604 �Figure 12�)

If the average of pixel values in a 2x2 pixels block is equal to or greater than 128, the pixel value of the down-sampled block is set to 255. Otherwise, to 0.

CR = 1/4

If the average of pixel values in a 4x4 pixels block is equal to or larger than 128, the pixel value of the down-sampled block is set to 255. Otherwise, to 0.

3.2.5.2.2	Up-sampling

When CR is different from 1, up-sampling is carried out.

When CR is different from 1, up-sampling is carried out for the BAB. The value of the interpolated pixel “X” in � REF _Ref394384295 * MERGEFORMAT �Figure 3.9�. (“O” in this figure is the coded pixel) is determined by calculating the filter context (of neighboring pixels). For the pixel value calculation, the value of “0” is used for a transparent pixel, and “1” for an opaque pixel. The values of the interpolated pixels (Pi, i=1,2,3,4, as shown in � REF _Ref394384338 * MERGEFORMAT �Figure 3.10�) can be determined by the following equation:

P1 : if(4*A + 2*(B+C+D) + (E+F+G+H+I+J+K+L) > Th[Cf]) then "1" else "0"

P2 : if(4*B + 2*(A+C+D) + (E+F+G+H+I+J+K+L) > Th[Cf]) then "1" else "0"

P3 : if(4*C + 2*(B+A+D) + (E+F+G+H+I+J+K+L) > Th[Cf]) then "1" else "0"

P4 : if(4*D + 2*(B+C+A) + (E+F+G+H+I+J+K+L) > Th[Cf]) then "1" else "0"

The 8-bit filter context, Cf, is calculated as follows:

�

Based on the calculated Cf, the threshold value (Th[Cf]) can be obtained from the look-up table as shown in ANNEX. Pixels at the borders can be constructed as described in Sec. 5.1.4.2. When the BAB is on the left (and/or top) border of VOP the left (and/or top) borderes are extended from the outermost pixels inside the BAB. When error_resilient_disable is set to "0", all the pixels in the border are extended from the outermost pixels inside the BAB.

In the case that CR=1/4, the BAB is interpolated into the size of CR=1/2, then interpolated into CR= 1.

�EMBED Word.Picture.8���

Figure � STYLEREF 1 \n �3�.� SEQ Figure * ARABIC �9�: Upsampling

�EMBED Word.Picture.8���

Figure � STYLEREF 1 \n �3�.� SEQ Figure * ARABIC �10�: Interpolation filter and interpolation construction.

Th[256]={5, 6, 6, 8, 6, 7, 7, 8, 6, 5, 7, 6, 8, 8, 8, 8, 6, 5, 5, 9, 8, 8, 8, 8, 7, 6, 8, 8, 8, 8, 8, 9, 6, 7, 5, 8, 7, 9, 8, 8, 7, 8, 8, 8, 8, 8, 8, 9, 7, 8, 8, 8, 8, 10, 8, 9, 8, 10, 8, 11, 8, 11, 9, 10, 6, 7, 7, 8, 7, 8, 8, 8, 7, 8, 8, 8, 9, 8, 10, 9, 7, 8, 8, 8, 8, 7, 8, 9, 8, 10, 8, 9, 8, 11, 9, 10, 7, 8, 8, 10, 8, 10, 10, 11, 8, 8, 10, 9, 10, 11, 11, 10, 8, 8, 8, 11, 8, 9, 11, 12, 8, 9, 11, 12, 11, 12, 10, 11, 6, 7, 7, 9, 7, 6, 8, 8, 5, 8, 8, 8, 6, 8, 10, 9, 8, 8, 8, 10, 8, 10, 8, 9, 8, 10, 10, 11, 10, 11, 9, 10, 8, 8, 6, 10, 8, 8, 10, 9, 8, 8, 10, 9, 8, 9, 9, 10, 9, 8, 10, 11, 8, 13, 9, 10, 10, 11, 11, 14, 11, 12, 10, 11, 7, 8, 8, 8, 8, 8, 8, 9, 8, 8, 8, 9, 8, 9, 11, 10, 9, 8, 8, 9, 8, 11, 9, 10, 10, 11, 9, 10, 11, 12, 10, 11, 8, 8, 8, 11, 10, 11, 11, 10, 8, 11, 9, 12, 11, 12, 14, 11, 10, 9, 11, 12, 11, 12, 12, 11, 9, 12, 12, 13, 12, 13, 11, 14};

�

Figure �seq Figure * Arabic �11�: Size-conversion

�

Figure �seq Figure * Arabic �12�: Down sampling

� REF _Ref392489742 �Figure 13� includes a flowchart showing how to select the CR. The selection is done based on the conversion error between the original BAB and the BAB which is once down-sampled and then reconstructed by up-sampling. The conversion error is computed for each 4x4 sub-block respectively by taking the sum of the absolute difference. If the sum is greater than 16xAlphaTH, this sub-block is called “Error-PB (Pixel Block)”.

�

Figure �seq Figure * Arabic �13�: CR determination algorithm

If a down-sampled BAB turns out to be “All Transparent” or “All Opaque” while the conversion error in any 4x4 sub-blocks in the BAB is equal to or lower than 16xAlphaTH, the shape information is coded as Shape_mode = “all_0” or “all_255”. Unless this is the case, for this BAB, CAE is carried out at the size determined by the algorithm for rate control.

3.2.6	Binary Alpha Block Coding

This section describes the encoding procedure for coded/updated BABs, both INTRA and INTER. Depending on the value of CR, the BAB has the following sizes.

CR�BAB Size��1�16x16��½�8x8��¼�4x4��The pixels in the BAB are encoded by context-based arithmetic encoding (CAE). For encoding, the BAB pixels are scanned in raster order. However, the BAB may be transposed before encoding. Furthermore, for P-VOPs, it may be chosen to encode the BAB in INTRA or INTER mode.

Firstly, the CAE method is detailed for encoding INTRA and INTER BABs and then coding decisions for transposition and INTRA/INTER are outlined.

3.2.6.1	The CAE Algorithm

Context-based arithmetic encoding (CAE) is used to code each binary pixel of the BAB. Prior to coding the first pixel, the arithmetic encoder is initialised. Each binary pixel is then encoded in raster order. The process for encoding a given pixel is the following:

Compute a context number.

Index a probability table using the context number.

Use the indexed probability to drive an arithmetic encoder.

When the final pixel has been processed, the arithmetic code is terminated. The arithmetic encoder and decoder have a 32-bit register and are described in terms of C source functions in section � REF _Ref392489819 \r �0�

A coded BAB can be compressed with CAE in INTRA or INTER mode. Both modes result in the generation of a single binary arithmetic codeword (BAC). The various coding modes are characterized by their context computation and the probability table used (see Appendix G).

The following section describes the computation of the contexts for INTRA and INTER modes.

3.2.6.1.1	Contexts for INTRA and INTER CAE

For INTRA coded BABs, a 10 bit context �EMBED Equation.3���is built for each pixel as illustrated in �ref _Ref385127101 * Mergeformat �Figure 14�.

�EMBED Word.Picture.8�����EMBED Word.Picture.8�����(a)�(b)��Figure �seq Figure * Arabic �14� (a) The INTRA template and context construction. (b) The INTER template and context construction. The pixel to be coded is marked with ‘?’.

For INTER coded BABs, temporal redundancy is exploited by using pixels from the bordered motion compensated BAB (depicted in �ref _Ref385102373 * Mergeformat �Figure 8�) to make up part of the context. Specifically, a 9 bit context �EMBED Equation.3��� is built as illustrated in �ref _Ref385127101 * Mergeformat �Figure 14�.

There are some special cases to note.

When building contexts, any pixels outside the bounding box of the current VOP to the left and above are assumed to be zero.

The template may cover pixels from BABs which are not known at decoding time. (�ref _Ref385127673 * Mergeformat �Figure 15� illustrates the locations of these pixels.) The values of these unknown pixels is therefore estimated by template padding.

When constructing the INTRA context, the following steps are taken in the sequence

if (c7 is unknown) c7=c8,

if (c3 is unknown) c3=c4,

if (c2 is unknown) c2=c3.

When constructing the INTER context, the following conditional assignment is performed.

	if (c1 is unknown) c1=c2

3.2.6.1.2	Bordering of BABs

When encoding a BAB, pixels from neighbouring BABs can be used to make up the context. For both the INTRA and INTER cases, a border of width equal to 2 about the current BAB is used as depicted in �ref _Ref385127673 * Mergeformat �Figure 15�. The pixels in the light grey area are part of the BAB to be encoded. The pixels in the dark area are the border pixels. These are obtained from previously encoded and reconstructed BABs except for those marked ‘0’ which are unknown at decoding time.

x��x��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�0�0��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�0�0��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�0�0��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�0�0��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�0�0��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�0�0��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�0�0��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�0�0��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�0�0��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�0�0��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�0�0��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�0�0��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�0�0��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�0�0��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�0�0��x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�0�0��0��0��Figure �seq Figure * Arabic �15� Current bordered BAB

3.2.6.1.3	Border Subsampling

If the value of CR is not equal to 1 then the BAB is subsampled. A subsampling procedure is also applied to the BAB borders for both the current BAB and the motion compensated BAB.

The border of the current BAB consists of 2 lines of 20 pixels, denoted the TOP_BORDER and 2 columns of 16 pixels, denoted the LEFT_BORDER. Depending on CR, these border areas are subsampled by a factor of N = 1,2,4. The code is as follows where TOP_SUB_BORDER and LEFT_SUB_BORDER represent the subsampled borders.

int 	TOP_BORDER[2][20], LEFT_BORDER[16][2],

	TOP_SUB_BORDER[2][4+16/N], LEFT_SUB_BORDER[16/N][2];

int i,j,k,tmp;

TOP_SUB_BORDER[0][0] = TOP_BORDER[0][0];

TOP_SUB_BORDER[0][1] = TOP_BORDER[0][1];

TOP_SUB_BORDER[1][0] = TOP_BORDER[1][0];

TOP_SUB_BORDER[1][1] = TOP_BORDER[1][1];

for (j=0;j<2;j++)

	for (i=0;i<16/N;i++) {

		tmp = 0;

		for (k=0;k<N;k++)

			tmp += (TOP_BORDER[j][i*N+k+2]!=0);

		TOP_SUB_BORDER[j][i+2] = (tmp+N/2)/N;

		tmp = 0;

		for (k=0;k<N;k++)

			tmp += (LEFT_BORDER[i*N+k][j]!=0);

		LEFT_SUB_BORDER[i][j] = (tmp+N/2)/N;

	}

TOP_SUB_BORDER[0][i+2] = TOP_BORDER[0][18];

TOP_SUB_BORDER[0][i+3] = TOP_BORDER[0][19];

TOP_SUB_BORDER[1][i+2] = TOP_BORDER[1][18];

TOP_SUB_BORDER[1][i+3] = TOP_BORDER[1][19];

The border of the motion compensated BAB (see FIG_MC) consists of 2 lines of 16 pixels (TOP and BOTTOM) and 2 columns of 16 pixels (LEFT and RIGHT). The corner pixels are placed directly into the MC_SUB_BORDER, the subsampled border of the motion compensated BAB. The TOP pixels are subsampled as follows where SUB_TOP represents the subsampled line of pixels.

for (i=0;i<16/N;i++) {

	tmp = 0;

	for (k=0;k<N;k++)	

		tmp += (TOP[i*N+k]!=0);

	SUB_TOP[i] = (tmp+N/2)/N;

}

SUB_BOTTOM, SUB_LEFT and SUB_RIGHT are produced in the same way as SUB_TOP.

3.2.6.1.4	Arithmetic Encoding and Decoding for SC Emulation Avoidance

The arithmetic encoding and decoding modules contain a mechanism to avoid SC emulation. The mechanism involves monitoring the number of consequtive zero bits being output by the arithmetic encoder. If the number of consequtive zero bits is greater than a given tolerance then a ‘1’ bit is inserted into the bitstream. The tolerances are given below

MAXHEADING�MAXMIDDLE�MAXTRAILING��8�16�8��The encoder mechanism consists of the following steps:

if the first MAXHEADING bits of the stream generated by the arithmetic encoder are '0's, then a '1' is inserted after the MAXHEADING-th '0'.

if there is sequence of MAXMIDDLE '0's in the middle of the stream generated by the arithmetic encoder, then a '1' is inserted after the MAXMIDDLE-th '0'.

if the last MAXTRAILING+1 bits of the stream generated by the arithmetic encoder are '0's, then a '1' is appended at the end of the stream.

if the stream generated by the arithmetic encoder contains '0's only, then a '1' is appended at the end of the stream

These steps are executed sequentially. The arithmetic decoder is designed to skip the inserted bits. See CAE_SOFT.

3.2.6.2	BAB Encoding Decisions

Coding decisions are made by coding the BAB under all the possible conditions and choosing the coding conditions which yield the lowest code length.

For I-VOPs, the BAB is encoded in the two following ways.

INTRA

Transposition of the bordered BAB followed by INTRA

This results in two INTRA binary arithmetic codes and the shortest code is chosen. If the two codes have the same length, then the former is chosen.

In P-VOPs, two more arithmetic codes are produced corresponding to the following coding combinations.

INTER

Transposition of the bordered BAB and of the bordered MC-BAB followed by INTER

This results in two INTER binary arithmetic codes and the shortest code is chosen. If the two codes have the same length, then former is chosen.

For P-VOPs, the final step in the decision is to compare the shortest INTRA code with shortest INTER code. For this comparison, it is necessary to add the number of bits for MVDs to the INTER code length. Furthermore, the respective code lengths of the first_shape_code for INTRA and INTER modes are taken into account. The INTER code is chosen if the total INTER code length is smaller than the total INTRA code length for the BAB.

If the selected coding condition involves transposition of the BAB, then ST is set to 1. Otherwise it is set to 0.

3.2.7	Grey Scale Shape Coding

3.2.7.1	support Function And Alpha Values Coding

Gray-level alpha plane is encoded as its support function and the alpha values on the support. The support function is encoded by binary shape coding as described in Section � REF _Ref392490080 \r �3.2.6� and the alpha values are encoded as texture with arbitrary shape.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �16� : Gray shape coding

The support is obtained by thresholding the gray-level alpha plane by 0.

The alpha values are partitioned into 16x16 blocks and encoded the same way as the luminance (see Section � REF _Ref392490124 \r �3.4�). The 16x16 blocks of alpha values are referred to as alpha macroblock hereafter. The encoded data of an alpha macroblock are appended to the end of the corresponding (texture) macroblock, or the encoded macroblock texture in the case of separate motion-texture mode. The formats and syntax of the encoded alpha macroblocks are described in the following.

I-VOP and P-VOP		�EMBED Word.Picture.8���

For I-VOP and intra-coded macroblocks in VOP types, CODA is 1 if the alpha values in the gray alpha macroblock are all opaque (255) and 0 otherwise. For inter-coded macroblocks in P-VOP,

if (alpha_residue_all_zero)

		CODA = 1

else {

	if (alpha_mb_all_opaque)

		CODA = 01

	else

		CODA = 00

}

When CODA is 1 or 01, no more data are included in the bitstream. CBPA (Coded block pattern for alpha) is the same as CBPY (See section � REF _Ref392490148 \r �6.1.5�). Note that for both I-VOP and P-VOP, the third column of � REF _Ref364765777 * MERGEFORMAT �Table 52� is used. Alpha block data format are the same as block data (see section � REF _Ref392490175 \r �6.2�). Note the alpha macroblocks and blocks with all zero alpha values are not included in the bitstream. All of the rest parameters needed for encoding and decoding of alpha macroblocks are the same as in the texture macroblocks.

B-VOP		�EMBED Word.Picture.8���

CODA is 1 if the alpha values in the alpha macroblock are all 255 and thus no more data are sent to the bitstream. CODA is 0 otherwise. MODBA has the same meaning as MODB (Seesection � REF _Ref392490195 \r �6.1.11�) and CBPBA is similarly defined as CBPB except that it has a maximum of four bits.

3.2.7.2	Feathering and translucency coding

For a large percentage of sequences utilizing grayscale alpha masks, the textures of the alpha masks are relatively simple. One example is a grayscale alpha mask that consists of a constant gray value. Another example is a grayscale alpha mask that consists of a binary alpha mask with the values around the edges tapered from 255 to 0 to provide for a smooth compositing with the background. These types of grayscale alpha masks can be described as a binary mask and a very simple modification to the binary mask.

3.2.7.2.1	Detailed Description

The description of each Video Object Layer will include an identifier to select one of six modes: no effects, linear feathering, constant alpha, linear feathering and constant alpha, feathering filter, or feathering filter and constant alpha. The input for the linear feathering and feathering filter modes can be a sequence of binary or grayscale alpha masks. The input for the constant alpha, linear feathering and constant alpha, and feathering filter and constant alpha modes will be a sequence of grayscale alpha masks. If the mode selected is no effects, the default alpha mask compression algorithm specified will be utilized. The mode will be represented as a 4-bit code, video_object_layer_shape_effects, transmitted as part of the VOL descriptor (see � REF _Ref392490347 �Table 18�). Future modes may be adopted and assigned unique 4-bit video_object_layer_shape_effects codes.

3.2.7.2.1.1	Linear Feathering Mode

If the input is not a binary alpha mask, the input will be converted to a binary alpha mask by thresholding all non-zero values to 255. An integer between 0 and 7 specifying the distance, in pixels, from the edge of the binary mask to feather must be given. The feathering is performed on interior shape pixels within the specified distance of an edge of the mask. This integer is transmitted as part of the VOL descriptor as the 3-bit parameter video_object_layer_feather_dist. The binary alpha mask is compressed using the default algorithm. The decoder reconstructs the complete binary alpha mask and then applies the feathering algorithm to this mask with the number of pixels parameter (video_object_layer_feather_dist). The feathering algorithm tapers the alpha values of the appropriate pixels along the shape boundaries linearly from the opaque alpha value (either 255 or VOP_constant_alpha_value) to 0.

3.2.7.2.1.2	Feathering Algorithm

Calculate the alpha value for all opaque pixels within distance video_object_layer_feather_dist (the parameter specifying the number of pixels to feather) with:

alpha = distance / (video_object_layer_feather_dist + 1) * opaque_value

where distance is the Euclidean distance measure between the centers of the pixels. opaque_value is the alpha value of opaque pixels in the alpha mask (255 for binary images).

3.2.7.2.1.3	Constant Alpha Mode

Each input grayscale alpha mask is analyzed and categorized as either a Constant Alpha mask or a standard grayscale mask. A mask is considered a Constant Alpha mask if all the non-zero alpha values in the mask are within a specified bound. The 1-bit code, VOP_constant_alpha, selects whether the Constant Alpha effect is on or off. VOP_constant_alpha is set to 1 in the case where the mask is classified as a Constant Alpha mask. Then the average of the non-zero alpha values is taken as the alpha value for the Constant Alpha mask and the one byte VOP_constant_alpha_value is set to this value. The grayscale mask is thresholded and converted to a binary alpha mask which is compressed using the default algorithm. The decoder decodes the binary alpha mask and converts all the opaque pixel alpha values to the transmitted alpha value. If the mask does not qualify as a constant alpha mask, then the 1-bit VOP_constant_alpha value is set to 0 and the mask is compressed with the standard grayscale algorithm. VOP_constant_alpha_value is not transmitted in this case.

3.2.7.2.1.4	Linear Feathering and Constant Alpha Mode

This mode is nearly identical to the Constant Alpha Mode with the exception that, as in the Linear Feathering Mode, the 3-bit parameter specifying the number of pixels over which to feather (video_object_layer_feather_dist), is transmitted as part of the Video Object Layer descriptor. Each input grayscale alpha mask is analyzed and categorized as either a Constant Alpha mask or a standard grayscale mask as described for the Constant Alpha Mode. If a mask is categorized as a Constant Alpha mask, then it is transmitted as described in the Constant Alpha Mode. In the decoder, the binary mask is decoded, the alpha values are converted to VOP_constant_alpha_value, and then the mask is passed to the linear feathering algorithm with the number of pixels to feather parameter. If the mask is labeled as a standard grayscale mask, then the 1-bit VOP_constant_alpha value is set to 0 and it is compressed with the default grayscale alpha mask compression algorithm, but it is not feathered.

3.2.7.2.1.5	Feathering Filter Mode

This mode is similar to the Linear Feathering Mode except that the feathering effect is realized by feathering filters. For feathering(in other words, blurring or anti-aliasing), feathering filters are used instead of the distance transform. Feathering filters are non-linear and shape adaptive filters that provide a gray-scale alpha value at object boundaries.

If the input is not a binary alpha mask, the input will be converted to a binary alpha mask by thresholding all non-zero values to 255. An integer between 0 and 7 specifying the number of filtering iterations is calculated from input images. It corresponds to the distance, in pixels, from the edge of the binary mask to feather, where the feathering is performed on interior shape pixels within the specified 4-connectivity distance of an edge of the mask. This integer is transmitted as part of the VOL descriptor as the 3-bit parameter video_object_layer_feather_dist. The binary alpha mask is compressed using the default algorithm. The decoder reconstructs the complete binary alpha mask and then iterates through filtering with the feathering filters video_object_layer_feather_dist times (at most, 7 times). For each iteration, a feathering filter tapers the alpha values of the boundary pixels of (either 255 or VOP_constant_alpha_value) as depicted below.

�EMBED Word.Picture.8���

 Figure � SEQ Figure * ARABIC �17� Example of filtering.

3.2.7.2.1.5.1	Description of Feathering Filter

A feathering filter, which can be different for each iteration, is specified in Video Object Layer.

All feathering filters take 3x3 kernel for shape adaptive behavior as depicted in � REF _Ref392490408 �Figure 18�, in which x indicates the pixel value to be modified and b3, b2, b1 and b0 indicate surrounding pixel values.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �18� 3x3 filter kernel.

Feathering is performed according to the following rules.

Pixels of input alpha mask are labeled as 1 if the alpha value is 255(or VOP_constant_alpha_value), and 0 otherwise.

Then, if x = 0, the pixel value is left intact. If x = 1, the pixel value is replaced with the value depending on the surrounding conditions as specified in � REF _Ref392490454 �Table 4�.

If the number of filtering iteration is more than 1, the filters are cascaded.

b3�b2�b2�b0�x’��0�0�0�0�x0��0�0�0�1�x1��0�0�1�0�x2��0�0�1�1�x3��0�1�0�0�x4��0�1�0�1�x5��0�1�1�0�x6��0�1�1�1�x7��1�0�0�0�x8��1�0�0�1�x9��1�0�1�0�x10��1�0�1�1�x11��1�1�0�0�x12��1�1�0�1�x13��1�1�1�0�x14��Table � SEQ Table * ARABIC �4� Feathering filter description table.

Note that there is no need to define the new value x’ in case of (b3, b2, b1, b0) = ‘1111’, because the pixel is not at the boundary. Thus, the feathering filter is described by the table that consists of 15 entries, for which 8 bit FLC is used (Although VLC of differential values might be used, FLC is tentatively used for simplification. It takes 120 bits though, the tapering of binary mask can form arbitrary gray-scale profile, and 1 or 2 iteration(s) are enough for reconstruction of anti-aliased gray-scale mask. For example, if we choose two iterations of filtering, 85 for the first table entries , and 175 for the second table entries, the filtering effect is exactly same to feathering of the 4-connectivity distance transform with specifying the distance as 2. The details of this feathering filter is described by the C-code function “feathering_iteration()” in Appendix.

3.2.7.2.1.5.2	Boundary Analysis

Since we have to start with given gray-scale alpha masks, the automatic analysis tool is mandatory for this “binary alpha mask + feathering effect” approach.

In section � REF _Ref392490534 \r �9�, we provide the C-code function “feathering_analysis()” to automatically define the number of iterations, and the feathering filter description (i.e., table entries) for each iteration.

To determine the number of iterations, we define a threshold to evaluate the portion of approximation. At the n-th iteration of filtering, if any tapered value is larger than

	OPAQUE_LEVEL(e.g., 255) * TAPERING_LIMIT / 100,

no further iteration is applied.

In core experiments, the threshold "TAPERING_LIMIT" is set to 90(i.e., 90%).

3.2.7.2.1.6	Feathering Filter and Constant Alpha:

This mode is nearly identical to the Constant Alpha Mode with the exception that, as in the Feathering Filter Mode, the 3-bit parameter specifying the number of pixels over which to feather (video_object_layer_feather_dist), is transmitted as part of the Video Object Layer descriptor. This is followed by a 120 bit filter description for each iteration specified, similar to the Feathering Filter Mode. Each input grayscale alpha mask is analyzed and categorized as either a Constant Alpha mask or a standard grayscale mask as described for the Constant Alpha Mode. If a mask is categorized as a Constant Alpha mask, then it is transmitted as described in the Constant Alpha Mode. In the decoder, the binary mask is decoded, the alpha values are converted to VOP_constant_alpha_value, and then the mask is passed to the feathering filter algorithm. Filtering output values are scaled as

	alpha_value = filter_output * VOP_constant_alpha_value / 255.

If the mask is labeled as a standard grayscale mask, then the 1-bit VOP_constant_alpha value is set to 0 and it is compressed with the default grayscale alpha mask compression algorithm, but it is not feathered.

3.2.7.2.1.7	No Effects Mode

The binary or grayscale alpha mask is compressed as specified by the video_object_layer_shape descriptor.

3.3	Motion Estimation and Compensation

In order to perform motion prediction on a per VOP basis, the motion estimation of the blocks on the VOP borders has to be modified from block matching to polygon matching. Furthermore, a special padding technique, i.e., the macroblock-based repetitive padding, is required for the reference VOP. The details of these techniques are described in the following sections.

Since the VOPs have arbitrary shapes rather rectangular shapes, and the shapes change from time to time, some conventions is necessary to ensure the consistency of the motion compensation in the VM.

The absolute (frame) coordinate system is used for referencing all of the VOPs. At each particular time instance, a bounding rectangle that includes the shape of that VOP, as described in Section � REF _Ref364785757 \n * MERGEFORMAT �3.1�, is defined. The left and top corner, in their absolute coordinates, of the bounding box is encoded in the VOP spatial reference.

Thus, the motion vector for a particular feature inside a VOP, e.g. a macroblock, refers to the displacement of the feature in absolute coordinates. No alignment of VOP bounding boxes at different time instances is performed.

In addition to the motion estimation and compensation mode, two additional modes are supported, namely, unrestricted and advanced modes are supported. In all three modes, the motion vector search range is up to [-2f_code+3, 2f_code+3 - 0.5] where 0 <= f_code <= 7. This mode differs from the unrestricted motion mainly by restricting the motion vectors inside the bounding box of the VOP. The advanced mode allows multiple motion vectors in one macroblock and overlapped motion compensation. Note that in all three modes, macroblock-based padding of the VOP is needed for both motion estimation and compensation.

3.3.1	Padding Process

The padding process defines the values of luminance and chrominance samples outside the VOP for prediction of arbitrarily shaped objects. � REF _Ref394398767 \h ��Figure 19� shows a simplified diagram of this process.

�

Figure � SEQ Figure * ARABIC �19�: Simplified padding process

A decoded macroblock d[y][x] is padded by referring to the corresponding decoded shape block s[y][x]. The luminance component is padded per 16 x 16 samples, while the chrominance components are padded per 8 x 8 samples. A macroblock that lies on the VOP boundary (hereafter referred to as a boundary macroblock) is padded by replicating the boundary samples of the VOP towards the exterior. This process is divided into horizontal repetitive padding and vertical repetitive padding. The remaining macroblocks that are completely outside the VOP (hereafter referred to as exterior macroblocks) are filled by extended padding.

NOTE - The padding process is applied to all macroblocks inside the bounding rectangle of a VOP. The bounding rectangle of the luminance component is defined by vop_width and vop_height extended to multiple of 16, while that of the chrominance components is defined by (vop_width>>1) and (vop_height>>1) extended to multiple of 8.

3.3.1.1	Horizontal repetitive padding

Each sample at the boundary of a VOP is replicated horizontally to the left and/or right direction in order to fill the transparent region outside the VOP of a boundary macroblock. If there are two boundary sample values for filling a sample outside of a VOP, the two boundary samples are averaged (//2).

hor_pad[y][x] is generated by any process equivalent to the following example. For every line with at least one shape sample s[y][x] == 1(inside the VOP) :

for (x=0; x<N; x++) {

if (s[y][x] == 1) { hor_pad[y][x] = d[y][x]; s’[y][x] = 1; }

else {

if (s[y][x’] == 1 && s[y][x”] == 1) {

hor_pad[y][x] = (d[y][x’]+ d[y][x”])//2;

s’[y][x] = 1;

} else if (s[y][x’] == 1) {

hor_pad[y][x] = d[y][x’]; s’[y][x] = 1;

} else if (s[y][x”] == 1) {

hor_pad[y][x] = d[y][x”]; s’[y][x] = 1;

}

}

}

where x’ is the location of the nearest valid sample (s[y][x’] == 1) at the VOP boundary to the left of the current location x, x” is the location of the nearest boundary sample to the right, and N is the number of samples of a line. s’[y][x] is initialized to 0.

3.3.1.2	Vertical repetitive padding

The remaining unfilled transparent horizontal samples (where s’[y][x] == 0) from � REF _Ref394398872 \r \h ��3.3.1.1� are padded by a similar process as the horizontal repetitive padding but in the vertical direction. The samples already filled in � REF _Ref394398872 \r \h ��3.3.1.1� are treated as if they were inside the VOP for the purpose of this vertical pass.

hv_pad[y][x] is generated by any process equivalent to the following example. For every column of hor_pad[y][x] :

for (y=0; y<M; y++) {

if (s’[y][x] == 1) hv_pad[y][x] =hor_pad[y][x];

else {

if (s’[y’][x] == 1 && s’[y”][x] == 1)

hv_pad[y][x] = (hor_pad[y’][x] + hor_pad[y”][x])//2;

			else if (s’[y’][x] == 1) hv_pad[y][x] = hor_pad[y’][x];

else if (s’[y”][x] == 1) hv_pad[y][x] = hor_pad[y”][x];

}

}

where y’ is the location of the nearest valid sample (s’[y’][x] == 1) above the current location y at the boundary of hv_pad, y” is the location of the nearest boundary sample below y, and M is the number of samples of a column.

3.3.1.3	Extended padding

Exterior macroblocks immediately next to boundary macroblocks are filled by replicating the samples at the border of the boundary macroblocks. Note that the boundary macroblocks have been completely padded in � REF _Ref394398872 \r \h ��3.3.1.1� and � REF _Ref394399158 \r \h ��3.3.1.2�. If an exterior macroblock is next to more than one boundary macroblocks, one of the macroblocks is chosen, according to the following convention, for reference.

The boundary macroblocks surrounding an exterior macroblock are numbered in priority according to � REF _Ref394399230 \h ��Figure 20: Priority of boundary macroblocks surrounding an exterior macroblock�. The exterior macroblock is then padded by replicating upwards, downwards, leftwards, or rightwards the row of samples from the horizontal or vertical border of the boundary macroblock having the largest priority number.

The remaining exterior macroblocks (not located next to any boundary macroblocks) are filled with 128.

�

Figure � SEQ Figure * ARABIC �20�: Priority of boundary macroblocks surrounding an exterior macroblock

3.3.1.4	Padding for chrominance components

Chrominance components are padded according to clauses � REF _Ref394398872 \r \h ��3.3.1.1� through � REF _Ref394399351 \r \h ��3.3.1.3� for each 8 x 8 block. The padding is performed by referring to a shape block generated by decimating the shape block of the corresponding luminance component. For each 2 x 2 adjacent luminance shape samples, the corresponding chrominance shape sample is set to 1 if any of the four luminance shape samples are 1. Otherwise the chrominance shape sample is set to 0.

3.3.1.5	Padding of interlaced macroblocks

Macroblocks of interlaced VOPs (interlaced == 1) are padded according to clauses � REF _Ref394398872 \r \h ��3.3.1.1� through � REF _Ref394399431 \r \h ��3.3.1.4�. The vertical padding of the luminance component (as in clauses � REF _Ref394399158 \r \h ��3.3.1.2� and � REF _Ref394399351 \r \h ��3.3.1.3�), however, is performed for each field independently. A sample outside of a VOP is therefore filled with the value of the nearest boundary sample of the same field.

3.3.2	Basic Motion Techniques

3.3.2.1	Modified Block (Polygon) Matching

The bounding rectangle of the VOP is first extended on the right-bottom side to multiples of macroblock size. So the size of the bounding rectangle of the luminance VOP is multiples of 16x16, while the size of the chrominance plane is multiples of 8x8. The alpha value of the extended pixels is set to be zero. The macroblocks are formed by dividing the extended bounding rectangles into 16x16 blocks. Zero stuffing is used for these extended pixels. SAD (Sum of Absolute Difference) is used as error measure. The original alpha plane for the VOP is used to exclude the pixels of the macroblock that are outside the VOP. SAD is computed only for the pixels with nonzero alpha value. This forms a polygon for the macro block that includes the VOP boundary. � REF _Ref364751495 * MERGEFORMAT �Figure 21� illustrates an example.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �21�: Polygon matching for an arbitrary shape VOP.

The reference VOP is padded based on its own shape information. For example, when the reference VOP is smaller than the current VOP, the reference is not padded up to the size of the current VOP.

In case the 8x8 advanced prediction mode is chosen and all of the pixels in an 8x8 block are transparent (completely outside the VOP), no matching needs to be done.

3.3.2.2	Integer pixel motion estimation

Both 8x8 and 16x16 vectors are obtained from the search algorithm. Only a small amount of additional computation is needed to obtain the 8x8 integer vectors in addition to the 16x16 vectors.

The search is made with integer pixel displacement and for the Y component. The comparisons are made between the incoming block and the displaced block in the previous reconstructed VOP. Note that the previous reconstructed VOP has to be padded in a macroblock basis as described in section � REF _Ref394400057 \r \h ��3.3.1�. A full search around the original macroblock position is used with a maximum search area depending on the range provided by the f_code.

�EMBED Equation.3���

For the zero vector SAD16(0,0) is reduced to favor the zero vector when there is no significant difference.

�EMBED Equation.3���

where �EMBED Equation.3��� = the number of pixels inside the VOP multiplied by 2(bits_per_pixel-8).

The (x,y) pair resulting in the lowest SAD16 is chosen as the 16x16 integer pixel motion vector, V0. The corresponding SAD is SAD16(x,y).

Likewise, the (x,y) pairs resulting in the lowest SAD8(x,y) are chosen to give the 4 8x8 vectors V1, V2, V3 and V4.

The 8x8 based SAD for the macroblock is

�EMBED Equation.3���

where 0<K<=4 is the number of 8x8 blocks that do not lie outside of the VOP shape. The following rule , and

�EMBED Equation.3����EMBED Equation.3���

Instead of full search, the 8x8 search is centered around 16x16 vector, with a search window of �EMBED Equation.3��� pixels, for the following reasons :

it is faster,

it generally gives better results because of a better OBMC filtering effect and less bits spent for vectors,

if the Extended MV Range is used, the search range around the motion vector predictor will be less limited.

�EMBED Equation.3���

If interlaced video is being encoded, four field motion vectors are calculated for every macroblock (in addition to existing 16x16 and 8x8 motion vectors described above) for each reference VOP. The field motion vectors correspond to the four combinations of current field (top or bottom) and reference field (top or bottom). The top field consists of even lines (0, 2, 4, …H-2), and the bottom field is composed of the odd lines (1, 3, 5, … H-1, where H is the frame height). The full-pel field motion vector (fxp,q, fyp,q) is defined by the minimum sum of absolute differences, fSADp,q, given by

where

(x0,y0)		Upper left corner coordinates of the current macroblock�p		Field in the current frame/VOP (0 for top; 1 for bottom)�q		Field in reference frame/VOP (0 for top; 1 for bottom)�C[x,y]		Current macroblock luminance samples�A[x,y]		Current macroblock alpha values�OR[x,y]		Reconstructed reference VOP luminance samples�S		Search region: �EMBED Equation.3����(fxp,q, fyp,q)	which results in the minimum sum above

The field motion vectors are unrestricted in the sense that pixels referenced above might fall outside of the VOP bounding box but within the padded extension. If any pixel are required beyond the padded reference VOPs, then the candidate motion vector is eliminated from the search region, S. For the core experiments, the padding width is equal to the motion estimation radius.

The full-pel SAD for an interlaced P-VOP macroblock is

�EMBED Equation.3����EMBED Equation.3���

3.3.2.3	INTRA/INTER mode decision

After the integer pixel motion estimation the coder makes a decision on whether to use INTRA or INTER prediction in the coding. The following parameters are calculated to make the INTRA/INTER decision:

�EMBED Equation.3���

�EMBED Equation.3���

Nc is the number of pixels inside the VOP.

INTRA mode is chosen if:	�EMBED Equation.3���

Notice that if SAD16(0,0) is used, this is the value that is already reduced as explained above.

If INTRA mode is chosen, no further operations are necessary for the motion search. If INTER mode is chosen the motion search continues with half sample search around the V0 position, followed by quarter sample search if (quarter_sample==1).

3.3.2.4		Half sample search

Half sample search is performed for 16x16 and for 8x8 vectors as well as for 16x8 field motion vectors in case of interlaced video. It is done using the previous reconstructed VOP, on the luminance component of the macroblock.

The search area is ±1 half sample around the target matrix pointed to by V0, V1, V2, V3, V4 or the field motion vectors (fxp,q, fyp,q). For the 16x16 search the zero vector sad, SAD(0,0), is reduced by NB/2+1 as for the integer search.

The half sample values are found by horizontal filtering (ai in � REF _Ref402668116 * MERGEFORMAT �Figure 22�) and subsequent vertical filtering (b and c in � REF _Ref402668116 * MERGEFORMAT �Figure 22�) using the FIR interpolation filter described by

(CO1[4] ,CO1[3],CO1[2],CO1[1],CO1[1],CO1[2] ,CO1[3] ,CO1[4])/256,

according to � REF _Ref402668116 * MERGEFORMAT �Figure 22�. The values generated by both horizontal and vertical filtering pass are clipped to the range of [0,255].

X-4,-4	X-3,-4 	X-2,-4 	X-1,-4o X+1,-4 X+2,-4 X+3,-4 X+4,-4

 	 a-3

X-4,-3	X-3,-3 	X-2,-3 	X-1,-3o X+1,-3 X+2,-3 X+3,-3 X+4,-3

 	 a-2

X-4,-2	X-3,-2 	X-2,-2 	X-1,-2o X+1,-2 X+2,-2 X+3,-2 X+4,-2 x: integer sample position

 	 a-1

X-4,-1	X-3,-1 	X-2,-1 	X-1,-1o X+1,-1 X+2,-1 X+3,-1 X+4,-1

		 bo co

X-4,+1	X-3,+1 	X-2,+1 	X-1,+1o X+1,+1 X+2,+1 X+3,+1 X+4,+1 o: Half sample position

 	 a+1

X-4,+2	X-3,+2 	X-2,+2 	X-1,+2o X+1,+2 X+2,+2 X+3,+2 X+4,+2

 	 a+2

X-4,+3	X-3,+3 	X-2,+3 	X-1,+3o X+1,+3 X+2,+3 X+3,+3 X+4,+3

 	 a+3

X-4,+4	X-3,+4 	X-2,+4 	X-1,+4o X+1,+4 X+2,+4 X+3,+4 X+4,+4

�EMBED Equation.3���

�EMBED Equation.3���

�EMBED Equation.3���

Figure � SEQ Figure * ARABIC �22�: FIR filter interpolation scheme

In quarter sample mode (quarter_sample==1), the filter coefficients are (CO1[1..4]= [160, -48, 24, -8.

In half sample mode (quarter_sample==0), the filter coefficients are (CO1[1]=128, CO1[2..4)]=0), this corresponds to bilinear interpolation, described in � REF _Ref402604241 * MERGEFORMAT �Figure 24�.

�

				a = A, �				b = (A + B + 1 - rounding_control) / 2�				c = (A + C + 1 - rounding_control) / 2, �				d = (A + B + C + D + 2 - rounding_control) / 4�				“/” denotes division by truncation.

Figure � SEQ Figure * ARABIC �24�: Bilinear interpolation scheme

The vector resulting in the best match during the half sample search is named MV. MV consists of horizontal and vertical components (MVx, MVy), both measured in half sample units.

For interlaced video, the half sample search used to refine the field motion vectors is conducted by vertically interpolating between lines of the same field. The field motion vectors are calculated in frame coordinates; that is the vertical coordinates of the integer samples (Xi,j)in � REF _Ref402668116 * MERGEFORMAT �Figure 22� differ by 2.

3.3.2.5	Quarter sample search

In the case of quarter sample mode (indicated by quarter_sample==1 in 4.5.1) an additional search step is performed for a search area of ±1 quarter samples around the target matrix pointed to by the best match half sample vector MV. For the 16x16 search the zero vector sad, SAD(0,0), is reduced by NB/2+1 as for the half sample and integer search.

For each block of size MxN a block of size (M+1)x(N+1) biased in the direction of the half or quarter sample position is read from the previous reconstructed VOP. At the block boundary, the samples are symmetrically extended using mirroring according to � REF _Ref403208403 * MERGEFORMAT �Figure 26� so that an extended block of size MxN is created. The half sample values used in this search step are found by applying the same interpolation technique described for half sample search above on this extended block.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �26�: block boundary mirroring

The quarter sample values are found by bilinear interpolation between the surrounding half and integer samples, respectively (see � REF _Ref402604241 * MERGEFORMAT �Figure 24�).

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �28�: Location of best match integer (X), half (o) and quarter (-) sample

(‘�EMBED Word.Picture.8���’ marking the best match half sample, + the quarter sample search positions).

The vector resulting in the best match during the quarter sample search replaces the half sample vector MV. For quarter sample mode MV consists of horizontal and vertical components (MVx, MVy), both measured in quarter sample units.

3.3.2.6	Decision on 16x16 or 8x8 prediction mode

SAD for the best 16x16 vector (including subtraction of NB/2+1 if the vector is (0,0)):

�EMBED Equation.3���

SAD for the whole macro block for the best 8x8 vectors:

�EMBED Equation.3���

where 0<K<=4 is the number of 8x8 blocks that do not lie outside of the VOP shape. The following rule applies:

If

	�EMBED Equation.3���,

choose 	8x8 prediction

otherwise 	choose 16x16 prediction

3.3.2.7	Interlaced video prediction mode decision

For P-VOPs, each predicted (non-intra) macroblock can use 16x16, 8x8 or field motion compensation. The first step is to select the best reference field for predicting the top and bottom field of the current macroblock. This selection is made by choosing the reference field which has the smallest SAD (SADtop and SADbottom) from the field search. The overall prediction mode decision is based on choosing the minimum of

SAD16, SADK*8 + NB/2 + 1, SADtop + SADbottom + NB/4 + 1

If the first term above is the minimum, 16x16 prediction is used. If the second term is the smallest, 8x8 motion compensation is used. If the last expression is the minimum, field based motion estimation is selected.

3.3.2.8	Differential coding of motion vectors

When using INTER mode coding, the motion vector must be transmitted. The motion vector components (horizontal and vertical) are coded differentially by using a spatial neighborhood of three motion vectors already transmitted (� REF _Ref364783344 * MERGEFORMAT �Figure 29�). These three motion vectors are candidate predictors for the differential coding. The differential coding of motion vectors is performed with reference to the reconstructed shape.

In the special cases at the borders of the current VOP the following decision rules are applied:

1.If the macroblock of one and only one candidate predictor is outside of the VOP, it is set to zero.

2.If the macroblocks of two and only two candidate predictors are outside of the VOP, they are set to the third candidate predictor.

3.If the macroblocks of all three candidate predictors are outside of the VOP, they are set to zero.

The motion vector coding is performed separately on the horizontal and vertical components. For each component, the median value of the three candidates for the same component is computed:

�

For instance, if MV1=(-2,3), MV2=(1,5) and MV3=(-1,7), then Px = -1 and Py = 5.

If the error_resilient_disable_flag is not set, one dimensional prediction is used:

Px = MV1x

Py = MV1y

MV1 takes the value 0 after a resynchronisation marker.

The Variable Length Codes for the vector differences MVDx and MVDy are listed in � REF _Ref285437044 * MERGEFORMAT �Table 54�.

�

For prediction of 8x8 vectors see Section � REF _Ref350068592 \n * MERGEFORMAT �3.3.3.1�.

�

Figure � SEQ Figure * ARABIC �29�: Motion vector prediction.

When interlaced video is encoded, if one or more of MV1, MV2 or MV3 refers to a field motion compensated macroblock, the value of MVi is the average of the two field motion vectors. If a pixel offset finer than the motion vector resolution (half or quarter sample as indicated by the quarter_sample flag) is obtained by the average, it is replaced with a nearest pixel offset of the respective resolution.

If the current macroblock is a field motion compensated macroblock, then the same prediction motion vector (Px, Py) is used for both field motion vectors. Because the vertical component of a field motion vector has half the resolution of the horizontal component, the vertical differential motion vector encoded in the bitstream is

MVDyfield = (Mvy - Py) / 2.

3.3.3	Unrestricted Motion Estimation/Compensation

3.3.3.1	Motion estimation over VOP boundaries

An unrestricted motion estimation mode is used for VOP motion estimation. The technique is to improve the motion estimation techniques, especially for VOP-based coding schemes. In this technique, the error signal is generated by extending the reference VOP to enough size, padding the extended VOP, applying motion estimation, and taking the difference of the original and the estimated signals. Note that padding is performed only on the reference VOP. Target VOP remains the same except for extending it to multiples of 16x16 blocks.

For the case of a rectangular VOP (non-arbitrary shape), the rectangle is extended in all four directions (left, top, right, and bottom) by 2f_code+3 pixels by repetitive padding. For arbitrary shape VOPs, the bounding box padded as described in section � REF _Ref394400057 \r \h ��3.3.1�, is further extended in all four directions (left, top, right, and bottom) by 2f_code+3 pixels by repetitive padding.

Apply modified block (polygon) matching described in Section � REF _Ref394400006 \r \h ��3.3.2� to compute the motion vectors.

3.3.3.2	Motion compensation over VOP boundaries

For unrestricted motion compensation, the motion vectors are allowed to point outside the decoded area of a reference VOP. For an arbitrary shape VOP, the decoded area refers to the area within the bounding box, padded as described in section � REF _Ref394400057 \r \h ��3.3.1�. A bounding box is defined by vop_width and vop_height extended to multiple of 16. When a sample referenced by a motion vector stays outside the decoded VOP area, an edge sample is used. This edge sample is retrieved by limiting the motion vector to the last full pel position inside the decoded VOP area. Limitation of a motion vector is performed on a sample basis and separately for each component of the motion vector.

The co-ordinates of a reference sample in the reference VOP, (yref, xref) is determined as follows :

xref = MIN (MAX (x+dx, 0), xdim-1))

yref = MIN (MAX (y+dy, 0), ydim-1))

 where (y, x) is the co-ordinates of a sample in the current VOP, (yref, xref) is the co-ordinates of a sample in the reference VOP, (dy, dx) is the motion vector, and (ydim, xdim) is the dimension of the reference VOP. Note that for rectangular VOP, a reference VOP is defined by video_object_layer_width and video_object_layer_height. For an arbitrary shape VOP, a reference VOP of luminance is defined by vop_width and vop_height extended to multiple of 16, while that of chrominance is defined by (vop_width>>1) and (vop_height>>1) extended to multiple of 8.

3.3.4	Advanced prediction mode

3.3.4.1	Formation of the motion vectors

One/two/four vectors decision is indicated by the MCBPC codeword and field_prediction flag for each macroblock. If one motion vector is transmitted for a certain macroblock, this is defined as four vectors with the same value as the MV. When two field motion vectors are transmitted each of the four block prediction motion vectors has the value equal to the average of the field motion vectors (rounded such that all fractional pixel offsets become the half pixel offset). If MCBPC indicates that four motion vectors are transmitted for the current macroblock, the information for the first motion vector is transmitted as the codeword MVD and the information for the three additional motion vectors is transmitted as the codewords MVD2-4.

The vectors are obtained by adding predictors to the vector differences indicated by MVD and MVD2-4 in a similar way as when only one motion vector per macroblock is present, according to the decision rules given in Section � REF _Ref392493837 \r �3.3.2�. Again the predictors are calculated separately for the horizontal and vertical components. However, the candidate predictors MV1, MV2 and MV3 are redefined as indicated in � REF _Ref364783440 * MERGEFORMAT �Figure 30�. If only one vector per macroblock is present, MV1, MV2 and MV3 are defined as for the 8*8 block numbered 1 in � REF _Ref364757929 * MERGEFORMAT �Figure 78�.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �30�: Redefinition of the candidate predictors MV1, MV2 and MV3 for each of the luminance blocks in a macroblock

If four vectors are used, each of the motion vectors is used for all pixels in one of the four luminance blocks in the macroblock. The numbering of the motion vectors is equivalent to the numbering of the four luminance blocks as given in XXX. Motion vector MVDCHR for both chrominance blocks is derived by calculating the sum of the K luminance vectors, that corresponds to K 8x8 blocks that do not lie outside the VOP shape, and dividing this sum by 2 in the case of half sample mode (quarter_sample==0, see XXX); the component values of the resulting sixteenth/twelfth/eighth/fourth sample resolution vectors are modified towards the nearest half sample position as indicated in XXX to XXX.

sixteenth pixel position�0�1�2�3�4�5�6�7�8�9�10�11�12�13�14�15�//16��resulting position�0�0�0�1�1�1�1�1�1�1�1�1�1�1�2�2�//2��Table � SEQ Table * ARABIC �5� Modification of sixteenth sample resolution chrominance vector components

twelfth pixel position�0�1�2�3�4�5�6�7�8�9�10�11�//12��resulting position�0�0�1�1�1�1�1�1�1�1�2�2�//2��Table � SEQ Table * ARABIC �6� Modification of twelfth sample resolution chrominance vector components

eighth pixel position�0�1�2�3�4�5�6�7�//8��resulting position�0�0�1�1�1�1�1�2�//2��Table � SEQ Table * ARABIC �7� Modification of eighth sample resolution chrominance vector components

fourth pixel position�0�1�2�3�//4��resulting position�0�1�1�1�//2��Table � SEQ Table * ARABIC �8� Modification of fourth sample resolution chrominance vector components

Half sample values are found using bilinear interpolation as described in Section XXX, � REF _Ref402604241 * MERGEFORMAT �Figure 24�. The prediction for luminance is obtained by overlapped motion compensation as described above, using quarter sample values if indicated by the quarter_sample flag. The prediction for chrominance is obtained by applying the motion vector MVDCHR to all pixels in the two chrominance blocks (as it is done in the default prediction mode).

The predictor for MVD and MVD2-4 is defined as the median value of the vector components MV1, MV2 and MV3 as defined in Section � REF _Ref392494028 \r �3.3.2�.

3.3.4.2	Overlapped motion compensation for luminance

Each pixel in an 8*8 luminance prediction block is a weighted sum of three prediction values, divided by 8 (with rounding). In order to obtain the three prediction values, three motion vectors are used: the motion vector of the current luminance block, and two out of four "remote" vectors:

the motion vector of the block at the left or right side of the current luminance block;

the motion vector of the block above or below the current luminance block.

For each pixel, the remote motion vectors of the blocks at the two nearest block borders are used. This means that for the upper half of the block the motion vector corresponding to the block above the current block is used, while for the lower half of the block the motion vector corresponding to the block below the current block is used (see � REF _Ref364783597 * MERGEFORMAT �Figure 29�). Similarly, for the left half of the block the motion vector corresponding to the block at the left side of the current block is used, while for the right half of the block the motion vector corresponding to the block at the right side of the current block is used (see � REF _Ref364783618 * MERGEFORMAT �Figure 30�).

The creation of each pixel, �EMBED Equation.3��� in an 8*8 luminance prediction block is governed by the following equation:

�EMBED Equation.3���

where �EMBED Equation.3��� and �EMBED Equation.3��� are the pixels from the referenced picture as defined by

�EMBED Equation.3���

Here, �EMBED Equation.3��� denotes the motion vector for the current block, �EMBED Equation.3��� denotes the motion vector of the block either above or below, and �EMBED Equation.3���denotes the motion vector either to the left or right of the current block as defined above. If �EMBED Equation.3��� points to a sub sample position, the respective interpolation technique according to XXX is used.

The matrices �EMBED Equation.3��� and �EMBED Equation.3��� are defined in � REF _Ref364783640 * MERGEFORMAT �Figure 28�, � REF _Ref364783597 * MERGEFORMAT �Figure 29�, and � REF _Ref364783618 * MERGEFORMAT �Figure 30�, where �EMBED Equation.3��� denotes the column and row, respectively, of the matrix.

If one of the surrounding blocks was not coded, the corresponding remote motion vector is set to zero. If one of the surrounding blocks was coded in INTRA mode, the corresponding remote motion vector is replaced by the motion vector for the current block. If the current block is at the border of the VOP and therefore a surrounding block is not present, the corresponding remote motion vector is replaced by the current motion vector. In addition, if the current block is at the bottom of the macroblock, the remote motion vector corresponding with an 8*8 luminance block in the macroblock below the current macroblock is replaced by the motion vector for the current block.

The weighting values for the prediction are given in � REF _Ref364783640 * MERGEFORMAT �Figure 28�, � REF _Ref364783597 * MERGEFORMAT �Figure 29�, and � REF _Ref364783618 * MERGEFORMAT �Figure 30�.

4�5�5�5�5�5�5�4��5�5�5�5�5�5�5�5��5�5�6�6�6�6�5�5��5�5�6�6�6�6�5�5��5�5�6�6�6�6�5�5��5�5�6�6�6�6�5�5��5�5�5�5�5�5�5�5��4�5�5�5�5�5�5�4��Figure � SEQ Figure * ARABIC �28�: Weighting values, H0 , for prediction with motion vector of current luminance block

2�2�2�2�2�2�2�2��1�1�2�2�2�2�1�1��1�1�1�1�1�1�1�1��1�1�1�1�1�1�1�1��1�1�1�1�1�1�1�1��1�1�1�1�1�1�1�1��1�1�2�2�2�2�1�1��2�2�2�2�2�2�2�2��Figure � SEQ Figure * ARABIC �29�: Weighting values, H1 , for prediction with motion vectors of the luminance blocks on top or bottom of current luminance block

2�1�1�1�1�1�1�2��2�2�1�1�1�1�2�2��2�2�1�1�1�1�2�2��2�2�1�1�1�1�2�2��2�2�1�1�1�1�2�2��2�2�1�1�1�1�2�2��2�2�1�1�1�1�2�2��2�1�1�1�1�1�1�2��Figure � SEQ Figure * ARABIC �30�: Weighting values, H2 , for prediction with motion vectors of the luminance blocks to the left or right of current luminance block

3.3.5	Interlaced Motion Compensation

When field-based motion compensation is specified (by the field_prediction bit being ‘1’), two field motion vectors and corresponding reference fields are used to generate the prediction from each reference VOP.

The luminance prediction is generated as follows: The even lines of the macroblock (0, 2, 4 ... 14) are defined by the top field motion vector using the reference field specified. The motion vector is specified in frame coordinates -- full sample vertical displacements correspond to even integral values of vertical motion vector coordinate, a half sample vertical displacement is denoted by odd integral values and a quarter sample displacement by .5 values. When a sub sample vertical offset is specified, only pixels from lines within the same reference field are combined according to the methods specified in section XXX.

The same procedure is used to define the odd luminance lines of the macroblock using the bottom field motion vector and reference field.

Chrominance 4:2:0 motion compensation is done field-wise. The even lines of a chrominance frame/VOP derived from the top field chrominance and the odd lines contain the bottom field chrominance. The even chrominance lines (0, 2, 4, 6) are defined by the top field motion vector and reference field and the odd chrominance lines (1, 3, 5, 7) are defined by the bottom field motion vector and reference field. A chrominance motion vector is derived from the (luminance) motion vector by dividing each component by 2 then rounding as follows:

The horizontal component is rounded by mapping all fractional values into a half-pixel offset. This is the same procedure as described in � REF _Ref392493915 �Table 8� used for the advance prediction mode.

The vertical motion vector component is an integer and the resulting chrominance motion vector vertical component is rounded to an integer. If the result of dividing by two gives a non-integral values, it is rounded to the adjacent odd integer. Note that the odd integral value denote vertical interpolation between lines of the same field.

3.4	Texture Coding

The intra VOPs and the residual data after motion compensation is coded using the same 8x8 block DCT scheme. DCT is done separately for each of the luminance and chrominance planes. When shape of the VOP is arbitrary, the macroblocks that belong to the arbitrary shape of the VOP are treated as described below. There are two types of macroblocks that belong to an arbitrarily shaped VOP: 1) those that lie completely inside the VOP shape and 2) those that lie on the boundary of the shape. The macroblocks that lie completely inside the VOP are coded using a technique identical to the technique used in H263. The intra 8x8 blocks that belong to the macroblocks lying on the border of the VOP shape are first padded as described in Section � REF _Ref373215976 \n * MERGEFORMAT �3.4.1�. For padding of chroma blocks, a 16x16 alpha block is decimated by the method described in Sec. � REF _Ref372306745 \n * MERGEFORMAT �3.1�. For residue blocks, the region outside the VOP within the blocks are padded with zero. Padding is performed separately for each of the luminance and chrominance 8*8 blocks by using the original alpha values of the luminance or chrominance in this 8*8 block. Transparent blocks are skipped and therefore not coded. These blocks are then coded in a manner identical to the interior blocks. Blocks that lie outside the original shape are padded using the value (128, 128, 128) for luminance and chrominance in case of Intra coding and (0, 128, 128) in case of predictive coding. The blocks that belong neither to the original nor the coded arbitrary shape but to theinside of the bounding box of a VOP are not coded at all.

3.4.1	Low Pass Extrapolation (LPE) Padding Technique

Before performing the DCT, the following block padding technique, referred to as low-pass extrapolation (LPE) padding, is applied to each intra block that has at least one transparent and one non-transparent pixel in its associated alpha information. The padding is performed in three steps.

Calculate the arithmetic mean value m of all block pixels f(i,j) situated within the object region R�	�EMBED Equation.3����where N is the number of pixels situated within the object region R. Division by N is done by rounding to the nearest integer.

Assign m to each block pixel situated outside of the object region R, i.e.�	 f(i,j) = m 		for all (i,j) (R.

Apply the following filtering operation to each block pixel f(i,j) outside of the object region R, starting from the top left corner of the block and proceeding row by row to the bottom right pixel�	f(i,j) = [f(i,j-1) + f(i-1,j) + f(i,j+1) + f(i+1,j)] / 4.�Division is done by rounding to the nearest integer. If one or more of the four pixels used for filtering are outside of the block, the corresponding pixels are not included into the filtering operation and the divisor 4 is reduced accordingly. Consider e.g. i = 0 and j = 0, in which case the above operation becomes�	f(i,j) = [f(i,j+1) + f(i+1,j)] / 2.

After this padding operation the resulting block is ready for DCT coding.

3.4.2	Adaptive Frame/Field DCT

When interlaced video is coded, superior energy compaction can sometimes be obtained by reordering the lines of the macroblock to form 8x8 luminance blocks consisting of data from one field. Field DCT line order is used when

�EMBED Equation.3���

where pi,j is the spatial luminance data .(samples or differences) just before the 8x8 DCT is performed. The field DCT permuation is indicated by the dct_type bit having a value of 1.

When field DCT mode is used, the luminance lines (or luminance error) in the spatial domain of the macroblock are permuted from the frame DCT orientation to field DCT configuration as show below. The black regions of the diagram denote the bottom field. The resulting macroblocks are transformed, quantized and VLC encoded normally. On decoding a field DCT macroblock, the inverse permutation is performed after all luminance blocks have been obtained from the IDCT. In the 4:2:0 format, chrominance data are not effected by this mode.

�EMBED Word.Picture.8���

3.4.3	DCT

A separable 2-dimensional Discrete Cosine Transform (DCT) is used.

The IDCT function f [y][x] used in the decoding process may be any of several approximations of the saturated mathematical integer-number IDCT defined in this clause.

The NxN two dimensional DCT is defined as:

�

	with 	u, v, x, y = 0, 1, 2, ... N-1

	where	x, y are spatial coordinates in the sample domain

		u, v are coordinates in the transform domain

�

For the purpose of core experiments, all VM implementations are requested to round the results of the forward DCT calculation prior to the quantization stage of coding. That is, input to the quantization stage should be:

F’(u,v) = round (F(u,v))

where round() is the rounding to the nearest integer, with half-integer values rounded away from zero. No clamping or saturation is performed.

The definition of the DCT (also called forward DCT) is purely informative. Forward DCT is not used by the decoding process described by this specification.

The mathematical real-number inverse DCT (IDCT) is defined as:

�

f (x, y) is a real number.

The mathematical integer-number IDCT is defined as:

		f ’ (x, y) = round(f (x, y))

The saturated mathematical integer-number IDCT is defined as:

		f ’’ (x, y) = saturate(f ’ (x, y))

where saturate() is defined as:

�EMBED Word.Picture.8����where n is the number of bits per pixel.

Editor’s note: Suitable requirements for DCT accuracy should be defined in a manner that does not assume 8-bit data in the spatial domain.

The IDCT function f [y][x] used in the decoding process may be any of several approximations of the saturated mathematical integer-number IDCT f ’’ (x, y), provided that it meets all of the following requirements:

The IDCT function f [y][x] used in the decoding process shall have values always in the range [-256, 255].

The IDCT function f [y][x] used in the decoding process shall conform to the IEEE Standard Specification for the implementation of 8 by 8 Inverse Discrete Cosine Transform, Std 1180-1990, December 6, 1990.

This clause applies only when input blocks of DCT coefficients cause all the 64 values output of the mathematical integer-number IDCT f ’ (x, y) to be in the range [-384, 383].�When f ’ (x, y) > 256, f [y][x] shall be equal to 255 and when f ’ (x, y) < -257, f [y][x] shall be equal to -256. For all values of f ’(x,y) in the range [-257, 256] the absolute difference between f[y][x] and f ’’(x,y) shall not be larger than 2.

Let F be the set of 4096 blocks Bi[y][x] (i=0..4095) defined as follows :

Bi[0][0] = i - 2048

All other coefficients Bi[y][x] other than Bi[0][0] are equal to 0

For each block Bi[y][x] that belongs to set F defined above, an IDCT that conforms to this specification shall output a block f[y][x] that has a peak error of 0 compared to the reference saturated mathematical integer-number IDCT f’’(x,y). In other words, | f[y][x] - f’’(x,y)| shall be zero for all x and y.

In addition to these requirements, the following is a recommendation on the accuracy of the IDCT function f [y][x].

When clause 3) does not apply, i.e. for input blocks of DCT coefficients causing the output of the mathematical integer-number IDCT f ’ (x, y) to contain one or more values out of the range [-384, 383], it is desirable that f [y][x] be as close as possible to f ’’ (x, y) for all bitstreams produced by reasonably well designed encoders.

3.4.4	SA-DCT

The SA-DCT algorithm is applied to the 8x8 blocks which straddle the boundaries of a VOP (which are boundary blocks of arbitrary shape). The SA-DCT readily replaces the VM "Macroblock-Padding" technique so that only the active pels within the VOP segment are transformed and coded. This will result in a number of DCT-coefficients which is identical to the number of pels contained in the boundary block of the VOP segment). The only remaining trivial differences to the method without SA-DCT are related to the definition of the adaptive scanning of the DCT-coefficients. All SA-DCT-coefficients are quantized and coded identical to the standard 8x8 block DCT-coefficients employing same quantizers and all DCT VLC-Tables as described in this Verification Model. No additional syntax elements or VLC-Tables are required.

3.4.4.1	Description of the SA-DCT Algorithm

� REF _Ref392494770 �Figure 31� illustrates the concept of the SA-DCT algorithm for coding an arbitrarily shaped image segment which is contained within a 8x8 pel region.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �31� Successive steps involved for performing a SA-DCT forward transform on a block (segment) of arbitrary shape. If the segment to be coded is a rectangular region containing 8x8 pels the SA-DCT reduces to the well know standard 8x8 DCT.

The SA-DCT algorithm implemented is based on predefined orthogonal sets of DCT basis functions. In contrast to other techniques discussed in the literature the algorithm is fast to compute and does not require more computations than a normal DCT. The basic concept of the proposed method is outlined in Figure 1SA for coding an arbitrarily shaped image foreground segment contained within an 8x8 reference block. Figure 1SA-A shows an example of an image block segmented into two regions, foreground (dark) and background (light). To perform vertical SA-DCT transformation of the foreground, the length (vector size N, 0<N<9) of each column j (0<j<9) of the foreground segment is calculated, and the columns are shifted and aligned to the upper border of the 8x8 reference block (� REF _Ref392494770 �Figure 31� B). Dependent on the vector size N of each particular column of the segment, a DCT transform matrix DCT-N

�

containing a set of N DCT-N basis vectors is selected. Here �EMBED Word.Picture.8��� if p = 0, and � otherwise, and p denotes the p-th DCT basis vector. The N vertical DCT-coefficients cj for each segment column data xj are calculated according to the formula

�EMBED Word.Picture.8���

In intra coded macroblocks the SA-DCT is a non-orthonormal transform except for the 8x8 block transform case. For example in � REF _Ref392494770 �Figure 31�-B the right most column is transformed using DCT-3 basis vectors. After SA-DCT in vertical direction the lowest DCT-coefficients (DC values () for the segment columns are found along the upper border of the 8x8 reference block (Figure 1SA-C). To perform the horizontal DCT transformation (� REF _Ref392494770 �Figure 31� E), the length of each row is calculated, and the rows are shifted to the left border of the 8x8 reference block, and a horizontal DCT adapted to the size of each row is then calculated using the formulas (1) and (2). Note that horizontal SA-DCT-transformation is performed along vertical SA-DCT-coefficients with the same index (i.e. all vertical DC coefficients (() are grouped together and are SA-DCT-transformed in horizontal dimension). � REF _Ref392494770 �Figure 31� F shows the final location of the resulting DCT coefficients within the 8x8 image block.

In this algorithm, the final number of DCT-coefficients is identical to the number of pels contained in the image segment. Also, the coefficients are located in comparable positions as in a standard 8x8 block. The DC coefficient (() is located in the upper left border of the reference block and, dependent on the actual shape of the segment, the remaining coefficients are concentrated around the DC coefficient. Since the contour of the segment is transmitted to the receiver prior to transmitting the MB information the decoder can perform the shape-adapted inverse DCT as the reverse operation

�EMBED Word.Picture.8���

in both horizontal and vertical segment direction. Here cj denotes a horizontal or vertical coefficient vector of size N.

3.4.4.2	Adaptive Scanning of the SA-DCT-Coefficients

For the coding of the SA-DCT coefficient we introduce the notation of the "active SA-DCT domain area". This domain is the dark shaded area covering the SA-DCT-coefficients in � REF _Ref392494770 �Figure 31� F which are to be quantized and coded. This size and shape of this area varies with varying segment shapes and sizes - however, the DC-coefficient is always located in the upper left border of the reference block. The active DCT-coefficients corresponding to the example in � REF _Ref392494770 �Figure 31� F are outlined in � REF _Ref392495001 �Figure 32� (active coefficient locations are indicated as '1'). The normal zig-zag-scan detailed elsewhere in the Verification Model (see also � REF _Ref392495030 �Figure 33�) is modified, so that the non-active coefficient locations ('0' in � REF _Ref392495001 �Figure 32�) are neglected when counting the runs for the run-length coding of the SA-DCT coefficients (see adaptive scan in � REF _Ref392495071 �Figure 34�). Notice that, if the active SA-DCT domain area is rectangular and consisting of 8x8 pels, the SA-DCT degenerates into a standard 8x8 DCT and the scanning of the coefficients is identical to the zig-zag-scanning defined in the H.261, H.263, MPEG-1 and MPEG-2 in � REF _Ref392495001 �Figure 32�.

1�1�1�1�1�1�0�0��1�1�1�1�1�0�0�0��1�1�1�1�0�0�0�0��1�1�0�0�0�0�0�0��1�0�0�0�0�0�0�0��1�0�0�0�0�0�0�0��0�0�0�0�0�0�0�0��0�0�0�0�0�0�0�0��Figure � SEQ Figure * ARABIC �32� Active DCT-coefficients '1' within a 8x8 block

1�2�6�7�15�16�28�29��3�5�8�14�17�27�30�43��4�9�13�18�26�31�42�44��10�12�19�25�32�41�45�54��11�20�24�33�40�46�53�55��21�23�34�39�47�52�56�61��22�35�38�48�51�57�60�62��36�37�49�50�58�59�63�64��Figure � SEQ Figure * ARABIC �33� Usual zig-zag scan for a standard 8x8 DCT

1�2�6�7�15�16����3�5�8�14�17�����4�9�13�18������10�12��������11���������19���������������������������Figure � SEQ Figure * ARABIC �34� Adaptive SA-DCT zig-zag scan, adapted to the particular segment shape in � REF _Ref392494770 �Figure 31� only the active coefficients in � REF _Ref392495001 �Figure 32� are scanned. For this example the maximum 'run' is 18.

3.4.5	H263 Quantization Method

The quantization parameter QP may take integer values from 1 to 31. The quantization stepsize is 2xQP.

	COF		A transform coefficient to be quantized.

	LEVEL	Absolute value of the quantized version of the transform coefficient.

	COF´		Reconstructed transform coefficient.

3.4.5.1	Quantization

For INTRA: 		�EMBED Equation.3���

For INTER:		�EMBED Equation.3���

Clipping to [-127:127] is performed for all coefficients except intra DC.

3.4.5.2	Dequantization

				�EMBED Equation.3���

The sign of COF is then added to obtain COF´: COF´ = Sign(COF)x| COF´|

Clipping to [-2048:2047] is performed before IDCT.

The DC coefficient of an INTRA block is quantized as described below. 8 bits are used for the quantized DC coefficient.

Quantization

�EMBED Equation.3���

Dequantization

�EMBED Equation.3���

3.4.6	MPEG Quantization Method

3.4.6.1	Quantization of Intra Macroblocks

This is the description of improved non-linear DC quantization, optimized overhead and improved semantics for VLC’s .

3.4.6.1.1	Optimized Nonlinear Quantization of DC Coefficients

Note: This section is valid for H.263 quantization also.

Within an Intra macroblock, luminance blocks are called type 1 blocks, chroma blocks are classified as type 2.

DC coefficients of Type 1 blocks are quantized by Nonlinear Scaler for Type 1

DC coefficients of Type 2 blocks are quantized by Nonlinear Scaler for Type 2

The nonlinear quantization strategy provides an effective compromise between the bits savings properties of DC scaler of 2Qp and its consequence on visual picture quality. The key features of this technique are as follows.

Separate DC Scaler for Luminance and Chrominance, with smaller DC Scaler for chrominance as compared to luminance

DC coefficient scaling method based on a non linear function of quantizer Qp used for the coded macroblock

DC Scaler is derived to minimize the visibility of artifacts by heuristic experimentation and noise visibility thresholding

The nonlinear function used for DC coefficient scaling is approximated by a number of piecewise linear functions based on a certain number of predetermined breakpoints.

A separate set of reconstruction rules depending on either the quantizer Qp being used or a constant (such as, 8), with separate reconstruction rules for each quantizer range identified by the breakpoints.

� REF _Ref393159664 �Table 9� specifies the nonlinear dc_scaler expressed in terms of piece-wise linear characterstics.

When applied to grayscale alpha masks, the maximum limit (QP=31) of ??? is removed.

Component:Type�dc_scaler for Quantizer (Qp) range���1 through 4�5 through 8�9 through 24�25 through 31��Luminance: Type1�8�2Qp�Qp+8�2Qp-16��Chrominance: Type2�8�(Qp+13)/2�Qp-6��Table � SEQ Table * ARABIC �9� Nonlinear scaler for DC coefficients of DCT blocks, expressed in terms of relation with Qp

The forward quantization is performed as follows.

level = dc_coef//dc_scaler

The reconstructed DC values are computed as follows.

 dc_rec = dc_scaler*level

3.4.6.1.2	AC Coefficients

AC coefficients ac[i][j] are first quantised by individual quantization factors,

ac~[i][j] = (16 * ac[i][j]) //wI[i][j]

where wI[i][j] is the [i][j]th element of the default Intra quantizer matrix, which for this VM carries a value of 16 for all values; this is referred to as flat matrix.

The resulting ac~[i][j] is limited to the range [-2048, 2047].

An example of non-flat intra quantization matrix which can be alternatively used as default is provided for guidance in � REF _Ref364783763 * MERGEFORMAT �Figure 35� and if used should be clearly stated in core experiment comparisons against VM.

8�17�18�19�21�23�25�27��17�18�19�21�23�25�27�28��20�21�22�23�24�26�28�30��21�22�23�24�26�28�30�32��22�23�24�26�28�30�32�35��23�24�26�28�30�32�35�38��25�26�28�30�32�35�38�41��27�28�30�32�35�38�41�45��Figure � SEQ Figure * ARABIC �35�: Example Intra quantizer matrix

The step-size for quantizing the scaled DCT coefficients, ac~[i][j], is derived from the quantization parameter, QP.

The quantized level QAC[i][j] is given by:

QAC[i][j] = (ac~[i][j] + sign(ac~[i][j])*((p * QP) // q)) / (2*QP)

where, QAC [i][j] is limited to the range [-127..127].

For this VM p=3, and q = 4.

3.4.6.2	Quantization of Non Intra Macroblocks

Forward Quantization:

Non-intra macroblocks in P- and B- VOPs are quantized with a uniform quantizer that has a dead-zone about zero. The default quantization matrix carries a value of 16 for each entry and is referred to as flat matrix.

An example of non-flat nonintra quantization matrix which can be alternatively used as default is provided for guidance in � REF _Ref364783815 * MERGEFORMAT �Figure 36� and if used should be clearly stated in core experiment comparisons against VM.

16�17�18�19�20�21�22�23��17�18�19�20�21�22�23�24��18�19�20�21�22�23�24�25��19�20�21�22�23�24�26�27��20�21�22�23�25�26�27�28��21�22�23�24�26�27�28�30��22�23�24�26�27�28�30�31��23�24�25�27�28�30�31�33��Figure � SEQ Figure * ARABIC �36�: Example of non-intra quantizer matrix

The step-size for quantizing both the scaled DC and AC coefficients is derived from the quantization parameter, QP.

ac~[i][j] = (16 * ac[i][j]) // wN[i][j]

where

wN[i][j] is the non-intra quantizer matrix

QAC[i][j] = ac~[i][j] / (2*QP)

QAC [i][j] is limited to the range [-127:127].

3.4.6.3	Inverse Quantization of Intra and Non Intra Macroblocks

The two-dimensional array of coefficients, QF[v][u], is inverse quantised to produce the reconstructed DCT coefficients. This process is essentially a multiplication by the quantiser step size. The quantiser step size is modified by two mechanisms; a weighting matrix is used to modify the step size within a block and a scale factor is used in order that the step size can be modified at the cost of only a few bits (as compared to encoding an entire new weighting matrix).

�

Figure � SEQ Figure * ARABIC �37�: Inverse quantisation process

� REF _Ref394427530 \h ��Figure 37� illustrates the overall inverse quantisation process. After the appropriate inverse quantisation arithmetic the resulting coefficients, F''[v][u], are saturated to yield F'[v][u] and then a mismatch control operation is performed to give the final reconstructed DCT coefficients, F[v][u].

NOTE -	Attention is drawn to the fact that the method of achieving mismatch control in this specification is identical to that employed by ISO/IEC 13818-2.

3.4.6.3.1	Intra DC coefficient

The DC coefficients of intra coded blocks shall be inverse quantised in a different manner to all other coefficients.

In intra blocks F’’[0][0] shall be obtained by multiplying QF[0][0] by a constant multiplier,

The reconstructed DC values are computed as follows.

F’’[0][0] = dc_scaler* QF[0][0]

3.4.6.3.2	Other coefficients

All coefficients other than the DC coefficient of an intra block shall be inverse quantised as specified in this clause.

3.4.6.4	Weighting matrices

Two weighting matrices are used. One shall be used for intra macroblocks and the other for non-intra macroblocks. Each matrix has a default set of values which may be overwritten by down-loading a user defined matrix.

Let the weighting matrices be denoted by W[w][v][u] where w takes the values 0 to 1 indicating which of the matrices is being used. W[0][v][u] is for intra macroblocks, and W[1][v][u] is for non-intra macroblocks.

3.4.6.4.1	Reconstruction formulae

The following equation specifies the arithmetic to reconstruct F''[v][u] from QF[v][u] (for all coefficients except intra DC coefficients).

�

NOTE -	The above equation uses the “/” operator as defined in 4.1.

3.4.6.5	Saturation

The coefficients resulting from the Inverse Quantisation Arithmetic are saturated to lie in the range �. Thus:

�

3.4.6.6	Mismatch control

Mismatch control shall be performed by any process equivalent to the following. Firstly all of the reconstructed, saturated coefficients, F'[v][u] in the block shall be summed. This value is then tested to determine whether it is odd or even. If the sum is even then a correction shall be made to just one coefficient; F[7][7]. Thus:

�

NOTES -

1	It may be useful to note that the above correction for F[7][7] may simply be implemented by toggling the least significant bit of the twos complement representation of the coefficient. Also since only the “oddness” or “evenness” of the sum is of interest an exclusive OR (of just the least significant bit) may be used to calculate “sum”.

2	Warning. Small non-zero inputs to the IDCT may result in zero output for compliant IDCTs. If this occurs in an encoder, mismatch may occur in some pictures in a decoder that uses a different compliant IDCT. An encoder should avoid this problem and may do so by checking the output of its own IDCT. It should ensure that it never inserts any non-zero coefficients into the bitstream when the block in question reconstructs to zero through its own IDCT function. If this action is not taken by the encoder, situations can arise where large and very visible mismatches between the state of the encoder and decoder occur.

3.4.6.7	Summary

In summary the inverse quantisation process is any process numerically equivalent to:

for (v=0; v<8;v++) {

	for (u=0; u<8;u++) {

		if ((u==0) && (v==0) && (macroblock_intra)) {

			F''[v][u] = dc_scaler * QF[v][u];

		} else {

			if (macroblock_intra) {

				F''[v][u] = (QF[v][u] * W[0][v][u] * quantiser_scale * 2) / 32;

			} else {

				F''[v][u] = (((QF[v][u] * 2) + Sign(QF[v][u])) * W[1][v][u]

													* quantiser_scale) / 32;

			}

		}

	}

}

sum = 0;

for (v=0; v<8;v++) {

	for (u=0; u<8;u++) {

		if (F’'[v][u] > 2047) {

			F’[v][u] = 2047;

		} else {

			if (F’'[v][u] < -2048) {

				F’[v][u] = -2048;

			} else {

				F’[v][u] = F'‘[v][u];

			}

		}

	sum = sum + F’[v][u];

	F[v][u] = F’[v][u];

	}

}

if ((sum & 1) == 0) {

	if ((F[7][7] & 1) != 0) {

		F[7][7] = F'[7][7] - 1;

	} else {

		F[7][7] = F'[7][7] + 1;

	}

}

3.4.7	Intra DC and AC Prediction for I-VOP and P-VOP

3.4.7.1	Adaptive DC Prediction

The adaptive DC prediction method of this VM involves selection of either the QDC value of immediately previous block or that of the block immediately above it (in the previous row of blocks). This adaptive selection of the DC prediction direction is based on comparison of the horizontal and vertical QDC value gradients around the block whose QDC value is to be coded.

� REF _Ref392495266 �Figure 38� shows three surrounding blocks to the block whose QDC value is to be coded. Assume, ‘X’, ‘A’, ‘B’ and ‘C’ correspondingly refer to the current block, the previous block, the block above and to the left, and the block immediately above as shown.

�

Figure � SEQ Figure * ARABIC �38� Previous neighboring blocks used in DC prediction

The dc values ‘dc’ obtained after DCT are first quantized by 8 to generate ‘QDC’ values.

QDC=dc//8

The QDC value of block ‘X’, QDCX, is predicted by either the QDC value of block ‘A’, QDCA, or the QDC value of the block ‘C’, QDCC, based on the comparison of horizontal and vertical gradients as follows.

if (|QDCA - QDCB| < |QDCB - QDCC|)

	QDCX’ = QDCC

else

	QDCX’ = QDCA

The differential DC is then obtained by subtracting the DC prediction, QDCX’ from QDC of block ‘X’.

DC prediction the following For simple rules are used:

If any of the blocks A, B or C are outside of the VOP boundary, or they do not belong to an intra coded macroblock, their QDC values are assumed to take a value of 2(bits_per_pixel-1). and are used to compute prediction values.

In context of computing QDC prediction for block ‘X’, if the absolute value of a horizontal gradient (|QDCA - QDCB|) is less than the absolute value of a vertical gradient (|QDCB - QDCC|), then the prediction is the QDC value of block ‘C’, otherwise, QDC value of block ‘A’ is used for prediction. This process is independently repeated for every block of a macroblock using appropriate immediately horizontally adjacent block ‘A’ and immediately vertically adjacent block ‘C’.

DC predictions are performed similarly for the luminance and each of the two chrominance components.

3.4.7.2	Adaptive AC Coefficient Prediction

3.4.7.2.1	Prediction of First Row or First Column of AC Coefficients

Either coefficients from the first row or the first column of a previous coded block are used to predict the co-sited coefficients of the current block. On a block basis, the best direction (from among horizontal and vertical directions) for DC coefficient prediction is also used to select the direction for AC coefficients prediction; thus, within a macroblock, for example, it becomes possible to predict each block independently from either the horizontally adjacent previous block or the vertically adjacent previous block. The AC coefficients prediction is ilustrated in � REF _Ref392495287 �Figure 39�.

�

Figure � SEQ Figure * ARABIC �39� Previous neighboring blocks and coefficients used in AC prediction

3.4.7.2.2	Q-step Scaling

To compensate for differences in the quantization of previous horizontaly adjacent or vertically adjacent blocks used in AC prediction of the current block, scaling of prediction coefficients becomes necessary. Thus the prediction is modified so that the predictor is scaled by the ratio of the current quantisation stepsize and the quantisation stepsize of the predictor block. The definition is given in the equations below.

If block ‘A’ was selected as the predictor for the block for which coefficient prediction is to be performed, we calculate the horizontal AC prediction as follows.

�EMBED Equation.3���

If block ‘C’ was selected as the predictor for the block for which coefficient prediction is to be performed, we calculate the vertical AC prediction as follows.

�EMBED Equation.3���

If block ‘A’ or block ‘C’ are outside of the VOP, then the corresponding QP values are assumed to be equal to QPx.

3.4.7.2.3	AC Prediction Enable/Disable Mode Decision (ACpred_Flag)

In the cases when AC coefficient prediction results in a larger magnitude error signal as compared to the original signal, it is desirable to disable AC prediction. However, the overhead is excessive if AC prediction is switched on or off every block so AC prediction switching is performed on macroblock basis.

If block ‘A’ was selected as the predictor for the block for which coefficient prediction is to be performed, we calculate a criterion, S, as follows.

�EMBED Equation.3���

If block ‘C’ was selected as the DC predictor for the block for which coefficient prediction is to be performed, we calculate S as follows.

�EMBED Equation.3���

Next for all blocks in the macroblock for which a common decision is to be made, a single (S is calculated and the ACpred_flag is either set/ reset to enable/disable AC prediction as follows.

if ((S (0)	ACpred_flag=1	(enable AC Prediction)

else		ACpred_flag=0 	(disable AC Prediction)

For AC prediction the following simple rules are used:

If any of the blocks A, B or C are outside of the VOP boundary or are do not belong to an intra coded macroblock, their QAC values are assumed to take a value of 0 and are used to compute prediction values.

AC predictions are performed similarly for the luminance and each of the two chrominance components using the direction identified by the corresponding direction of DC prediction.

The process for ac_dc_ prediction for alpha plane is similar to that of texture as described above.

3.4.8	VLC encoding of quantized transform coefficients

3.4.8.1	VLC encoding of intra Mbs

Two scans in addition to the zigzag scan are employed; all three scans are shown in � REF _Ref392495336 �Figure 40�.

For intra predicted blocks, if ACpred_flag=0, zigzag scan is selected for all blocks in a macroblock, otherwise, DC prediction direction is used to select a scan on block basis. For instance if the DC prediction refers to the horizontally adjacent block, alternate-vertical scan is selected for the current block, otherwise (for DC prediction referring to vertically adjacent block), alternate-horizontal scan is used for the current block.

For non intra blocks, the 8x8 blocks of transform coefficients are scanned with “zigzag” scanning as listed in � REF _Ref392495336 �Figure 40�.

0�1�2�3�10�11�12�13��0�4�6�20�22�36�38�52��0�1�5�6�14�15�27�28��4�5�8�9�17�16�15�14��1�5�7�21�23�37�39�53��2�4�7�13�16�26�29�42��6�7�19�18�26�27�28�29��2�8�19�24�34�40�50�54��3�8�12�17�25�30�41�43��20�21�24�25�30�31�32�33��3�9�18�25�35�41�51�55��9�11�18�24�31�40�44�53��22�23�34�35�42�43�44�45��10�17�26�30�42�46�56�60��10�19�23�32�39�45�52�54��36�37�40�41�46�47�48�49��11�16�27�31�43�47�57�61��20�22�33�38�46�51�55�60��38�39�50�51�56�57�58�59��12�15�28�32�44�48�58�62��21�34�37�47�50�56�59�61��52�53�54�55�60�61�62�63��13�14�29�33�45�49�59�63��35�36�48�49�57�58�62�63��Figure � SEQ Figure * ARABIC �40� (a) Alternate-Horizontal scan (b) Alternate-Vertical (MPEG-2) scan(c) Zigzag scan

A three dimensional variable length code is used to code transform coefficients. An EVENT is a combination of three parameters:

LAST		0: There are more nonzero coefficients in the block.

		1: This is the last nonzero coefficient in the block.

RUN		Number of zero coefficients preceding the current nonzero coefficient.

LEVEL	Magnitude of the coefficient.

The most commonly occurring combinations of (LAST, RUN, LEVEL) are coded with variable length codes given in Appendix B. The remaining combinations of (LAST, RUN, LEVEL) are coded with a 22 bit word consisting of :

ESCAPE	7 bit

LAST	1 bit	(0: Not last coefficient, 1: Last nonzero coefficient)

RUN		6 bit

LEVEL	8 bit

The code words for these fixed length ESCAPE codes are described in Appendix A

For Intra macroblock chroma AC Coefficients, the VLC used is the same as that used for Intra AC luminance coefficients

(VLC tables � REF _Ref392511022 �Table 62�, � REF _Ref392511037 �Table 63� label needs to be modified).

3.4.8.2	Intra DC Coefficient Coding by Switching between DC Intra VLC and AC Intra VLC

At the VOP layer, using quantizer value as the threshold, a 3 bit code (intra_dc_vlc_thr) allows switching between 2 VLCs (DC Intra VLC and AC Intra VLC) when coding DC coefficients of Intra macroblocks

intra_dc_vlc_thr		3	uimsbf

intra dc_vlc_thr is a 3-bit code allows a mechanism to switch between two VLC’s for coding of Intra DC coefficients as per the following table.

index�intra_dc_vlc_thr meaning�code��0�Use Intra DC VLC for entire VOP�000��1�Switch to Intra AC VLC at running Qp >=13�001��2�Switch to Intra AC VLC at running Qp >=15�010��3�Switch to Intra AC VLC at running Qp >=17�011��4�Switch to Intra AC VLC at running Qp >=19�100��5�Switch to Intra AC VLC at running Qp >=21�101��6�Switch to Intra AC VLC at running Qp >=23�110��7�Use Intra AC VLC for entire VOP�111��Table � SEQ Table * ARABIC �10� Meaning of intra_dc_vlc_thr

Where running Qp is defined as Qp value used for immediately previous coded macroblock.

Note: When the intra AC-VLC is turned on, INTRA-DC transform coefficients are not handled separately any more, but treated the same as all AC coefficients. That means a zero INTRA-DC will not be coded but will simply increase the run for the following AC-coefficients. The definitions of MCBPC and CBPY in paragraph � REF _Ref392511757 \r �4.8� are changed accordingly.

3.4.8.3	VLC encoding of inter MBs

The 8x8 blocks of transform coefficients are scanned with “zigzag” scanning as listed in � REF _Ref372307172 * MERGEFORMAT �Figure 41�.

1�2�6�7�15�16�28�29��3�5�8�14�17�27�30�43��4�9�13�18�26�31�42�44��10�12�19�25�32�41�45�54��11�20�24�33�40�46�53�55��21�23�34�39�47�52�56�61��22�35�38�48�51�57�60�62��36�37�49�50�58�59�63�64��Figure � SEQ Figure * ARABIC �41�: Zigzag scanning pattern.

A three dimensional variable length code is used to code transform coefficients. An EVENT is a combination of three parameters:

LAST		0: There are more nonzero coefficients in the block.

		1: This is the last nonzero coefficient in the block.

RUN		Number of zero coefficients preceding the current nonzero coefficient.

LEVEL	Magnitude of the coefficient.

The most commonly occurring combinations of (LAST, RUN, LEVEL) are coded with variable length codes given in Appendix A. The remaining combinations of (LAST, RUN, LEVEL) are coded with a 22 bit word consisting of :

ESCAPE	7 bit

LAST	1 bit	(0: Not last coefficient, 1: Last nonzero coefficient)

RUN		6 bit

LEVEL	8 bit

The code words for these fixed length ESCAPE codes are described in section � REF _Ref392495426 \r �6�.

3.5	Prediction and Coding of B-VOPs

Macroblocks in B-VOPs can be coded either using H.263 like B-block coding or by MPEG-1 like B-picture macroblock coding. The main difference is in the amount of motion vector and quantization related overhead needed. The MBTYPE with H.263 like B-block coding is referred to as direct prediction, besides which, the forward, the backward and the interpolated prediction modes of MPEG-1 B-pictures are supported. The syntax and semantics for macroblock and block layer for B-VOPs are presented in section � REF _Ref392495456 \r �6�.The encoding issues for B-VOPs are discussed next.

3.5.1	Direct Coding

This coding mode uses direct bidirectional motion compensation derived by extending H.263 approach of employing P-picture macroblock motion vectors and scaling them to derive forward and backward motion vectors for macroblocks in B-picture. This is the only mode which makes it possible to use motion vectors on 8x8 blocks, of course, this is only possible when the co-located macroblock in the following P-VOP uses 8x8 MV mode. As per H.263, using B-frame syntax, only one delta motion vector is allowed per macroblock. � REF _Ref364783965 * MERGEFORMAT �Figure 42� shows scaling of motion vectors.

The first extension of the H.263 approach is that bidirectional predictions can be made for a full block/macroblock as in MPEG-1. The second extension of H.263 is that instead of allowing interpolation of only one intervening VOP, more than one VOPs can be interpolated. Of course, if the prediction is poor due to fast motion or large interframe distance, other motion compensation modes can be chosen.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �42�: Direct Bidirectional Prediction

3.5.1.1	Calculation of vectors

The calculation of forward and backward motion vectors involves linear scaling of the collocated block in temporally next P-VOP, followed by correction by a delta vector, and is thus practically identical to the procedure followed in H.263. The only slight change is that here we are dealing with VOPs instead of pictures, and instead of only a single B-picture between a pair of reference pictures, multiple B-VOPs are allowed between a pair of reference VOPs. As in H.263, the temporal reference of the B-VOP relative to difference in the temporal reference of the pair of reference VOPs is used to determine scale factors for computing motion vectors which are corrected by the delta vector. Furthermore, colocated Mbs are defined as Mbs with the same index when possible, otherwise the direct mode is not used.

The forward and the backward motion vectors are MVF and MVB and are given in half or quarter sample units (depending on the value of the quarter_sample flag) as follows.

	MVF = (TRB x MV) / TRD + MVD

	MVB = ((TRB - TRD) x MV) / TRD if MVD is equal to 0

	MVB = MVF - MV 	if MVD is not equal to 0

Where MV is the direct motion vector of a macroblock in P-VOP with respect to a reference VOP, TRB is the difference in temporal reference of the B-VOP and the previous reference VOP. TRD is the difference in temporal reference of the temporally next reference VOP with temporally previous reference VOP, assuming B-VOPs or skipped VOPs in between.

3.5.1.2	Generating Prediction Block

The process of generating a prediction block is fairly trivial and simply consists of using computed forward and backward motion vectors to obtain appropriate blocks from reference VOPs and averaging these blocks. Irrespective of whether the direct prediction motion vectors are derived by scaling of a single motion vector or four 8x8 motion vectors per block, motion compensation is performed individually on 8x8 blocks to generate a macroblock. In case for a macroblock only a single motion vector was available to compute direct prediction motion vector, it is simply repeated for each of the 8x8 blocks forming the macroblock. The main difference with H.263 is that there are no constraints in the amount of region within a block that can be bidirectionally predicted; each entire macroblock can be bidirectionally predicted. It should be noted that if if the next reference VOP is an I-VOP instead of a P-VOP, then the MV vectors are by default ‘0’. Therefore, the direct mode need not be disabled for the B-VOPs before the I-VOP.

The direct coding mode does not allow quantizer change and thus the quantizer value for previous coded macroblock is used.

3.5.1.3	Interlaced Direct Coding Mode

Progressive direct coding mode is used whenever the macroblock at the same location in the future anchor picture is coded as (1) a 16x16 (frame) macroblock, (2) an intra macroblock or (3) an 8x8 (advanced prediction) macroblock. The extension to interlaced video described below is used whenever the corresponding macroblock of the future anchor VOP is a field motion compensated macroblock.

Interlaced direct mode forms the prediction macroblock separately for the top and bottom fields. The four field motion vectors of a bi-directional field motion compensated macroblock are calculated from the motion vectors of the corresponding macroblock of the future anchor picture. Once the motion vectors and reference field are determined, the macroblock is considered to be a bi-directional field predicted macroblock. Only one delta motion vector (used for both fields) occurs in the bitstream for the field predicted macroblock.

The top field prediction is based on the top field motion vector of the P-VOP macroblock of the future anchor picture. The past reference field is the reference field selected by the corresponding macroblock of the future anchor picture for the top field. Analogously, the bottom field predictor is the average of pixels obtained from the future anchor’s bottom field and the past anchor field referenced by the bottom field motion vector of the corresponding macroblock of the future anchor picture.

�EMBED Word.Picture.8���

The motion vectors for field i (top or bottom) are calculated by

MVf,i = (TRB,I * MVi) / TRD,I + MVD�MVb,I = (MVD == 0) ? (((TRB - TRD) * MVi) / TRD,I) : (MVf,I - MVi)

All of the MVs are 2 dimensional vectors. The definition of the quantities above are

MVf,I	Forward motion vector for field i. The reference field is the reference field of MVi.

MVb,I	Backward motion vector for field i. The reference field is i.

MVi	Field motion for field i of the macroblock at the same location as the current macroblock in the future anchor VOP (note that the future anchor VOP is always a P-VOP for field direct mode; if the future anchor was an I-VOP, the motion vector would be 0 and 16x16 progressive direct mode would be used).

TRB,i	Temporal distance in fields between the past reference field for field i and field i of the current B-VOP.

TRD,i	Temporal distance in fields between the past reference field and the future reference field for the current VOP’s field i.

The calculation of TRB,i and TRD,i depends not only on the current field, reference field, and frame temporal references, but also on whether the current video is top field first or bottom field first.

	TRD,i = 2*(TRfuture - TRpast) + (�	TRB,i = 2*(TRcurrent - TRpast) + (

where TRfuture, TRcurrent, and TRpast are the frame number of the future, current and past frames in display order, and (is given by the following table:

�Top field first�Bottom field first��Top field reference�Bottom field reference�Top field (�Bottom field (�Top field (�Bottom field (��0�0�0�-1�0�1��0�1�0�0�0�0��1�0�1�-1�-1�1��1�1�1�0�-1�0��Both interlaced and progressive direct coding modes do not allow quantizer change and thus the quantizer value for previous coded macroblock is used.

3.5.2	Forward Coding

Forward coding mode uses forward motion compensation in the same manner as in MPEG-1/2 with the difference that a VOP is used for prediction instead of a picture. Only one motion vector in half or quarter sample units is employed for a 16x16 macroblock being coded. Chrominance vectors are derived by scaling of luminance vectors as in MPEG-1/2, but are restricted to half sample accuracy.

This coding mode also allows switching of quantizer from the one previously in use. Specification of DQUANT, a differential quantizer involves a 2-bit overhead as discussed earlier.

3.5.3	Backward Coding

Backward coding mode uses backward motion compensation in the same manner as in MPEG-1/2 with the difference that a VOP is used for prediction instead of a picture. Only one motion vector in half or quarter sample units is employed for a 16x16 macroblock being coded. Chrominance vectors are derived by scaling of luminance vectors as in MPEG-1/2, but are restricted to half sample accuracy.

This coding mode also allows switching of quantizer from the one previously in use. Specification of DQUANT, a differential quantizer involves a 2-bit overhead as discussed earlier.

3.5.4	Bidirectional Coding

Bidirectional coding mode uses interpolated motion compensation in the same manner as in MPEG-1/.2 with the difference that a VOP is used for prediction instead of a picture. Two motion vectors in half or quarter sample units are employed for a 16x16 macroblock being coded. Chrominance vectors are derived by scaling of luminance vectors as in MPEG-1/2, but are restricted to half sample accuracy.

This coding mode also allows switching of quantizer from the one previously in use. Specification of DQUANT, a differential quantizer involves a 2-bit overhead as discussed earlier

3.5.5	Mode Decisions

Since, in B-VOPs, a macroblock can be coded in one of the four modes, we have to decide which mode is the best. At the encoder, motion compensated prediction is calculated by each of the four modes. Next, using each of the motion compensated prediction macroblocks SAD (sum of absolute differences) is computed between it and the macroblock to be coded. The MBTYPE mode is selected as follows

	if (SADdirect -NB/2+1 <= min{SADinterpolate, SADbackward, SADforward})

		direct mode

	else if (SADinterpolate <= min{SADinterpolate, SADbackward, SADforward})

		interpolate mode

	else if (SADbackward <= min{SADinterpolate, SADbackward, SADforward})

		backward mode

	else

		forward mode

For interlaced B-VOPs, a macroblock can be coded using (1) direct coding, (2) 16x16 motion compensated (includes forward, backward & bidirectional modes), or (3) field motion compensation (includes forward, backward & bidirectional modes). The decision regarding coding mode of the macroblock is based on the minimum luminance SADs with respect to the decoded anchor pictures:

SADdir+b1,SADfor+b2,SADfor,fld+b3,SADbak+b2,SADbak,fld+b3,SADave+b3,SADave,fld+b4

where the subscripts ‘dir’, ‘for’, ‘bak’, ‘ave’ and ‘fld’ stand for direct mode, forward motion prediction, backward motion prediction, average (i.e., interpolated or bidirectional) motion prediction and field mode. The field SADs above are the sums of the top and bottom field SADs each with its own reference field and motion vector. The bi’s are bias values for the purpose of discriminating against the prediction modes which require more motion vectors:

Mode�Nbr of MVs�bi�Bias��Direct�1�b1�-(Nb/2 + 1)��Frame Fwd�1�b2�0��Frame Bak�1�b2�0��Frame Ave�2�b3�(Nb/2 + 1)��Field Fwd�2�b3�(Nb/2 + 1)��Field Bak�2�b3�(Nb/2 + 1)��Field Ave�4�b4�(Nb/1 + 1)��3.5.6	Motion Vector Coding

Motion vectors are to be coded differentially. Only vectors that are used for the selected prediction mode are actually coded. For forward and backward motion vectors in forward, backward and bidirectional mode the left neighboring vector of the same direction type is used as predictor. In case the current macroblock is located on the left edge of the VOP or no vector of the same direction type is present, the predictor is set to zero.

For interlaced B-VOP motion vector predictors, four prediction motion vectors (PMVs) are used:

Function�PMV��Top field forward�0��Bottom field forward�1��Top field backward�2��Bottom field backward�3��Table � SEQ Table * ARABIC �11�

These PMVs are used as follows for the different macroblock prediction modes:

Macroblock mode�PMVs used��Direct�none��Frame forward�0��Frame backward�2��Frame bidirectional�0,2��Field forward�0,1��Field backward�2,3��Field bidirectional�0,1,2,3��The PMVs used by a macroblock are set to the value of current macroblock motion vectors after being used. The prediction motion vectors are reset to zero at the beginning of each row of macroblocks. The predictors are not zeroed by skipped macroblocks or direct mode macroblocks.

For macroblocks coded in direct bidirectional mode no vector differences are transmitted. Instead, the forward and backward motion vectors are directly computed from the temporally consecutive P-vector as described in section � REF _Ref392495639 \r �3.5.1�. Additionally a single delta vector can be transmitted for direct mode. This vector is not predicted but directly applied to the equations in section � REF _Ref392495666 \r �3.5.1�.

3.6	Error Resilience

3.6.1	Introduction

MPEG-4 provides error robustness and resilience to allow accessing image or video information over a wide range of storage and transmission media. The error resilience tools developed for MPEG-4 can be divided into three major areas. These areas or categories include resynchronization, data recovery, and error concealment. It should be noted that these categories are not unique to MPEG-4, but instead have been used by many researchers working in the area error resilience for video. It is, however, the tools contained in these categories that are of interest, and where MPEG-4 makes its contribution to the problem of error resilience.

3.6.1.1	Resynchronization

Resynchronization tools, as the name implies, attempt to enable resynchronization between the decoder and the bitstream after a residual error or errors have been detected. Generally, the data between the synchronization point prior to the error and the first point where synchronization is reestablished, is discarded. If the resynchronization approach is effective at localizing the amount of data discarded by the decoder, then the ability of other types of tools which recover data and/or conceal the effects of errors is greatly enhanced.

The resynchronization approach adopted by MPEG-4, referred to as a packet approach, is similar to the Group of Blocks (GOBs) structure utilized by the ITU-T standards of H.261 and H.263. In these standards a GOB is defined as one or more rows of macroblocks (MB). At the start of a new GOB, information called a GOB header is placed within the bitstream. This header information contains a GOB start code, which is different from a picture start code, and allows the decoder to locate this GOB. Furthermore, the GOB header contains information which allows the decoding process to be restarted (i.e., resynchronize the decoder to the bitstream and reset all coded data that is predicted).

The GOB approach to resynchronization is based on spatial resynchronization. That is, once a particular macroblock location is reached in the encoding process, a resynchronization marker is inserted into the bitstream. A potential problem with this approach is that since the encoding process is variable rate, these resynchronization markers will most likely be unevenly spaced throughout the bitstream. Therefore, certain portions of the scene, such as high motion areas, will be more susceptible to errors, which will also be more difficult to conceal.

The video packet approach adopted by MPEG-4, is based on providing periodic resynchronization markers throughout the bitstream. In other words, the length of the video packets are not based on the number of macroblocks, but instead on the number of bits contained in that packet. If the number of bits contained in the current video packet exceeds a predetermined threshold, then a new video packet is created at the start of the next macroblock.

A resynchronization marker is used to distinguished the start of a new video packet. This marker is distinguishable from all possible VLC code words as well as the VOP start code. Header information is also provided at the start of a video packet. Contained in this header is the information necessary to restart the decoding process and includes: the macroblock number of the first macroblock contained in this packet and the quantization parameter necessary to decode that first macroblock. The macroblock number provides the necessary spatial resynchronization while the quantization parameter allows the differential decoding process to be resynchronized. It should be noted that when utilizing the error resilience tools within MPEG-4, some of the compression efficiency tools are modified. For example, all predictively encoded information must be confined within a video packet so as to prevent the propagation of errors.

In conjunction with the video packet approach to resynchronization, a second method called fixed interval synchronization has also been adopted by MPEG-4. This method requires that VOP start codes and resynchronization markers (i.e., the start of a video packet) appear only at legal fixed interval locations in the bitstream. This helps to avoid the problems associated with start codes emulations. That is, when errors are present in a bitstream it is possible for these errors to emulate a VOP start code. In this case, when fixed interval synchronization is utilized the decoder is only required to search for a VOP start code at the beginning of each fixed interval. The fixed interval synchronization method extends this approach to be any predetermined interval.

3.6.1.2	Data Recovery

After synchronization has been reestablish, data recovery tools attempt to recover data that in general would be lost. These tools are not simply error correcting codes, but instead techniques which encode the data in an error resilient manner. For instance, one particular tool that has been endorsed by the Video Group is Reversible Variable Length Codes (RVLC). In this approach, the variable length code words are designed such that they can be read both in the forward as well as the reverse direction. Examples of such code words are 111, 101, 010. Code words such as 100 would not be used. Obviously, this approach reduces the compression efficiency achievable by the entropy encoder. However, the improvement in error resiliency is substantial.

An example illustrating the use of a RVLC is given in Figure XX. Generally, in a situation such as this, where a burst of errors has corrupted a portion of the data, all data between the two synchronization points would be lost. However, as shown in Figure XX , an RVLC enables some of that data to be recovered. It should be noted that the parameters, QP and HEC shown in Figure XX, represent the fields reserved in the video packet header for the quantization parameter and the header extension code, respectively.

�

Figure XX

3.6.1.3	Error Concealment

Error concealment is an extremely important component of any error robust video codec. Similar to the error resilience tools discussed above, the effectiveness of a error concealment strategy is highly dependent on the performance of the resynchronization scheme. Basically, if the resynchronization method can effectively localize the error then the error concealment problem becomes much more tractable. For low bitrate, low delay applications the current resynchronization scheme provides very acceptable results with a simple concealment strategy, such as copying blocks from the previous frame.

In recognizing the need to provide enhanced concealment capabilities, the Video Group has developed an additional error resilient mode that further improves the ability of the decoder to localize an error.

Specifically, this approach utilizes data partitioning by separating the motion and the texture. This approach requires that a second resynchronization marker be inserted between motion and texture information. If the texture information is lost, this approach utilizes the motion information to conceal these errors. That is, due to the errors the texture information is discarded, while the motion is used to motion compensate the previous decoded VOP.

3.6.2	Recommended Modes of Operation

There are several different error resilience options available within the VM. These options, when used in various combinations, form different modes of error resilience operation. A summary of these various modes and their corresponding parameter settings are provided in Table X.3. A detailed description of the various error resilient modes and tools is provided in the remaining sections.

3.6.2.1	Low Complexity Mode

The low complexity mode of operation is provided as the basic mode of error resilience. The resynchronization marker, which is mandatory, provides resynchronization capabilities as well as the ability to verify that a video packet has received without errors. The RVLCs are optional in this mode. It is has been reported that the error detection capabilities (i.e., the decoder has a higher probability of receiving an illegal code word when errors are present) of the RVLC is better than the standard VLCs. Therefore, even though reverse decoding would not be performed the RVLC

Table X.3 Summary of Error Resilience Modes of operation

Mode�VOP Type�Resync Marker�RVLC�Data Partitioning

(Motion Marker)��Low

Complexity�I-VOP

P-VOP�X

X�x

x�Not Used

Not Used��Medium

Complexity�I-VOP

P-VOP�X

X�x

x�X

X��High

 Complexity�I-VOP

P-VOP�X

X�X

X�X

X��X - indicates that the error resilience tool is mandatory. x indicates that the error resilience tool is optional.

would still be utilized. Data partitioning would not be used in this mode. The following parameter settings must be made in order to utilize this mode:

At VOL:

error_resilience_disabled = 0

data_partitioning = 0

reversible_VLC = optional

3.6.2.2	Medium Complexity Mode

The medium complexity mode of operation differs from the low complexity mode in that it utilizes data. That is, within each video packet, the motion data is separated from the texture data (this mode may also include shape). The boundary between the motion and texture information is identified through an additional marker called a “motion marker”. Additional error resilience over the low complexity mode is obtained, since the motion information becomes better isolated from errors which can cause it to become corrupted. If the texture information is corrupted the corresponding motion data can be used for motion compensated concealment.

In this mode, the resynchronization marker is also mandatory. Again, do to their improved error detection capabilities, the RVLCs are available as an option in this mode. Since data partitioning is to be used, a motion marker will be inserted into the bitstream after the motion information. The following parameter settings must be made in order to utilize this mode:

At VOL:

error_resilience_disabled = 0

data_partitioning = 1

reversible_VLC = optional

3.6.2.3	High Complexity Mode

The high complexity mode of operation utilizes all of the possible error resilience options. That is, in this mode the resynchronization marker, RVLC and data partitioning are all mandatory. It should be noted however, that this mode can still be successfully decoded by the decoder independent of whether it can decode the RVLCs in the reverse direction. The following parameter settings must be made in order to utilize this mode:

At VOL:

error_resilience_disabled = 0

data_partitioning = 1

reversible_VLC = 1

3.6.2.4	Error Resilience Encoding Tools

3.6.2.4.1	Resynchronization Markers

When the “error_resilience_disabled” flag is set to zero, then a resync_marker field should be inserted by the encoder before the first macroblock after the number of bits output since the last resync_marker field exceeds a predetermined value. The value that should be used for this spacing is dependent on the anticipated error conditions of the transmission channel and compressed data rate. Suggested values for this spacing are provided in Table X.1. These values were determined through experimentation and provide good results across a wide range of error conditions. Specifically, the exact error conditions used to determine these suggested spacings are provided in Table X.2. It is highly recommended that users of MPEG-4’s error resilient tools adjust this spacing of the resynchronization markers to fit the error conditions of their particular channel.

Table X.2 Suggested Resynchronization Marker Spacing

Bit Rate (kbit/s)�Spacing (bits)��0-24�480��25-48�736��49-128�1500��128-512�TBD��512-1000�TBD��

Table X.2 Residual Error Conditions utilized in Error Resilient Core Experiments

Case No.�Error Condition��1�Random errors, with BER 10E-2 and 10E-3

��2�Burst errors, using a 2 state Markov model. Average BER 10E-2 and 10E-3, BER during error burst 10E-1, average burst length 1 ms and 10 ms.

��3�Random packet loss, with packet length 100, 200 or 400 bits, and packet loss rate 10E-2 and 10E-3.��

A brief explanation as to the basis for these particular error conditions is as follows. In case 1, the errors are simply being passed on to the video layer by the multiplexer. This might arise in the case of a wireless channel where extensive interleaving is performed by the network. Case 2 is representative of the errors caused by a fading wireless channel, where the multiplex is able to successfully decode its packet headers. Case 3 models the situation where the multiplex is unable to decode a packet header, and hence the whole of the data in a multiplex packet is lost. This case is also representative of packet losses caused by time-outs that might occur in an internet application.

As shown in Figure XX, in addition to the resync marker field the encoder also inserts a field indicating the current macroblock address or number, macroblock_number, a field indicating the current quantization parameter, quant_scale, and a Header Extension Code, HEC. When HEC is set to 1, the VOP_Temporal_Incr, and VOP_modulo_time are included in the resynchronization header. This additional information is provided to the decoder in case the VOP start_code is corrupted. This additional information enables the decoder to determine which VOP a resync packet belongs to.

3.6.2.4.2	Data Partitioning

When the “data_partitioning” flag is set 1, then in addition to the resync_marker fields, macroblock_number, quant_scale and HEC, a motion_marker field is inserted after the motion data (before the beginning of the texture data). This motion_marker field is unique from the motion data and enables the decoder to determine when all the motion information has been received correctly.

3.6.2.4.3	Reversible VLCs

If the Reversible_VLC flag is enabled then the texture data should be encoded using the reversible VLCs provided in Appendix B (please see Section 4.8.2 for additional syntax details). The use of reversible VLCs enables the decoder to recover additional texture information in the presence of errors. This is accomplished by first detecting the error and searching forward to the next resync_marker, once this point is determined the texture data can be read in the reverse direction until an error is detected. When errors are detected in the texture data, the decoder can use the correctly decoded motion vector information to perform motion compensation and conceal these errors.

3.6.2.5	Decoder Operation

When an error is detected in the bitstream, the decoder should resynchronize at the next suitable resynchronization point. Where a VOP header is missed or received with obvious errors, this should be the next VOP start code. Otherwise, the next resynchronization point in the bitstream should be used.

Under the following error conditions, the baseline decoder should resynchronize at the next resynchronization point in the bitstream:

An illegal VLC is received.

More than 64 DCT coefficients are decoded in a single block.

Inconsistent resynchronization header information (i.e., QP out of range, MBN(k) < MBN(k-1), etc.)

Resynchronization marker is corrupted.

Under the following error conditions, the decoder should resynchronize at the next VOP header:

VOP start code corrupted.

For other resynchronization techniques, conditions for error detection and resynchronization should be as close as possible to those outlined above.

Missing blocks should be replaced with the same block from the previous frame.

3.7	Rate Control

Rate control and buffer regulation is an important issue for both VBR and CBR applications. In the case of VBR encoding, the rate controller attempts to achieve optimum quality for a given target rate. In the case of CBR encoding and real-time application, the rate control scheme has to satisfy the low-latency and VBV buffer constraints. In addition, the rate control scheme has to be applicable to a wide variety of sequences and bit rates.

The VM scalable rate control (SRC) scheme is designed to meet both VBR without delay constraints and CBR with low-latency and buffer constraints. The VM5.1 SRC scheme is scalable for various bit rates (e.g. 10kbps to 1Mbps), various spatial resolutions (e.g. qcif to cif) and various temporal resolutions(e.g. 7.5fps to 30fps) and various coders (e.g. DCT and wavelet). The technique is based on [MPEG 95/0436, MPEG 96/1109]. VM rate control is for single VO, and extensions to M-VOs and other improvements are being addressed in the Core Experiment Q2. The rate control in [MPEG 95/0436] handles I, P, and B pictures. The current description in this version only contains I and P pictures.

The SRC scheme assumes that the encoder rate distortion function can be modeled as

R=X1*S*Q**(-1)+X2*S*Q**(-2)

The encoding bit count is denoted as R. The encoding complexity which is sum of absolute difference (SAD) is denoted as S. The quantization parameter is denoted as Q. The modeling parameters are denoted as X1 and X2. Because of the generality of the assumption, the VM scalable rate control scheme is applicable to a variety of bit rates, spatial resolutions, temporal resolutions, buffer constraints and types of coders.

There are four steps in the SRC scheme:

1). Initialization

·	X1 and X2 are the first and second order coefficients.

2). Computation of the target bit rate before encoding.

·	The target bit rate is computed based on the bits available and the last encoded frame bits. If the last frame is complex and uses excessive bits, more bits should be assigned to this frame. However, there are less bits left for encoding. Thus, less bits can assigned to this frame. A weighted average reflects a compromise of these two factors.

·	A lower bound of target rate (R/30) is used so that minimal quality is guaranteed.

·	The target rate is adjusted according to the buffer status to prevent both overflow and underflow.

3). Computation of the quantization parameters(QP) before encoding.

·	QP is solved based on the model parameters X1 and X2.

·	QP is clipped between 1 and 31.

·	QP is limited to vary within 25 percent of the previous QP to maintain a VBR quality.

4). After encoding model parameters is updated based on the encoding results of the current frame.

·	The rate distortion model is updated based on the encoding results of the current frame. The bits used for the header and the motion vectors are deducted since they are not related to QP.

·	The data points are selected using a window whose size depends on the change in complexity. If the complexity changes significantly, a smaller window with more recent data points is used.

·	The model is calibrated again by rejecting the outlier data points. The rejection criteria is that data point is discarded when the prediction error is more than one standard deviation.

·	The next frame is skipped if the current buffer status is above 80 percents.

The algorithm is described as follows:

Step 1: Initialization after the first frame is coded

Rs: 	bit rate for the sequence (or segment). /* e.g., 24000 bits/sec */

Rf: 	bits used for the first frame. /* e.g., 10000 bits */

Rc:	bits used for the current frame. It is the bit count obtained after encoding.

Rp:	bits to be removed from the buffer per picture.

Ts: 	number of seconds for the sequence (or segment). /* e.g., 10 sec */

Ec:	mean absolute difference for the current frame aftern motion compensation.

Qc:	quantization level used for the current frame.

Nr:	number of P frames remaining for encoding.

Ns:	distance between encoded frames. /* e.g., 4 for 7.5 fps */

Rr:	number of bits remaining for encoding this sequence (or segment).

T:	target bit to be used for the current frame.

S:	number of bits used for encoding the previous frame.

Hc:	header and motion vector bits used in the current frame.

Hp:	header and motion vector bits used in the previous frame.

Ql:	quantization level used in the previous frame

Bs;	buffer size e.g., R/2

B;	current buffer level e.g., R/4 - start from the middle of the buffer

X1 = Rs*Ns/2; /* 1st order coefficient. transient/

X2 = 0; /* 2nd order coefficient */

Rr = Ts*Rs-Rf; /* total number of bits available for this segment */

Rp = Rr/Nr; /* the average bits to be removed from the buffer */

Step 2: Target Bit Calculation (Before Encoding the Current Frame)

T=Max(Rs/30,Rr/Nr*0.95+S*0.05);/*each frame is assigned a minimum of R/30 */

T=T*(B+2*(Bs-B))/(2*B+(Bs-B));	/* increase if less than half */

/* decrease if more than half, don’t change if half */

if (B+T > 0.9*Bs)

	T = Max(Rs/30, 0.9*Bs-B);	/* to avoid overflow*/

else if (B-Rp+T < 0.1*Bs)

	T = Rp-B+0.1*Bs;	/* to avoid underflow*/

Step 3: Quantization Level Calculation (Before Encoding the Current Frame)

if (X2==0) Qc = X1*Ec/T;	/* fall back 1st order mode */

else Qc= (2*X2*Ec)/(sqrt((X1*Ec)**2+4*X2*Ec*T)-X1*Ec)

/* 2nd order mode */

Qc = Min (ceil(Ql*1.25), Qc, 31); /* clipping*/

Qc = Max (ceil(Ql*0.75), Qc, 1); /* clipping */

Quantization();

Encoding();

Step 4: After encoding the current frame

B += Rc - Rp; /* update buffer fullness */

Rr -= Rc; /* update the remaining bit counts */

S = Rc; /* update the previous bit counts */

Hp = Hc; /* update the previous header and motion bit counts */

Qp = Qc; /* update the previous quantization level */

Nr--; /* update the frame counter */

UpdateRDModel(Qc,Rc,Ec,Hc,X1,X2);

/* estimation of a new model */

if (B > 0.8 * Bs) {

	skip_next_frame();

	Nr--;

	B -= Rp;

}

If the buffer has reached 80% of the buffer size, the encoder will skip the upcoming frame to be encoded. Thus the buffer is reduced to prevent from the buffer overflow.

UpdateRDModel (Qc, Rc, Ec, Hc, X1, X2) {

Qp[n]:	quantization levels for the past frames

Rp[n]:	scaled encoding complexity used for the past frames

n: number of encoded past frames;

x: matrix contains Q;

y: matrix contains Q*(R-H)/E;

Ep: mean absolute difference for the previous frame. This is computed after motion compensation for the Y component only. No normalization is necessary since the model is a linear function of Ep.

R[n] = (Rc-Hc)/Ec;

Q[n] = Qc;

n = Min(total_data_number, 20)	/* Maximum data number set to 20 */

if(Ep>Ec)

	n = (int)(Ec/Ep*20+1);	/* sliding window for scene change */

else

	n = (int)(Ep/Ec*20+1);	/* sliding window for scene change */

Ep = Ec; /* update mad */

Estimator();

RemoveOutlier(X1,X2,Qp,Rp,Ec);

Estimator();

}

Estimator() {

x = [1, Qp[i]**(-1)(i=1,2,...n)]	/* Dimension nx2 */

y = [Qp[i]*Rp[i] (i=1,2,.....n)]	/* Dimension nx1 */

X1=0;

X2=0;

if (all Qp[i,2] are the same)

	for (i=1; i<=n; i++) X1 += y[i]/n;

else {

		b = (x_Transpose*x)**(-1)*x_Transpose*y;

		/* Dimension of the matrix */

		/* 2x1 = (2xn * nx2)**(-1)*(2xn)*(n*1) */

		X1 = b(1,1);

		X2 = b(2,1);

	}

}

RemoveOutlier(X1,X2,Qp,Rp,Ec) {

	error[n];	Estimation error

	for (i=1; i<=n; i++) {

		std += ((X1*Ec*Qp[i]**(-1)+X2*Ec*Qp[i]**(-2)-Rp[i]*Ec))**2;

		error[i] = X1*Ec*Qp[i]**(-1)+X2*Ec*Qp[i]**(-2)-Rp[i]*Ec;

	}

	threshold = sqrt(std/n);	/* Setup rejection threshold */

	for (i=1; i<=n; I++)

		if(error[i] > threshold)

			data point i will not be included for matrix x and y for the estimator.

}

The scalable rate control scheme achieves frame level rate control for both VBR and CBR case. It assumes a simple quadratic rate distortion function of the video encoder. In the case of CBR encoding, a variable frame rate approach is used to achieve the target rate. If a tighter rate control is desired, the same technique is applicable at either slice layer or macroblock layer. Because of the generality of this scheme, extension of such a scheme to shape coding and Multiple-VO coding can be easily made on the basis of the existing VM rate control framework.

3.8	Generalized Scalable Encoding

Realizing that many applications require video to be simultaneously available for decoding at a variety of resolutions or qualities this VM supports scalability. In general, scalability of video means the ability to achieve video of more than one resolution and/or quality simultaneously. Scalable video coding involves generating a coded representation (bitstream) in a manner which facilitates the derivation of video of more than one resolution and/or quality by scalable decoding. Bitstream Scalability is the property of a bitstream that allows decoding of appropriate subsets of a bitstream to generate complete pictures of resolution and/or quality commensurate with the proportion of the bitstream decoded. If a bitstream is truly scalable, decoders of different complexities, from low performance decoders to high performance decoders can coexist, and while low performance decoders may decode only small portions of the bitstream producing basic quality, high performance decoders may decode much more and produce significantly higher quality.

Two main types of scalability are: the spatial scalability, and the temporal scalability. The spatial scalability offers scalability of the spatial resolution, and the temporal scalability offers scalability of the temporal resolution. Each type of scalability involves more than one layers. In the case of two layers consisting of a lower layer and a higher layer; the lower layer is referred to as the base-layer and the higher layer is called the enhancement-layer. Traditionally, these scalabilities are applied to frames of video such that in case of spatial scalability, the enhancement-layer frames enhances the spatial resolution of base-layer frames, while in temporal scalability, the enhancement-layer frames are temporally multiplexed with the base-layer frames to provide a higher temporal resolution video. Many MPEG-4 applications are however even more demanding and necessitate not only traditional frame based scalabilities but also scalabilities of VOPs of arbitrary shapes.

The scalability framework discussed in this VM is referred to as generalized scalability and includes the spatial and the temporal scalabilities. In the case of temporal scalability, this VM supports both frames (rectangular VOPs) as well as arbitrary shaped VOPs, however, in the case of spatial scalability, only rectangular VOPs are presently supported. � REF _Ref364754425 * MERGEFORMAT �Figure 43� shows a high level codec structure for generalized scalability.

�

Figure � SEQ Figure * ARABIC �43�: A High Level Codec Structure for Generalized Scalability.

Video VOPs (rectangular or otherwise) are input to Scalability PreProcessor and if spatial scalablity is to be performed with base layer at lower spatial resolution and the enhancement layer at higher spatial resolution, this preprocessor performs spatial downsampling of input VOPs to generate in_0 which forms the input to MPEG-4 Base Layer Encoder which performs nonscalable encoding. The reconstructed VOPs from base layer are then fed to Midprocessor1 which in this case performs spatial upsampling. The other output of PreProcessor corresponds to the higher spatial layer VOPs and forms the input (in_1) to the MPEG-4 Enhancement Layer Encoder. The base- and enhancement-layer bistreams are multiplexed by MSDL Mux and either stored or transmitted and by employing an MSDL Demux can be retrieved for decoding by corresponding MPEG-4 Base Layer Decoder and MPEG-4 Enhancement Layer Decoder. The operation of Midprocessor1 is identical to that at the encoder. The Scalability PostProcessor performs any necessary operations such as spatial upsampling of the decoded base layer for display resulting at outp_0 while the enhancement layer without upsampling may be output as outp_1.

When the generalized codec is used to perform temporal scalability, the Scalability PreProcessor performs temporal demultiplexing of a VO into two substreams of VOPs, one of which (in_0) is input to the MPEG-4 Base Layer Encoder and the other (in_2) is input to the MPEG-4 Enhancement Layer Encoder. In this case, Midprocessor1 does not peform any spatial resolution conversion and simply allows the decoded base-layer VOPs to pass through and these VOPs are used for temporal prediction in encoding of enhancement-layer. The operation of MSDL Mux and MSDL Demux is exactly similar as in case of spatial scalability. The decoding of base and enhancement-layer bitstreams occurs in the corresponding base- and enhancement-layer decoders as shown. The PostProcessor simply outputs the base layer VOPs without any conversion, but temporally multiplexes the base and enhancement layer VOPs to produce higher temporal resolution enhancement layer.

As mentioned earlier, since VOPs can have a rectangular shape (frame) or an irregular shape, both the traditional spatial and temporal scalabilities as well as object based spatial and temporal scalabilities become possible. In this current version of the VM, spatial scalability is limited to rectangular VOPs. We now describe the encoding process for the spatial and temporal scalabilities.

3.8.1	Spatial Scalability Encoding

3.8.1.1	Base Layer and Enhancement Layers

As mentione earlier, in spatial scalability, the base layer and the enhancement layer can have different spatial resolution. In this VM, the base layer has lower resolution and the enhancement layer has higher resolution. For example, in simulations, the base-layer uses QCIF resolution and the enhancement-layer uses CIF resolution.

3.8.1.2	Downsampling

The downsampling process is performed at the scalability preprocessor. For example, the downsampling process from ITU-R 601 to CIF/QCIF is described in Section � REF _Ref364786083 \n * MERGEFORMAT �2.2.2� Filtering process. The downsampling process for the factor of 2 is only described in this document, however downsampling for arbitary factor is allowed.

3.8.1.3	Encoding of Base Layer

The encoding process of the base layer is the same as non_scalable encoding process.

3.8.1.4	Upsampling Process

The upsampling process is performed at the midprocessor. The VOP of the base layer is locally decoded and the decoded VOP is upsampled to the same resolution as that of the enhancement layer. In case of the example above, upsampling is performed by the filtering process described in � REF _Ref364754482 * MERGEFORMAT �Figure 44� and � REF _Ref364754555 * MERGEFORMAT �Table 12�.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �44�

Factor�Tap no.�Filter taps�Divisor��2�1�1, 3�4���2�3, 1�4��Table � SEQ Table * ARABIC �12�

3.8.1.5	Encoding of Enhancement Layer

The VOP in the enhancement layer is encoded as either P-VOP or B-VOP. The relationship between VOP in the base layer and that of the enhancement layer is illustrated in � REF _Ref364784029 * MERGEFORMAT �Figure 45�. The VOP which is temporally coincident with I-VOP in the base layer is encoded as P-VOP. The VOP which is temporally coincident with P-VOP in the base layer is encoded as B-VOP. In case of the spatial scalability, a decoded VOP in the base layer is used as a reference of the prediction. The temporally coincident VOP in the reference layer (base layer) must be coded before the encoding of the VOP in the enhancement layer.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �45�

3.8.1.6	Encoding of P-VOPs of Enhancement Layer

In P-VOP, the ref_select_code is set to “11”, i.e., the prediction reference is set to I-VOP which is temporally coincident VOP in the base layer.

In P-VOP, the motion vector is always set to 0, thus motion vector is not encoded to reduce the overhead.

Mode decisions in P-VOP

In case of P-VOP, the encoder makes a decision on whether to use INTRA or INTER prediction in the coding. The method to decide the mode is the same as INTRA/INTER mode decision in the coding of the base layer. (See section � REF _Ref392495961 \r �3.3.2�) If INTER mode is chosen, the macroblock is coded using the prediction from the VOP in the base layer. The INTER4V mode is not used in the coding of the enhancement layer.

3.8.1.7	Encoding of B-VOPs of Enhancement Layer

In B_VOP, the ref_select_code is set to “00”, i.e., the backward prediction reference is set to P-VOP which is temporally coincident VOP in the base layer, and the forward prediction reference is set to P-VOP or B-VOP which is the most recent decoded VOP of the enhancement layer.

In B-VOP, when the backward prediction is selected, i.e., the prediction from the base layer is selected, the motion vector is always set to 0, thus thus motion vector is not encoded to reduce the overhead.

Mode decision for B-VOP

In case of the spatial scalability, the Direct (H.263 B) mode is not used. A macroblock in B-VOPs is coded in one of the other three modes. The encoder makes a decision on which mode is the best. SAD (sum of absolute differences) is calculated for each of the three modes. The MBTYPE mode is selected as follows,

if (SADforward <= min{SADinterpolate, SADbackward, SADforward})

	forward mode

else if (SADinterpolate <= min{SADinterpolate, SADbackward, SADforward})

	interpolate mode

else

	backward mode

3.8.2	Temporal Scalability Encoding

In Object-based Temporal scalability (OTS), the frame rate of a selected object is enhanced such that it has a smoother motion than the remaining area. In other words, the frame rate of the selected object is higher than that of the remaining area. There are two types of enhancement structures in OTS.

� REF _Ref364784099 * MERGEFORMAT �Figure 46� shows the example of Type 1 where VOL0 (VideoObjectLayer 0) is an entire frame with both an object and a background, while VOL1 represents the particular object in VOL0. VOL0 is coded with a low frame rate and VOL1 is coded to achieve a higher frame rate than VOL0. In this example, frames 2 and 4 are formed by combining two base layer frames 0 and 6 followed by overlapping the object of the enhancement layer onto the combined frame. The combined frame is formed using a process we call “background composition”, as described in Section � REF _Ref364786137 \n * MERGEFORMAT �5.4�. In this example, forward predictions forming P-VOPs are used. � REF _Ref364784118 * MERGEFORMAT �Figure 47� shows another example of Type 1 that also uses bidirectional predictions forming B-VOPs in the enhancement layer. In both cases, two additional shape data, a forward shape and a backward shape, are encoded to perform the background composition. Note that these shapes will not be encoded, when the sequence ends with enhancement layer frames, In this case, backward_shape for the previous VOP is copied to both forward_shape and the backward_shape for the current VOP. For example, if the base layer stops at frame 6 in � REF _Ref364784099 \h ��Figure 46�, the forward shape and backward shape for frames 8 and 10 are identical to the backward shape for frames 2 and 4.

� REF _Ref364784136 * MERGEFORMAT �Figure 48� shows the example of Type 2 where VO0 (VideoObject 0) is the sequence of an entire frame which only contains a background and it has no scalability layer. VO1 is the sequence of a particular object and it has two scalability layers, VOL0 and VOL1. VOL1 represents the same object as VOL0 and it is coded to achieve a higher frame rate than VOL0. In this example, VOL0 is regarded as a base layer and VOL1 is regarded as an enhancement layer of the OTS. Note that the VO0 may not have the same frame rate as other VOs.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �46�: Enhancement structure of Type 1 with P-VOPs.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �47�: Enhancement structure of Type 1 with B-VOPs.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �48�: Enhancement structure of Type 2.

There are 2 types of enhancements for scalability, described by the enhancement_type flag. We explain below the meaning of enhancement_type flag in more detail. As an example, � REF _Ref364784188 * MERGEFORMAT �Figure 49� shows an entire image containing several types of regions; for example a road, a car, and mountains. Both the base layer with enhancement_type being “0” and the base layer with enhancement_type being “1” are coded with lower picture quality which means that either the frame rate is lower or the spatial resolution is lower. At the enhancement layer of the scalability, enhancement_type flag distinguishes the following two cases.

When this flag is “1”, the enhancement layer increases the picture quality of a partial region of the base layer. For example, in � REF _Ref364784188 * MERGEFORMAT �Figure 49�, VOL0 is an entire frame and VOL1 is the car in the frame. The temporal resolution or the spatial resolution of the car is enhanced.

When this flag is “0”, the enhancement layer increases the picture quality of the entire region of the base layer. For example, in � REF _Ref364784188 * MERGEFORMAT �Figure 49�, if VOL0 represents an entire frame, VOL1 is also the entire frame. Then the temporal or spatial resolution of entire frame is enhanced. If VOL0 represents the car, VOL1 is also the car which is enhanced in terms of temporal or spatial resolution.

Note that since only rectangular VOP-based spatial scalability is included in this current version of the VM, enhancement_type flag is always set to “0” for spatial scalability.

The reference shape data for inter shape coding in an enhancement layer does not exist when the base layer is the reference and it is coded with video_object_layer_shape being “00.” In this case, the reference shape for the current shape coding is defined as a binary rectangle of the size of the entire image.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �49�: Example of a region to be enhanced.

Editor’s note: All scalability modes can be applied in the case of extension to 8-bit video. It is not necessary that enhancement and base layers are specified as having the same number of bits per pixel.

3.9	Sprite Coding and Global Motion Compensation

3.9.1	Introduction

A sprite is an image composed of pixels belonging to a video object visible throughout a video segment. For instance, sprite generated from a panning sequence will contain all the visible pixels of the background object throughout the sequence. Portions of this background may not be visible in certain frames due to the occlusion of the foreground objects or the camera motion. Since the sprite contains all parts of the background that were at least visible once, the sprite can be used for direct reconstruction of the background VOP’s or the predictive coding of the background VOP’s. Sprites for background are commonly referred to as “background mosaics” in the literature.

The sprite encoding syntax can be utilized for the transmission of any still image to the decoder since a sprite is essentially just a still image. The syntax also will allow for the transmission of a still image as a sprite progressively, both spatially, where the sprite is reconstructed at the decoder a piece at a time, and hierarchically, where the image quality is updated with residual images.

In sprite-based coding, we distinguish two main types of sprites: (1) off-line static sprites, and (2) on-line dynamic sprites. Static sprites are those that are directly copied (including appropriate warping and cropping) to generate a particular rendition of the sprite at a particular time instant, namely a VOP. In contrast, a dynamic sprite is used as reference in predictive coding where motion is compensated using the warping parameters for the sprite. A static sprite is built off-line, and is coded and transmitted as an I-VOP prior to coding the video itself. A dynamic sprite is dynamically built on-line during coding in both the encoder and the decoder.

�Off-line�On-line��Static�Built prior to coding

No predictive coding�----��Dynamic�----�Built during coding

Predictive coding��The current VM allows two kinds of sprite coding, namely, off-line static sprite (see sections � REF _Ref393109963 \n �3.9.4.1� and � REF _Ref374349003 \n �3.9.5.1�) and on-line dynamic sprite (see sections � REF _Ref374349018 \n �3.9.4.2� and � REF _Ref374349027 \n �3.9.5.2�).

Off-line static sprites are particularly suitable for synthetic objects. They are also suitable for natural video objects that mostly undergo rigid motion when a wallpaper-like rendering is appropriate. On-line dynamic sprites provide with an enhanced predictive coding environment. In the case of natural video objects, on-line dynamic sprites should be preferred when a no-latency solution is needed, or when details induced by local motion should be preserved.

One of the major components of sprite-based coding is the generation of the sprite unless it is known a priori such as may be the case for a synthetic VO. The sprite is built in a similar way in both off-line and on-line cases as the same global motion estimation algorithm is used. In the off-line case, the sprite is built before starting the encoding process using the original VOPs. In the on-line case, both the encoder and the decoder build the same sprite from reconstructed VOPs. In sprite coding, the chroma components are processed in the same way as the luminance component, with the properly scaled parameters.

Scalability and B-VOPs are currently not supported for on-line dynamic sprites. For off-line static sprites, temporal scalability is implicit since the transmission of trajectories of each VOP is independent. In addition, the flexibility to transmit the sprite piece by piece as required by the timing considerations and bandwidth constraints as well as to transmit a lower quality version of the sprite initially and improve it over time with residual images provides another dimension of scalability the use static sprites.

A main component of sprite generation is the estimation of relative global motion between the previous and current VOPs (on-line dynamic sprite) or between the sprite and the current VOP (off-line static sprite). Global motion is modeled on the basis of a parametric geometrical model, such as the perspective transform. The current VM allows a number of transformations to be used with sprite: stationary, translation, isotropic magnification rotation and translation, affine, and perspective. Each transformation can be defined as either a set of coefficients or the motion trajectories of some reference points. While the former representation is convenient for performing the transformation, the latter is necessary for encoding the transformations. The number of reference points needed to encode the warping parameters determines the transform to be used for warping, this number is defined by no_of_sprite_points in the Video Object Layer.

If the number of reference points equals to four, a perspective transformation is to be used for warping. In this case, the transform is defined by

x’ = (a x + b y + c)/(g x + h y + 1)

y’ = (d x + e y + f)/(g x + h y + 1),

where {a, b, c, d, e, f, g, h} are the coefficients of the transformation, (x, y) is the coordinate in the current VOP, and (x’, y’) is the coordinate in the previous VOP expressed in the VOP coordinate system , in case of on-line dynamic sprite, or (x’, y’) is the coordinate in the sprite expressed in the sprite coordinate system, in the case of off-line static sprite.

Cases with zero to three reference points 0 to 3 are treated as special cases of the perspective transform. In the following, we discuss some details of each case using the forward transform as an example.

0 point: This case is used for stationary VOs. No trajectory point is needed (encoded) for warping if the VO is stationary. In this case, a = e = 1 and b = c = d = f = g = h = 0, i.e., x’ = x and y’ = y.

1 point: This is the warping model of choice for VOs undergoing mostly translational motion. Only one point is needed, and thus encoded, if the motion of the VO is translational. In this case, we have a = l = e =1, b = g = h =d = 0 and the transform equations look like

x’ = x+ c,

y’ = y + f.

At the decoder, one pair of points (one at sprite and one at a VOP) are enough to solve c and f.

2 points: We use this case to represent isotropic magnification, rotation, and translation motion. In this case, g = h = 0. Generally speaking, there are several interpretations of motion specified by two pairs of points. The interpretation taken here, namely, isotropic magnification, rotation, and translation, is a more common, thus more useful one. The transformation equations look like:

x’ = a cosq x + a sinq y + c,

y’ = -a sinq x + a cosq y + f.

It can be simplified to

x’ = a x + b y + c,

y’ = -b x + a y + f,

where a = a cosq and b = a sinq. Since there are four unknowns, given two pairs of points (two at sprite and two at a VOP), the decoder can solve the transformation coefficients in these two equations and perform the warping.

3 points: affine transform. Three points are needed (encoded) to represent (at the encoder) an affine transform, and solve (at the decoder) for coefficients {a, b, c, d, e, f}.

x’ = a x + b y + c,

y’ = d x + e y + f.

4 points: perspective transform. Four points are needed (encoded) to represent (at the encoder) a perspective transform, and solve (at the decoder) for coefficients {a, b, c, d, e, f, g, h, l}

x’ = (a x + b y + c)/(g x + h y + 1),

y’ = (d x + e y + f)/(g x + h y + 1).

3.9.2	Location of Reference Points

In the following description, it is assumed that luminance pixels exist on an integer-pixel grid and chrominance pixels are located as defined in � REF _Ref392504700 \h ��Figure 2�. The coordinate of the left top luminance pixel in the current VOP is defined as follows:

Rectangular VOP: 	(0, 0).

Arbitrary shaped VOP : 	(VOP_horizontal_mc_spatial_ref, VOP_vertical_mc_spatial_ref),

				as specified in the VOP Class.

In the case of sprite coding mode (video_object_layer_sprite_usage == “01” or “10”), the coordinate of the left top luminance pixel in a sprite is (sprite_Left_Edge, sprite_Top_Edge) as specified in the VOL header (see � REF _Ref394408272 \h �Error! Reference source not found.�). In the GMC mode (video_object_layer_sprite_usage == “11”), the coordinate of the left top luminance pixel in the reference VOP is defined as follows:

Rectangular VOP: 	(0, 0).

Arbitrary shaped VOP : 	(VOP_horizontal_mc_spatial_ref, VOP_vertical_mc_spatial_ref),

				as specified in the VOP Class of the reference VOP.

A two dimensional index is assigned for each pixel or an interpolated pixel in a VOP or a sprite. The relation between the coordinates and the index in the current VOP is defined as:

Luminance pixel in the current VOP

x = i,

y = j,

Chrominance pixel in the current VOP

x = 2 ic + 0.5,

y = 2 jc + 0.5,

where index values i, j, ic,, and jc are integers. The accuracy of the motion vectors for each pixel in the current VOP is defined by warping_accuracy in the Video Object Layer Class. Assuming that 1(s pel accuracy (possible values for s are 2, 4, 8, or 16) is adopted for the motion vectors, the relation between the index values and the coordinates in a sprite or a reference VOP is defined as:

Luminance pixel in a sprite or a reference VOP

x’ = i’ (s,

y’ = j’ (s,

Chrominance pixel in a sprite or a reference VOP

x’ = 2 ic’ (s + 0.5

y’ = 2 jc’ (s + 0.5

where index values i’, j’, ic’, and jc’ are integers. The interpolated sample values for points with fractional coordinate values are obtained using the interpolation method described in section � REF _Ref393110106 \n �3.9.5.1.5�.

As described above, the transform between sprites and VOPs or between two consecutive VOPs are parameterized using the motion of reference points. � REF _Ref392664450 * MERGEFORMAT ��

Figure 50� shows the location of sprite points (i.e. reference points in a sprite or a reference VOP) and reference points. The definition of the parameters used in this figure is as follows:

	(xr(n), y r(n)):	coordinates of the rth reference point in the current nth VOP,

	(xr’(n), yr’(n)):	coordinates of the rth sprite point in the sprite or the rth reference point in the reference VOP,

	W(n), H(n):		width and height of the bounding box in the nth VOP.

xr(n) and y r(n) are integers, while xr’(n) and yr’(n) are up to half-pel accuracy (i.e. 0.5 multiplied by an integer). This is because the location of sprite points is specified in half pel accuracy. Integers W(n) and H(n) denote the width and height of a bouding box, which is defined for each VOP. The decoder performs warping only for the pixels included in this bounding box. The area included in the bounding box is defined as pixels located at (x, y) such that x0(n) (x < x0(n) +W(n) and y0(n) (y < y0(n) +H(n).

The reference points in a VOP is located at the corners of the bounding box. When m reference points are necessary to define the transform, sprite points located at (xr’(n), yr’(n)) (0 (r < m) and reference points located at (xr (n), yr (n)) (0 (r < m) are used. The location of these reference points are defined as:

(x1(n), y1(n)) = (x0(n)+W(n), y0(n)),

(x2(n), y2(n)) = (x0(n), y0(n) + H(n)),

(x3(n), y3(n)) = (x0(n)+W(n), y0(n)+H(n)).

In order to determine the transform of the warping, the location of the sprite points, and the location and size (i.e. width and height) of the bounding box are needed to be specified for each VOP. The location (relative to the display window) and size (i.e. W(n) and H(n) in the above equations) of the bounding box are explicitly transmitted using VOP_horizontal_mc_spatial_ref, VOP_vertical_mc_spatial_ref, VOP_width, and VOP_height, at the Video Object Plane Class in the case when arbitrarily shaped VOs are coded. In the case of rectangular VOs, the size of the bounding box (i.e. W(n) and H(n) in the above equations) is determined by video_object_layer_width and video_object_layer_height in the Video Object Layer Class.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �50�: Sprite points, reference points, and bounding box.

In addition, the sprite points (xr’(n), yr’(n)) can be located outside the sprite or the reference VOP. In the case, the sample values of the edge pixels are used for obtaining the (interpolated) pixel values outside the sprite or the reference VOP as in the unrestricted motion vector mode.

3.9.3	Definition of Transform Functions

The transform functions define the relation of index values between the pixels in the current VOP and the corresponding pixels in the sprite. In this section, the following notations are used to simplify the description of transform functions:

I = i - x0(n),

J = j - y0(n),

Ic = 4 ic - 2 x0(n) + 1,

Jc = 4 jc - 2 y0(n) + 1,

W = W(n),

H = H(n),

ir’ = s xr’(n),

jr’ = s yr’(n),

where Ic, Jc, W, H, ir’ and jr’ are integers. Using the notations provided above, the transform functions for VOP synthesis and dynamic sprite updating (see section � REF _Ref394408679 \r \h �Error! Reference source not found.�) are defined as follows:

I) Stationary transform

VOP synthesis and dynamic sprite update:

i’ = s i

j’ = s j

ic’ = s ic

jc’ = s jc

II) Translational transform

VOP synthesis:

i’ = i0’ + s i,

j’ = j0’ + s j,

ic’ = s ic + i0’ //// 2,

jc’ = s jc + j0’ //// 2,

where the operator “////” indicates integer division which rounds fractional values to the nearest integer, and rounds half integer values towards the positive infinity.

Dynamic sprite update:

i’ = (i + i0’ //// s) s,

j’ = (j + j0’ //// s) s,

ic’ = (ic + i0’ //// (2s)) s,

jc’ = (jc + j0’ //// (2s)) s.

III) Isotropic transform

For isotropic transform and affine transform, the virtual reference points located at (x0+W’, y0) and (x0, y0+H’) are used instead of the original reference points located at (x1, y1) = (x0+W, y0) and (x2, y2) = (x0, y0+H). W’ and H’ are defined as:

W’’ = 2(, H’ = 2(, W’ (W, H’ (H, (> 0, (> 0, both (and (and are integers.

This implies that the values of (and (are defined as (= (= 8 and (= (= 9 for rectangular QCIF VOPs and CIF VOPs.

The virtual sprite points, which are located at (x1’’, y1’’) and (x2’’, y2’’) in the sprite or reference VOP, correspond to the virtual reference points located at (x0+W’, y0) and (x0, y0+H’) in the current VOP. The index values (i1’’, j1’’) and (i2’’, j2’’) of these virtual sprite points are defined in �EMBED Equation.3��� pel accuracy (not in �EMBED Equation.3��� pel accuracy) as:

i1’’ = 16 (i0 + W’) + ((W - W’) (r i0’ - 16 i0) + W’ (r i1’ - 16 i1)) // W

j1’’ = 16 j0 + ((W - W’) (r j0’ - 16 j0) + W’ (r j1’ - 16 j1)) // W

i2’’ =16 i0 + ((H - H’) (r i0’ - 16 i0) + H’ (r i2’ - 16 i2)) // H

j2’’ = 16 (j0 + H’) + ((H - H’) (r j0’ - 16 j0) + H’ (r j2’ - 16 j2)) // H

where r = 16/s. Using the above definitions, the transform function for isotropic transform is defined as:

VOP synthesis:

i’ = i0’ + ((-r i0’ + i1’’) I + (r j0’ - j1’’) J) //// (W’ r) ,

j’ = j0’ + ((-r j0’ + j1’’) I + (-r i0’ + i1’’) J) //// (W’ r) ,

 ic’ = ((-r i0’ + i1 ’’) Ic + (r j0’ - j1’’) Jc + 2 W’ r i0’ - 16W’) //// (4 W’ r),

jc’ = ((-r j0’ + j1’’) Ic + (-r i0’ + i1’’) Jc + 2 W’ r j0’ - 16W’) //// (4 W’ r).

Dynamic sprite update:

i’ = ((W’ r i0’ + (-r i0’ + i1’’) I + (r j0’ - j1’’) J) //// (16W’)) s ,

j’ = ((W’ r j0’ + (-r j0’ + j1’’) I + (-r i0’ + i1’’) J) //// (16W’)) s,

 ic’ = (((-r i0’ + i1 ’’) Ic + (r j0’ - j1’’) Jc + 2 W’ r i0’ - 16W’) //// (64W’)) s,

jc’ = (((-r j0’ + j1’’) Ic + (-r i0’ + i1’’) Jc + 2 W’ r j0’ - 16W’) //// (64W’)) s.

According to the definition of W’ and H’, the “ //// (W’ r)”, “ //// (4 W’ r)”, “//// (16W’)”, and “//// (64W’)” in these transform functions can be replaced by binary shift operations. The computational complexity of the warping process is substantially reduced by this replacement.

IV) Affine transform

VOP synthesis:

i’ = i0’ + ((-r i0’ + i1’’) H’ I + (-r i0’+ i2’’)W’ J) //// (W’H’r),

j’ = j0’ + ((-r j0’ + j1’’) H’ I + (-r j0’+ j2’’)W’ J) //// (W’H’r),

ic’ = ((-r i0’ + i1’’) H’ Ic + (-r i0’+ i2’’)W’ Jc + 2 W’H’r i0’ - 16W’H’) //// (4W’H’r),

jc’ = ((-r j0’ + j1’’) H’ Ic + (-r j0’+ j2’’)W’ Jc + 2 W’H’r j0’ - 16W’H’) //// (4W’H’r).

Dynamic sprite update:

i’ = ((W’H’r i0’ + (-r i0’ + i1’’) H’ I + (-r i0’+ i2’’)W’ J) //// (16W’H’)) s,

j’ = ((W’H’r j0’ + (-r j0’ + j1’’) H’ I + (-r j0’+ j2’’)W’ J) //// (16W’H’)) s,

ic’ = (((-r i0’ + i1’’) H’ Ic + (-r i0’+ i2’’)W’ Jc + 2 W’H’r i0’ - 16W’H’) //// (64W’H’))s,

jc’ = (((-r j0’ + j1’’) H’ Ic + (-r j0’+ j2’’)W’ Jc + 2 W’H’r j0’ - 16W’H’) //// (64W’H’))s.

According to the definition of W’ and H’ (i.e. W’ = 2(, and H’ = 2(), the computation of these equations can by simplified by dividing the denominator and numerator of division (i.e. “////”) beforehand by W’ (when W’ < H’) or H’ (when W’(H’). As in the case of isotropic transform, the divisions by “////” can be replaced by binary shift operations.

V) Perspective transform

VOP synthesis:

i’ = (a i + b j + c) //// (g i + h j + D W H),

j’ = (d i + e j + f) //// (g i + h j + D W H),

ic’ = (2 a Ic + 2 b Jc + 4 c - (g Ic + h Jc + 2 D W H) s) //// (4 g Ic + 4 h Jc + 8 D W H),

jc’ = (2 d Ic + 2 e Jc + 4 f - (g Ic + h Jc + 2 D W H) s) //// (4 g Ic + 4 h Jc + 8 D W H),

where:

	g = ((i0’ -i1’ - i2’ + i3’) (j2’ - j3’) - (i2’ - i3’) (j0’ -j1’ - j2’ + j3’)) H ,

	h = ((i1’ - i3’) (j0’ - j1’ - j2’ + j3’) - (i0’ -i1’ - i2’ + i3’) (j1’ - j3’)) W ,

	D = (i1’ - i3’) (j2’ - j3’) - (i2’ - i3’) (j1’ - j3’),

	a = D (i1’ - i0’) H + g i1’ ,

	b = D (i2’ - i0’) W + h i2’,

	c = D i0’ W H,

	d = D (j1’ - j0’) H + g j1’,

	e = D (j2’ - j0’) W + h j2’,

	f = D j0’ W H.

Dynamic sprite update:

i’ = ((a i + b j + c) //// ((g i + h j + D W H)s)) s,

j’ = ((d i + e j + f) //// ((g i + h j + D W H)s)) s,

ic’ = ((2 a Ic + 2 b Jc + 4 c - (g Ic + h Jc + 2 D W H) s) //// ((4 g Ic + 4 h Jc + 8 D W H)s)) s,

jc’ = ((2 d Ic + 2 e Jc + 4 f - (g Ic + h Jc + 2 D W H) s) //// ((4 g Ic + 4 h Jc + 8 D W H)s)) s,

The implementor should be aware that a 32bit register may not be sufficient for representing the denominator or the numerator in the above transform functions. The usage of a 64 bit floating point representation should be sufficient in such case.

3.9.4	Sprite Generation

3.9.4.1	Off-line Sprite Generation

When a sprite is generated off-line, the entire video object is assumed to be available. For each VOP in the sequence, the global motion field is estimated according to one of the aforementioned transformation models, using which the VOP then is registered with the sprite by warping the VOP to the sprite coordinate system. In Annex D, the step-by-step instructions for off-line sprite generation, including the procedure for global motion estimation, are provided.

3.9.4.2	On-line Sprite Generation

In on-line sprite coding, the current frame is always chosen as the reference for increased coding efficiency. Global motion estimation is performed between consecutive VOPs. Using the global warping parameters, the sprite at the previous time instant is aligned with respect to the current VOP and the current VOP is then blended onto the sprite to form the current sprite, as depicted in � REF _Ref392664912 * MERGEFORMAT �Figure 51� .

�EMBED Word.Document.8���

Figure � SEQ Figure * ARABIC �51�: Sprite generation for on-line dynamic sprites.

3.9.4.2.1	Initialization

The size of the buffer to hold the sprite is specified by the two parameters sprite_hdim and sprite_vdim transmitted in the Video Object Layer. Typically, the size of the sprite is larger than the size of the VO.

The sprite is initialized by copying the content of the first VOP to the buffer location specified by sprite_Left_Edge and sprite_Top_Edge in the Video Object Layer. Using these parameters, the origin of the coordinate system for the sprite is moved by (-sprite_Left_Edge, -sprite_Top_Edge) from the upper left corner of the sprite. This implies that the coordinate of the upper left corner of the sprite is (sprite_Left_Edge, sprite_Top_Edge).The relationship between the spatial location �of a pixel in the VOP and the spatial location � in the sprite, therefore, is described as:

� = �.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �52�: Relative size and position of the sprite and the VOP (in this case, sprite_Left_Edge and sprite_Top_Edge both have negative values).

The placement of the VOP in the sprite will define the trajectories to be encoded as defined in section � REF _Ref394408952 \r \h ��3.9.3�.

A binary mask of size sprite_hdim x sprite_vdim is associated with the sprite to record pixel locations where sprite content has been observed or updated. Consequently, at initialization time, this implicit sprite shape buffer corresponds to the shape of the first VOP.

Therefore, the initialization of the sprite can be summarized by the following steps:

init the sprite (Y and binary mask A) with 0,

for each pixel location in the VOP:

- copy the VOP pixel in the sprite

- set the corresponding sprite binary mask location to 255.

 In pseudo C code:

pel_sprite=0;

for (j=0; j<sprite_vdim; j++)

	for (i=0; i<sprite_hdim; i++) {

		spriteY[pel_sprite] = 0;

		spriteA[pel_sprite] = 0;

		pel_sprite++;

	}

for (j=0; j<vop_height; j++)

	for (i=0; i<vop_width; i++) {

		pel_vop = j * vop_width + i;

		if (vopA[pel_vop]) {

			/* the pixel belongs to vop */

			pel_sprite = (j+offsety) * sprite_hdim + (i+offsetx);

			spriteY[pel_sprite] = vopY[pel_vop];

			spriteA[pel_sprite] = 255;

		}

	}

The chroma components of the sprite are initialized in a similar way, except the chrominance sprite dimensions are half that of the luminance sprite and initialization value is 128.

3.9.4.2.2	Updating of sprites

In the on-line sprite mode, the sprite is updated for each input VOP by being warped using the estimated motion parameters between two consecutive VOPs. The warping of the sprite is performed as described in section � REF _Ref394408998 \r \h ��3.9.3�, except that the location of the warped pixels is rounded to the nearest neighbor (the transform functions for sprite updating is defined in section � REF _Ref394408998 \r \h ��3.9.3�). This process is illustrated in � REF _Ref392665008 * MERGEFORMAT �Figure 53�.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �53�: Updating of the sprite in the dynamic sprite mode.

Therefore, the warping of the sprite can be summarized by the following steps:

scan the sprite,

find the warped coordinates using the transform function

round the last value to find the warped pixel value

3.9.4.2.3	Blending of the VOP and the sprite

The sprite is continuously updated and build by blending new VOPs onto the sprite one at a time. Once the sprite at the previous time instant has been aligned with respect to the current VOP, the current VOP is blended with the sprite. In the on-line dynamic sprite case, the reconstructed VOP is used.

The blending process is as follows. The sprite is first updated with the warped sprite. Then for those pixel locations where the VOP exists, the sprite is updated either as a weighted sum of the warped sprite and the current VOP if the sprite exists at this location or otherwise by copying the VOP pixel value.

Therefore, the update of the sprite can be summarized by the following steps:

the sprite is updated with the warped sprite,

for each pixel location in the VOP

- set the binary mask of the sprite to 255

if the warped sprite exists at this location

- the new sprite value is a blending of the warped sprite and the current VOP

else

- the new sprite value is a copy of the current VOP

The blending_factor controls the update of the sprite and can be dynamically adapted at the VOP level. Its value is in the interval [0,1] and is transmitted in the Video Object Plane.

In pseudo C-code, it gives:

pel_sprite=0;

for (j=0; j<sprite_vdim; j++)

	for (i=0; i<sprite_hdim; i++) {

		spriteY[pel_sprite] = warp_spriteY[pel_sprite];

		spriteA[pel_sprite] = warp_spriteA[pel_sprite];

		/* coordinates in VOP */

		ii = i - offsetx;

		jj = j - offsety;

		pel_vop = jj * vop_width + ii;

		if (vopA[pel_vop]) {

			/* the pixel belongs to vop */

			if (warp_spriteA[pel_sprite] == 255)

				spriteY[pel_sprite]=

					(1-blend_fact)*warp_spriteY[pel_sprite]+blend_fact* vopY[pel_vop];

				/* blending between warped sprite and current vop */

			else

				spriteY[pel_sprite] = vopY[pel_vop];

				/* new area, update sprite with current vop */

			spriteA[pel_sprite] = 255;

		}

		pel_sprite++;

	}

The chroma components are processed similarly.

3.9.5	 Encoding

3.9.5.1	Static Sprite Coding

The main idea of static sprite coding technique is to generate the reconstructed VOPs by directly warping the quantized sprite using specified motion parameters. Residual error between the original VOP and the warped sprite is not added to the warped sprite.

3.9.5.1.1	Low Latency Coding of Static Sprites

Since sprites consist of the information needed to display multiple frames of a video sequence, they are typically much larger than a single frame of video. Therefore a static sprite can be considered as a large static image. One drawback to sprite technology has been the significant latency incurred when utilizing large sprites. The sprite coding syntax allows large static sprite VOPs to be sent piece by piece as well as hierarchically so that the latency incurred to start displaying a video sequence will be dramatically reduced. This syntax may be utilized to transmit any large images progressively, both spatially and in terms of quality.

One method of reducing the latency to transmit large sprites is to first transmit only the portion of the sprite needed to reconstruct the first few frames and transmit the remaining pieces as dictated by the decoding requirements and bandwidth availability. The second method of reducing latency is to first transmit a low resolution or highly quantized version of the sprite to begin the reconstruction of the sequence and transmit residual images to improve upon the original sprite image quality as bandwidth becomes available. These two methods may be utilized separately or in combination. It is also possible to not utilize these capabilities and transmit the sprite as a single image without adding additional pieces to it or updating its quality.

One functionality of the sprite coding syntax allows the sprite to be transmitted via a piece-meal method. Under this syntax, only the size of the sprite, the location offset of the initial piece of the sprite, the initial piece of the sprite, and the shape information for the entire sprite are transmitted at the Video Object Layer. The transmission of the remaining portion of the sprite is moved to the Video Object Plane. At the Video Object Plane, the remaining portions of the sprite are parceled into small pieces for transmission along with the trajectory points. During each frame’s transmission, one or more pieces of the sprite is sent along with size, location, and corresponding trajectory points information. For simplicity, width, height, x offset, and y offset are constrained to be multiples of 16. The transmission continues until all the pieces are sent. It is the duty of the encoder to insure timely delivery of pieces in a way that regions of the sprite are always present at the decoder before they are needed.

Due to timing and bandwidth restrictions, some sprite pieces transmitted with the piece by piece syntax may have been delivered at a lower quality than desired. The second functionality provided by this syntax is designed to improve the quality of any pieces initially transmitted at lower than desired quality. To improve these low quality regions of the transmitted sprite, residuals of these regions are calculated and transmitted as quality update pieces in a way similar to the transmission of sprite pieces. These quality update pieces can be sent in place of or along with sprite pieces at anytime as allowed by the timing and bandwidth constraints. That is, as long as the delivery of the next sprite piece can be delayed, a quality update piece can be sent ahead of it. Also, if the bandwidth allows, both object and update pieces can be sent in the same frame. Therefore, this allows for intermingling of sprite pieces with quality update pieces during transmission. Similar to the manner in which sprite object pieces are transmitted, the residual data to the transmitted sprite is parceled into small pieces and transmitted along with the trajectory data. This continues until the desired quality is achieved. An encoder may utilize this syntax more efficiently by analyzing regions of the sprite to determine if update is necessary (e.g., any region that is not going to be shown for the rest of the sequence can be ignored) so the number of quality update pieces transmitted is reduced.

3.9.5.1.2	Shape and Texture coding

Sprite shape and texture are treated as an I-VOP and therefore coded using the I-VOP method in VideoObjectLayer class, but while sprite pieces use the quantization of Intra macroblocks, the update pieces use the quantization of Non-intra macroblocks. The shape information for the entire sprite is transmitted in the VOL as part of the I-VOP. No shape information is transmitted as part of the VOP with the remaining sprite pieces and residual image pieces.

3.9.5.1.3	Quantization of transformation

As discussed above, motion information of reference points are used to represent the warping information instead of the transform coefficients.

Specifically, we define a set of reference points (xr(n), yr(n)) in the current VOP to be coded. The corresponding sprite points (xr’(n), yr’(n)) in the sprite or in the reference VOP are computed using the global motion parameters estimated by global motion estimation. The sprite points (xr’(n), yr’(n)) are quantized (//) to half-pel accuracy. The set of reference and sprite points defines the quantized transform described in section � REF _Ref393110220 \n �3.9.3�. This process is illustrated in � REF _Ref392665053 * MERGEFORMAT �Figure 54�.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �54�. Parameterization of the transform.

3.9.5.1.4	Trajectory encoding

Motion vectors of reference points located at (x0(n), y0(n)), (x1(n), y1(n)), (x2(n), y2(n)), and (x3(n), y3(n)) which are the corner positions of the bounding rectangle, are transmitted as the global motion parameters for each VOP. These are in half pel precision while the actual translation values are retrieved by dividing the decoded value by 2. For efficient representation, the motion vectors are transmitted as differential motion vectors (du0, dv0), (du1, dv1), (du2, dv2), and (du3, dv3) defined as follows:

	(ur , vr) = (2 (xr’(n) - xr(n)), 2 (yr’(n) - yr(n))

	(du0 , dv0) = (u0, v0),

	(du1 , dv1) = (u1 - u0, v1 - v0),

	(du2 , dv2) = (u2 - u0, v2 - v0),

	(du3 , dv3) = (u3 - u2 - u1 + u0, v3 - v2 - v1 + v0).

Depending on the motion model that is defined by number_of_sprite_points in the Video Object Layer Class, the number of transmitted differential motion vectors is defined. When m moiton vectors are necessary to determine the transform, differential motion vectors (dur, dvr) (0(r < m) are transmitted using the encode_sprite_trajectory() field in the Video Object Plane Class as described in section � REF _Ref393436739 \r �4.6.1�.

For arbitrary shaped VOPs, the size and location of the bounding box is transmitted using VOP_width, VOP_height, VOP_horizontal_mc_spatial_ref, and VOP_vertical_mc_spatial_ref in the Video Object Plane Class as described in section � REF _Ref393436753 \r �4.6.1�.

3.9.5.1.5	VOP reconstruction – Sprite Warping

To reconstruct each VOP from the sprite, we scan the pixels (and thus the coordinates) of the current VOP and compute the corresponding location of this pixel in the sprite, using the quantized transformation described in the section � REF _Ref393110263 \n �3.9.3�.

Generally, the warped coordinates (x’, y’) in the sprite domain are with 1(s pel accuracy (s = 2, 4, 8, or 16). However, since the sprite data only have samples on a integer-pel grid, bilinear interpolation is performed to compute the pixel value at (x’, y’). Assume (x’, y’) is the warped coordinate, and (x00, y00), (x01, y01), (x10, y10), and (x11, y11) are the four closest integer coordinates in the sprite as shown in � REF _Ref392665084 * MERGEFORMAT �Figure 55�. Parameters px and py in this figure are both non-nagative integers smaller than s. Assuming the x- and y-distance between two adjacent pixels is 1,the pixel value P of (x’, y’) is defined as:

P = ((s - py)((s - px) P00 + px P01) + py ((s - px) P10 + px P11)) // s2,

where integers P00 , P01 , P10 , and P11 are the sample values of the pixels located at (x00, y00), (x01, y01), (x10, y10), and (x11, y11).

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �55�. Interpolation of sample values.

3.9.5.2	Dynamic Sprite Coding

3.9.5.2.1	Warping and Trajectory Encoding

The trajectory encoding and warping of the on-line sprite follows exactly the same procedure as the off-line case (see Sections � REF _Ref373651758 \n �3.9.5.1.4� and � REF _Ref393110106 \n �3.9.5.1.5�).

3.9.5.2.2	Sprite prediction and MB type selection (dynamic sprite)

In the case of dynamic sprite, i.e. video_object_layer_sprite_usage is equal to ON-LINE_SPRITE, the sprite is used for predictive coding.

The prediction of a MB using the sprite is obtained using the warping parameters and a transform function. The procedure is similar to the previous warping. The coordinates of the MB are scanned and the warped pixels corresponding in the sprite (using the transform function) are used for prediction. At this stage, bilinear interpolation is used.

Therefore, the prediction of a MB using the sprite and the warping parameters can be summarized by the following steps:

scan the MB,

find the warped coordinates using the transform function

use bilinear interpolation to find the prediction of the pixel value

Each macroblock can be predicted either from the sprite (using warping parameters, see above) or from the previous frame by local motion compensation (LMC) using local motion vectors as in the classical scheme. The selection is made based on which predictor leads to the lower prediction error. The selection is indicated by the sprite macroblock type.

The INTER4V/INTER, Sprite/LMC (GMC/LMC), and INTRA/INTER decision is made as follows:

SAD8 (sum of absolute difference for four 8x8 blocks when the INTER4V mode is selected) and SAD16 (sum of absolute difference for a 16x16 block when the INTER mode is selected) are computed with half-pel motion vectors. SAD16(0,0) is reduced by NB/2+1 for the zero motion vector, similarly to the specification defined in section 3.3.2.2. NB indicates the number of pixels inside the VOP.

the INTER4V/INTER decision is made as follows�if (SAD8 < SAD16 – (NB/2+1))�	then INTER4V�	else INTER

the Sprite/LMC (GMC/LMC) decision is then made as follows�if (SAD spriteGMC - P < SAD LMC �	then SPRITE or GMC�	else LMC�where SAD spriteGMC is defined as the sum of the absolute difference in the MB when using SPRITE/GMC prediction, and SAD LMC and P are defined as:�if the previous criterion was INTER4V�	SAD LMC = SAD 8�	P = NB * Qp / 16�if the previous criterion was INTER�	SAD LMC = SAD16�	P = NB * Qp / 64�if the previous criterion was INTER and the motion vector was (0,0)�	SAD LMC = SAD16 + (NB /2 + 1)�	P = NB/2 + 1�in the case of GMC, if the number of macroblocks using GMC prediction is smaller or equal to 1/3 of the total number of MB in the VOP, the VOP_prediction_type is set to P-VOP, and the current VOP is coded as a normal P-VOP.

Finally, INTRA/INTER decision is performed for each macroblock after completing the Sprite/LMC decision (GMC/LMC decision). INTRA mode is chosen when: �	A < min(SADspriteGMC, SAD LMC) - NB.�See section 3.3.2.3 for the definition of A.

3.9.5.2.3	Shape Coding

Coding of shape in SPRITE-VOPs follows the same rule as shape coding in P-VOPs for both the separate and the combined Motion/Shape/Texture cases. Global warping parameters are not used for shape coding in SPRITE-VOPs. In particular, Intra-coded and Inter-coded macroblocks are encoded using the same mechanisms as Intra-coded and Inter-coded macroblocks in P-VOPs, respectively. Sprite macroblocks in SPRITE-VOPs exhibit the same properties as Intra-coded macroblocks in P-VOPs. Therefore, the rules for encoding shape motion vectors in inter-coded macroblocks in presence of Intra-coded macroblocks are extended to the case where Sprite-coded macroblocks are present (see section � REF _Ref393437009 \r �3.2.6�).

3.9.5.2.4 Motion Vector Coding

Motion vectors of macroblocks with MCSEL == ‘0’ (Local MC) are coded using the same rules as P-VOPs. Although macroblocks with MCSEL == ‘1’ (Dynamic Sprite or GMC) do not have their own block motion vectors, they have pel-wise motion vectors for sprite warping obtained from global motion parameters. The candidate motion vector predictor from the reference macroblock with MCSEL == ‘1’ is obtained as the averaged value of the pel-wise motion vectors in the macroblock.

�EMBED Equation.3���

MVx(x,y):	Horizontal motion vector at (x,y)

MVy(x,y):	Vertical motion vector at (x,y)

Nb:		Number of pixels in the reference block

AMVx:		Averaged value of horizontal motion vectors in the block

AMVy:		Averaged value of vertical motion vectors in the block

Here,

Since the AMVs have fractional values, they are quantized to half-pel integer using “//” operator. For example, values within [0.0, 0.25) are rounded to 0, [0.25, 0.75) are rounded to 0.5, and [0.75, 1.0] are rounded to 1.0.

If the quantized AMV is outside the motion vector range specified by f_code, it is clipped in the range.

The operation above is performed independently for horizontal and vertical components.

For example, if the left block is coded in Dynamic Sprite or GMC (� REF _Ref410198453 \h ��Figure 56�), the candidate predictor is obtained as the averaged value of the pel-wise motion vectors in the left block.

�

Figure � SEQ Figure * ARABIC �56�	Pel-wise motion vectors of Sprite/GMC blocks.

3.9.5.2.4	Padding

When the prediction comes from an on-line dynamic sprite, there may be regions where sprite content is undefined. These undefined regions correspond to locations where no sprite content has been observed yet. In this case, the padding rules that are applied are identical to the ones used for a VOP.

3.9.5.2.5	Overlapped Block MC

Overlapped block MC is disabled over the border between Sprite-macroblock and non-Sprite macroblock.

3.9.5.3	Global Motion Compensation

Global motion compensation (GMC) is a simplified version of on-line dynamic sprite coding where the blending factor is always 1 and the size of the sprite is just the same as that of the reference VOP. This means that the previous reconstructed VOP is regarded as an on-line sprite, and no additional memory for the sprite is needed. In addition, GMC requires no shape information.

The coding method for GMC is exactly the same as that of on-line dynamic sprite coding (see Section � REF _Ref374349027 \r \h ��3.9.5.2�). Note that reference points are located at the corner points of the bounding box as defined in � REF _Ref392665112 * MERGEFORMAT �Figure 57�.

�EMBED Word.Document.8���

Figure � SEQ Figure * ARABIC �57�: Definition of reference points in Global Motion Compensation mode.

3.10	Texture Coding Mode

This section describes the still image coding mode. This mode enables coding of the still image textures with a high coding efficiency as well as spatial and SNR scalability at fine granularity. The granularity of these scalabilities can be selected by the encoder from a wide range of possible levels. � REF _Ref392505447 �Figure 58�, � REF _Ref392505466 �Figure 59� and � REF _Ref392505517 ��Figure 60� show three different examples of such scalabilities. In � REF _Ref392505447 �Figure 58�, the bitstream has M layers of spatial scalability. � REF _Ref392505466 �Figure 59� shows an example in which the bitstream includes N layers of SNR scalability and finally � REF _Ref392505517 ��Figure 60� shows an example of combined SNR-spatial scalabilities. In this example, the bitstream consists of M spatial layers and each spatial layer includes N layers of SNR scalabilities. The number and the kind of scalability (SNR, spatial) are described in the bitstream by the encoder.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �58� N layers of Spatial Scalability.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �59� M layers of SNR Scalability.

�EMBED Word.Document.8���Figure � SEQ Figure * ARABIC �60�NxM layers of Spatial/SNR Scalabilities.

3.10.1	Basic Principle of the Encoder

The block diagram of the encoder is shown in � REF _Ref392505729 �Figure 61�.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �61� Block diagram of the encoder.

The basic modules of a zero-tree wavelet based coding scheme are as follows:

Decomposition of the texture using discrete wavelet transform (DWT).

Quantization of the wavelet coefficients.

Coding of the lowest frequency subband using a predictive scheme.

Zero-tree scanning of the higher order subband wavelet coefficients.

Entropy coding of the scanned quantized wavelet coefficients and the significance map.

3.10.2	Discrete Wavelet Transform

wavelet filter

A two 2-d separable wavelet decomposition is applied to the still texture to be coded. The wavelet decomposition is performed using a Daubechies (9,3) tap biorthogonal filter which has been shown to provide good compression performance. The filter coefficients are:

Lowpass = [0.03314563036812,	-0.06629126073624, -0.17677669529665,

		0.41984465132952,	0.99436891104360, 0.41984465132952,

		-0.17677669529665,	-0.06629126073624, 0.03314563036812]

Highpass = [-0.35355339059327, 0.70710678118655, -0.35355339059327]

The group delay is applied to each filter to avoid the phase shift on both of the image domain and the wavelet domain.

Filter�analysis filter�synthesis filter��lowpass filter�0�0��highpass filter�1�-1��Table � SEQ Table * ARABIC �13� Group delay of the wavelet filter

In this table, the group delay “1” represents the shift of one sample advance.

Symmetric extension

A symmetric extension of the input texture is performed before applying the wavelet decomposition at each level. To satisfy the perfect reconstruction condition with these filters, correct extension for the wavelet filters can be obtained and� REF _Ref392505905 �Table 14�.

Analysis filter�boundary�extension��lowpass�leading�TypeB��(9taps)�trailing�TypeB��highpass�leading�TypeB��(3taps)�trailing�TypeB��Table � SEQ Table * ARABIC �14� Extension method for the analysis wavelet filters

synthesis filter�boundary�extension��lowpass�leading�TypeB��(3taps)�trailing�TypeA��highpass�leading�TypeA��(9taps)�trailing�TypeB��Table � SEQ Table * ARABIC �15� Extension method for the synthesis wavelet filters

�

�����

�

Type A and Type B extensions at the leading and the trailing boundaries are shown in � REF _Ref385125603 * MERGEFORMAT �

Figure 62� and � REF _Ref384539643 * MERGEFORMAT �Figure 63�. In these figures, the samples are shown with letters such as ‘a’, ‘b’, ’c’, and each arrow indicates the symmetry point produced by the extension.

Figure � SEQ Figure * ARABIC �62� Symmetrical extensions at the leading boundary

�������

Figure � SEQ Figure * ARABIC �63� Symmetrical extensions at the trailing boundary

At the synthesis stage, each sample shown in � REF _Ref385125603 * MERGEFORMAT �

Figure 62� and � REF _Ref384539643 * MERGEFORMAT �Figure 63� should be interpreted as downsampled data.

Downsample

At the analysis stage, downsampling for each band is performed as � REF _Ref384630142 * MERGEFORMAT �Figure 64�.

����

Figure � SEQ Figure * ARABIC �64� Downsampling at the analysis stage

In � REF _Ref384630142 * MERGEFORMAT �Figure 64�, the finite series “a b c x y z” consisting of an even number of data is supposed to be downsampled and ‘#’ represents a sample which is disposed.

Decomposition level

The number of decomposition levels of the luminance component is defined by the encoder in the input bitstream. The chrominance components are decomposed to one level less than the luminance components.

3.10.3	Coding of the lowest subband

The wavelet coefficients of the lowest band are coded independently from the other bands. These coefficients are quantized using an uniform midriser quantizer. After quantization of the lowest subband coefficients, a DPCM coding scheme is applied to code the quantized values as described below. Each of the current coefficients wX is predicted from three other quantized coefficients in its neighborhood, i.e. wA, wB, and wC (see � REF _Ref392506026 �Figure 65�), and the predicted value is subtracted from the current coefficient. That is,

if (|wA-wB|) < | wA-wC|)

	�EMBED Equation.3���

	wx = wx -�EMBED Equation.3���

else

	�EMBED Equation.3���

	wx = wx -�EMBED Equation.3���

The coefficients after the DPCM are then encoded using an adaptive arithmetic coder. First the minimum value of the coefficients is found. This value, “band_offset”, is subtracted from all the coefficients to limit their lower bond to zero. Next, the maximum value of the coefficients is found (“band_max_value”). The values “band_offset” and “band_max_value” are put into bitstream.. The arithmetic coder model is initialized with an uniform distribution of “band_max_value” seeds and then the coefficients are scanned and coded using the adaptive arithmetic coder.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �65� DPCM coding of lowest band coefficients

3.10.4	ZeroTree Coding of the Higher Bands

In order to achieve a wide range of scalability levels efficiently as needed by the application, a multiscale zerootree coding scheme is employed. � REF _Ref392506082 * MERGEFORMAT �Figure 66� shows the concept this technique.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �66�. Multiscale Zerotree Coding

The wavelet coefficients of the first spatial (and/or SNR) layer first are quantized with the quantizer Q0. These quantized coefficients are scanned using the zerotree concept and then the significant maps and quantized coefficients are entropy coded. The output of entropy coder at this level, BS0, is the first portion of the bitstream. The quantized wavelet coefficients of the first layer are also reconstructed and subtracted from the original wavelet coefficients. These residual wavelet coefficients are fed into the second stage of the coder in which the wavelet coefficients are quantized with Q1, zerotree scanned and entropy coded. The output of this stage, BS1, is the second portion of the output bitstream. The quantized coefficients of the second stage are also reconstructed and subtracted from the original coefficients. As is shown in � REF _Ref392506082 �Figure 66�, N+1 stages of the scheme provides N+1 layers of scalability. In the following sections, different modules of the scheme is briefly described.

3.10.5	Quantization

In order to achieve a wide range of scalability levels efficiently as needed by the application, a multilevel quantization scheme is employed. The levels of quantization are defined by the encoder and specified in the bitstream. This multilevel quantization scheme provides a very flexible approach to support the right tradeoff between levels and type of scalability, complexity and coding efficiency for any application. After quantization, each wavelet coefficient is either zero or nonzero. Different quantization step sizes (one for luminance and one for chrominance) can be specified for each level of scalability. All the quantizers of the higher bands are uniform mid-rise quantizer with a dead zone 2 times the quantization step size. These quantization step sizes are specified by the encoder in the bitstream..

In order to achieve the finest granularity of SNR scalability, a bi-level quantization scheme is used for all the multiple quantizers. This quantizer is also a uniform mid rise quantizer with a dead zone 2 times the quantization step size. The coefficients that lie outside the dead zone (in the current and previous pass) are quantized with a 1 bit accuracy. The number of quantizers is equal to the maximum number of bitplanes in the wavelet transform representation. In this bi-level case, instead of the quantization step sizes, the maximum number of the bitplanes is specified in the bitstream.

3.10.6	 Zero Tree Scanning

Zero-tree algorithm is based on the observation that strong correlation exists in the amplitudes of the wavelet coefficients across scales, and on the idea of partial ordering of the coefficients. The coefficient at the coarse scale is called the parent, and all coefficients at the same spatial location, and of similar orientation, at the next finer scale are that parent’s children. � REF _Ref392506116 �Figure 67� shows a wavelet tree where the parents are the children are indicated by dots and connected by lines. Since the lowest frequency subband (shown at the upper left in � REF _Ref392506116 �Figure 67�) is coded separately using a DPCM scheme, the wavelet trees start from the adjacent higher bands.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �67� The parent-child relationship of wavelet coefficients

In transform-based coding, it is typically true that a large percentage of the transform coefficients are quantized to zero. A substantial number of bits must be spent either encoding these zero-valued quantized coefficients, or else encoding the location of the non-zero-valued quantized coefficients. ZeroTree Coding uses a data structure called a zerotree, built on the parent-child relationships described above, and used for encoding the location of non-zero quantized wavelet coefficients. The zerotree structure takes advantage of the principle that if a wavelet coefficient at a coarse scale is “insignificant” (quantized to zero) then all wavelet coefficients of the same orientation at the same spatial location at finer wavelet scales are also likely to be “insignificant” .

Zerotrees exist at any tree node where the coefficient is zero and all the node’s children are zerotrees. The wavelet trees are efficiently represented and coded by scanning each tree from the root in the low-low band through the children, and assigning one of three symbols to each node encountered: zerotree root, value ,zerotree root, or value. A zerotree root denotes a coefficient that is the root of a zerotree. Zerotrees do not need to be scanned further because it is known that all coefficients in such a tree have amplitude zero. A valued zerotree root is a node where the coefficient has a nonzero amplitude, and all four children are zerotree roots. The scan of this tree can stop at this symbol. A value symbol identifies a coefficient with amplitude either zero or nonzero, but also with some nonzero descendant. The symbols and quantized coefficients are then losslessly encoded using an adaptive arithmetic coder.

When bi-level quantization is applied, the significant map is coded with the following symbols: zerotree root, isolated zero, valued zerotree root and value. The coefficients that are already found significant are replaced with zero symbols for the purpose of zero-tree forming in later scans. A wild card symbol is used which will be interpreted as zero symbol if a zero-tree root results as consequence of its being considered as zero symbol and will otherwise be treated as don’t care symbol and be ignored.

In order to achieve both spatial and SNR scalabilities two different scanning methods are employed in this scheme. For the spatial scalability, the wavelet coefficients are scanned in the subband by subband fashion, from the lowest to the highest frequency subbands. For the SNR scalability, the wavelet coefficients are scanned in each tree from the top to the bottom. The scanning method is defined in the bitstream.

3.10.7	Entropy coding

The zero-tree symbols and the quantized values are coded using an adaptive arithmetic coder. The arithmetic coder adaptively tracks the statistics of the zerotrees. Symbols and quantized coefficient values generated by the zerotree stage are all encoded using an adaptive arithmetic coder and a three-symbol alphabet. The list of other nonzero quantized coefficients that correspond one-to-one with the valued zerotree root symbols are encoded using an alphabet that does not include zero. The remaining coefficients, which correspond one-to-one to the value symbols, are encoded using an alphabet that does include zero. For any node reached in a scan that is a leaf with no children, neither root symbol can apply. Therefore, some bits can be saved by not encoding any symbol for this node and encoding the coefficient using the alphabet that includes zero.

In the arithmetic coder, three different tables (type, valz, valnz) must be coded at the same time. The statistics of each table is different and therefore the arithmetic coder must track at least three different probability models, one for each table. In current implementation, five different models are used for coding of these values: 1) type; 2) DC to code the nonzero quantized coefficients of the low-low band; 3) AC to code the nonzero quantized coefficients of the other 3 low resolution bands; 4) VaLNZ to code other nonzero quantized coefficients that correspond one-to-one with the valued zerotree root symbols and 5) VALZ to code the remaining coefficients which correspond one-to-one to the value symbols. For each wavelet coefficient in any wavelet block, first the coefficient is quantized, then its type and value are calculated, and last these values are arithmetic coded. The probability model of the arithmetic coder is switched appropriately for each table. For each model, the alphabet range is found, and this value, max_alphabet, is put into bitstream in the following format:

extension (1 bit)�value (7 bits)��.

.

.�.

.

.��The following scripts shows how max_alphabet is encoded:

	while (max_alphabet/128 > 0){

	extension = 1;

	put (band_max_value%128) in value

	max_alphabet = max_alphabet>>7;

}

	extension = 0;

	put max_alphabet in value

Each arithmetic model is initialized with an uniform distribution. For multiple-level bi-level quantizers, the four symbols, namely zerotree root, isolated zero, valued zerotree root and value, and the 1 bit bi-level quantized refinement values are entropy coded using the arithmetic coder.

The output of the coder is one single bitstream for each luminance and color component. Therefore, three different bitstreams are generated for each motion compensated residual frame. The three bitstreams are concatenated and appropriate header is added to fit in the main output bitstream of the coder. In the cases in which all of the luminance or chrominance residual components are quantized to zero, a skip code is sent to minimize the coding cost of that residual component.

4	Bitstream Syntax

4.1	Definitions

/// Integer division with rounding of the result towards plus infinity. For example 3 /// 2 is rounded to 2 and -3 /// 2 is rounded to -1.

next_start_code() {�No. of Bits�Mnemonic��	zero_bit			1�1�‘0’��	while !byte_aligned()����		one_bit					1�1�‘1’��}����Editor’s note: This definition of this function has been modifed from MPEG 2. Byte alignment is achieved by stuffing ‘011..’ rather than all zeros. Stuffing of 1 to 8 bits is shown in the table. Additional byte stuffing is no longer allowed.

Bits to be stuffed�Stuffing Codeword��1�0��2�01��3�011��4�0111��5�01111��6�011111��7�0111111��8�01111111��

next_resync_marker() {�No. of Bits�Mnemonic��	zero_bit			1�1�‘0’��		while !byte_aligned()����			one_bit					1�1�‘1’��}����Editor’s note: This function provies similar features to next_start_code() for resync_marker

The function nextbits_bytealigned() permits comparison of a bitstream with the next bits to be decoded in the bitstream at which the first bit is byte aligned.

The function next_bits() permits comparison of bitstreams with the next bits to be decoded.

4.2	General Structure

The syntax consists of the following class hierarchy:

	(VideoSession (VS)

	(VideoObject (VO)

	(VideoObjectLayer (VOL) or TextureObjectLayer(SOL)

	(Group of VideoObjectPlane (GOV)

	(VideoObjectPlane (VOP)

Within the context of video experiments, a VS is a collection of one or more VO’s. A VO can consist of one or more layers. These layers can correspond to either video or textures. The video object layers are called VideoObjectLayers (VOL's) and the texture layers are called TextureObject-Layer(SOLs). Each VOL consists of an ordered sequence of snapshots in time called VOPs. Thus there can be several VO’s (VO0, VO1, ..) in a VS and for each VO, there can be several layers (VOL0, VOL1,.., or SOL1, SOL2,..). Each VOL consists of time sequence of VOPs (VOP0, VOP1,..), which are basically snapshots in time. The GOV layer is an optional layer, so the bitstream can have any(include none) number of the GOP header, and the frequency of the GOV header is an encoder issue. Since the GOV header indicates the absolute time, it may be used for random access and error recovery purpose. In some profile, the GOV header shall be followed by the I-VOP.A VO can be of arbitrary shape (rectangular is a special case). For single layered coding only one VOL (VOL0) or one SOL (SOL0) exists per VO. � REF _Ref392506116 �Figure 67� shows the hierarchical structure of the syntax.

For the purpose of conducting core experiments the bitstreams for the VideoSession and each of the VideoObject’s and VideoObjectLayer’s/TextureObjectLayers's are stored in separate files. The multiplexing of these bitstreams will be provided by the MSDL.

�

Figure � SEQ Figure * ARABIC �68�: Hierarchy in the proposed video syntax

4.3	�Video Session Class

4.3.1	Video Session Class

Syntax�No. of bits�Mnemonic��VideoSession() {����	video_session_start_code�sc+8=32���	do* { ����		VideoObject()����	}while (nextbits_bytealigned()== video_object_start_code)����	next_start_code()����	video_session_end_code�sc+8=32���}����* concurrent loop solution to be provided by MSDL.

sc

This code is intended to be used in combination with additional bits, for the purpose of the synchronization. Its binary representation is 23 zeros followed by a 1 (000000000000000000000001), or its hexadecimal representation is ‘000001’.

video_session_start_code

This code cannot be emulated by any combination of other valid bits in the bitstream, and is used for synchronization purpose. Its value is that of the sc followed by 'B0' in hexadecimal.

video_session_end_code

This code cannot be emulated by any combination of other valid bits in the bitstream, and is used for synchronization purpose. Its value is that of the sc followed by 'B1' in hexadecimal. video_session_end_code resets all data relative to VOPs. In other words, different sessions are treated completely independently.

�

4.4	Video Object Class

4.4.1	Video Object

Syntax�No. of bits�Mnemonic��VideoObject() {����	video_object_start_code�sc+3=27���	video_object_id�5���	do{ ����		VideoObjectLayer()����	}while(nextbits_bytealigned()==video_object_layer_start_code)����	do{ ����		textureObjectLayer()����	}while(nextbits_bytealigned()==texture_object_layer_start_code)����	next_start_code()����}����

video_object_start_code

This is a unique code of length 27 bits (sc+3) that preceeds the video_object_id.

video_object_id

This is a 5-bit code which identifies a video object in a scene being processed.

�

4.5	Video Object Layer Class

4.5.1	Video Object Layer

Syntax�No. of bits�Mnemonic��VideoObjectLayer() {����	video_object_layer_start_code�sc+4=28���	video_object_layer_id�4���	video_object_layer_shape�2���	if (video_object_layer_shape == ‘00’) {����		video_object_layer_width�13���		video_object_layer_height�13���	}����	not_8_bit�1���	obmc_disable�1���	if (not_8_bit) {����		quant_precision�4���		bits_per_pixel�4���	}����	video_object_layer_shape_effects�4���	if(video_object_layer_shape_effects==‘0001’

	||video_object_layer_shape_effects==‘0011’

	||video_object_layer_shape_effects==‘0100’

	||video_object_layer_shape_effects == ‘0101’)����		video_object_layer_feather_dist�3���	if(video_object_layer_shape_effects==‘0100’

	||video_object_layer_shape_effects == ‘0101’) {����		for(i=0;i<video_object_layer_feather_dist;i++)����			feathering_filter();�8*15���	}����	video_object_layer_sprite_usage�2���	if (video_object_layer_sprite_usage!=SPRITE_NOT_USED) {����		if(video_object_layer_sprite_usage==STATIC_SPRITE

		¦¦video_object_layer_sprite_usage==ON_LINE_SPRITE) {����			sprite_hdim�13���			sprite_vdim�13���		}����		if(video_object_layer_sprite_usage==STATIC_SPRITE

		¦¦video_object_layer_sprite_usage==ON-LINE_SPRITE) {����			sprite_Left_Edge�13���			sprite_Top_Edge�13���		}����		no_of_sprite_points�6���		warping_accuracy�2���		lighting_change_in_sprite�1���	}���� inter_mp_enable�1��� if (video_object_layer_shape!=’00’)���� sadct_disable�1���	video_object_layer_quant_type�1�������	if (video_object_layer_quant_type) {����		load_intra_quant_mat�1���		if (load_intra_quant_mat) {����		i=0;����		do����			intra_quant_mat[i]�8���		while (intra_quant_mat[i] != 0

 && ++i < 64);����		for (j=i; j<64; j++)����			intra_quant_mat[j] =

 intra_quant_mat[i-1];����	}����		load_nonintra_quant_mat�1���		if (load_nonintra_quant_mat) {����		i=0;����		do����			nonintra_quant_mat[i]�8���		while (nonintra_quant_mat[i] != 0

 && ++i < 64);���� 	for (j=i; j<64; j++)����			nonintra_quant_mat[j] =

 nonintra_quant_mat[I-1];����	}����		if(video_object_layer_shape==‘10’){����			disable_gray_quant_update�1���			load_gray_intra_quant_mat�1���			if(load_gray_intra_quant_mat)����			i=0;����			do����			gray_intra_quant_mat[i]�8���			while (gray_intra_quant_mat[i]!=0

 && ++i < 64);����			for (j=i; j<64; j++)����			gray_intra_quant_mat[j] =

 gray_intra_quant_mat[i-1];����		}����		load_gray_nonintra_quant_mat�1���		if (load_gray_nonintra_quant_mat) {����			i=0;���� 		do����			gray_nonintra_quant_mat[i]�8��� 		 while (gray_nonintra_quant_mat[i]!=0

 && ++i < 64);����			for (j=I; j<64; j++)����			gray_nonintra_quant_mat[j] =

 gray_nonintra_quant_mat[i-1];����		}����		}���� quarter_sample�1���	}����	Complexity_estimation_disable�1���	if (!Complexity_estimation_disable){���� Parameter_list�8��� Estimation_method�2��� if (Estimation_method ==’00’){���� INTRA�1���	 INTRA+Q�1���	 INTER�1���	 INTER4V�1���	 INTER+Q�1���	 INTERPOLATE MC+Q�1���	 FORWARD MC+Q�1���	 BACKWARD MC+Q�1���	 H.263 PB DIRECT�1���	 Not Coded�1���	 Zig-zag_DCT_coeff�1���	 Half_pel_advanced_prediction�1���	 Half_pel_normal_pred�1���	 VLC_symbol�1���	 Shape_coding_parameters {����		 t.b.d ……..	�1���	 }����	 Scalability_parameters {����		 t.b.d ……..	�1���	 }����	 Sprite_coding_parameters {����		 t.b.d ……..	�1���	 }���� }���� if (Estimation_method ==’xx’){���� t.b.d ……..���� }����	}����	error_resilient_disable�1���	if (!error_resilient_disable) {����		data_partitioning�1���		reversible_VLC�1��� newpred_enable�1��� if (newpred_enable)���� newpred_mode_flag�2���	}����	intra_acdc_pred_disable�1���	separate_motion_shape_texture�1���	if(video_object_layer_sprite_usage==STATIC_SPRITE){����		encodeSpritePiece()����	}����	Scalability�1���	if (scalability) {����		ref_layer_id�4���		ref_layer_sampling_direc�1���		hor_sampling_factor_n�5���		hor_sampling_factor_m�5���		vert_sampling_factor_n�5���		vert_sampling_factor_m�5���		enhancement_type�1���	}����	do {����		VideoObjectPlane()����	}while(nextbits_bytealigned()==video_object_plane_start_code)����	next_start_code()����}����video_object_layer_start_code

This is a unique code of length 28 bits (sc+4) that preceeds the video_object_layer_id.

video_object_layer_id

This is a 4-bit code which identifies a video object layer for a video object being processed.

video_object_layer_shape

This is a 2-bit code which identifies the shape type of video object layer as shown in � REF _Ref364767314 * MERGEFORMAT �Table 16�.

video_object_layer_shape�Code��rectangular�00��binary�01��gray-scale�10��Binary-shape-only�11��Table � SEQ Table * ARABIC �16� Video Object Layer shape types

This flag is “00” if a VOL shape is rectangular, “01” if a VOL has a binary shape (i.e. if each pixel of the rectangle defined by video_object_layer_width and video_object_layer_height is either part of a VOL or not), and “10” if a VOL shape is defined by grey scale data (i.e. if each pixel of the rectangle defined by video_object_layer_width and video_object_layer_height is to be linearly combined with the pixels of other VOLs at the same spatial location). The flag is “11” if the VOL consists of only binary shape and no texture.

video_object_layer_width, video_object_layer_height

These two codes define the picture size for the session, in pixels unit (zero values are forbidden). This is also the size of the unique VOL of the session.

not_8_bit

This one bit flag is set when the video data precision is not 8 bits per pixel.

quant_precision

This field specifies the number of bits used to represent quantiser parameters. Values between 3 and 9 are allowed. When not_8_bit is zero, and therefore quant_precision is not transmitted, it takes a default value of 5.

bits_per_pixel

This field specifies the video data precision in bits per pixel. It may take different values for different video object layers within a single video object. A value of 12 in this field would indicate 12 bits per pixel. This field may take values between 4 and 12.

When not_8_bit is zero and bits_per_pixel is not present, the video data precision is always 8 bits per pixel, which is equivalent to specifying a value of 8 in this field.

video_object_layer_sprite_usage

This 2-bit code is to indicate the usage of sprite coding or global motion compensation (GMC).

0x00 means that no sprite is used in the coding. Mnemonic is SPRITE_NOT_USED.

0x01 means that a sprite is being used directly (i.e., no predictions are made on the basis of the sprite) to generate some or all of the VOPs in this VOL (i.e., static sprite). The static sprite is assumed to have been transmitted as an I-VOP with possible additional pieces transmitted in the future also as I-VOPs and residual update pieces also transmitted as I-VOPs, but using the quantization of Non-Intra macroblocks. Mnemonic is STATIC_SPRITE.

0x02 means that a sprite is used in predictive coding for some or all of the VOPs in this VOL. The sprite is being constructed on-line and the mechanism for building the sprite is on. Mnemonic is ON-LINE_SPRITE.

0x03 means that GMC is used in predictive coding for some or all of the VOPs in this VOL. GMC is an extension of on-line sprite coding where blending factor is always 1 and the size of the sprite is just the same as that of the reference VOP. This means that the previous reconstructed VOP is regarded as an on-line sprite, and no additional memory for a sprite is needed. Mnemonic is GMC.

sprite_hdim

This 13-bit field defines the horizontal dimension of the sprite.

sprite_vdim

This 13-bit field defines the vertical dimension of the sprite.

sprite_Left_Edge

This 13-bit field defines the left edge of the sprite.

sprite_Top_Edge

This 13-bit field defines the top edge of the sprite.

no_of_sprite_points

This 6-bit number represents the number of points for sprite warping. Different transformations are used for different settings of number of points. See the next section for details of these transformations.

Number of points�Transformations��0�stationary��1�translation��2,3�affine��4�perspective��Table � SEQ Table * ARABIC �17� Transformations for number of points

0 points is used for stationary VOL's. An affine transforms are used if there are 1, 2, or 3 points. The case of 1 point is separated from 2 and 3 points because of its possible special implementation and wide usage. A perspective transform is applied if there are 4 points. Local affine is used for more than 4 points.

Note that if no_of_sprite_points is zero, when video_object_layer_sprite_usage indicates sprite usage, the warping is understood to be identity (stationary motion for sprite) and no coordinates need to be coded.

warping_accuracy

This is a 2-bit code which indicates the quantization accuracy of motion vectors used in the warping process for static/dynamic sprites and global motion compensation.

Codewords for warping_accuracy.

warping_accuracy�Code��1/2 pixel�00��1/4 pixel�01��1/8 pixel�10��1/16 pixel�11��lighting_change_in_sprite

This flag indicates whether there is any lighting change during the sprite warping. 0 is FALSE and 1 is TRUE.

inter_mp_enable

A bit code whose value is 1 when all prediction error coding is to be done using the Matching Pursuit syntax described in Sec. � REF _Ref410462979 \r \h ��14.3�.

sadct_ disable

A bit code whose value is ‘1’ when SA-DCT is disabled. The default value of disable_sadct is always ‘1’. When enabled, all DCT transforms are replaced by SA-DCT as described in Sec. � REF _Ref390047342 \n * MERGEFORMAT �3.4.4�

video_object_layer_quant_type

A 1-bit code which indicates the type of quantization method selected. When it has a value of 0, H.263 quantization method is selected, otherwise, MPEG-1/2 quantization method is selected.

load_intra_quant_mat

A 1-bit code which indicates whether the default matrix for visually weighting DCT coefficients of intra macroblocks is selected or if a new matrix for visually weighting of DCT coefficients of intra macroblocks is to be loaded.

intra_quant_mat[i]

This is a one dimensional (1d) array of up to 64 values (8-bits per value expressed in the range 1 to 255) for visual weighting of DCT coefficients of intra macroblocks. The values in the 1d array are in the same order as that obtained by zigzag scanning of an 8x8 two-dimensional array. A decoded value of 0 indicates that the matrix is truncated and the remaining, non-transmitted values are set equal to the last non-zero value. When no values are transmitted (i.e., the first decoded value is zero) the default value for each array entry is 16.

load_nonintra_quant_mat

A 1 bit code which indicates whether the default matrix for visually weighting DCT coefficients of nonintra macroblocks is selected or if a new matrix for visually weighting of DCT coefficients of nonintra macroblocks is to be loaded.

nonintra_quant_mat[i]

This is a one dimensional (1d) array of up to 64 values (8-bits per value expressed in the range 1 to 255) for visual weighting of DCT coefficients of nonintra macroblocks. The values in the 1d array are in the same order as that obtained by zigzag scanning of an 8x8 two-dimensional array. A decoded value of 0 indicates that the matrix is truncated and the remaining, non-transmitted values are set equal to the last non-zero value. When no values are transmitted (i.e., the first decoded value is zero) the default value for each array entry is 16.

disable_gray_quant_update

A 1-bit code which indicates the quantizer for grayscale alpha mask is to be updated when set to “0”. The method for updating the quantizer is specified in the next section (See the semantics for VOP_gray_quant).

load_gray_intra_quant_mat

A 1-bit code which indicates whether the matrix for visually weighting DCT coefficients of intra macroblocks of texture is used as that of a gray-scale alpha mask or if a new matrix for visually weighting of DCT coefficients of intra macroblocks of a gray-scale alpha mask is to be loaded.

gray_intra_quant_mat[i]

This is an one dimensional (1d) array of up to 64 values (8-bits per value expressed in range 1 to 255) for visual weighting of DCT coefficients of gray-scale alpha masks of intra macroblocks. The values in the 1d array are in the same order as that obtained by zig-zag scanning of a 8x8 two-dimensional array. A decoded value of 0 indicates that the matrix is truncated and the remaining, non-transmitted values are set equal to the last non-zero value. When no values are transmitted (i.e., the first decoded value is zero) the default value for each array entry is 16.

load_gray_nonintra_quant_mat

A 1 bit code which indicates whether the matrix for visually weighting DCT coefficients of nonintra macroblocks of texture is used as that of gray-scale alpha or if a new matrix for visually weighting of DCT coefficients of gray-scale alpha masks of nonintra macroblocks is to be loaded.

gray_nonintra_quant_mat[i]

This is an one dimensional (1d) array of up to 64 values (8-bits per value expressed in range 1 to 255) for visual weighting of DCT coefficients of gray-scale alpha masks of nonintra macroblocks. The values in the 1d array are in the same order as that obtained by zig-zag scanning of a 8x8 two-dimensional array. A decoded value of 0 indicates that the matrix is truncated and the remaining, non-transmitted values are set equal to the last non-zero value. When no values are transmitted (i.e., the first decoded value is zero) the default value for each array entry is 16.

quarter_sample

A bit code whose value is 1 when quarter sample mode shall be used for motion compensation of the luminance component, and 0 for half sample mode.

error_resilient_disable

A bit code whose value is 1 when error resilient coding is disabled. The value of this flag affects the techniques used for motion vector prediction. This resynchronisation strategy only applies in the single VOP case.

data_partitioning

A bit code whose value is 1 when the motion and texture data between the two resync. markers are partitioned as described in the Section 6.3

reversible_VLC

A bit code whose value is 1 when reversible VLCs are to be used to generate the bitstream.

newpred_enable

This is a one-bit flag which when set to ‘1’ indicates that the NEWPRED mode is enabled.

newpred_mode_flag

This is a two-bits flag which indicates which type of backward channel message is needed by the encoder.

	01: need ACK message to be returned

	10: need NACK message to be returned

	11: need both ACK and NACK messages to be returned

	00: reserved

intra_acdc_pred_disable

A bit code whose value is 1 when AC/DC prediction of intra coded blocks is disabled. In normal coding, AC/DC prediction of intra macroblocks is always enabled.

obmc_disable

A bit code whose value is 1 when overlapped motion compensation for luminance is not performed. In this case, motion compensation for luminance and chromiance is the same.

Separate_motion_shape_texture

This flag is “1” if all the coding data (e.g. motion, shape, texture, etc) for the VOP are grouped together. It is “0” if the coding data are grouped macroblock per macroblock.

EncodeSpritePiece ()

This function encodes a selected region of the sprite object or residual. It also encodes the parameters required by the decoder to properly incorporate the pieces. All the pieces will be encoded as I-VOPs, but object pieces use the quantization of Intra macroblocks, and the update pieces use the quantization of Non-intra macroblocks. In the Video Object Layer, the initial sprite piece is transmitted as an I-VOP with the quantization of Intra macroblocks. This function is also called from the Video Object Plane to encode additional sprite object pieces and residual pieces. The parameters are encoded as fixed length values. The parameters are piece_width, piece_height, piece_xoffset, and piece_yoffset. The piece_width and piect_height are measured in number of macroblocks. Piece_xoffset specifies the horizontal offset location, measured in macroblock from the left edge of the sprite object, of the initial piece into the sprite object buffer at the decoder. Piece_yoffset specifies the vertical offset location, measured in macroblock from the top edge of the sprite object, of the initial piece into the sprite object buffer at the decoder.

Syntax�No. Of bits�Mnemonic��encodeSpritePiece() {����	piece_width�9���	piece_height�9���	piece_xoffset�9���	piece_yoffset�9���	sprite_shape_texture ()����}����piece_width

This value specifies the width of the sprite piece measured in macroblock.

Piece_height

This value specifies the height of the sprite piece measured in macroblock.

Piece_xoffset

This value specifies the horizontal offset location, measured in macroblock from the left edge of the sprite object.

Piece_yoffset

This value specifies the vertical offset location, measured in macroblock from the top edge of the sprite object.

Sprite_shape_texture ()

Sprite shape and texture are treated as an I-VOP and therefore coded using the I-VOP method in VideoObjectLayer class, but while sprite object pieces use the quantization of Intra macroblocks, the update pieces use the quantization of Non-intra macroblocks. The shape information for the entire sprite is transmitted in the VOL as part of the I-VOP. No shape information is transmitted as part of the VOP with the remaining sprite pieces and residual image pieces.

Scalability

This is a 1-bit flag which indicates if the current layer uses scalable coding. If the current layer is used as the base-layer, this flag is ‘0’.

Ref_layer_id

This is a 4-bit code which indicates the layer to be used as reference for the prediction(s) in the case of scalability. It can have a value between 0 and 15.

Ref_layer_sampling_direc

This is a 1-bit flag whose value when “0” indicates that the reference layer specified by ref_layer_id has the same or lower resolution as the layer being coded. Alternatively, a value of “1” indicates that the resolution of reference layer is higher than the resolution of layer being coded resolution.

Hor_sampling_factor_n, hor_sampling_factor_m

These are 5-bit quantities in range 1 to 31 whose ratio hor_sampling_factor_n/hor_sampling_factor_m indicates the resampling needed in horizontal direction; the direction of sampling is indicated by ref_layer_sampling_direc.

Vert_sampling_factor_n, vert_sampling_factor_m

These are 5-bit quantities in range of 1 to 31 whose ratio vert_sampling_factor_n/vert_sampling_factor_m indicates the resampling needed in vertical direction; the direction of sampling is indicated by ref_layer_sampling_direc.

Enhancement_type

This is a 1-bit flag which indicates the type of an enhancement structure in a scalability. It has a value of “1” when an enhancement layer enhances a partial region of the base layer. It has a value of “0” when an enhancement layer enhances entire region of the base layer. The default value of this flag is “0”.

Video_object_layer_shape_effects

This is a 4-bit code which identifies which, if any, of the special effects to create a grayscale mask from a binary one is used.

Video_object_layer_shape_effects�Code��No Effects�0000��Linear Feathering�0001��Constant Alpha�0010��Linear Feathering and Constant Alpha�0011��Feathering Filter�0100��Feathering Filter and Constant Alpha�0101��Table � SEQ Table * ARABIC �18� video_object_layer_feather_dist

This is a 3-bit code that specifies an integer of over how many pixels from an edge to feather the binary alpha masks. When used in conjunction with the Feathering Filter Mode, this specifies the number of iterations.

Feathering_filter()

120 bits(15 entries of 8bit FLC) code specifies a feathering filter for each iteration.

Complexity_estimation_disable

A single bit flag that indicates the presence of decoding complexity estimation by decoding statistics parameters ����INTRA: flag for intra type macroblock counting��INTRA+Q: flag for intra+Q type macroblock counting��INTER: flag for inter type macroblock counting��INTER4V: flag for inter4v type macroblock counting��INTER+Q: flag for inter+Q type macroblock counting��INTERPOLATE MC+Q: flag for interpolate type macroblock counting��FORWARD MC+Q: flag for forward prediction type macroblock counting��BACKWARD MC+Q: flag for backward prediction type macroblock counting��H.263 PB DIRECT: flag for H.263 direct type macroblock counting��Not Coded: flag for not-coded type macroblock counting��Zig-zag_DCT_coeff: flag for statistic of DCT coefficients��Half_pel_advanced_prediction: flag for half pel advanced prediction vector counting��Half_pel_normal_pred: flag for half pel normal prediction vector counting��VLC_symbol: flag for statistic of VLD operations��Shape_coding_parameters: flag for shape coding parameters (t.b.d.)��Scalability_parameters: flag for scalability parameters (t.b.d.)	��Sprite_parameters: flag for shape coding parameters (t.b.d.)	�����

4.6	Group Of VOPs class

4.6.1	Syntax of Group of VideoObjectPlane

group_of_VideoObjectPlane() {�No. Of bits�Mnemonic��	group_start_code�32 �bslbf�� VOP_time_increment_resolution�15�uimsbf�� marker_bit�1�bslbf��	time_code�18�bslbf��	closed_gov�1�uimsbf��	broken_link�1�uimsbf��	do {����		group_of_VideoObjectPlane()����	}while(nextbits_bytealigned()==group_start_code)����	next_start_code()����}����group_start_code

The group_start_code is the unique code of length of 32bit. It identifies the beginning of a GOV header.

VOP_time_increment_resolution

The VOP_time_increment_resolution is a 15bit unsigned integer that indicates the resolution of the VOP_time_increment in terms of number of ticks within one modulo time (one second in this case). The value of zero is forbidden.

Time_code

This is a 18-bit integer containing the following: time_code_hours, time_code_minutes, marker_bit and time_code_seconds as shown in Table1. The parameters correspond to those defined in the IEC standard publication 461 for “time and control codes for video tape recorders”. The time code refers to the first plane (in display order) after the GOV header.

Time_code�range of value�No. Of bits�Mnemonic��time_code_hours�0 – 23�5�uimsbf��time_code_minutes�0 – 59�6�uimsbf��marker_bit�1�1�bslbf��time_code_seconds�0 – 59�6�uimsbf��Table � SEQ Table * ARABIC �19� time_code

closed_gov

This is a one-bit flag which indicates the nature of the predictions used in the first consecutive B-VOPs (if any) immediately following the first coded I-VOP after the GOV header .The closed_gov is set to ‘1’ to indicate that these B-VOPs have been encoded using only backward prediction or intra coding. This bit is provided for use during any editing which occurs after encoding. If the previous pictures have been removed by editing, broken_link may be set to ‘1’ so that a decoder may avoid displaying these B-VOPs following the first I-VOP following the group of plane header. However if the closed_gov bit is set to ‘1’, then the editor may choose not to set the broken_link bit as these B-VOPs can be correctly decoded.

Broken_link

This is a one-bit flag which shall be set to ‘0’ during encoding. It is set to ‘1’ to indicate that the first consecutive B-VOPs (if any) immediately following the first coded I-VOP following the group of plane header may not be correctly decoded because the reference frame which is used for prediction is not available (because of the action of editing). A decoder may use this flag to avoid displaying frames that cannot be correctly decoded.

�

4.7	VideoObjectPlane Class

4.7.1	VideoObjectPlane

Syntax�No. Of bits�Mnemonic��VideoObjectPlane() {����	VOP_start_code�sc+8=32���	do {����		modulo_time_base�1���	} while (modulo_time_base != “0”)����	VOP_time_increment�1-15��� vop_coded�1��� If (vop_coded==’0’) next_start_code()����	VOP_prediction_type�2��� if (newpred_enable) {���� vop_id�4-15��� vop_id_for_prediction_indication�1��� if (vop_id_for_prediction_indication)���� vop_id_for_prediction�4-15��� marker_bit�1��� }���� intra_dc_vlc_thr�3��� vop_reduced_resolution�1���	if(VOP_prediction_type == “P” ||����	 (video_object_layer_sprite_usage != STATIC_SPRITE &&����	 VOP_prediction_type == SPRITE))����		VOP_rounding_type�1���	if (video_object_layer_sprite_usage != SPRITE_NOT_USED) 		����		&&VOP_prediction_type == SPRITE) {					����		if (no_of_sprite_points > 0) {����			encode_sprite_trajectory ()����		}����		if (lighting_change_in_sprite) {����			lighting_change_factor_encode ()����		}����		if (video_object_layer_sprite_usage==STATIC_SPRITE) {		����			if (sprite_transmit_mode != STOP) {����			do {����				sprite_transmit_mode = checkSpriteTransMode ()����				sprite_transmit_mode�2���				if ((sprite_transmit_mode == PIECE) ||

				 (sprite_transmit_mode == UPDATE))����					encodeSpritePiece ()����			}while(sprite_transmit_mode!=STOP)

				&&(sprite_transmit_mode!=PAUSE))����		}����		else if (video_object_layer_sprite_usage == ON-LINE_SPRITE) {		����			blending_factor				�8���		}								����	}����	if (video_object_layer_shape != “00”) {����		VOP_width�13���		marker_bit�1���		VOP_height�13���		VOP_horizontal_mc_spatial_ref�13���		marker_bit�1���		VOP_vertical_mc_spatial_ref�13���		if (video_object_layer_sprite_usage==STATIC_SPRITE) {����			return();����		}����		if (scalability && enhancement_type)����			background_composition�1���		VOP_CR�1���		change_CR_disable�1���	}����	interlaced�1���	if (interlaced)����		top_field_first�1���	if (VOP_prediction_type==‘10’ && !scalability) ����		VOP_dbquant�2���	else {����		VOP_quant�quant_precision���		if(video_object_layer_shape == “10”)����			VOP_gray_quant�6���	}����	if ((video_object_layer_shape_effects == ‘0010’) ||����	 (video_object_layer_shape_effects == ‘0011’) ||����	 (video_object_layer_shape_effects == ‘0101’)) {����		VOP_constant_alpha �1���		if (VOP_constant_alpha)����			VOP_constant_alpha_value �8���	}����	video_object_plane_fcode_forward�3���	video_object_plane_fcode_backward�3���	if (!Complexity_estimation_disable){���� if (estimation_method==’00’){����		 if (VOP_prediction_type==‘00’){����			 if (INTRA)

				 DCECS_intra�

8���			 if (INTRA+Q)

				 DCECS_intra_Q�

8���			 if (Not coded)

				 DCECS_Not_coded�

8���			 if (Zig-zag_DCT_coeff)

				 DCECS_zig_zag_DCT�

VLC���			 if (Half_pel_advanced_prediction)

				 DCECS_half_pel_ap�

8���		 if (Half_pel_normal_pred)

			 DCECS_ half_pel_np�

8���		 if (VLC_symbol)

			 DCECS_ VLC_symbol�

8���		 if (Shape_coding_parameters) {����			 DCECS_ ……t.b.d ……..	�Tbd���		 }���� }����		}����		if (VOP_prediction_type==‘01’){���� if (estimation_method==’00’){����			 if (INTRA)

				 DCECS_intra�

8���			 if (INTRA+Q)

				 DCECS_intra_Q�

8���			 if (Not coded)

				 DCECS_Not_coded�

8���			 if (INTER)

				 DCECS_inter	�

8���			 if (INTER4V)

				 DCECS_inter4v�

8���			 if (INTER+Q)

				 DCECS_inter�_Q�

8���			 if (Zig-zag_DCT_coeff)

				 DCECS_zig_zag_DCT�

VLC���			 if (Half_pel_advanced_prediction)

				 DCECS_half_pel_ap�

8���		 if (Half_pel_normal_pred)

			 DCECS_ half_pel_np�

8���		 if (VLC_symbol)

			 DCECS_ VLC_symbol�

8���		 if (Shape_coding_parameters) {����			 DCECS_ ……t.b.d ……..	�Tbd���		 }	���� }���� if (estimation_method==’00’){���� 		if (VOP_prediction_type==‘10’){����	 		if (INTRA)

		 	 DCECS_intra�

8���			 if (INTRA+Q)

				 DCECS_intra_Q�

8���			 if (Not coded)

				 DCECS_Not_coded�

8���			 if (INTER)

				 DCECS_inter	�

8���			 if (INTER4V)

				 DCECS_inter4v�

8���			 if (INTER+Q)

				 DCECS_inter�_Q�

8���	 if (INTERPOLATE MC+Q)

		 DCECS_interpolate�

8���	 if (FORWARD MC+Q)

		 DCECS_forward�

8���	 if (BACKWARD MC+Q)

		 DCECS_backward�

8���	 if (H.263 PB DIRECT)

		 DCECS_direct_h263�

8���			 if (Zig-zag_DCT_coeff)

				 DCECS_zig_zag_DCT�

VLC���			 if (Half_pel_advanced_prediction)

				 DCECS_half_pel_ap�

8���		 if (Half_pel_normal_pred)

			 DCECS_ half_pel_np�

8���		 if (VLC_symbol)

			 DCECS_ VLC_symbol�

8���		 if (Shape_coding_parameters) {����			 DCECS_ ……t.b.d ……..	�Tbd���		 }���� }����	}���� if (estimation_method==’00’){����		 if (VOP_prediction_type==‘11’){����			 If (INTRA)

				 DCECS_intra�

8���			 If (INTRA+Q)

				 DCECS_intra_Q�

8���			 If (Not coded)

				 DCECS_Not_coded�

8���			 If (INTER)

				 DCECS_inter	�

8���			 if (INTER4V)

				 DCECS_inter4v�

8���			 if (INTER+Q)

				 DCECS_inter�_Q�

8���	 if (INTERPOLATE MC+Q)

		 DCECS_interpolate�

8���	 if (FORWARD MC+Q)

		 DCECS_forward�

8���	 if (BACKWARD MC+Q)

		 DCECS_backward�

8���	 if (H.263 PB DIRECT)

		 DCECS_direct_h263�

8���			 if (Zig-zag_DCT_coeff)

				 DCECS_zig_zag_DCT�

VLC���			 if (Half_pel_advanced_prediction)

				 DCECS_half_pel_ap�

8���		 if (Half_pel_normal_pred)

			 DCECS_ half_pel_np�

8���		 if (VLC_symbol)

			 DCECS_ VLC_symbol�

8���		 if (Shape_coding_parameters) {����			 DCECS_shape ……t.b.d ……..	�t.b.d.���		 }����		 if (Sprite_coding_parameters) {����			 DCECS_ sprite ……t.b.d ……..	�t.b.d.���		 }����	 }���� }����	}����	if (!scalability) {����		if (!separate_motion_shape_texture) ����			if(error_resilience_disable)����				combined_motion_shape_texture_coding()����			else����				do{����					do{����						combined_motion_shape_texture_coding()����					} while (nextbits_bytealigned() != 0000 0000 0000 0000)����					if(nextbits_bytealigned()!=000 0000 0000 0000 0000 0000) {����						next_resync_marker()����						resync_marker�17���						macroblock_number�1-12���						quant_scale�quant_precision���						header_extension_code�1���						if (header_extension_code == 1) {����							do { ����								modulo_time_base�1���							} while (modulo_time_base != 0)����							VOP_time_increment�1-15���						}����					}����				} while(nextbits_bytealigned()!=000 0000 0000 0000 0000 0000)����		else {����			if (video_object_layer_shape != “00”) {����				do { ����					first_shape_code�1-3���				}while(count of macroblocks!=total number of macroblocks)����			}����			if(error_resilience_disable) {����				motion_coding()����				if (video_object_layer_shape != “00”)����					shape_coding()����		 			texture_coding()����			}����			else����				do{����					do {����						motion_coding()����					} while (next_bits()!=‘1010 0000 0000 0000 1’)����					motion_marker�17���					if (video_object_layer_shape != “00”)����						shape_coding()����					do{����						texture_coding()����					} while (nextbits_bytealigned()!= ‘0000 0000 0000 0000’)����					if(nextbits_bytealigned()!=000 0000 0000 0000 0000 0000) {����						next_resync_marker()����					resync_marker�17���					macroblock_number�1-12���					quant_scale�5���					header_extension_code�1���					if (header_extension_code == 1) {����						do { ����							modulo_time_base�1���						} while (modulo_time_base != 0)����						VOP_time_increment�1-15���					}����				}����			} while (nextbits_bytealigned() != 000 0000 0000 0000 0000 0000)����		}����	}����	else {����		if (enhancement_type) {����			load_backward_shape�1���			if (load_backward_shape) {����				backward_shape_width�13���				backward_shape_height�13���				backward_shape_horizontal_mc_spatial_ref�13���				marker_bit�1���				backward_shape_vertical_mc_spatial_ref�13���				backward_shape_coding()����				load_forward_shape�1���				if (load_forward_shape) {����					forward_shape_width�13���					forward_shape_height�13���					forward_shape_horizontal_mc_spatial_ref�13���					marker_bit�1���					forward_shape_vertical_mc_spatial_ref�13���					forward_shape_coding()����				}����			}����		}����		ref_select_code�2���		if(VOP_prediction_type==“01”||VOP_prediction_type== “10”) {����			forward_temporal_ref�1-15���			if (VOP_prediction_type == “10”) {����				marker_bit�1���				backward_temporal_ref�1-15���			}����		}����		combined_motion_shape_texture_coding()����	}����	do{ ����		VideoObjectPlane()����	}while(nextbits_bytealigned()==video_object_plane_start_code)����	next_start_code()����}����VOP_start_code

This code cannot be emulated by any combination of other valid bits in the bitstream, and is used for synchronization purpose. It is sc followed by a unique 8-bit code.

modulo_time_base

This value represents the local time base at the one second resolution unit (1000 milliseconds). It is represented as a marker transmitted in the VOP header. The number of consecutive “1” followed by a “0” indicates the number of seconds has elapsed since the synchronisation point marked by the modulo_time_base of the last displayed I/P-VOPs belonging to the same VOL. There are two exceptions, one for the first I/P-VOP after the GOV header, and the other is for B-VOPs prior (in display order) to the first I-VOP after the GOV header.

For the first I/P-VOP after the GOV header, the modulo_time_base indicates the time relative to the time_code in the GOV header.

For the B-VOPs prior (in display order) to the first I-VOP after the GOV header, the modulo_time_base indicates the time relative to the time_code in the GOV header.

Note: When the bitstream contains B-VOPs, the decoder needs to store two time_base, one is indicated by the last displayed I/P-VOP or the GOV header and the other is indicated by the last decoded I/P-VOP.

VOP_time_increment

This value represents the absolute VOP_time_increment from the synchronization point marked by the modulo_time_base measured in the number of clock ticks. It can take a value in the range [0, VOP_time_increment_resolution). The number of bits representing this value is calculated as the minimum number of bits required to represent the above range. The local time base in units of seconds is recovered by dividing this value by the VOP_time_increment_resolution. For I/P and B-VOP this value is the absolute VOP_time_increment from the synchronisation point marked by the modulo_time_base.

�

Note: The 1st VOP(B-VOP) in display order locates prior to the I-VOP, so its time_base refers to the time_code in the GOV header.

The 3rd VOP(B-VOP) locates in the time period 1 second distance from the modulo_time_base indicated by the 2nd VOP(I-VOP), so the modulo_time_base for the 3th VOP(B-VOP) shall be “10”.

The 4th VOP(B-VOP) refers to the 2nd VOP(I-VOP), the modulo_time_base for the 4th VOP(B-VOP) shall be “10”.

The 5th VOP(P-VOP) refers to the 2nd VOP(I-VOP), the modulo_time_base for the 5th VOP(P-VOP) shall be “110”.

�

Note: The 3rd VOP(I-VOP) in display order locates in the time period 1 second distance from the time_code in the GOV header, the modulo_time_base for the 3th VOP(I-VOP) shall be “10”. Since the 4th VOP(B-VOP) refers to the 3nd VOP(I-VOP), the modulo_time_base for the 4th VOP(B-VOP) shall be “0”.

To produce a picture at a given time (according to the display frame rate), the simplest solution is to use the most recently decoded data of each VOP to be displayed. Another possibility, more complex and for non real time applications, could be to interpolate each VOP from its two occurences temporally surrounding the needed instant, based on their temporal references.

vop_coded

This is a single bit flag which when equal to ‘0’ indicates that the VOP at this time instant has no further data. The VOP should not be displayed at this time instant. If this bit flag is ‘1’, ten decoding of the VOP header, shape and texture is continued.

vop_reduced_resolution

This single bit flag signals whether the VOP is encoded in spatialy reduced resolution or not. When this flag is set to ‘0’, the VOP is encoded in normal spatial resolution and should be decoded by the normal decoding process. When this flag is set to ‘1’, the VOP is encoded in reduced spatial resolution and should be decoded by the decoding process described in section � REF _Ref410466881 \r \h ��14.9�.

VOP_prediction_type

This code indicates the prediction mode to be used for decoding the VOP as shown in below. All modes (unrestricted motion estimation, advanced prediction and overlapped motion compensation) are always enabled.

VOP prediction types

VOP_prediction_type�Code��I�00��P�01��B�10��SPRITE�11��

vop_id

This indicates the ID of VOP which is incremented by 1 whenever a VOP is encoded. All ‘0’ value is skipped in vop_id in order to prevent the resync_marker emulation. This field is used to indicate the reference VOP in NEWPRED mode. The bit length of vop_id is the smaller value between (the length of vop_time_increment) + 3 and 15.

vop_id_for_prediction_indication

This is a one-bit flag which indicates the existence of the following vop_id_for_prediction field.

0: vop_id_for_prediction does not exist. �1: vop_id_for_prediction does exist.

vop_id_for_prediction

This indicates the vop_id of the VOP which is used for prediction of the encoding of the current NP segment. This VOP which is used for prediction may be changed according to the backward channel message. If this field does not exist, the previous VOP is used for prediction, or all MBs in the segment are coded in Intra mode.

VOP_rounding_type

This single bit flag signals the value of the parameter rounding_control used for pixel value interpolation in motion compensation for P-VOPs (see sections 3.3.3.4 and 3.9.5.1.5). When this flag is set to ‘0’, the value of rounding_control is 0, and when this flag is set to ‘1’, the value of rounding_control is 1. When VOP_rounding_type is not present in the VOP header, the value of rounding_control is 0.

The encoder should control VOP_rounding_type so that each P-VOP have a different value for this bit from its reference picture for motion compensation. VOP_rounding_type can have an arbitrary value if the reference picture is an I-VOP. (However for core experiments and bitstream exchange, the value of VOP_rounding_type in the first P-VOP after an I-VOP shall be 0).

encode_sprite_trajectory()

According to the number of sprite points specified in number_of_sprite_points in the VideoObjectLayer Class, differential motion vectors of the sprite points are encoded in this field. When m sprite points are necessary to determine the transform, differential motion vectors (du[r], dv[r]) = (dur, dvr) (0(r < m) defined in section � REF _Ref373651758 \r \h ��3.9.5.1.4� are transmitted.

 Syntax�No. of bits�Mnemonic��encode_sprite_tragectory () {����	for (i = 0; i < no_of_sprite_points; i++){����		corner_mv_code(du[i])����		corner_mv_code(dv[i])����	}����}����corner_mv_code(dmv)

The codeword for each differential motion parameter consists of VLC indicating the length of the dmv code (dmv_SSSS) and the dmv code itself (dmv_code). The codewords are listed in table dmv.

Syntax�No. of bits�Mnemonic��corner_mv_code (d) {����		horizontal_dmv_SSSS�2-9�uimsbf��		horizontal_dmv_code�0-11�uimsbf��}����

dmv value�SSSS�VLC�dmv code��-2047...-1024, 1024...2047�11�111111110�00000000000...01111111111, 10000000000...11111111111��-1023...-512, 512...1024�10�11111110�0000000000...0111111111, 1000000000...1111111111��-511...-256, 256...511�9�1111110�000000000...011111111, 100000000...111111111��-255...-128, 128...255�8�111110�00000000...01111111, 10000000...11111111��-127...-64, 64...127�7�11110�0000000...0111111, 1000000...1111111��-63...-32, 32...63�6�1110�000000...011111, 100000...111111��-31...-16, 16...31�5�110�00000...01111, 10000...1111��-15...-8, 8...15�4�101�0000...0111, 1000...1111��-7...-4, 4...7�3�100�000...011, 100...111��-3...-2, 2...3�2�011�00...01, 10...11��-1, 1�1�010�0, 1��0�0�00�-��Table � SEQ Table * ARABIC �20� Code table for the first trajectory point

lighting_change_factor_encode ()

For simplicity and as a start to support this effect, constant lighting change is used. That is, the lighting change factor is the same for all pixels in a VOP. The final warped pixel value P of pixel (i, j) is equal to Pij = L * Pijb where Pijb is the warped pixel value after bi-linear interpolation (see Section � REF _Ref392507016 \r �3�) and L is the lighting change factor.

The following method is used to code the lighting change factor.

The accuracy is the second digit after the decimal point, i.e., x0.01.

The quantized value is clapped to the range of [0, 17.5].

Subtract L by 1 and code the result multiplied by 100. In other words, code 1000 * Ls where Ls = L - 1.

Use the Table below to code Ls:

value�VLC�code�total number of bits��-16...-1, 1...16�0�00000...01111, 10000...11111�6��-48...-17, 17...48�10�000000...011111, 100000...111111�8��112...-49, 49...112�110�0000000...0111111, 1000000...1111111�10��113…624�1110�000000000...111111111�13��625...1648�1111�0000000000…1111111111�14��Table � SEQ Table * ARABIC �21� Code table for scaled lighting change factor

blending_factor

This 8-bit field defines the blending parameter used in the on-line sprite generation. The blending parameter has value between [0,1] and is obtained by dividing blending_factor by 254.

sprite_transmit_mode

This flag selects the transmission mode of the sprite object. The flag is set to PIECE if an object piece is being sent. When an update piece is being sent, this flag is set to UPDATE. When all the sprite object pieces and quality update pieces for the current VOP are sent, the flag is set to PAUSE. Note that this does not signal the end of all transmission of object and quality update pieces for the entire VOL, but only for the current VOP. When all the object and quality update pieces (PIECE or UPDATE) for the entire VOL have been sent and no additional transmission of sprite pieces is required, this flag is set to STOP. Note that this flag is set to PIECE at VOL initialization.

sprite_transmit_mode

sprite_transmit_mode�Code��STOP�00��PIECE�01��UPDATE�10��PAUSE�11��checkSpriteTransMode ()

This function determines how the sprite object should be parceled to meet both the timing and bit rate considerations. Depending on the action of the camera (zooming, panning, etc...), the transmission order of the object pieces is determined. For example, if the sequence is showing a zooming out effect, then regions on all four sides of the transmitted piece(s) will be exposed simultaneously at the next frame. This will require the transmission of pieces to the left, right, top, and bottom of the transmitted region. However, if the sequence is showing a panning effect, then only region on one side of the transmitted piece(s) will be exposed. In this case, pieces in the direction of the pan will be transmitted before those on the opposite side are transmitted. This function also determines when transmission of update pieces is appropiate. If simplicity is desired, one can transmit all object pieces before any update pieces are sent.

This function also keeps track of the quality of the transmitted sprite object pieces to determine if quality update pieces need to be sent. The quality metric can be the SNR calculated as follows:

	SNR = 10 * log 10 (255 * 255 / MSE)

	MSE = ((N (Oi - Ri)2) / N - (((N (Oi - Ri)) / N) 2

	Oi = i-th pixel value of original sprite object piece

	Ri = i-th pixel value of reconstruct sprite object piece

	N = number of pixels in sprite object piece

The quality of each piece is then compared to the desired SNR. When the quality of a piece falls below the desired SNR, it is marked for residual transmission. During this phase, the lowest quantizer stepsize that still satisfies the bit rate requirements is used. This is repeated for all the pieces until all the pieces have the desired SNR.

encodeSpritePiece ()

See description under Video Object Layer.

VOP_width, VOP_height

These two numerical values define the size of the ‘VOP formation’ rectangle, in pixel unit (zero value is forbidden for both VOP_height and VOP_width)

VOP_horizontal_mc_spatial_ref, VOP_vertical_mc_spatial_ref

These values are used for decoding and for picture composition. They indicate the spatial position of the top left of the rectangle defined by VOP_width and VOP_height, in pixels unit. The first bit is the sign bit (0= positive, 1=negative), followed by the natural binary representation of the position.

marker_bit

This is a single bit always set to '1' in order to avoid start code emulation.

background_composition

This flag only occurs when scalability flag has a value of “1”. The default value of this flag is “1”. This flag is used in conjunction with enhancement_type flag. If enhancement_type is “1” and this flag is “1”, background composition specified in � REF _Ref394410329 \r \h ��5.5.2� is performed. If enhancement type is “1” and this flag is “0”, any method can be used to make a background for the enhancement layer. Further, if enhancement type is “0” no action needs to be taken as a consequence of any value of this flag.

shape_coding()

The shape_coding() function generates the format of the coded data of a current shape (alpha plane).

The reference shape data for inter shape coding in an enhancement layer does not exist when the base layer is the reference and it is coded with video_object_layer_shape being “00.” In this case, the reference shape for the current shape coding is defined as a binary rectangle of the size of the entire image.

VOP_CR

This is a single bit that indicates the value for VOP level size conversion: 0 indicates that the VOP_CR is regarded as ‘1’, 1 indicates that the VOP_CR is regarded as ½.

Change_CR_disable

‘1’ indicates that the macroblock layer CR is not coded and it is regarded as 1. ‘0’ indicates that the macroblock layer CR is coded.

load_backward_shape

If this flag is “1”, backward_shape of the previous VOP is copied to forward_shape for the current VOP and backward_shape for the current VOP is decoded from the bitstream. If not, forward_shape for the previous VOP is copied to forward_shape for the current VOP and backward_shape for the previous VOP is copied to backward_shape for the current VOP.

backward_shape_coding()

It specifies the format of coded data for backward_shape and is identical to that of shape_coding().

load_forward_shape

This flag is “1” if forward_shape will be decoded from a bitstream.

forward_shape_coding()

It specifies the format of coded data for forward_shape and is identical to that of shape_coding().

backward_shape_width, backward_shape_height

These two numerical values define the size of the bounding rectangle that includes the backward_shape, in pixels unit (zero values are forbidden).

backward_shape_horizontal_mc_spatial_ref, backward_shape_vertical_mc_spatial_ref

These values indicate the spatial position of the top left of the rectangle defined by backward_shape_width and backward_shape_height, in pixels unit. The first bit is the sign bit (0= positive, 1=negative), followed by the natural binary representation of the position.

forward_shape_width, forward_shape_height

These two numerical values define the size of the bounding rectangle that includes the forward_shape, in pixels unit (zero values are forbidden).

forward_shape_horizontal_mc_spatial_ref, forward_shape_vertical_mc_spatial_ref

These values indicate the spatial position of the top left of the rectangle defined by forward_shape_width and forward_shape_height, in pixels unit. The first bit is the sign bit (0= positive, 1=negative), followed by the natural binary representation of the position.

marker_bit

This is a single bit always set to '1' in order to avoid start code emulation.

ref_select_code

This is a 2-bit code which indicates prediction reference choices for P- and B-VOPs in the enhancement layer with respect to decoded reference layer identified by ref_layer_id.

forward_temporal_ref

An unsigned integer value which indicates temporal reference of the decoded reference layer VOP to be used for forward prediction (� REF _Ref360610715 * MERGEFORMAT �Table 41� and � REF _Ref360610732 * MERGEFORMAT �Table 42�)

backward_temporal_ref

An unsigned integer value which indicates temporal reference of the decoded reference layer VOP to be used for backward prediction (� REF _Ref360610732 * MERGEFORMAT �Table 42�).

video_object_plane_fcode_forward, video_object_plane_fcode_backward

These are 3-bit codes that specify the dynamic range of motion vectors.

interlaced

This bit has the value '1' if the interlaced video coding tools are being used.

top_field_first

This bit is '1' if the top line of the video frame is part of the temporally first video field of the frame.

VOP_dbquant

VOP_dbquant is present if VOP_prediction_type indicates VOP_prediction_type==‘10’. dquant ranges from 1 to 31. VOP_dbquant is a 2-bit fixed length code that indicates the relationship between quant and bquant. Depending on the value of VOP_dbquant, bquant is calculated according to the relationship shown in � REF _Ref364767490 * MERGEFORMAT �Table 22� and is clipped to lie in the range 1 to 31. In this table “/” means truncation..

dbquant�bquant��00�(5xquant)/4��01�(6xquant)/4��10�(7xquant)/4��11�(8xquant)/4��Table � SEQ Table * ARABIC �22� VOP_dbquant codes and relation between quant and bquant

VOP_quant

A fixed length codeword of 5 bits which indicates the quantizer to be used for VOP until updated by any subsequent value DQUANT. The codewords are natural binary representations of the value of quantization which being half the step sizes range from 1 to 31.

VOP_gray_quant

A 6-bit fixed length codeword indicating the quantizer for quantizing gray-scale alpha masks. The codeword is a natural binary representation of the value of quantization. It is updated by any subsequent value of GDQUANT define below :

int R = (2 * VOP_gray_quant) // VOP_quant

int GDQUANT = (DQUANT * R) / 2

The quantizer updated by GDQUANT is allowed to exceed 63. It is not updated by GDQUANT when disable_gray_quant_update is set to "1". The quantizer for gray-scale alpha mask in a B-VOP is calculated by using VOP_dbquant in the same manner as the texture. The quantizer value is allowed to exceed 63.

first_shape_code

Each shape block is classified into seven classes as follows in accordance with the coding results of shape information, and these modes are coded using first_shape_code.

	Shape_mode = “MVDs==0 && No Update”

	Shape_mode = “MVDs!=0 && No Update”

	Shape_mode = “all_0”

	Shape_mode = “all_255”

	Shape_mode = “intraCAE”

	Shape_mode = “interCAE && MVDs==0”

	Shape_mode = “interCAE && MVDs!=0”

I-VOP

Suppose that f(x,y) means Shape_mode described above of the VOP spatial position (x,y). The cord word for first_shape_code of the position (i,j) is determined as follows.

	Index l is calculated from the already coded first_shape_code.

l = 27*(f(i-1,j-1)-3) + 9*(f(i,j-1)-3) + 3*(f(i+1,j-1)-3) + (f(i-1,j)-3)

If the position (x,y) is out of VOP, Shape_mode is assumed to be “all_0” (i.e. f(x,y)=3).

	The code word is determined from� REF _Ref384711885 �Table 23�.

Index�(3)�(4)�(5)�Index�(3)�(4)�(5)�� 0�0�11�10�41�11�10�0�� 1�11�10�0�42�0�10�11�� 2�10�11�0�43�11�0�10�� 3�0�11�10�44�11�10�0�� 4�0�10�11�45�0�10�11�� 5�0�10�11�46�11�10�0�� 6�0�11�10�47�10�11�0�� 7�0�10�11�48�0�10�11�� 8�10�11�0�49�11�10�0�� 9�11�10�0�50�10�11�0��10�0�10�11�51�0�11�10��11�0�10�11�52�11�0�10��12�11�10�0�53�10�11�0��13�0�10�11�54�0�11�10��14�10�0�11�55�10�11�0��15�11�10�0�56�10�11�0��16�0�10�11�57�0�10�11��17�0�10�11�58�0�10�11��18�10�11�0�59�0�10�11��19�0�10�11�60�0�10�11��20�11�10�0�61�0�10�11��21�10�11�0�62�10�11�0��22�0�10�11�63�0�10�11��23�11�10�0�64�11�10�0��24�10�11�0�65�11�10�0��25�11�10�0�66�10�11�0��26�11�10�0�67�11�0�10��27�0�10�11�68�11�0�10��28�0�10�11�69�10�11�0��29�0�10�11�70�11�0�10��30�0�10�11�71�11�10�0��31�0�10�11�72�0�11�10��32�0�10�11�73�11�10�0��33�0�10�11�74�10�11�0��34�0�10�11�75�10�11�0��35�11�10�0�76�11�0�10��36�0�10�11�77�11�10�0��37�11�10�0�78�0�11�10��38�11�10�0�79�11�0�10��39�0�10�11�80�11�10�0��40�11�0�10������Table � SEQ Table * ARABIC �23� first_shape_code for I-VOP

P or B-VOP

first_shape_code is determined according to the Shape_mode of a current VOP and that of the same position in a previous VOP as follow:

��Shape_mode in current VOP (n)����(1)�(2)�(3)�(4)�(5)�(6)�(7)���(1)�1�01�00010�00011�0000�0010�0011��Shape_mode�(2)�01�1�00001�000001�001�000000�0001��in previous�(3)�0001�001�1�000001�01�000000�00001��VOP(n-1)�(4)�1�0001�000001�001�01�000000�00001���(5)�100�101�1110�11110�0�11111�110���(6)�10�1110�11110�11111�110�00�01���(7)�110�1110�11110�11111�10�01�00��Note : (1)-(7) in the table mean the seven classes of first_shape_code described above

Table � SEQ Table * ARABIC �24� first_shape_code for P-VOP

If the size of current VOP is different from that of previous VOP, the following disposition is carried out.

	The line (column) of the previous VOP is longer than that of the current VOP, right side column (bottom line) is eliminated.

	The line (column) of the previous VOP is shorter than that of the current VOP, right side column (bottom line) is repeated.

Example is shown in Figure FirstCode. In this figure, each number means as follows:

0 : MVDs = 0 && No Update

1 : MVDs=0 && interCAE

2 : intraCAE

3 : all_0

Suppose that a size of the previous VOP (�ref _Ref385430170 * Mergeformat �Figure 69� (a) : Time is “n-1”) is converted to a size of the current VOP (�ref _Ref385430170 * Mergeformat �Figure 69� (d) : Time is “n”). First, the right side column is cut (�ref _Ref385430170 * Mergeformat �Figure 69� (b)), and after that, the bottom line is copied (�ref _Ref385430170 * Mergeformat �Figure 69� (c)).

�

Figure �seq Figure * Arabic �69�: example of size fitting between current VOP and previous VOP

resync_marker

These bits always take the value 0 0000 0000 0000 0001. They are only present when error_resilient_disable_flag has value 0.

Editor’s note:

In error resilient mode, the function combined_motion_shape_texture_coding() will return to the VideoObjectPlane layer after every macroblock.

In error resilient mode, the functions motion _coding(), shape_coding(), texture_coding() will also return to the VideoObjectPlane layer after every macroblock.

macro_block_number

The number of a macroblock within a VOP. This field has value zero for the top left macroblock. The macroblock number increases moving first to the left, and then down, the VOP. This field is only present when error_resilient_disable_flag has value 0.

The length of this field is determined from the table below.

(VOP_width /// 16) * (VOP_height /// 16)�Length of macro_block_number��1-2�1��3 - 4�2��5 - 8�3��9 - 16�4��17 - 32�5��33 - 64�6��65 - 128�7��129 - 256�8��257 - 512�9��513 - 1024�10��1025 - 2048�11��2049 - 4096�12��quant_scale

This field contains the value of the quantisation scale parameter.

header_extension_code

The header_extension_code (HEC) is a one bit flag which indicates whether or not additonal information is available in the resynchronization header.

	header_extension_code = 0: No addditional information.

	header_extension_code = 1: The additional information follows the HEC.

motion_marker

This is a 17 bit field which always takes the value ‘1010 0000 0000 0000 1’. It is only present when the error_resilient_disable_flag has a value ‘0’.

VOP_constant_alpha

This 1-bit code selects whether the Constant Alpha effect on or off. When the Constant Alpha effect is on, the opaque alpha values in the binary mask are replaced with the alpha value specified by VOP_constant_alpha_value. When the Constant Alpha effect is off, the alpha mask is encoded by the default grayscale coding algorithm.

VOP_constant_alpha_value

This is an 8-bit code that gives the alpha value to replace the opaque pixels in the binary alpha mask with when using the Constant Alpha effect.

Complexity parameters

DCECS_intra: intra type macroblock counting��DCECS_intra_Q: intra + Q type macroblock counting��DCECS_Not_coded: not-coded type macroblock counting��DCECS_inter: inter type macroblock counting ��DCECS_inter4v: inter 4v type macroblock counting��DCECS_inter�_Q: inter + Q type macroblock counting��DCECS_interpolate: interpolate type macroblock counting��DCECS_forward: forward prediction type macroblock counting ��DCECS_backward: backward prediction type macroblock counting��DCECS_direct_h263: H.263 direct type macroblock counting��DCECS_zig_zag_DCT: statistic of DCT coefficients��DCECS_half_pel_ap: half pel advanced prediction vector counting��DCECS_ half_pel_np: half pel normal prediction vector counting��DCECS_ VLC_symbol: statistic of VLD operations��DCECS_shape ……t.b.d ……..	tbd��DCECS_ sprite ……t.b.d ……..	tbd��

4.8	Shape coding

binary shape coding

Syntax�No. of bits�Mnemonic��binary_shape_coding() {����	if (video_object_layer_shape != '00') {����		do {����			if (Shape_mode = “MVDs!=0 && NotCoded” ||

			Shape_mode=”interCAE && MVDs!=0”)����				MVDs�3-36���			if (Shape_mode = ”intraCAE”

			|| Shape_mode=”interCAE && MVDs==0”

			|| Shape_mode=”interCAE && MVDs!=0”) {����				if (change_CR_disable==”0”)����					CR�1-2���					ST�1���					BAC����			}����		}while(count of macroblock != total number of macroblocks)����}����

MVDs

Differential MV for shape information.

	MVDs is coded in the following two cases.

(1) Shape_mode= “MVDs !=0 && NotCoded”

(2) Shape_mode= “interCAE && MVDs!=0”

	MVDs is coded in horizontal element and vertical element order using �ref _Ref385428777 * Mergeformat �Table 25�.

	Only in the case that horizontal element is 0, �ref _Ref385428790 * Mergeformat �Table 26� is used for Vertical element. This table is got by subtracting the first one bit from codewords in �ref _Ref385428777 * Mergeformat �Table 25�. (Since MVDs is not 0, vertical element is not 0 even if horizontal element is 0.)

�MVDs�Codes���0�1���(1�01s���(2�001s���(3�0001s���(4�00001s���(5�000001s���(6�0000001s���(7�00000001s���(8�000000001s���(9�0000000001s���(10�00000000001s���(11�000000000001s���(12�0000000000001s���(13�00000000000001s���(14�000000000000001s���(15�0000000000000001s���(16�00000000000000001s��Table � SEQ Table * ARABIC �25� VLC table for MVDs

�MVDs�Codes���(1�1s���(2�01s���(3�001s���(4�0001s���(5�00001s���(6�000001s���(7�0000001s���(8�00000001s���(9�000000001s���(10�0000000001s���(11�00000000001s���(12�000000000001s���(13�0000000000001s���(14�00000000000001s���(15�000000000000001s���(16�0000000000000001s��s: sign bit (if MVDs is positive s=”1”, otherwise s=”0”).

Table � SEQ Table * ARABIC �26� VLC table for MVDs (Horizontal element is 0)

CR

Conversion ratio for Binary Alpha Block. The codeword table is shown in � REF _Ref392507369 �Table 27��ref _Ref385428474 * Mergeformat �Table 27 VLC for CR

ST

Scan order. The codeword for Horizontal scan (ST=1)/ Vertical scan (ST=0).

�ss. It is not appears when change_CR_disable= “1”.

CR�Code��1�0��1/2�10��1/4�11��Table � SEQ Table * ARABIC �27� VLC for CR

ST

Scan order. The codeword for Horizontal scan (ST=1)/ Vertical scan (ST=0).

4.9	Motion Shape Texture

4.9.1	Combined Motion Shape Texture

The motion shape texture coding method used for I-, P- and B-VOPs is described in section � REF _Ref368097545 \n * MERGEFORMAT �6� (Appendix A). The advanced prediction mode and overlapping motion estimation are also described in that Appendix. The macroblock layer syntax for each coded macroblock consists of macroblock header information which also includes motion vectors, and, block data which consists of DCT data (coded texture information).

Note:	When the Error_Resilient_Disable flag is disabled and Reversible_VLC flag is enabled, the DCT Data should be encoded using the reversible VLC table given in Appendix B. However, this does not require the remultiplexing of the texture data. When reversible decoding is required, the Combined Motion Texture Coding Mode can be remultiplex with a reynchronization packet to allow this. This remultiplexing method is provided in Section 6.3

4.9.2	Separate Motion Shape Texture Syntax for I-, P-, and B-VOPs

4.9.2.1	I-VOPs

For each I-VOP, the Separate syntax consists of first_shape_codes for all macroblocks in the VOP's bounding box, followed by Shape and Texture data. The details of the syntax components are provided in the following.

first_shape_code

For each macroblock in the I-VOP the first_shape_code is first sent:

1-2 bits��first_shape_code��Binary shape coding

For each macroblock in the I-VOP, the binary shape data consists of

1-2 bits�1 bits���CR�ST�BAC��All data are coded as in the Combined Motion Shape Texture case.

Gray scale shape coding

For each macroblock in the I-VOP, the gray scale shape data consists of

1 bits�1 bit�1-6 bits�N bits��CODA�Aacpred_flag�CBPA�Alpha data��All data are coded as in the Combined Motion Shape Texture case.

Texture coding

 the motion coding part of the syntax is skipped. Also, in the texture coding part the NO_DCT flag is skipped too. Hence for each macroblock in the I-VOP the texture data only consists of:

1-9 bits�1 bit�1-6 bits �2 bits�1-bit�N bits��MCBPC�ACpred_flag�CBPY�DQUANT�dct_type�DCT data��MCBPC: Mode and Coded Block Pattern Chrominance gives information on i) whether DQUANT is present or not, and ii) coded block pattern for chrominance. The Huffman table for the MCBPC is the same as the one for the P-VOP case given in the next section (see � REF _Ref368744856 * MERGEFORMAT �Table 30�).

ACpred_flag: Is defined similar to that in section � REF _Ref368903916 \n * MERGEFORMAT �6.1.4�.

Aacpred_flag: Is defined similar to that in section � REF _Ref368903916 \n * MERGEFORMAT �6.1.4�.

CBPY: Coded Block Pattern for luminance (Y) specifies those Y non transparent blocks in the macroblock for which at least one non-INTRADC transform coefficient is transmitted. The coding of CBPY is similar to that of combined mode.

DQUANT: define changes in the value of the VOP_quantizer. The DQUANT values and respective codes are the same as the ones used for the P-VOP case given in the next section (see � REF _Ref368744974 * MERGEFORMAT �Table 32�).

dct_type: this bit is only present if interlaced is ‘1’. When present, dct_type is ‘1’ to denote the use of the field DCT re-ordering of the lines of the macroblock as specified in section � REF _Ref385267847 \n * MERGEFORMAT �0�

DCT data: DCT encoded macroblock data consists of four luminance and two chrominance difference blocks. The same Block Layer structure used in the Combined case is adopted here (see Sec. � REF _Ref372316117 \n * MERGEFORMAT �6.2�).

4.9.2.2	P-VOPs

For each P-VOP, the Separate syntax consists of first_shape_codes for all macroblocks in the VOP's bounding box, followed by Motion, Shape, and Texture data. The details of the syntax components are provided in the following.

first_shape_code

For each macroblock in the VOP’s bounding box first_shape_code is provided.

1-7 bits��first_shape_code��Binary shape_coding

For each macroblock in the P-VOP the binary shape data consists of:

N bits�1-2 bits�1 bits���MVDs�CR�ST�BAC��All the above data are coded as in the Combined Motion Shape Texture case.

Motion_coding

The syntax for the motion information related to all macroblocks that belong to the VOP would be:

1-2 bits�N bits �1-2 bits�N bits���No. of Vectors�Encoded vectors ...�No. of Vectors�Encoded vectors ...�..........��No. of Vectors: Huffman coded number of motion vectors for each macroblock (0, 1, or 4).

A `0’ indicates that there is no motion compensation for macroblock. Hence the data coded by the texture coding part will be the actual pixel values in the current image at this macroblock location (INTRA coded) or skipped by the texture coding syntax. A ‘1’ indicates that this macroblock is motion compensated by a 16 x 16 motion vector. Similarly a ‘4’ indicates that this macroblock is motion compensated by 4, 8 x 8 motion vectors.

The Huffman codes used to code this No. of Vectors field are presented in � REF _Ref368745067 * MERGEFORMAT �Table 28�.

Value�Interlaced�Length�Code��0�0 or 1�2�11��1�0�1�0��1�1�2�00��2�1�4�01tb��4�0 or 1�2�10��Table � SEQ Table * ARABIC �28� VLC table for No. of Vectors.

The ‘t’ and ‘b’ bits in 2 vector case (field motion compensation) in table above specifies the reference fields for top and bottom field motion vectors respectively. A value of ‘0’ denotes a reference to the top field and ‘1’ specifies a reference to the bottom field.

Encoded vectors: these are differentially coded using the same prediction scheme and Huffman tables, as described in sections.� REF _Ref392509051 \r �6.1.8�, � REF _Ref372313536 \n * MERGEFORMAT �6.1.9�, and � REF _Ref372313645 \n * MERGEFORMAT �6.1.10�,

Gray scale shape_coding

For each macroblock in the P-VOP the gray scale shape data consists of:

1-2 bits�1 bit�1-6 bits�N bits��CODA�Aacpred_flag�CBPA�Alpha data��CODA, CBPA and alpha data are coded similar to those of combined motion shape texture case.

Texture_coding (when error resilience is disabled)

The texture data for the macroblocks belonging to the VOP is coded using a DCT coding as in Combined Motion Shape Texture case. The syntax of the texture coding for each of the macroblocks in the VOP is as follows:

1 bits�1-9 bits�1 bit�1-6 bits�2 bits�1 bit�N bits��NO_DCT flag�MCBPC�ACpred_flag�CBPY�DQUANT�dct_type�DCT data��NO_DCT flag: this flag indicates whether a macroblock has DCT data or not. If it has no DCT data it is set to ‘1’, otherwise it is set to ‘0’. The Huffman Codes used to code the NO_DCT flag are reported in � REF _Ref368745495 * MERGEFORMAT �Table 29�.

Value�Length�Code��0�1�0��1�1�1��Table � SEQ Table * ARABIC �29� NO_DCT values and codes.

To skip a macroblock, No. of Motion Vectors is set to ‘0’ (i.e. Code = ‘11’) and the NO_DCT flag to ‘1’ (i.e. Code = ‘1’).

MCBPC: Mode and Coded Block Pattern Chrominance gives information on i) whether DQUANT is present or not, and ii) coded block pattern for chrominance. The Huffman table for the MCBPC is provided in � REF _Ref368744856 * MERGEFORMAT �Table 30�.

Value�DQUANT�CBPC (56)�Length�Code��0�--�00�1�1��1�--�01�3�001��2�--�10�3�010��3�--�11�3�011��4�x�00�4�0001��5�x�01�6�0000 01��6�x�10�6�0000 10��7�x�11�6�0000 11��8�stuffing�--�9�0000 0000 1��Table � SEQ Table * ARABIC �30� VLC table for the MCBPC for I- and P-VOPs, where “x” means that DQUANT is present.

CBPY: Coded Block Pattern for luminance (Y) specifies those Y blocks in the macroblock for which at least one non-INTRADC transform coefficient is transmitted. The Huffman table for the CBPY is the same as the one used for the Combined Motion Shape Texture coding method (see Sec. � REF _Ref372315403 \n * MERGEFORMAT �6.1.5�) and presented in � REF _Ref368744804 * MERGEFORMAT �Table 31�.

Value�CBPY(I)

(1234)�CBPY(P)

(1234)�CBPY(SPRITE)

(1234)�Length�Code��0�00

00�11

11�11

11�4�0011��1�00

01�11

10�11

10�5�0010 1��2�00

10�11

01�11

01�5�0010 0��3�00

11�11

00�11

00�4�1001��4�

01

00�

10

11�

10

11�5�0001 1��5�01

01�10

10�10

10�4�0111��6�01

10�10

01�10

01�6�0000 10��7�01

11�10

00�10

00�4�1011��8�10

00�01

11�01

11�5�0001 0��9�10

01�01

10�01

10�6�0000 11��10�10

10�01

01�01

01�4�0101��11�10

11�01

00�01

00�4�1010��12�11

00�00

11�00

11�4�0100��13�11

01�00

10�00

10�4�1000��14�11

10�00

01�00

01�4�0110��15�11

11�00

00�00

00�2�11��Table � SEQ Table * ARABIC �31� VLC table for CBPY for I-, P- and Sprite-VOPs.

DQUANT: define changes in the value of the VOP quantizer. The DQUANT values and respective codes are the same used in the Combined Motion Shape Texture and presented in � REF _Ref368744974 * MERGEFORMAT �Table 32�.

Value�DQUANT Differential Value�Code��0�-1�00��1�-2�01��2�1�10��3�2�11��Table � SEQ Table * ARABIC �32� DQUANT differential values and codes for I-, P- and Sprite- VOPs.

dct_type:ia present only when the interlaced flag is “ON” (‘1’). If dct_type is ‘1’, the field DCT ordering of the lines is the macroblock is used as specified in section � REF _Ref385267847 \n * MERGEFORMAT �0�.

DCT data: DCT encoded macroblock data consists of four luminance and two chrominance difference blocks. The same Block Layer structure used in the Combined case is adopted here (see Sec. � REF _Ref372315449 \n * MERGEFORMAT �6.2�).

Macroblock types and included elements for I- and P-VOPs are listed in � REF _Ref368744606 * MERGEFORMAT �Table 33�.

VOP�MB type�NO_DCT�CBPY�MCBPC�DCT data�DQUANT�No. of Vectors��I�INTRA�--�x�x�x�--�--��I�INTRA+Q�--�x�x�x�x�--��P�N.C.�x�--�--�--�--�x��P�INTER�x�x�x�x�--�x��P�INTER+Q�x�x�x�x�x�x��P�INTER4V�x�x�x�x�--�x��P�INTER4V+Q�x�x�x�x�x�x��P�INTRA�x�x�x�x�--�x��P�INTRA+Q�x�x�x�x�x�x��Table � SEQ Table * ARABIC �33� Macroblock types and included elements for I- and P-VOPs.

4.9.2.3	B-VOPs

For each B-VOP, the Separate syntax consists of first_shape_codes for all macroblocks in the VOP's bounding box, followed by Motion, Shape, and Texture data. The details of the syntax components are provided in the following.

first_shape_code

For each macroblock in the VOPs bounding box first_shape_code is provided.

1-7 bits��first_shape_code��Binary shape coding

For each macroblock in the B-VOP the binary shape data consists of:

N bits�1-2 bits�1 bits���MVDs�CR�ST�BAC��All the above data are coded as in the Combined Motion Shape Texture case.

Motion_coding

The syntax for the motion information related to all macroblocks that belong to the B-VOP would be:

1-2 bits�1-4 bits �0-5 bits�VLC�VLC�VLC��MODB�MBTYPE�REFFLDS�MVDf�MVDb�MVDB��MODB: mode of the macroblock belongings to the B-VOP. It indicates whether MBTYPE and/or CBPB information are present. The values of the MODB are those adopted for the Combined Motion Shape Texture and described in � REF _Ref364766171 * MERGEFORMAT �Table 55�. In the same table, VLC used for MODB coding are reported.

MBTYPE: type of the macroblock belonging to the B-VOP. The modes supported by the Separate Motion Shape Texture syntax are the same supported by the Combined Motion Shape Texture: i) Direct Coding, ii) Bi-directional Coding, iii) Backward Coding, and iv) Forward Coding. MBTYPE values associated to these modes and corresponding VLC are those used in the Combined Motion Shape Texture and presented in � REF _Ref392509340 \r �4.9.1�.

REFFLDS: specifies whether field motion compensation is used and which reference fields are used by each field motion vector. This field is not present if interlaced is '0' in the VOP header or if direct mode is indicated by the MBTYPE field. The syntax for REFFLDS is given below:

����if(interlaced){����	if(mbtype!=Direct_mode){����		field_prediction�1�uimsbf��		if(field_prediction){����			if(mbtype!=Backward)����				forward_top_field_reference�1�uimsbf��				forward_bottom_field_reference�1�uimsbf��			if(mbtype!=Forward{����				backward_top_field_reference�1�uimsbf��				backward_bottom_field_reference�1�uimsbf��			}����		}����	}����}����MVDf : motion vectors calculated with respect to the temporally previous VOP. For the MVDf coding the same VLC table used for the Combined Motion Shape Texture are adopted. If field_prediction is '1' in interlaced coding mode, MVDf represents two motion vector differences, MVDf,top followed by MVDf,bottom.

MVDb: motion vectors calculated with respect to the temporally following VOP. For the MVDb coding the same VLC table used for the Combined Motion Shape Texture are adopted. . If field_prediction is '1' in interlaced coding mode, MVDb represents two motion vector differences, MVDb,top followed by MVDb,bottom.

MVDB: delta vectors used to correct B-VOP macroblock motion vectors. For the MVDB coding the same VLC table used for the Combined Motion Shape Texture are adopted.

Gray scale shape coding

For each macroblock in the B-VOP the gray scale shape data consists of:

1 bits�1-2 bits�1-4 bits�N bits��CODA�MODBA�CBPBA�Alpha data��All the above data are coded as in the Combined Motion Shape Texture case.

Texture_coding

The syntax for the texture information related to all macroblocks that belong to the B-VOP would be:

3-6 bits�1-2 bits�1-bit�N bits��CBPB�DBQUANT�dct_type�DCT data��CBPB: Coded Block Pattern for B-type macroblock. CBPB is only present in B-VOPs if indicated by MODB. CBPB’s values and codes are the same as the one used for the Combined Motion Shape Texture coding method (see Sec.� REF _Ref372316293 \n * MERGEFORMAT �6.1.13�).

DBQUANT: define changes of the VOP quantizer. The DBQUANT values and respective codes are the same used in the Combined Motion Shape Texture and presented in � REF _Ref392509413 �Table 34�.

Value�DBQUANT Differential Value�Code��0�-2�10��1�0�0��2�2�11��Table � SEQ Table * ARABIC �34� DBQUANT differential values and codes.

dct_type: This field is present if the interlaced flag is “ON”,i.e.‘1’ in the VOP header. If present a value of ‘1’ specifies the field DCT ordering of lines in the macroblock as described in section � REF _Ref385267847 \n * MERGEFORMAT �0�

DCT data: DCT encoded macroblock data consists of four luminance and two chrominance difference blocks. The same Block Layer structure used in the Combined case is adopted here (see Sec.� REF _Ref372317181 \n * MERGEFORMAT �6.2�).

Macroblock types and included elements for B-VOPs are listed in � REF _Ref368746417 * MERGEFORMAT �Table 35�.

MBTYPE�DBQUANT�MVDf�MVDb�MVDB��Direct�--�--�--�x��Interpolate MC+Q�x�x�x�--��Backward MC+Q�x�--�x�--��Forward MC+Q�x�x�--�--��Table � SEQ Table * ARABIC �35� Macroblock types and included elements for B-VOPs.

4.9.2.4	Sprite-VOP

For each Sprite-VOP, the Separate syntax consists of first_shape_codes for all macroblocks in the VOP's bounding box, followed by Motion, Shape, and Texture data. The details of the syntax components are provided in the following.

first_shape_code

For each macroblock in the VOP’s bounding box first_shape_code is provided.

1-3 bits��first_shape_code��Motion_coding

The syntax for the motion information related to all macroblocks that belong to the VOP would be:

1-2 bits�N bits �1-2 bits�N bits���No. of Vectors�Encoded vectors ...�No. of Vectors�Encoded vectors ...�..........��No. of Vectors: Huffman coded number of motion vectors for each macroblock (0, 1, 4 or sprite).

A `0’ indicates that there is no motion compensation for macroblock. Hence the data coded by the texture coding part will be the actual pixel values in the current image at this macroblock location (INTRA coded) or skipped by the texture coding syntax. A ‘1’ indicates that this macroblock is motion compensated by a 16 x 16 motion vector. Similarly a ‘4’ indicates that this macroblock is motion compensated by 4, 8 x 8 motion vectors. Finally, a ‘sprite’ indicates that no motion vectors are sent and sprite prediction is used, meaning that motion compensation is performed on the basis of the warping specified by the sprite coordinates transmitted in the VOL and their corresponding coordinates transmitted in the VOP.

The Huffman codes used to code this No. of Vectors field are presented in � REF _Ref392509513 �Table 36�

Value�Length�Code��0�2�11��1�1�0��4�3�100��Sprite�3�101��Table � SEQ Table * ARABIC �36� VLC table for No. of Vectors.

Encoded vectors: these are differentially coded using the same prediction scheme and Huffman tables, as described in sections.� REF _Ref392509561 \r �6.1.8�, � REF _Ref372313536 \n * MERGEFORMAT �6.1.9�, and � REF _Ref372313645 \n * MERGEFORMAT �6.1.10�,

Texture_coding

The texture data for the macroblocks belonging to the VOP is coded using a DCT coding as in Combined Motion Shape Texture case. The syntax of the texture coding for each of the macroblocks in the VOP is as follows:

1 bits�1-9 bits�1 bit�1-6 bits�2 bits�N bits��NO_DCT flag�MCBPC�ACpred_flag�CBPY�DQUANT�DCT data��NO_DCT flag: this flag indicates whether a macroblock has DCT data or not. If it has no DCT data it is set to ‘1’, otherwise it is set to ‘0’. The Huffman Codes used to code the NO_DCT flag are reported in � REF _Ref368745495 * MERGEFORMAT �Table 29�.

To skip a macroblock, No. of Motion Vectors is set to ‘0’ (i.e. Code = ‘11’) and the NO_DCT flag to ‘1’ (i.e. Code = ‘1’). The skipped marcoblock corresponds to a straight copy from a sprite to the current macroblock on the basis of warping specified by the coordinates on the sprite and the corresponding coordinates on the VOP (i.e. without DCT coefficients).

MCBPC: Mode and Coded Block Pattern Chrominance gives information on i) whether DQUANT is present or not, and ii) coded block pattern for chrominance. The Huffman table for the MCBPC is provided in � REF _Ref392509606 �Table 37�.

Value�DQUANT�CBPC (56)�Length�Code��0�--�00�1�1��1�--�01�3�001��2�--�10�3�010��3�--�11�3�011��4�x�00�4�0001��5�x�01�6�0000 01��6�x�10�6�0000 10��7�x�11�6�0000 11��8�stuffing�--�9�0000 0000 1��Table � SEQ Table * ARABIC �37� VLC table for the MCBPC for Sprite-VOPs, where “x” means that DQUANT is present.

CBPY: Coded Block Pattern for luminance (Y) specifies those Y blocks in the macroblock for which at least one non-INTRADC transform coefficient is transmitted. The Huffman table for the CBPY is the same as the one used for the Combined Motion Shape Texture coding method (see Sec. � REF _Ref372315403 \n * MERGEFORMAT �6.1.5�) and presented in � REF _Ref368744804 * MERGEFORMAT �Table 31�.

DQUANT: define changes in the value of the VOP quantizer. The DQUANT values and respective codes are the same used in the Combined Motion Shape Texture and presented in � REF _Ref368744974 * MERGEFORMAT �Table 32�.

Macroblock types and included elements for Sprite-VOPs are listed in � REF _Ref392509650 �Table 38�

VOP�MB type�NO_DCT�CBPY�MCBPC�DCT data�DQUANT�No.of Vectors��Sprite�N.C.�x�--�--�--�--�x��Sprite�INTER�x�x�x�x�--�x��Sprite�INTER+Q�x�x�x�x�x�x��Sprite�INTER4V�x�x�x�x�--�x��Sprite�INTER4V+Q�x�x�x�x�x�x��Sprite�INTRA�x�x�x�x�--�x��Sprite�INTRA+Q�x�x�x�x�x�x��Sprite�DYN-SP�x�x�x�x�--�x��Sprite�DYN-SP+Q�x�x�x�x�x�x��Table � SEQ Table * ARABIC �38� Macroblock types and included elements for Sprite-VOPs.

To summarize: the macroblock types DYN-SP and DYN-SP+Q are indicated by setting the No. of Vectors to ‘sprite’; the macroblock type N.C. (non-coded) is indicated by No. of Vectors set to 0 and NO_DCT flag set to 1; for all other macroblock types No. of Vectors is set to 0, 1, or 4.

�

4.10	Texture Object Layer Class

4.10.1	Texture Object Layer

Syntax�No. of bits�Note��TextureObjectLayer() {����	texture_object_layer_start_code�sc+4=28���	texture_object_layer_id�4���	texture_object_layer_shape�2���	if(texture_object_layer_shape == ‘00’) {����		texture_object_layer_width�16���		texture_object_layer_height�16���	}����	wavelet_decomposition_levels �8���	Y_mean �8���	U_mean �8���	V_mean�8���	Quant_DC_Y�8���	Quant_DC_UV�8���	for (Y, U, V){����		lowest_subband_bitstream_length�16���		band_offset�8 (or more)���		band_max_value�8 (or more)���		lowest_subaband_texture_coding()����	}����	spatial_scalability_levels�5���	quantization_type�2���	SNR_length_enable�1���	 for (i=0; i <spatial_scalability_levels; i++){����	 spatial_bitstream_length�24���		if (quantization_type == 0){���� for (Y, U, V){����			Quant�8�skipped for V��			wavelet_zero_tree_coding()���� }����		}����		else if (quantization_type == 2){����			SNR_Scalability_Levels�5�skipped for U,V��			for(i=0;i<SNR_scalability_levels; i++){���� for (Y, U, V){����				 Quant�8�skipped for V��			 SNR_all_zero�1���				 if(all_zero_flg == 0){����					if(SNR_length_enable == 1)����						SNR_bitstream_length�16 or more�refer to description��					wavelet_zero_tree_coding()����			 }���� }����			}����		}��������		else {���� for (Y, U, V){����			 Quant�16���		 	if (SNR_length_enable == 1)����			 	SNR_bitstream_length�16 or more�refer to description��			 wavelet_zero_tree_coding()����		 }���� 	}����	next_start_code()����}����texture_object_layer_start_code

This is a unique code of length 28 bits (sc+4) that preceeds the video_object_layer_id.

texture_object_layer_id

This is a 4-bit code which identifies a video object layer for a video object being processed.

texture_object_layer_shape

This is a 2-bit code which identifies the shape type of video object layer as shown in� REF _Ref394393756 * MERGEFORMAT �Table 39�.

video_object_layer_shape�Code��rectangular�00��binary�01��gray-scale�10��Table � SEQ Table * ARABIC �39� Video Object Layer shape types

This flag is “00” if a SOL shape is rectangular, “01” if a SOL has a binary shape (i.e. if each pixel of the rectangle defined by texture_object_layer_width and texture_object_layer_height is either part of a SOL or not), and “10” if a VOL shape is defined by grey scale data (i.e. if each pixel of the rectangle defined by texture_object_layer_width and texture_object_layer_height is to be linearly combined with the pixels of other SOLs at the same spatial location).

texture_object_layer_width, texture_object_layer_height

These two codes define the picture size for the session, in pixels unit (zero values are forbidden). This is also the size of the unique SOL of the session.

wavelet_decomposition_levels

This field indicates the number of levels in the wavelet decomposition of the texture.

Y_mean

This field indicates the mean value of the Y component of the texture.

U_mean

This field indicates the mean value of the U component of the texture.

V_mean

This field indicates the mean value of the V component of the texture.

Quant_DC_Y

This field indicates the quantization step size for the Y component of the lowest subband.

Quant_DC_UV

This field indicates the quantization step size for the U and V components of the lowest subband.

lowest_subband_bitstream_length

This field defines the size of the bitstream for each spatial resolution in bits.

band_offset

This field defines the offset that must be subtracted from each low-low band coefficient after prediction. The format is as the following:

extension (1 bit)� value (7 bits)��.

.

.�.

.

.��and the following scripts shows how band_offset is encoded:

	while (band_offset/128 > 0){

		extension = 1;

		put (band_offset%128) in value

		band_offset = band_offset>>7;

	}

	extension = 0;

	put bitstream_size in value

band_max_value

This field defines the maximum value of the low-low band after prediction. The format is as the following:

extension (1 bit)� value (7 bits)��.

.

.�.

.

.��and the following scripts shows how band_max_value is encoded:

	while (band_max_value/128 > 0){

		extension = 1;

		put (band_max_value%128) in value

		band_max_value = band_max_value>>7;

	}

	extension = 0;

	put band_max_value in value

spatial_scalababitily_Levels

This field indicates the number of spatial scalability levels supported in the current bitstream.

quantization_type

This field indicates the type of the multi-level quantization type as is shown in� REF _Ref394307045 * MERGEFORMAT �Table 40�.

Quantization_type �Code�� single quantizer�0�� multiple quantizer�10��bi-level quantizer�11��Table � SEQ Table * ARABIC �40� The wavelet scanning method

SNR_length_enable

If this flag is enabled (disable =0; enabled = 1), each SNR scale starts with a field in which the size of bit stream for that SNR scale is determined.

spatial_bitstream_length

This field defines the size of the bitstream for each spatial resolution in bits.

Quant

This field defines quantization step size for each component.

SNR_Scalability_Levels

This field indicates the number of levels of SNR scalability supported in this spatial scalability level.

SNR_all_zero

This flags indicate whether all the coefficients in the SNR layer are zero or not. The value ‘0’ for this flag indicates that the SNR layer contains some nonzero coefficients which will be coded after this flag. The value ‘1’ for this flag indicates that the current SNR layer only contains zero coefficients and therefore the layer will be skipped.

SNR_bitstream_length

This field defines the size of the bitstream for each specific SNR scale. The format is as the following:

extension (1 bit)�length (15 bits)��.

.

.�.

.

.��and the following scripts shows how the bitstream length is coded:

	while (bitstream_size/(2^15)> 0){

		extension = 1;

		put (bitstream_size%(2^15)) in length

		bitstream_size = bitstream_size>>15;

	}

	extension = 0;

	put bitstream_size in length

5	Decoder Definition

5.1	Overview

The � REF _Ref364757104 * MERGEFORMAT �Figure 70� presents a general overview of the VOP decoder structure. The same decoding scheme is applied when decoding all the VOPs of a given session.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �70�: VOP decoder structure.

The decoder is mainly componed of two parts : the shape decoder and the traditional motion & texture decoder. The reconstructed VOP is obtained by the right combination of the shape, texture and motion information. For core experiments, when specified a deblocking filter should be applied to the decoded output, as described in section � REF _Ref393161576 \r �8�.

5.2	Shape decoding

To be done

5.3	Decoding of Escape Code

There are three types of escape codes for DCT coefficients.

Type 1 : the code following ESC + “1” is decoded as variable length codes, using the VLC tables depending on the coding type. The restored values of LEVEL, LEVELS, is obtained as follows :

LEVELS= sign(LEVEL+) x [abs(LEVEL+) + LMAX]

where LEVEL+ is the value after variable length decoding. LMAX is given in � REF _Ref394460909 \h ��Table 65� and � REF _Ref394460962 \h ��Table 66�.

Type 2 : the code following ESC + “01” is decoded as variable length codes, using the VLC tables depending on the coding type. The restored values of RUN, RUNS, is retrieved as follows :

RUNS= RUN+ + (RMAX + 1)

where RUN+ is the value after variable length decoding. RMAX is given in � REF _Ref394461104 \h ��Table 67� and � REF _Ref394461134 \h ��Table 68�

Type 3 : An escape code following ESC + “00” is decoded as fixed length codes. This type of escape codes are represented by 1-bit LAST, 6-bit RUN and 8-bit LEVEL.

5.4	Temporal Prediction Structure

A target P-VOP shall make reference for prediction to the most recently decoded I- or P-VOP.If the vop_coded of the most recently decoded I- or P-VOP is ”0”, the target P-VOP shall make reference to a decoded I- or P-VOP which immediately precedes said most recently decoded I- or P-VOP, and whose vop_code is not zero.

A target B-VOP shall make reference for prediction to the most recently decoded forward and/or backward reference VOPs. The target B-VOP shall only make reference to said forward or backward reference VOPs whose vop_coded is not zero. If the vop_coded flags of both most recently decoded forward and backward referfence VOPs are zero, the following rules applies.

for texture, the predictor of the target B-VOP shall be a gray macroblock of (Y, U, V) = (128, 128, 128).

for binary alpha planes, the predictor shall be zero (transparent block)

for grayscale alpha planes, the predictor of the alpha values shall be 128

Note that, binary alpha shape in B-VOP shall make reference for prediction to the most recently decoded forward reference VOP.

A decoded VOP whose vop_coded isnot zero but have no shape shall be padded by (128, 128, 128) for (Y, U, V). Similarly, grayscale alpha planes shall be padded with 128.

The temporal prediction structure is depicted in � REF _Ref394402059 \h ��Figure 71�.

�

Figure � SEQ Figure * ARABIC �71�: Temporal Prediction Structure.

5.5	Generalized Scalable Decoding

We now discuss the decoding issues in generalized scalable decoding. Considering the case of two layers, a base-layer and an enhancement-layer, the spatial resolution of each layer may be either the same or different; when the layers have different spatial resolution, (up or down) sampling of base-layer with respect to the enhancement-layer becomes necessary for generating predictions. If the lower layer and the enhancement -layer are temporally offset, irrespective of the spatial resolutions, motion compensated prediction may be used between layers. When the layers are coincident in time but at different resolution, motion compensation may be switched off to reduce overhead.

The reference VOPs for prediction are selected by reference_select_code as specified in � REF _Ref360610715 * MERGEFORMAT �Table 41� and � REF _Ref360610732 * MERGEFORMAT �Table 42�. In coding of P-VOPs belonging to an enhancement layer, the forward reference is one of the following three: the most recent decoded VOP of enhancement layer, the most recent VOP of the lower layer in display order, or the next VOP of the lower layer in display order.

In B-VOPs, the forward reference is one of the two: the most recent decoded enhancement VOP or the most recent lower layer VOP in display order. The backward reference is one of the three: the temporally coincident VOP in the lower layer, the most recent lower layer VOP in display order, or the next lower layer VOP in display order.

ref_select_code�forward prediction reference��00�Most recent decoded enhancement VOP belonging to the same layer.��01�Most recent VOP in display order belonging to the reference layer.��10�Next VOP in display order belonging to the reference layer.��11�Temporally coincident VOP in the reference layer (no motion vectors)��Table � SEQ Table * ARABIC �41� Prediction reference choices for P-VOPs in the object-based temporal scalability.

ref_select_code�forward temporal reference�backward temporal reference��00�Most recent decoded enhancement VOP of the same layer�Temporally coincident VOP in the reference layer (no motion vectors)��01�Most recent decoded enhancement VOP of the same layer.�Most recent VOP in display order belonging to the reference layer.��10�Most recent decoded enhancement VOP of the same layer.�Next VOP in display order belonging to the reference layer.��11�Most recent VOP in display order belonging to the reference layer.�Next VOP in display order belonging to the reference layer.��Table � SEQ Table * ARABIC �42� Prediction reference choices for B-VOPs in the case of scalability.

Temporally coincident VOP in the reference layer (no motion vectors)

The enhancement-layer can contain I-, P- or B-VOPs, but the B-VOPs in the enhancement layer behave more like P-VOPs at least in the sense that a decoded B-VOP can be used to predict the following P- or B-VOPs.

When the most recent VOP in the base layer is used as reference, this includes the VOP that is temporally coincident with the VOP in the enhancement layer. However, this necessitates use of the base layer for motion compensation which requires motion vectors.

If the coincident VOP in the lower layer is used explicitly as reference, no motion vectors are sent and this mode can be used to provide spatial scalability. Spatial scalability in MPEG-2 uses spatio-temporal prediction, which is accomplished here by using the prediction modes available for B-VOPs.

5.5.1	Spatial Scalability Decoding

5.5.1.1	Base Layer and Enhancement Layer

For spatial scalability, the output from decoding the base layer only have different spatial resolution from output of decoding both the base layer and the enhancement layer. For example, the resolution of the base layer is QCIF resolution and that of the enhancement layer is CIF resolution. In this case, when the output with QCIF resolution is required, only the base layer is decoded. And when the output with CIF resolution is required, both the base layer and the enhancement layer are decoded.

5.5.1.2	Decoding of Base Layer

The decoding process of the base layer is the same as non_scalable decoding process.

5.5.1.3	Upsampling Process

The upsampling process is performed at the midprocessor. The VOP of the base layer is locally decoded and the decoded VOP is upsampled to the same resolution as that of the enhancement layer. In case of the example above, upsampling is performed by the filtering process described in � REF _Ref364754482 * MERGEFORMAT �Figure 44� and � REF _Ref364754555 * MERGEFORMAT �Table 12�.

5.5.1.4	Decoding Process of Enhancement Layer

The VOP in the enhancement layer is decoded as either P-VOP or B-VOP.

5.5.1.5	Decoding of P-VOPs in Enhancement Layer

In P-VOP, the ref_select_code is always “11”, i.e., the prediction reference is set to I-VOP which is temporally coincident VOP in the base layer. In P-VOP, the motion vector is always set to 0 at the decoding process.

5.5.1.6	Decoding of B-VOPs in Enhancement Layer

In B-VOP, the ref_select_code is always “00”, i.e., the backward prediction reference is set to P-VOP which is temporally coincident VOP in the base layer, and the forward prediction reference is set to P-VOP or B-VOP which is the most recent decoded VOP of the enhancement layer. In B-VOP, when the backward prediction, i.e., the prediction from the base layer is selected, the motion vector is always set to 0 at the decoding process.

5.5.2	Temporal Scalability Decoding

In object based temporal scalability, a background composition technique is used in the case of Type 1 scalability as discussed in Section � REF _Ref364786505 \n * MERGEFORMAT �3.8.2�. Background composition is used in forming the background region for objects at the enhancement layer. We now describe the background composition technique referring to � REF _Ref364784482 * MERGEFORMAT �Figure 72�, where background composition for a current VOP is depicted, where composition is performed using the previous and the next pictures in the base layer (e.g., the background region for the VOP at frame 2 in � REF _Ref364784099 * MERGEFORMAT �Figure 46� is composed using frames 0 and 6 in the base layer).

� REF _Ref364784482 * MERGEFORMAT �Figure 72� shows the background composition for the current frame at the enhancement layer. The dotted line represents the shape of the selected object at the previous frame in the base layer (called “forward shape”). As the object moves, its shape at the next frame in the base layer is represented by a broken line (called “backward shape”).

For the region outside these shapes, the pixel value from the nearest frame at the base layer is used for the composed frame. These areas are shown as white in � REF _Ref364784482 * MERGEFORMAT �Figure 72�. For the region occupied by only the selected object of the previous frame at the base layer, the pixel value from the next frame at the base layer is used for the composed frame. This area is shown as lightly shaded in � REF _Ref364784482 * MERGEFORMAT �Figure 72�. On the other hand, for the region occupied by only the selected object of the next frame at the base layer, pixel values from the previous frame are used. This area is darkly shaded in � REF _Ref364784482 * MERGEFORMAT �Figure 72�. For the region where the areas enclosed by these shapes overlap, the pixel value is given by padding from the surrounding area. The pixel value which is outside of the overlapped area should be filled before the padding operation.

�EMBED Word.Picture.8���

Figure � SEQ Figure * ARABIC �72�: Background composition.

The following process is a mathematical description of the background composition method.

If s(x,y,ta)=0 and s(x,y,td)=0

	fc(x,y,t) = f(x,y,td)	(|t-ta|>|t-td|)

	fc(x,y,t) = f(x,y,ta)	(otherwise),

if s(x,y,ta)=1 and s(x,y,td)=0

	fc(x,y,t) = f(x,y,td)

if s(x,y,ta)=0 and s(x,y,td)=1

	fc(x,y,t) = f(x,y,ta)

if s(x,y,ta)=1 and s(x,y,td)=1

	The pixel value of fc(x,y,t) is given by padding from the 	surrounding area.

where

	fc	composed image

	f	decoded image at the base layer

	s	shape information (alpha plane)

	(x,y)	the spatial coordinate

	t	time of the current frame

	ta	time of the previous frame

	td	time of the next frame

Two types of shape information, s(x, y, ta) and s(x, y, td), are necessary for the background composition. s(x, y, ta) is called a “forward shape” and s(x, y, td) is called a “backward shape” in Section � REF _Ref364786552 \n * MERGEFORMAT �4.5�. If f(x, y, td) is the last frame in the bitstream of the base layer, it should be made by copying f(x, y, ta). In this case, two shapes s(x, y, ta) and s(x, y, td) should be identical to the previous backward shape.

When a gray scale alpha plane is used, positive value is regarded as the value “1” of the binary alpha plane. Note that the above technique is based on the assumption that the background is not moving.

5.6	Compositer Definition

The output of the decoders are the reconstructed VOP’s that are passed to the compositor. In the compositor the VOP’s are recursively blended in the order specified by the VOP_composition_order.

 Each VOP has its own YUV and alpha values. Blending is done sequentially (two layers at a time). For example, if VOP N is overlayered over VOP M to generate a new VOP P, the composited Y, U, V and alpha values are:

		Pyuv = ((255 - Nalpha) * Myuv + (Nalpha * Nyuv))/255;

		Palpha = 255.

In the case that there exists more than two VOPs for a particular sequence, this blending procedure recursively applies to YUV components by taking the output picture as background.

5.7	Flex_0 Composition Layer Syntax

This section provides information which is not part of the syntax or semantics apecifications of the MPEG video VM. The purpose of this part is to provide information for implementors of the VM who are in need of higher level syntax definitions not part of video.

A composition script describes the arrangement of AV objects in a scene. In Flex_1, this composition script is expressed in a procedural language (such as Java). In Flex_0, this composition script is expressed instead by a fixed set of parameters. That is, the composition script is parametrized. These parameters are encoded and transmitted in a composition layer. This section briefly describes the bitstream syntax of the compositon layer for Flex_0.

5.7.1	Bitstream Syntax

At any given time, a scene is composed of a collection of objects, according to composition parameters. The composition parameters for an object may be changed at any time by transmitting new parameters for the object. These parameters are timestamped, in order to be transmitted only occasionally if desired.

class SessionParameters {

	while (! [end_of_session])

		uint(30) timestamp; // millisec since last update

		CompositionInformation composition_information;

 }

};

map motion_sets_table(int) {

	0b0,		0,

	0b10,	1,

	0b110,	2

	0b1110,	3,

	0b1111,	4

};

class CompositionInformation {

	uint(5)	video_object_id;

	bit(1)	visibility;

	if (visibility) {

		bit(1)	3_dimensional;

		if (!3_dimensional)

			uint(5)	composition_order;

		vlc(motion_sets_table) number_of_motion_sets;

		if (number_of_motion_sets > 0) {

			int(10)	x_translation;

			int(10)	y_translation;

			if (3_dimensional)

				int(10)	z_translation;

		}

		if (number_of_motion_sets > 1) {

			int(10)	x_delta_1;

			int(10)	y_delta_1;

			if (3_dimensional)

				int(10)	z_delta_1;

		if (number_of_motion_sets > 2) {

			int(10)	x_delta_2;

			int(10)	y_delta_2;

			if (3_dimensional)

				int(10)	z_delta_2;

		}

		if (number_of_motion_sets > 3) {

			int(10)	x_delta_3;

			int(10)	y_delta_3;

			if (3_dimensional)

				int(10)	z_delta_3;

		}

	}

};

5.7.2	Parameter Semantics

The meaning of the above parameters are:

uint(5) video_object_id The ID of the VO whose composition information this data represents.

boolean visibility Set if the object is visible.

boolean 3_dimensional If set the object has 3D extent else it purely is 2D.

uint(3) number_of_motion_sets Number of X,Y (and Z) data sets provided for translation and rotation.

uint(5) composition_order This field is used to indicate the place in the object stack this object should be visualised. It is used to determine which objects occlude which other objects for 2D composition.

int(10) x_translation, y_translation, z_translation Translation of the object relative to the origin of the scene coordinate system.

int(10) x_delta_n, y_delta_n, z_delta_n Coordinate transformation information as per input contribution m1119.doc

6	Appendix A: Combined Motion Shape Texture Coding

This appendix describes the combined motion shape texture coding. The text is based on Draft ITU-T Recommendation H.263 Video Coding for Low Bitrate Communication Sections 5.3 and 5.4. Annexes describing optional modes can be found in that document.

6.1	Macroblock Layer

Data for each macroblock consists of a macroblock header followed by data for blocks. The macroblock layer structure in I or P VOPs is shown in Figure 1MB. First_shape_code is only present for which video_object_layer_shape!=”00”. COD is only present in VOPs for which VOP_prediction_type indicates P-VOPs (VOP_prediction_type==‘01’) or SPRITE-VOP (VOP_prediction_type==’11’), and the corresponding macroblock is not transparent. MCBPC is present when indicated by COD or when VOP_prediction_type indicates I-VOP (VOP_prediction_type== ‘00’). CBPY, DQUANT, and MVD2-4 are present when indicated by MCBPC. Block Data is present when indicated by MCBPC and CBPY. MVD2-4 are only present in Advanced Prediction mode. MVDs is only present when first_shape_code indicates MVDs!=0. CR is present when change_CR_disable is 0. ST and BAC are present when First_shape_code indicates intraCAE or interCAE. Aacpred_flag/ACpred_flag are present when MCBPC indicates INTRA or INTRA+Q, and when intra_acdc_pred_disable flag is OFF. Interlaced_information contains the dct_type flag and field motion vector reference field. All fields from COD to Block Data are skipped if video_object_layer_shape is ‘11’.

First_shape_code�MVD_shape�CR�ST�BAC��COD�MCBPC��AC_pred_flag�CBPY�DQUANT�Interlaced_information�MVD�MVD2�MVD3�MVD4��CODA�Alpha_ACpred_flag�CBPA�Alpha Block Data�Block Data��Table � SEQ Table * ARABIC �43� Structure of macroblock layer in I-, and P-VOPs

The macroblock layer structure in Sprite-VOPs (VOP_prediction_type == “11”) is shown in � REF _Ref385429661 �Table 44�. The only difference from the syntax of I- and P-VOPs is that a 1-bit code, MCSEL, signaling the use of sprites (or GMC) is introduced just after MCBPC. MCSEL is only present when the macroblock type specified by the MCBPC is INTER or INTER+Q. All fields from COD to Block Data are skipped if video_object_layer_shape is ‘11’.

First_shape_code�MVD_shape�CR�ST�BAC��COD�MCBPC �MCSEL��AC_pred_flag�CBPY�DQUANT�MVD�MVD2�MVD3�MVD4��CODA�Alpha_ACpred_flag�CBPA�Alpha Block Data�Block Data��Table � SEQ Table * ARABIC �44� structure of macroblock layer in Sprite-VOPs

The macroblock layer structure in B-VOPs (VOP_prediction_type== ‘10’) is shown in� REF _Ref392509959 �Table 45�. If COD indicates skipped (COD == ‘1’) for a MB in the most recently decoded I- or P-VOP then the co-located MB in B-VOP is also skipped (no information is included in the bitstream). Otherwise, the macroblock layer is as shown in � REF _Ref392509959 �Table 45�.

However in the case of the enhancement layer of spatial scalability (ref_select_code == ‘00’ && scalability == 1), regardless of COD for a MB in the most recently decoded I- or P-VOP, the macroblock layer is as shown in � REF _Ref392509959 �Table 45�

first_shape_code�MVD_shape�CR�ST�BAC��MODB�MBTYPE��CBPB�DQUANT�Interlaced_information�MVDf�MVDb�MVDB��CODA�CBPBA�Alpha Block Data�Block Data��Table � SEQ Table * ARABIC �45� Structure of macroblock layer in B VOPs

MODB is present for every coded (non-skipped) macroblock in B-VOP. MVD’s (MVDf, MVDb, or MVDB) and CBPB are present if indicated by MODB. Macroblock type is indicated by MBTYPE which signals motion vector modes (MVD’s) and quantization (DQUANT). All fields from COD to Block Data are skipped if video_object_layer_shape is ‘11’.

In the case of VOP_CR is not equal to 1, when VOP level size conversion is carried out, one binary alpha block is corresponding to 4 (VOP_CR=1/2) texture macroblocks. (see �ref _Ref385411769 * Mergeformat �Figure 73�) Thus, a binary alpha data (first_shape_code to CAE) precede the texture macroblock with the same top left coordinates. For example, the binary alpha block BAB(2i,2j) is located at same position of texture macroblock MB(2i,2j), MB(2i,2j+1), MB(2i+1,2j) and MB(2i+1,2j+1) (�ref _Ref385411769 * Mergeformat �Figure 73�), then combined bitstream is shown in �ref _Ref385411754 * Mergeformat �Figure 74�.

�

Figure � SEQ Figure * ARABIC �73� Binary Alpha Blocks and corresponding texture MBs

�BAB(2i,2j)�MB(2i,2j)�MB(2i,2j+1)�BAB(2i,2j+2)�MB(2i,2j+2)�MB(2i,2j+3)�(((((����(((((�MB(2i+1,2j)�MB(2i+1,2j+1)�MB(2i+1,2j+2)�MB(2i+1,2j+3)�(((((��Figure �seq Figure * Arabic �74� combined bitstream of binary alpha blocks and texture blocks

6.1.1	Coded macroblock indication (COD) (1 bit)

A bit which when set to "0" signals that the macroblock is coded. If set to "1", no further information is transmitted for this macroblock; in that case for P-VOPs, the decoder shall treat the macroblock as a ‘P’ macroblock with motion vector for the whole block equal to zero and with no coefficient data; for Sprite-VOP the macroblock data is obtained by a straight copy of data from the sprite on the basis of the warping specified by the warping parameters. COD is only present in VOPs for which VOP_prediction_type indicates ‘P’ or Sprite, for each macroblock in these VOPs.

6.1.2	Macroblock type & Coded block pattern for chrominance (MCBPC) (Variable length)

A variable length codeword giving information about the macroblock type and the coded block pattern for chrominance. The codewords for MCBPC are given in � REF _Ref285437028 * MERGEFORMAT �Table 46� and � REF _Ref392510134 �Table 47�. MCBPC is always included in coded macroblocks.

An extra codeword is available in the tables for bit stuffing. This codeword should be discarded by decoders.

The macroblock type gives information about the macroblock and which data elements are present. Macroblock types and included elements are listed in � REF _Ref285437028 �Table 46�, � REF _Ref392510134 �Table 47�, and � REF _Ref392510199 �Table 48�.

Index�MB type�CBPC

(56)�Number of bits�Code��0�3�00�1�1��1�3�01�3�001��2�3�10�3�010��3�3�11�3�011��4�4�00�4�0001��5�4�01�6�0000 01��6�4�10�6�0000 10��7�4�11�6�0000 11��8�Stuffing�--�9�0000 0000 1��Table � SEQ Table * ARABIC �46� VLC table for MCBPC (for I-VOPs)

The coded block pattern for chrominance signifies CB and/or CR blocks when at least one non-INTRADC transform coefficient is transmitted (INTRADC is the dc-coefficient for ‘I’ blocks). CBPCN = 1 if any non-INTRADC coefficient is present for block N, else 0, for CBPC5 and CBPC6 in the coded block pattern. Block numbering is given in � REF _Ref364757929 * MERGEFORMAT �Figure 78�. When MCBPC=Stuffing, the remaining part of the macroblock layer is skipped. In this case, the preceeding COD=0 is not related to any coded or not-coded macroblock and therefore the macroblock number is not incremented. For P-VOPs, multiple stuffings are accomplished by multiple sets of COD=0 and MCBPC=Stuffing.

�

Figure � SEQ Figure * ARABIC �78�: Arrangement of blocks in a macroblock

Index�MB type�CBPC

(56)�Number of bits�Code��0�0�00�1�1��1�0�01�4�0011��2�0�10�4�0010��3�0�11�6�0001 01��4�1�00�3�011��5�1�01�7�0000 111��6�1�10�7�0000 110��7�1�11�9�0000 0010 1��8�2�00�3�010��9�2�01�7�0000 101��10�2�10�7�0000 100��11�2�11�8�0000 0101��12�3�00�5�0001 1��13�3�01�8�0000 0100��14�3�10�8�0000 0011��15�3�11�7�0000 011��16�4�00�6�0001 00��17�4�01�9�0000 0010 0��18�4�10�9�0000 0001 1��19�4�11�9�0000 0001 0��20�Stuffing�--�9�0000 0000 1��Table � SEQ Table * ARABIC �47� VLC table for MCBPC (for P-VOPs)

VOP type�MB

type index�Name�COD�MCBPC�MCSEL�CBPY�DQUANT�MVD�MVD2-4��P�not coded�-�X��������P�0�INTER�X�X��X��X���P�1�INTER+Q�X�X��X�X�X���P�2�INTER4V�X�X��X��X�X��P�3�INTRA�X�X��X�����P�4�INTRA+Q�X�X��X�X����P�stuffing�-�X�X�������I�3�INTRA��X��X�����I�4�INTRA+Q��X��X�X����I�stuffing�-��X�������Sprite�not coded�STAT-SP�X��������Sprite�0�INTER�X�X�X�X��X*1���Sprite�1�INTER+Q�X�X�X�X�X�X*1���Sprite�2�INTER4V�X�X��X��X�X��Sprite�3�INTRA�X�X��X�����Sprite�4�INTRA+Q�X�X��X�X����Note: “x” means that the item is present in the macroblock.

	*1 MVDs are present only when MCSEL = “0”.

Table � SEQ Table * ARABIC �48� Macroblock types and included data elements for a VOP

VOP Type�Index�Name�COD�MCBPC�MCSEL�CBPY�DQUANT�MVD�MVD2-4��P�not coded�-�X��������P�1�INTER�X�X��X�����P�2�INTER+Q�X�X��X�X����P�3�INTRA�X�X��X�����P�4�INTRA+Q�X�X��X�X����P�stuffing�-�X�X�������Table � SEQ Table * ARABIC �49� Macroblock types and included data elements for a P-VOP (scalability and ref_select_codd ==`11`

The list of macroblock types for I- and P-VOPs is extended to support dynamic sprite coding and GMC as shown in � REF _Ref368744974 �Table 32�.

Referring to the table, when COD = 1 (STAT-SP), the macroblock data is obtained by a straight copy of data from a sprite to the current macroblock on the basis of the warping specified by the coordinates on the sprite and their corresponding coordinates on the VOP. Note that choosing a STAT-SP mode for every macroblock in the VOP corresponds to setting the video_object_layer_sprite_usage field in the VOL to STATIC_SPRITE.

The next two modes, INTER and INTER+Q, specify that the macroblock is predicted from the sprite or the previous reconstructed VOP. For INTER and INTER+Q cases, the following codeword, MCSEL, indicates whether the sprite or the previous reconstructed VOP is referred to. If the previous reconstructed VOP is used as the reference (local MC), MCSEL should be “0”. If sprite prediction or GMC is used, MCSEL should be “1”. Note that the local motion vectors (MVDs) are not transmitted when sprite or GMC is used (MCSEL = 1).

The other three modes, INTER4V, INTRA, and INTRA+Q, are just the same as those used in P-VOPs.

6.1.3	MC reference indication (MCSEL) (1bit)

MCSEL is a 1-bit code which specifies the reference image of the macroblock in Sprite-VOPs. This flag is present only when the macroblock type specified by the MCBPC is INTER or INTER+Q as shown in � REF _Ref385429661 �Table 44�. MCSEL indicates whether a sprite or the previous reconstructed VOP is referred to when video_object_sprite_usage == ON-LINE_SPRITE. MCSEL also indicates whether the global motion compensated image or the previous reconstructed VOP is referred to when video_object_sprite_usage == GMC. This flag is set to “1” when prediction from the sprite or GMC is used for the macroblock, and is set to “0” if local MC is used. If MCSEL = “1”, local motion vectors (MVDs) are not transmitted.

6.1.4	Intra Prediction Acpred_flag (1bit)

ACpred_flag is a 1 bit flag which when set to “0” indicates that only Intra DC prediction is performed. If set to “1” it indicates that Intra AC prediction is also performed in addition to Intra DC prediction according to the rules in section � REF _Ref368891229 \n * MERGEFORMAT �0�.

6.1.5	Coded block pattern for luminance (CBPY) (Variable length)

Variable length codeword giving a pattern number signifying those non transparent Y blocks in the macroblock for which at least one non-INTRADC transform coefficient is transmitted (INTRADC is the dc-coefficient for INTRA blocks.

For only non transparent blocks, CBPYN = 1 if any non-INTRADC coefficient is present for block N, else 0, for each bit CBPYN in the coded block pattern. The coded block pattern for transparent blocks is not transmitted. Block numbering for a fully non transparent macroblock is given in � REF _Ref364757929 * MERGEFORMAT �Figure 78�. In case of any transparent blocks, the numbering pattern follows the same order but increments only for transparent blocks. The utmost left bit of CBPY corresponding to the first non transparent block number 1. For a certain pattern CBPYN, different codewords are used for INTER and INTRA macroblocks as defined in the following . If there is only one non transparent block in the macroblock a single bit CBPY is used (1: coded, 0:non coded).

In the case of two non transparent blocks the CBPY is coded according to the following table:

Index�CBPY (Intra

MB)�CBPY

(INTER, SPRITE MB)�Number of bits�Code��0�00�11�3�111��1�01�10�3�110��2�10�01�2�10��3�11�00�1�0��In the case of three non transparent blocks the CBPY is coded as follows:

Index�CBPY (Intra

MB)�CBPY

(INTER, SPRITE)�Number of bits�Code��0�000�111�3�100��1�001�110�5�11111��2�010�101�5�11110��3�011�100�3�101��4�100�011�5�11101��5�101�010�5�11100��6�110�001�3�110��7�111�000�1�0��Finally for fully non transparent macroblocks the CBPY codewords are given in � REF _Ref364765777 �Table 52�.

6.1.6	Quantizer Information (DQUANT) (1 or 2 bits)

A one or two bit code to define change in VOP_quantizer. In � REF _Ref392510452 �Table 50� and � REF _Ref392510474 �Table 51� the differential values for the different codewords are given. VOP_quantizer ranges from 1 to 31; if the value for VOP_quantizer after adding the differential value is less than 1 or greater than 31, it is clipped to 1 and 31 respectively. Note that the DQUANT can take values, -2, 0, or 2 in the case of B-VOPs and these values are coded differently from other VOP types.

Index�Differential value�DQUANT��0�-1�00��1�-2�01��2�1�10��3�2�11��Table � SEQ Table * ARABIC �50� DQUANT codes and differential values for VOP_quantizer

Index�Differential value�DQUANT��0�-2�10��1�0�0��2�2�11��Table � SEQ Table * ARABIC �51� DQUANT codes and differential values for VOP_quantizer for B-VOPs

Index�CBPY I

(12

34)�CBPY P,SPRITE

(12

34)�Number

of bits�Code��0�00

00�11

11�4� 0011��1�00

01�11

10�5� 0010 1��2�00

10�11

01�5� 0010 0��3�00

11�11

00�4� 1001��4�01

00�10

11�5� 0001 1��5�01

01�10

10�4� 0111��6�01

10�10

01�6� 0000 10��7�01

11�10

00�4� 1011��8�10

00�01

11�5� 0001 0��9�10

01�01

10�6� 0000 11��10�10

10�01

01�4� 0101��11�10

11�01

00�4� 1010��12�11

00�00

11�4� 0100��13�11

01�00

10�4� 1000��14�11

10�00

01�4� 0110��15�11

11�00

00�2� 11��Table � SEQ Table * ARABIC �52� VLC table for CBPY of fully non transparent macroblocks

6.1.7	Interlaced video coding information (Interlaced_information)

This syntax is only present if the interlaced flag in the VOP header is ‘1’.

if(interlaced){����	if((mbtype==INTRA)|¦(mbtype==INTRA_Q)||(cbp!=0))����		dct_type�1�uimsbf��		if((P_VOP&&((mbtype==INTER)||(mbtype==INTER_Q)))����		¦¦(B_VOP&&(mbtype!=Direct_mode)))����			field_prediction�1���		if (field_prediction)����			if(P_VOP|| (B_VOP && (mbtype != Backward))) {����				forward_top_field_reference�1�uimsbf��				forward_bottom_field_reference����			}����			if (B-VOP && (mbtype != Forward)) {����				backward_top_field_reference�1�uimsbf��				backward_bottom_field_reference�1�uimsbf��			}����		}����	}����}����The value of dct_type is 1 if the field DCT permutation of lines is used. The value of field_prediction is 1 if the macroblock is predicted using field motion vectors and 0 for 16x16 motion compensation. The reference field flags have value 0 for the top field and 1 for the bottom field.

For P-VOPs, when field_prediction is 1, two motion vector differences follow the above syntax, top field motion vector followed by bottom field motion vector. For B-VOPs, when field_prediction is 1, two or four motion vector differences are encoded. The B-VOP order of motion vectors for an interpolated macroblock is top field forward, bottom field forward, top field backward, bottom field backward. For uni-directional interlaced B-VOP prediction, the top field motion vector is followed by the bottom field motion vector.

6.1.8	Motion Vector Coding

Motion vectors for predicted and interpolated VOPs are coded differentially obeying the following rules:

In P-VOPs, differential motion vectors are generated as described in � REF _Ref392510573 \r �3.3.2� and � REF _Ref350068592 \r �3.3.3.1� In advanced prediction mode, no motion information needs to be transmitted for transparent blocks (This sentence needs to be reedited).

In B-VOPs, differential motion vectors are generated as described in � REF _Ref392510607 \r �3.5.6�

The VLC used to encode the differential motion vector data depends upon the range of the vectors and the motion compensation mode (half or quarter sample). The maximum range that can be represented is determined by the forward_f_code and backward_f_code encoded in the VOL header.

The differential motion vector component is calculated. Its range is compared with the values given in � REF _Ref364766231 * MERGEFORMAT �Error! Reference source not found.� and is reduced to fall in the correct range by the following algorithm:

		if (diff_vector < -range)

			diff_vector = diff_vector + 2*range;

		else if (diff_vector > range-1)

			diff_vector = diff_vector - 2*range;

forward_f_code

or backward_f_code�Range in half sample units

(half sample mode)�Range in quarter sample units

(quarter sample mode)��1�[-32,31]�[-64,63]��2�[-64,63]�[-128,127]��3�[-128,127]�[-256,255]��4�[-256,255]�[-512,511]��5�[-512,511]�[-1024,1023]��6�[-1024,1023]�[-2048,2047]��7�[-2048,2047]�[-4096,4095]��Table � SEQ Table * ARABIC �53� Range for motion vectors

This value is scaled and coded in two parts by concatenating a VLC found from XXX and a fixed length part according to the following algorithm:

Let f_code be either the forward_f_code or backward_f_code as appropriate, and diff_vector be the differential motion vector reduced to the correct range. In the case of quarter sample mode the value of f_code is increased by 1, and diff_vector is scaled by 2 and treated as a half sample vector afterwards.

	if (diff_vector == 0) {

		residual = 0;

		vlc_code_magnitude = 0;

	}

	else {

		scale_factor = 1 << (f_code - 1);

		residual = (abs(diff_vector) - 1) % scale_factor;

		vlc_code_magnitude = ((abs (diff_vector) - residual + (scale_factor - 1)) / scale_factor;

}

vlc_code_magnitude and the sign of diff_vector are encoded according to � REF _Ref285437044 * MERGEFORMAT �Table 54�. The residual is encoded as a fixed length code using (f_code-1) bits. If f_code is 1 or if diff_vector is 0 then the residual is not coded

6.1.9	Motion vector data (MVD) (Variable length)

MVD is included for all INTER macroblocks and consists of a variable length codeword for the horizontal component followed by a variable length codeword for the vertical component. Variable length codes are given in � REF _Ref285437044 �Table 54�.

Index�Vector differences�Bit number�Codes��0�-16�13�0000 0000 0010 1��1�-15.5�13�0000 0000 0011 1��2�-15�12�0000 0000 0101��3�-14.5�12�0000 0000 0111��4�-14�12�0000 0000 1001��5�-13.5�12�0000 0000 1011��6�-13�12�0000 0000 1101��7�-12.5�12�0000 0000 1111��8�-12�11�0000 0001 001��9�-11.5�11�0000 0001 011��10�-11�11�0000 0001 101��11�-10.5�11�0000 0001 111��12�-10�11�0000 0010 001��13�-9.5�11�0000 0010 011��14�-9�11�0000 0010 101��15�-8.5�11�0000 0010 111��16�-8�11�0000 0011 001��17�-7.5�11�0000 0011 011��18�-7�11�0000 0011 101��19�-6.5�11�0000 0011 111��20�-6�11�0000 0100 001��21�-5.5�11�0000 0100 011��22�-5�10�0000 0100 11��23�-4.5�10�0000 0101 01��24�-4�10�0000 0101 11��25�-3.5�8�0000 0111��26�-3�8�0000 1001��27�-2.5�8�0000 1011��28�-2�7�0000 111��29�-1.5�5�0001 1��30�-1�4�0011��31�-0.5�3�011��32�0�1�1��33�0.5�3�010��34�1�4�0010��35�1.5�5�0001 0��36�2�7�0000 110��37�2.5�8�0000 1010��38�3�8�0000 1000��39�3.5�8�0000 0110��40�4�10�0000 0101 10��41�4.5�10�0000 0101 00��42�5�10�0000 0100 10��43�5.5�11�0000 0100 010��44�6�11�0000 0100 000��45�6.5�11�0000 0011 110��46�7�11�0000 0011 100��47�7.5�11�0000 0011 010��48�8�11�0000 0011 000��49�8.5�11�0000 0010 110��50�9�11�0000 0010 100��51�9.5�11�0000 0010 010��52�10�11�0000 0010 000��53�10.5�11�0000 0001 110��54�11�11�0000 0001 100��55�11.5�11�0000 0001 010��56�12�11�0000 0001 000��57�12.5�12�0000 0000 1110��58�13�12�0000 0000 1100��59�13.5�12�0000 0000 1010��60�14�12�0000 0000 1000��61�14.5�12�0000 0000 0110��62�15�12�0000 0000 0100��63�15.5�13�0000 0000 0011 0��64�16�13�0000 0000 0010 0��Table � SEQ Table * ARABIC �54� VLC table for MVD

6.1.10	Motion vector data (MVD2-4) (Variable length)

The three codewords MVD2-4 are included if indicated by VOP_prediction_type and by MCBPC, and consist each of a variable length codeword for the horizontal component followed by a variable length codeword for the vertical component of each vector. Variable length codes are given in � REF _Ref285437044 * MERGEFORMAT �Table 54�.

If this P-VOP is interlaced, and field_prediction is '1' for this macroblock, the a total of two field motion vectors are present. The top field vector is followed by the bottom field vector and each vector consists of the horizontal component followed by the vertical component. The vector components are encoded as decribed above.

6.1.11	Macroblock mode for B-blocks (MODB) (Variable length)

MODB is present only in coded macroblocks belonging to B-VOPs. The meaning of this codeword is same as that in H.263. It is a variable length codeword indicating whether MBTYPE and/or CBPB information is present. In case MBTYPE dos not exist the default is set to "Direct (H.263 B)". In the case of the enhancement layer of spatial scalability (ref_select_code == ‘00’ && scalability == ‘1’), the default of MBTYPE is set to “Forward MC” (precdiction from the last decoded VOP in the same reference layer). The codewords for MODB are defined in � REF _Ref364766171 * MERGEFORMAT �Table 55�.

Index�CBPB�MBTYPE�Number of bits�Code��0���1�0��1��X�2�10��2�X�X�2�11��Note: “x” means that the item is present in the macroblock

Table � SEQ Table * ARABIC �55� VLC table for MODB

The skipped Macroblock for B-VOPs can be summarized as the following conditions.

(ref_select_code == ‘00’ && scalability != ‘0’) && MODB == ‘0’

In this case, further information is not transmitted for this macroblock. The decoder treat the prediction of this macroblock as forward MC with motion vector equal to zero.

(ref_select_code != ‘00’ || scalability == ‘0’) && (COD indicates skipped (COD == ‘1’) for a MB in the most recently decoded I- or P-VOP)

In this case, further information is not transmitted for this macroblock. The decoder treat the prediction of this macroblock as forward MC with motion vector equal to zero.

(ref_select_code != ‘00’ || scalability == ‘0’) && MODB == ‘0’

In this case, further information is not transmitted for this macroblock. The decoder treat the prediction of this macroblock as Direct (H.263B).

6.1.12	Macroblock Type (MBTYPE) for Coded B-VOPs (Variable length)

MBTYPE is present only in coded macroblocks belonging to B-VOPs. Furthermore, it is present only in those macroblocks where at least one MVD is sent. MBTYPE indicates the type of macroblock coding used, for example, H.263 like motion compensation or MPEG-1 like motion compensation with forward, backward or interpolated, and change of quantizer if any by use of DQUANT. The codewords for MBTYPE are defined in � REF _Ref392510817 �Table 56� and � REF _Ref368883640 * MERGEFORMAT �Table 57�. In the case of the enhancement layer of spatial scalability, MBTYPE is defined in � REF _Ref368883640 * MERGEFORMAT �Table 57�. Otherwise MBTYE is defined in � REF _Ref392510817 �Table 56�.

Index�MBTYPE�DQUANT�MVDf�MVDb�MVDB�Number of bits�Code��0�Direct (H.263 B)����X�1�1��1�Interpolate MC + Q�X�X�X��2�01��2�Backward MC + Q�X��X��3�001��3�Forward MC + Q�X�X���4�0001��Note: “x” means that the item is present in the macroblock

Table � SEQ Table * ARABIC �56� MBTYPES and included data elements in coded macroblocks in B-VOPs (ref_select_code != ‘00’||scalability==’0’)

Index�MBTYPE�DQUANT�MVDf�MVDb�Number of bits�Code��0�Interpolate MC + Q�X�X��2�01��1�Backward MC + Q�X���3�001��2�Forward MC + Q�X�X��1�1��Note: x” means that the item is present in the macroblock

Table � SEQ Table * ARABIC �57� MBTYPES and included data elements in coded macroblocks in B-VOPs (ref_select_code == ‘00’&&scalability!=’0’)

Rather than refer to each MBTYPE by an index or by its long explanation in terms of MC mode and Quantizer information, we refer to them as a coding mode which means the following.

Direct Coding (Direct MC, no new Q)

Bidirectional Coding (Interpolate MC + Q)

Backward Coding (Backward MC + Q)

Forward Coding (Forward MC +Q)

6.1.13	Coded block pattern for B-blocks (CBPB) (3-6 bits)

CBPB is only present in B-VOPs if indicated by MODB. For all non transparent blocks, CBPBN = 1 if any coefficient is present for a block N, else 0, for each bit CBPBN in the coded block pattern. The numbering of blocks has been shown earlier, the utmost left bit of CBPB corresponds to block number 1. When MODB = 0 or 1, the default value of CBPB is set to 0 which means that no coefficients are sent.

6.1.14	Quantizer Information for B-Macroblocks (DQUANT) (2 bits)

The meaning of DQUANT and the codewords employed are the same as that in I- or P-VOPs. The computed quantizer is scaled by a factor depending on the selected global quantizer scale for B-VOP’s, DBQUANT.

DQUANT is transmitted when CBPB != 0. If CBPB == 0, DQUANT is not transmitted. If CBPB is not transmitted, the default value of CBPB is set to 0.

6.1.15	Motion vector data for Forward Prediction (MVDf) (Variable length)

MVDf is the motion vector of a macroblock in B-VOP with respect to temporally previous reference VOP (an I- or a P-VOP). It consists of a variable length codeword for the horizontal component followed by a variable length codeword for the vertical component. The variable length codes employed are the same ones as used for MVD and MVD2-4 for P-VOPs.

For an interlaced B-VOP macroblock with field_prediction of '1' and MBTYPE of forward or interpolate, MVDf represents a pair of field motion vectors (top field followed by bottom field) which reference the past anchor VOP. Each of the field motion vectors uses the same encoding as described for the P_VOP MVD field.

6.1.16	Motion vector data for Backward Prediction (MVDb) (Variable length)

MVDb is the motion vector of a macroblock in B-VOP with respect to temporally following reference VOP (an I- or a P-VOP). It consists of a variable length codeword for the horizontal component followed by a variable length codeword for the vertial component. The variable length codes employed are the same ones as used for MVD and MVD2-4 for P-VOPs.

For an interlaced B-VOP macroblock with field_prediction of '1' and MBTYPE of backward or interpolate, MVDb represents a pair of field motion vectors (top field followed by bottom field) which reference the future anchor VOP. Each of the field motion vectors uses the same encoding as described for the P_VOP MVD field

6.1.17	Motion vector data for Direct Prediction (MVDB) (Variable length)

MVDB is only present in B-VOPs mode if indicated by MODB and MBTYPE and consists of a variable length codeword for the horizontal component followed by a variable length codeword for the vertical component of each vector. MVDBs represents delta vectors that are used to correct B-VOP macroblock motion vectors which are obtained by scaling P-VOP macroblock motion vectors. The variable length codes employed are the same ones as used for MVD and MVD2-4 for P-VOPs

6.2	Block Layer

A macroblock structure comprises of four luminance blocks and one of each of the two colour difference blocks. The same structure is used for all types of VOPs, I, P or B. Presently intra macroblocks are supported both in I- and P-VOPs. For such macroblocks, INTRADC is present for every block of each macroblock and TCOEF is present if indicated by MCBPC or CBPY. For nonintra macroblocks of P-VOPs, TCOEF is present if indicated by MCBPC or CBPY. For B-VOP macroblocks, TCOEF is present if indicated by CBPB. � REF _Ref364784801 * MERGEFORMAT �Figure 76� shows a generalized block layer for all type of VOPs.

INTRADC�TCOEF��Figure � SEQ Figure * ARABIC �76�: Structure of block layer

6.2.1	DC Coefficient for INTRA blocks (INTRADC) (Variable length)

The differential DC values generated in section � REF _Ref368891229 \n * MERGEFORMAT �0� are categorised according to their "size" as shown in � REF _Ref392510918 �Table 58� and � REF _Ref392510906 �Table 59�

vlc code�DC size Luminance��100�0��00�1��01�2��101�3��110�4��1110�5��1111 0�6��1111 10�7��1111 110�8��1111 1110�9��1111 1111 0�10��1111 1111 10�11��1111 1111 110�12��Table � SEQ Table * ARABIC �58� Variable length codes for DC size luminance

Vlc code�DC size chrominance��00�0��01�1��10�2��110�3��1110�4��1111 0�5��1111 10�6��1111 110�7��1111 1110�8��1111 1111 0�9��1111 1111 10�10��1111 1111 110�11��1111 1111 1110�12��Table � SEQ Table * ARABIC �59� Variable length codes for DC size chrominance

For each category additional bits are appended to the SIZE code to uniquely identify which difference in that category actually occurred (� REF _Ref392510989 �Table 60�). The additional bits thus define the signed amplitude of the difference data. The number of additional bits (sign included) is equal to the SIZE value.

DIFFERENTIAL DC�SIZE�ADDITIONAL CODE��-4095 to -2048�12�000000000000 to 011111111111��-2047 to -1024�11�00000000000 to 01111111111��-1023 to -512�10�0000000000 to 0111111111��-511 to -256�9�000000000 to 011111111��-255 to -128�8�00000000 to 01111111��-127 to -64�7�0000000 to 0111111��-63 to -32�6�000000 to 011111��-31 to -16�5�00000 to 01111��-15 to -8�4�0000 to 0111��-7 to -4�3�000 to 011��3 to -2 �2�00 to 01��-1�1�0��0�0���1�1�1��2 to 3�2�10 to 11��4 to 7�3�100 to 111��8 to 15�4�1000 to 1111��16 to 31�5�10000 to 11111��32 to 63�6�100000 to 111111��64 to 127�7�1000000 to 1111111��128 to 255�8 �10000000 to 11111111��256 to 511�9�100000000 to 111111111��512 to 1023�10�1000000000 to 1111111111��1024 to 2047�11�10000000000 to 11111111111��2048 to 4095�12�100000000000 to 111111111111��Table � SEQ Table * ARABIC �60� Differential DC additional codes

The DC DCT coefficient is transmitted as a fixed length code of size bits_per_pixel if intra DC prediction is not used. If bits_per_pixel is greater than 8, a single extra bit with value ‘1’ is inserted after the first 8 bits are transmitted. This is done to avoid start code emulations. The code 0000 0000 is not used. The code 1000 0000 is not used, the reconstruction level of 1024 being coded as 1111 1111 (see � REF _Ref392669725 \h ��Table 61�).

If intra DC prediction is used, and the DC_size_luminance is greater than 8, an extra bit with value one is inserted after the first 8 bits of the additional code have been transmitted.

Index�FLC�Reconstruction level����into inverse transform��0�0000 0001	(1)�8��1�0000 0010	(2)�16��2�0000 0011	(3)�24��.�.	.�.��.�.	.�.��126�0111 1111	(127)�1016��127�1111 1111	(255)�1024��128�1000 0001	(129)�1032��.�.	.�.��.�.	.�.��252�1111 1101	(253)�2024��253�1111 1110	(254)�2032��Table � SEQ Table * ARABIC �61� Reconstruction levels for INTRA-mode DC coefficient

6.2.2	Transform coefficient (TCOEF) (Variable length)

The most commonly occurring EVENTs for intra luminance blocks are coded with the variable length codes given in � REF _Ref392511022 �Table 62�. The most common occurring EVENTs for intra chrominance and inter blocks are coded with the variable length codes given in� REF _Ref392511037 �Table 63�, which is also used for coding of inter TCOEF.

This can be clearly summarized as follows.

VLC table (� REF _Ref392511022 �Table 62�) is used for coding of AC coefficients of intra luminance blocks.

The TCOEF table (� REF _Ref392511037 �Table 63�) used for coding of coefficients of inter blocks is also employed for coding of AC coefficients of intra chrominance blocks.

The last bit “s” denotes the sign of the level, “0” for positive and “1” for negative.

An EVENT is a combination of a last non-zero coefficient indication (LAST; “0”: there are more nonzero coefficients in this block, “1”: this is the last nonzero coefficient in this block), the number of successive zeros preceding the coded coefficient (RUN), and the non-zero value of the coded coefficient (LEVEL).

The remaining combinations of (LAST, RUN, LEVEL) are coded with a 22 bit word consisting of 7 bits ESCAPE, 1 bit LAST, 6 bits RUN and 8 bits LEVEL. Use of this 22-bit word for encoding the combinations listed in � REF _Ref392511022 �Table 62� and � REF _Ref392511037 �Table 63� is not prohibited. For the 8-bit word for LEVEL, the codes 0000 0000 and 1000 0000 are not used. The codes for RUN and for LEVEL are given in � REF _Ref392511037 �Table 63�.

6.2.3	Encoding of escape code

The escape codes of DCT coefficients are encoded in three modes. The first mode is encoded by variable length codes after subtracting the LEVEL of an event with LMAX. LMAX is the maximum value of LEVEL specified in the VLC tables, with the same LAST and RUN as the event. The second mode is encoded by variable length codes after subtracting the RUN of an event with (RMAX+1). RMAX is the maximum value of RUN specified in the VLC tables, with the same LAST and LEVEL as the event. The third mode is encoded by fixed length codes (1-bit LAST, 6-bit RUN and 8-bit LEVEL) using � REF _Ref394461462 \h ��Table 64�. The first and second modes are respectively distinguished by “1” and “01” after the escape code. The third mode is identified by a “00” after the escape code. The encoding process is shown in � REF _Ref394461409 \h ��Figure 77�. LMAX values for I- and P-/B- VOPs are listed in � REF _Ref394460909 \h ��Table 65� and � REF _Ref394460962 \h ��Table 66� respectively. RMAX values for intra and inter VOP are listed in � REF _Ref394461104 \h ��Table 67� and � REF _Ref394461134 \h ��Table 68� respectively.

�

Figure � SEQ Figure * ARABIC �77�: Encoding of escape codes of DCT coefficients

index�Last�Run�Level�BITS�VLC code��Index�Last�Run�Level�BITS�VLCode��0�0�0�1�3�10s��58�1�0�1�5�0111 s��1�0�0�3�5�1111 s��59�0�11�1�10�0000 1100 1s��2�0�0�6�7�0101 01s��60�1�0�6�12�0000 0000 101s��3�0�0�9�8�0010 111s��61�1�1�1�7�0011 11s��4�0�0�10�9�0001 1111 s��62�1�0�7�12�0000 0000 100s��5�0�0�13�10�0001 0010 1s��63�1�2�1�7�0011 10s��6�0�0�14�10�0001 0010 0s��64�0�5�1�7�0011 01s��7�0�0�17�11�0000 1000 01s��65�1�0�2�7�0011 00s��8�0�0�18�11�0000 1000 00s��66�1�5�1�8�0010 011s��9�0�0�21�12�0000 0000 111s��67�0�6�1�8�0010 010s��10�0�0�22�12�0000 0000 110s��68�1�3�1�8�0010 001s��11�0�0�23�12�0000 0100 000s��69�1�4�1�8�0010 000s��12�0�0�2�4�110s��70�1�9�1�9�0001 1010 s��13�0�1�2�7�0101 00s��71�0�8�1�9�0001 1001 s��14�0�0�11�9�0001 1110 s��72�0�9�1�9�0001 1000 s��15�0�0�19�11�0000 0011 11s��73�0�10�1�9�0001 0111 s��16�0�0�24�12�0000 0100 001s��74�1�0�3�9�0001 0110 s��17�0�0�25�13�0000 0101 0000s��75�1�6�1�9�0001 0101 s��18�0�1�1�5�1110 s��76�1�7�1�9�0001 0100 s��19�0�0�12�9�0001 1101 s��77�1�8�1�9�0001 0011 s��20�0�0�20�11�0000 0011 10s��78�0�12�1�10�0000 1100 0s��21�0�0�26�13�0000 0101 0001s��79�1�0�4�10�0000 1011 1s��22�0�0�4�6�0110 1s��80�1�1�2�10�0000 1011 0s��23�0�0�15�10�0001 0001 1s��81�1�10�1�10�0000 1010 1s��24�0�1�7�11�0000 0011 01s��82�1�11�1�10�0000 1010 0s��25�0�0�5�6�0110 0s��83�1�12�1�10�0000 1001 1s��26�0�4�2�10�0001 0001 0s��84�1�13�1�10�0000 1001 0s��27�0�0�27�13�0000 0101 0010s��85�1�14�1�10�0000 1000 1s��28�0�2�1�6�0101 1s��86�0�13�1�11�0000 0001 11s��29�0�2�4�11�0000 0011 00s��87�1�0�5�11�0000 0001 10s��30�0�1�9�13�0000 0101 0011s��88�1�1�3�11�0000 0001 01s��31�0�0�7�7�0100 11s��89�1�2�2�11�0000 0001 00s��32�0�3�4�11�0000 0010 11s��90�1�3�2�12�0000 0100 100s��

Index�Last�Run�Level�BITS�VLC code��Index�Last�Run�Level�BITS�VLC code��33�0�6�3�13�0000 0101 0100s��91�1�4�2�12�0000 0100 101s��34�0�0�8�7�0100 10s��92�1�15�1�12�0000 0100 110s��35�0�4�3�11�0000 0010 10s��93�1�16�1�12�0000 0100 111s��36�0�3�1�7�0100 01s��94�0�14�1�13�0000 0101 1000s��37�0�8�2�11�0000 0010 01s��95�1�0�8�13�0000 0101 1001s��38�0�4�1�7�0100 00s��96�1�5�2�13�0000 0101 1010s��39�0�5�3�11�0000 0010 00s��97�1�6�2�13�0000 0101 1011s��40�0�1�3�8�0010 110s��98�1�17�1�13�0000 0101 1100s��41�0�1�10�13�0000 0101 0101s��99�1�18�1�13�0000 0101 1101s��42�0�2�2�8�0010 101s��100�1�19�1�13�0000 0101 1110s��43�0�7�1�8�0010 100s��101�1�20�1�13�0000 0101 1111s��44�0�1�4�9�0001 1100 s��102�ESCAPE���7�0000 011��45�0�3�2�9�0001 1011 s���������46�0�0�16�10�0001 0000 1s���������47�0�1�5�10�0001 0000 0s���������48�0�1�6�10�0000 1111 1s���������49�0�2�3�10�0000 1111 0s���������50�0�3�3�10�0000 1110 1s���������51�0�5�2�10�0000 1110 0s���������52�0�6�2�10�0000 1101 1s���������53�0�7�2�10�0000 1101 0s���������54�0�1�8�12�0000 0100 010s���������55�0�9�2�12�0000 0100 011s���������56�0�2�5�13�0000 0101 0110s���������57�0�7�3�13�0000 0101 0111s���������Table � SEQ Table * ARABIC �62� VLC table for INTRA Luminance TCOEF

Index�Last�Run�Level�BITS�VLC code��Index�Last�Run�Level�BITS�VLC code��0�0�0�1�3�10s��58�1�0�1�5�0111 s��1�0�0�2�5�1111 s��59�1�0�2�10�0000 1100 1s��2�0�0�3�7�0101 01s��60�1�0�3�12�0000 0000 101s��3�0�0�4�8�0010 111s��61�1�1�1�7�0011 11s��4�0�0�5�9�0001 1111 s��62�1�1�2�12�0000 0000 100s��5�0�0�6�10�0001 0010 1s��63�1�2�1�7�0011 10s��6�0�0�7�10�0001 0010 0s��64�1�3�1�7�0011 01s��7�0�0�8�11�0000 1000 01s��65�1�4�1�7�0011 00s��8�0�0�9�11�0000 1000 00s��66�1�5�1�8�0010 011s��9�0�0�10�12�0000 0000 111s��67�1�6�1�8�0010 010s��10�0�0�11�12�0000 0000 110s��68�1�7�1�8�0010 001s��11�0�0�12�12�0000 0100 000s��69�1�8�1�8�0010 000s��12�0�1�1�4�110s��70�1�9�1�9�0001 1010 s��13�0�1�2�7�0101 00s��71�1�10�1�9�0001 1001 s��14�0�1�3�9�0001 1110 s��72�1�11�1�9�0001 1000 s��15�0�1�4�11�0000 0011 11s��73�1�12�1�9�0001 0111 s��16�0�1�5�12�0000 0100 001s��74�1�13�1�9�0001 0110 s��17�0�1�6�13�0000 0101 0000s��75�1�14�1�9�0001 0101 s��18�0�2�1�5�1110 s��76�1�15�1�9�0001 0100 s��19�0�2�2�9�0001 1101 s��77�1�16�1�9�0001 0011 s��20�0�2�3�11�0000 0011 10s��78�1�17�1�10�0000 1100 0s��21�0�2�4�13�0000 0101 0001s��79�1�18�1�10�0000 1011 1s��22�0�3�1�6�0110 1s��80�1�19�1�10�0000 1011 0s��23�0�3�2�10�0001 0001 1s��81�1�20�1�10�0000 1010 1s��24�0�3�3�11�0000 0011 01s��82�1�21�1�10�0000 1010 0s��25�0�4�1�6�0110 0s��83�1�22�1�10�0000 1001 1s��26�0�4�2�10�0001 0001 0s��84�1�23�1�10�0000 1001 0s��27�0�4�3�13�0000 0101 0010s��85�1�24�1�10�0000 1000 1s��28�0�5�1�6�0101 1s��86�1�25�1�11�0000 0001 11s��29�0�5�2�11�0000 0011 00s��87�1�26�1�11�0000 0001 10s��30�0�5�3�13�0000 0101 0011s��88�1�27�1�11�0000 0001 01s��31�0�6�1�7�0100 11s��89�1�28�1�11�0000 0001 00s��32�0�6�2�11�0000 0010 11s��90�1�29�1�12�0000 0100 100s��33�0�6�3�13�0000 0101 0100s��91�1�30�1�12�0000 0100 101s��34�0�7�1�7�0100 10s��92�1�31�1�12�0000 0100 110s��35�0�7�2�11�0000 0010 10s��93�1�32�1�12�0000 0100 111s��36�0�8�1�7�0100 01s��94�1�33�1�13�0000 0101 1000s��37�0�8�2�11�0000 0010 01s��95�1�34�1�13�0000 0101 1001s��38�0�9�1�7�0100 00s��96�1�35�1�13�0000 0101 1010s��39�0�9�2�11�0000 0010 00s��97�1�36�1�13�0000 0101 1011s��40�0�10�1�8�0010 110s��98�1�37�1�13�0000 0101 1100s��41�0�10�2�13�0000 0101 0101s��99�1�38�1�13�0000 0101 1101s��42�0�11�1�8�0010 101s��100�1�39�1�13�0000 0101 1110s��43�0�12�1�8�0010 100s��101�1�40�1�13�0000 0101 1111s��44�0�13�1�9�0001 1100 s��102�ESCAPE���7�0000 011��45�0�14�1�9�0001 1011 s���������46�0�15�1�10�0001 0000 1s���������47�0�16�1�10�0001 0000 0s���������48�0�17�1�10�0000 1111 1s���������49�0�18�1�10�0000 1111 0s���������50�0�19�1�10�0000 1110 1s���������51�0�20�1�10�0000 1110 0s���������52�0�21�1�10�0000 1101 1s���������53�0�22�1�10�0000 1101 0s���������54�0�23�1�12�0000 0100 010s���������55�0�24�1�12�0000 0100 011s���������56�0�25�1�13�0000 0101 0110s���������57�0�26�1�13�0000 0101 0111s���������Table � SEQ Table * ARABIC �63� VLC table for Intra Chrominance and Inter Lumimance and Chrominance TCOEF

Index�Run�Code��Index�Level�Code��0�0�000 000��-�-128�FORBIDDEN��1�1�000 001��0�-127�1000 0001��2�2�000 010��.�.�.��.�.�.��125�-2�1111 1110��.�.�.��126�-1�1111 1111��63�63�111 111��-�0�FORBIDDEN������127�1�0000 0001������128�2�0000 0010������.�.�.������253�127�0111 1111��Table � SEQ Table * ARABIC �64� FLC table for RUNS and LEVELS

This annex provides tables for value of LMAX and RMAX for decoding escape codes of DCT coefficients.

Table � SEQ Table * ARABIC �65�: LMAX values of I-VOP

LAST�RUN�LMAX��LAST�RUN�LMAX��0�0�27��1�0�8��0�1�10��1�1�3��0�2�5��1�2-6�2��0�3�4��1�7-20�1��0�4-7�3��1�others�N/A��0�8-9�2������0�10-14�1������0�others�N/A ������

Table � SEQ Table * ARABIC �66�: LMAX values of P- or B-VOP

LAST�RUN�LMAX��LAST�RUN�LMAX��0�0�12��1�0�3��0�1�6��1�1�2��0�2�4��1�2-40�1��0�3-6�3��1�others�N/A��0�7-10�2������0�11-26�1������0�others�N/A������

Table � SEQ Table * ARABIC �67�: RMAX values of I-VOP

LAST�LEVEL�RMAX��LAST�LEVEL�RMAX��0�1�14��1�1�20��0�2�9��1�2�6��0�3�7��1�3�1��0�4�3��1�4-8�0��0�5�2��1�others�N/A��0�6-10�1������0�11-27�0������0�others�N/A ������

Table � SEQ Table * ARABIC �68�: RMAX values of P- or B-VOP

LAST�LEVEL�RMAX��LAST�LEVEL�RMAX��0�1�26��1�1�40��0�2�10��1�2�1��0�3�6��1�3�0��0�4�2��1�others�N/A��0�5-6�1������0�7-12�0������0�others�N/A ������

6.3	Remultiplexing of Combined Motion Texture Coding Mode for Error Resilience

This section describes two modes for the combined motion texture coding which allows the utilization of the data partitioning and Reversible VLCs for improving the error resilience performance of the Video Verification Model.

Data Partitioning Mode

This mode uses the same syntactic elements defined in the Combined Texture Coding Mode with reordering. For each resynchronization packet, in a P-VOP the DCT coefficients, motion data and the header information are reordered as shown below

17 bits�1-12 bits�5 bits�1 or 12 bits� M bits� 17 bits�N bits�17 bits��RM�MBA�QP�HEC�Motion Data�Motion Marker�Texture Data�RM��where, as discussed in section XXX,

RM: Resynchronization Marker as defined in Section XXX and further in Section � REF _Ref392511531 \r �4.6.1� (0000 0000 0000 0000 1),

MBA: Macroblock Address as defined in Section XXX and further in Section � REF _Ref392511531 \r �4.6.1�,

QP: Quantization Parameter as defined in Section XXX and further in Section � REF _Ref392511531 \r �4.6.1�,

HEC: Header Extension Code as defined in Section XXX and further in Section � REF _Ref392511531 \r �4.6.1�.

Motion Data: The motion data is further rearranged as follows,

COD�MCBPC�MV1-4�COD�MCBPC�MV1-4�COD��Motion Marker��MB(k)�MB(k)�MB(k)�MB(k+1)�MB(k+1)�MB(k+1)�MB(k+2)�......���COD MB(k): This flag indicates whether a macroblock has DCT data or not. If it has no DCT data it is set to ‘1’, otherwise it is set to ‘0’. The Huffman Codes used to code the NO_DCT flag are the same as the one for the P-VOP case given in the non error resilient case earlier in this section.

MCBPC MB(k): Mode and Coded Block Pattern Chrominance gives information on i) whether DQUANT is present or not, and ii) coded block pattern for chrominance. The Huffman table for the MCBPC is the same as the one for the P-VOP case given in the non error resilient case earlier in this section.

MV1-4 MB(k): The 16x16 to 8x8 motion vectors for the macroblock MB(k)

Motion Marker: This is a 17-bit word that is unique from any valid combination of the VLC data that occurs before it. Its value is 1111 1000 0000 0000 1.

Texture Data: The DCT data is further rearranged as follows,

CBPY�DQUANT (optional)�CBPY�DQUANT (optional)��DCT�DCT���MB(k)�MB(k)�MB(k+1)�MB(k+1)��MB(k)�MB(k+1)���CBPY MB(k): Coded Block Pattern for luminance (Y) specifies those Y non transparent blocks in the macroblock for which at least one non-INTRADC transform coefficient is transmitted. The coding of CBPY is the same as the one for the P-VOP case given in the non error resilient case earlier in this section.

DQUANT: define changes in the value of the VOP_quantizer. The DQUANT values and respective codes are the same as the one for the P-VOP case given in the non error resilient case earlier in this section.

DCT data: The DCT encoded macroblock data consists of four luminance and two chrominance difference blocks.

Reversible VLCs

When this mode is enabled, a Reversible VLC (RVLC) table shown in Table is used to code the DCT coefficients.

7	Appendix B: Transform coefficient (TCOFF) (Variable length)

ESCAPE code is added at the beginning and the end of these fixed-length codes for realizing two-way decode as shown in � REF _Ref392511582 �Figure 78�.

�

Figure � SEQ Figure * ARABIC �78� FLC Format of TCOEF

Note: There are two types for ESCAPE added at the end of these fixed-length codes, and codewords are “0000s”.

S=0 : LEVEL is positive

S=1 : LEVEL is negative

��INTRA���INTER�����INDEX�LAST�RUN�LEVEL�LAST�RUN�LEVEL�BITS�VLC_CODE��0�0�0�1�0�0�1�4�110s��1�0�0�2�0�1�1�4�111s��2�0�1�1�0�0�2�5�0001s��3�0�0�3�0�2�1�5�1010s��4�1�0�1�1�0�1�5�1011s��5�0�2�1�0�0�3�6�00100s��6�0�3�1�0�3�1�6�00101s��7�0�1�2�0�4�1�6�01000s��8�0�0�4�0�5�1�6�01001s��9�1�1�1�1�1�1�6�10010s��10�1�2�1�1�2�1�6�10011s��11�0�4�1�0�1�2�7�001100s��12�0�5�1�0�6�1�7�001101s��13�0�0�5�0�7�1�7�010100s��14�0�0�6�0�8�1�7�010101s��15�1�3�1�1�3�1�7�011000s��16�1�4�1�1�4�1�7�011001s��17�1�5�1�1�5�1�7�100010s��18�1�6�1�1�6�1�7�100011s��19�0�6�1�0�0�4�8�0011100s��20�0�7�1�0�2�2�8�0011101s��21�0�2�2�0�9�1�8�0101100s��22�0�1�3�0�10�1�8�0101101s��23�0�0�7�0�11�1�8�0110100s��24�1�7�1�1�7�1�8�0110101s��25�1�8�1�1�8�1�8�0111000s��26�1�9�1�1�9�1�8�0111001s��27�1�10�1�1�10�1�8�1000010s��28�1�11�1�1�11�1�8�1000011s��29�0�8�1�0�0�5�9�00111100s��30�0�9�1�0�0�6�9�00111101s��31�0�3�2�0�1�3�9�01011100s��32�0�4�2�0�3�2�9�01011101s��33�0�1�4�0�4�2�9�01101100s��34�0�1�5�0�12�1�9�01101101s��35�0�0�8�0�13�1�9�01110100s��36�0�0�9�0�14�1�9�01110101s��37�1�0�2�1�0�2�9�01111000s��38�1�12�1�1�12�1�9�01111001s��39�1�13�1�1�13�1�9�10000010s��40�1�14�1�1�14�1�9�10000011s��41�0�10�1�0�0�7�10�001111100s��42�0�5�2�0�1�4�10�001111101s��43�0�2�3�0�2�3�10�010111100s��44�0�3�3�0�5�2�10�010111101s��45�0�1�6�0�15�1�10�011011100s��46�0�0�10�0�16�1�10�011011101s��47�0�0�11�0�17�1�10�011101100s��48�1�1�2�1�1�2�10�011101101s��49�1�15�1�1�15�1�10�011110100s��50�1�16�1�1�16�1�10�011110101s��51�1�17�1�1�17�1�10�011111000s��52�1�18�1�1�18�1�10�011111001s��53�1�19�1�1�19�1�10�100000010s��54�1�20�1�1�20�1�10�100000011s��55�0�11�1�0�0�8�11�0011111100s��56�0�12�1�0�0�9�11�0011111101s��57�0�6�2�0�1�5�11�0101111100s��58�0�7�2�0�3�3�11�0101111101s��59�0�8�2�0�6�2�11�0110111100s��60�0�4�3�0�7�2�11�0110111101s��61�0�2�4�0�8�2�11�0111011100s��62�0�1�7�0�9�2�11�0111011101s��63�0�0�12�0�18�1�11�0111101100s��64�0�0�13�0�19�1�11�0111101101s��65�0�0�14�0�20�1�11�0111110100s��66�1�21�1�1�21�1�11�0111110101s��67�1�22�1�1�22�1�11�0111111000s��68�1�23�1�1�23�1�11�0111111001s��69�1�24�1�1�24�1�11�1000000010s��70�1�25�1�1�25�1�11�1000000011s��71�0�13�1�0�0�10�12�00111111100s��72�0�9�2�0�0�11�12�00111111101s��73�0�5�3�0�1�6�12�01011111100s��74�0�6�3�0�2�4�12�01011111101s��75�0�7�3�0�4�3�12�01101111100s��76�0�3�4�0�5�3�12�01101111101s��77�0�2�5�0�10�2�12�01110111100s��78�0�2�6�0�21�1�12�01110111101s��79�0�1�8�0�22�1�12�01111011100s��80�0�1�9�0�23�1�12�01111011101s��81�0�0�15�0�24�1�12�01111101100s��82�0�0�16�0�25�1�12�01111101101s��83�0�0�17�0�26�1�12�01111110100s��84�1�0�3�1�0�3�12�01111110101s��85�1�2�2�1�2�2�12�01111111000s��86�1�26�1�1�26�1�12�01111111001s��87�1�27�1�1�27�1�12�10000000010s��88�1�28�1�1�28�1�12�10000000011s��89�0�10�2�0�0�12�13�001111111100s��90�0�4�4�0�1�7�13�001111111101s��91�0�5�4�0�2�5�13�010111111100s��92�0�6�4�0�3�4�13�010111111101s��93�0�3�5�0�6�3�13�011011111100s��94�0�4�5�0�7�3�13�011011111101s��95�0�1�10�0�11�2�13�011101111100s��96�0�0�18�0�27�1�13�011101111101s��97�0�0�19�0�28�1�13�011110111100s��98�0�0�22�0�29�1�13�011110111101s��99�1�1�3�1�1�3�13�011111011100s��100�1�3�2�1�3�2�13�011111011101s��101�1�4�2�1�4�2�13�011111101100s��102�1�29�1�1�29�1�13�011111101101s��103�1�30�1�1�30�1�13�011111110100s��104�1�31�1�1�31�1�13�011111110101s��105�1�32�1�1�32�1�13�011111111000s��106�1�33�1�1�33�1�13�011111111001s��107�1�34�1�1�34�1�13�100000000010s��108�1�35�1�1�35�1�13�100000000011s��109�0�14�1�0�0�13�14�0011111111100s��110�0�15�1�0�0�14�14�0011111111101s��111�0�11�2�0�0�15�14�0101111111100s��112�0�8�3�0�0�16�14�0101111111101s��113�0�9�3�0�1�8�14�0110111111100s��114�0�7�4�0�3�5�14�0110111111101s��115�0�3�6�0�4�4�14�0111011111100s��116�0�2�7�0�5�4�14�0111011111101s��117�0�2�8�0�8�3�14�0111101111100s��118�0�2�9�0�12�2�14�0111101111101s��119�0�1�11�0�30�1�14�0111110111100s��120�0�0�20�0�31�1�14�0111110111101s��121�0�0�21�0�32�1�14�0111111011100s��122�0�0�23�0�33�1�14�0111111011101s��123�1�0�4�1�0�4�14�0111111101100s��124�1�5�2�1�5�2�14�0111111101101s��125�1�6�2�1�6�2�14�0111111110100s��126�1�7�2�1�7�2�14�0111111110101s��127�1�8�2�1�8�2�14�0111111111000s��128�1�9�2�1�9�2�14�0111111111001s��129�1�36�1�1�36�1�14�1000000000010s��130�1�37�1�1�37�1�14�1000000000011s��131�0�16�1�0�0�17�15�00111111111100s��132�0�17�1�0�0�18�15�00111111111101s��133�0�18�1�0�1�9�15�01011111111100s��134�0�8�4�0�1�10�15�01011111111101s��135�0�5�5�0�2�6�15�01101111111100s��136�0�4�6�0�2�7�15�01101111111101s��137�0�5�6�0�3�6�15�01110111111100s��138�0�3�7�0�6�4�15�01110111111101s��139�0�3�8�0�9�3�15�01111011111100s��140�0�2�10�0�13�2�15�01111011111101s��141�0�2�11�0�14�2�15�01111101111100s��142�0�1�12�0�15�2�15�01111101111101s��143�0�1�13�0�16�2�15�01111110111100s��144�0�0�24�0�34�1�15�01111110111101s��145�0�0�25�0�35�1�15�01111111011100s��146�0�0�26�0�36�1�15�01111111011101s��147�1�0�5�1�0�5�15�01111111101100s��148�1�1�4�1�1�4�15�01111111101101s��149�1�10�2�1�10�2�15�01111111110100s��150�1�11�2�1�11�2�15�01111111110101s��151�1�12�2�1�12�2�15�01111111111000s��152�1�38�1�1�38�1�15�01111111111001s��153�1�39�1�1�39�1�15�10000000000010s��154�1�40�1�1�40�1�15�10000000000011s��155�0�0�27�0�0�19�16�001111111111100s��156�0�3�9�0�3�7�16�001111111111101s��157�0�6�5�0�4�5�16�010111111111100s��158�0�7�5�0�7�4�16�010111111111101s��159�0�9�4�0�17�2�16�011011111111100s��160�0�12�2�0�37�1�16�011011111111101s��161�0�19�1�0�38�1�16�011101111111100s��162�1�1�5�1�1�5�16�011101111111101s��163�1�2�3�1�2�3�16�011110111111100s��164�1�13�2�1�13�2�16�011110111111101s��165�1�41�1�1�41�1�16�011111011111100s��166�1�42�1�1�42�1�16�011111011111101s��167�1�43�1�1�43�1�16�011111101111100s��168�1�44�1�1�44�1�16�011111101111101s��169�ESCAPE�5�0000s��Table � SEQ Table * ARABIC �69� RVLC table for TCOF

RUN�CODE��0�000000��1�000001��2�000010��:�:��63�111111��Table � SEQ Table * ARABIC �70� FLC table for RUN

LEVEL�CODE��0�FORBIDDEN��1�0000001��2�0000010��:�:��127�1111111��Table � SEQ Table * ARABIC �71� FLC table for LEVEL

8	Appendix C: Definition of Post- filter

The post-filter is composed of deblocking filter and deringing filter, described below. It was temporarily decided that the deblocking filter is applied first and then the deringing filter.

8.1	Deblocking filter

The filter operations are performed along the 8x8 block edges at the decoder as a post-processing operation. Luminance as well as chrominace data is filtered. The figure shows the block boundaries.

�EMBED Word.Picture.8���

In the filter operations, two modes are used separately depending on the pixel conditions around a boundary. The following procedure is used to find a very smooth region with blocking artifacts due to small dc offset and to assign it a DC offset mode. In the other case, default mode operations are applied.

eq_cnt = ((v0(v1) + ((v1(v2) + ((v2(v3) + ((v3(v4) + ((v4(v5) + ((v5(v6) + ((v6(v7)

	 + ((v7(v8) + ((v8(v9),

where		((() = 1 if |(| (THR1 and 0 otherwise.

If (eq_cnt (THR2)

		DC offset mode is applied,

else

		Default mode is applied.

For the simulation, threshold values of THR1 = 2 and THR2 = 6 are used.

In the default mode, a signal adaptive smoothing scheme is applied by differentiating image details at the block discontinuities using the frequency information of neighbor pixel arrays, S0, S1, and S2,. The filtering scheme in default mode is executed by replacing the boundary pixel values v4 and v5 with v4(and v5(as follows:

v4(= v4(d,

v5(= v5+d,

and 		d = CLIP(5((a3,0((a3,0)//8, 0, (v4(v5)/2) (((|a3,0| < QP)

where		a3,0(= SIGN(a3,0) (MIN(|a3,0|, |a3,1|, |a3,2|).

Frequency components a3,0, a3,1, and a3,2 can be evaluated from the simple inner product of the approximated DCT kernel [2 -5 5 -2] with the pixel vectors, i.e.,

		a3,0 = ([2 -5 5 -2] ([v3 v4 v5 v6]T) // 8,

		a3,1 = ([2 -5 5 -2] ([v1 v2 v3 v4]T) // 8,

		a3,2 = ([2 -5 5 -2] ([v5 v6 v7 v8]T) // 8.

Here CLIP(x,p,q) clips x to a value between p and q; and QP denotes the quantization parameter of the macroblock where pixel v5 belongs. d(condition)=1 if the "condition" is true and 0 otherwise..

In very smooth region, the filtering in the default mode is not good enough to reduce the blocking artifact due to dc offset. So we treat this case in the DC offset mode and apply a stronger smoothing filter as follows :

	max = MAX (v1, v2, v3, v4, v5, v6, v7, v8),

	min = MIN (v1, v2, v3, v4, v5, v6, v7, v8),

	if (|max(min| < 2(QP) {

		�EMBED Equation.3 * MERGEFORMAT���

	}

	else

		No change will be done.

The above filter operations are applied for all the block boundaries first along the horizontal edges followed by the vertical edges. If a pixel value is changed by the previous filtering operation, the updated pixel value is used for the next filtering.

8.2	Deringing filter

This filter comprises three subprocesses; threshold determination, index acquisition and adaptive smoothing. This filter is applied to the pixels on 8x8 block basis. More specifically 8x8 pixels are processed by referencing 10x10 pixels at each block. The following notation is used to specify the six blocks in a macroblock. For instance, block[5] corresponds to the Cb block whereas block[k] is used as a general representation in the following sections.

8.2.1	Threshold determination

Firstly, calculate maximum and minimum gray value within a block in the decoded image. Secondary, the threshold denoted by thr[k] and the dynamic range of gray scale denoted by range[k] are set:

	�EMBED Equation.3���

	�EMBED Equation.3���

An additional process is done only for the luminance blocks. Let max_range be the maximum value of the dynamic range among four luminance blocks.

	�EMBED Equation.3���

Then apply the rearrangement as follows.

	for(k=1 ; k<5 ; k++){

		if(range[k] < 32 && max_range > =64)

			thr[k] = thr[kmax];

		if(max_range<16)

			thr[k] = 0;

	}

8.2.2	Index acquisition

Once the threshold value is determined, the remaining operations are purely 8x8 block basis. Let rec(h,v) and bin(h,v) be the gray value at coordinates (h,v) where h,v=0,1,2,...,7, and the corresponding binary index, respectively. Then bin(h,v) can be obtained by:

	�EMBED Equation.3���

Note that (h,v) is use to address a pixel in a block, while (i,j) is for accessing a pixel in a 3x3 window.

8.2.3	Adaptive smoothing

8.2.3.1	Adaptive filtering

The figure below is the binary indices in 8x8 block level, whereas practically 10x10 binary indices are calculated to process one 8x8 block.

��������������0�0�0�0�0�0�0�0�0�0����0�0�0�0�0�0�0�0�0�0����1�0�0�0�0�0�0�0�1�1����1�1�0�0�0�0�0�1�1�1����1�1�1�0�0�0�1�1�1�1����1�1�1�1�1�1�1�1�1�1����1�1�1�1�1�1�1�1�1�1����1�1�1�1�1�1�1�1�1�1����1�1�1�1�1�1�1�1�1�0����1�1�1�1�1�1�1�1�0�0����������������

Figure � SEQ Figure * ARABIC �79�: Example of adaptive filtering and binary index

The filter is applied only if the binary indices in a 3x3 window are all the same, i.e., all “0” indices or all “1” indices. Note 10x10 binary indices are obtained with a single threshold which corresponds to the 8x8 block shown in the above figure, where the shaded region represents the pixels to be filtered.

.

The filter coefficients used for both intra and non-intra blocks denoted by coef(i,j), where i,j=-1,0,1, are:

1�2�1��2�4�2��1�2�1��Figure � SEQ Figure * ARABIC �80�: Filter mask for adaptive smoothing

Here the coefficient at the center pixel, i.e., coef(0,0), corresponds to the pixel to be filtered. The filter output flt’(i,j) is obtained by:

	

	�EMBED Equation.3���

8.2.3.2	Clipping

The maximum gray level change between the reconstructed pixel and the filtered one is limited according to the quantization parameter, i.e., QP. Let flt(h,v) and flt’(h,v) be the filtered pixel value and the pixel value before limitation, respectively.

	if(flt’(h,v) - rec(h,v) > max_diff)

		flt(h,v) = rec(h,v) + max_diff

	else if(flt’(h,v) - rec(h,v) < -max_diff)

		flt(h,v) = rec(h,v) - max_diff

	else

		flt(h,v) = flt’(h,v)

	where max_diff=QP/2 for both intra and inetr macroblocks.

9	Appendix D: Off-Line Sprite Generation

For a natural video object, sprite refers to a representative view collected from a video sequence, from which the video can be reconstructed. The effectiveness of this approach depends on whether the motion of the object (image motion) can be effectively represented by a global motion model, e.g., translation, zooming, affine and perspective. In the following, we give a summary of a tool to generate sprites from video sequences, which can be used as stand-alone module to generate off-line static sprite as well as on-line, dynamic sprite. Briefly, the process consists of processing each frame of the video sequence (for off-line generation, the frame rate can be different from the frame rate for coding) and registration of the frames based on the global motion information.

9.1	Perspective Motion Estimation

The Global Motion Estimation (GME) technique is applied upon a 3-level pyramid. A 3-tap filter with coefficients [1/4 1/2 1/4] is used for this purpose.

The technique is composed of two steps. First, an initial stage computes a coarse estimate of the translation component of the displacement using a 3-step matching technique applied on the top level of the pyramid. Then, a gradient descent approach is applied from the top to the bottom level of the pyramid, several iterations being performed at each level.

9.1.1	Initial conditions – 3-step matching

The core of the GME technique is based on a gradient descent. Since the method may not converge in the presence of large displacements, to assure convergence the starting point of the gradient descent should be within the “basin” of the global minimum. To achieve this, an initial stage is preformed that computes a coarse estimate of the translation component of the displacement.

The initial conditions are obtained by a matching technique applied at the top level of the pyramid using a modified 3-step search. While in the first step a search within a range of +- 4 pixels is performed, the second step follows with a +- 2 pixel refinement around the best match of the first step, and the third step performs a +- 1 pixel adjustment around the best match of the second step. Each step is performed at full-pixel precision. This is illustrated in � REF _Ref409861570 \h � * MERGEFORMAT �Figure 81�, where the black, white and gray bullets represent the locations used in the first, second and third step, respectively.

�Figure � SEQ Figure * ARABIC �81�: Modified 3-step search for initial conditions matching

9.1.2	Gradient descent

The translation vector estimated in the first stage is used as the initial condition for the gradient descent. The gradient descent is first applied at the top level of the pyramid and iterated until a suitable convergence criterion is met. The resulting motion parameters are projected onto the intermediate level of the pyramid and the gradient descent is iterated again. Finally, the motion parameters are projected onto the base level of the pyramid and the gradient descent is iterated to produce the final motion parameters.

Let’s assume that two images under consideration are I (x, y) and I’ (x’, y’). Using homogeneous coordinates, a 2D planar perspective transformation can be described as

�

It can be also rewritten as

��

The goal is to minimize the sum of the squared intensity errors over all corresponding pairs of pixels i inside both images I and I’. Two masks can be used to indicate the inside areas (wi is set to zero if both (x, y) and (x’, y’) are inside the masks, otherwise set to one).

�

Since (x’, y’) generally do not fall on integer pixel coordinates, a bilinear interpolation of the intensities in I’ is used to perform the re-sampling (see Sec XXX.).

The Levenberg-Marquardt iterative nonlinear minimization algorithm is employed to perform the minimization. This algorithm requires computation of the partial derivatives of ei with respect to the unknown motion parameters {m0, …, m7}. For example,

��

where Di is the denominator. From these partial derivatives, the Levenberg-Marquardt algorithm computes an approximate Hessian matrix A and the weighted gradient vector b with components

��

and then updates the motion parameter estimate m by an amount (m = A-1b.

To remove the influence of outliers, that may bias the estimation process, a robust estimator is introduced. During the first iteration (i.e., at the top level of the pyramid), a histogram of the absolute value of the error term ei is computed. Then, a threshold for the error term is computed to exclude the top 10% of the errors in the histogram. In subsequent iterations, only the pixels for which the error term is below the computed threshold are taken into account in the estimation process; other pixels are ignored. A new histogram is computed during the first iteration at the intermediate and base level, and the threshold is updated accordingly. Since the error function used is a quadratic, this algorithm implements the so-called truncated quadratic which reduces estimate’s bias for large errors.

The complete perspective motion estimation algorithm consists of the following steps:

The threshold T is initialized to an arbitrary large number.

For each pixel i at location (xi, yi), compute its corresponding position (x’i, y’i); compute the error ei; if this is the first iteration at this level build an histogram of the absolute value of the error term ei ; if (ei <= T) compute the partial derivative of ei with respect to the mk; add the pixel’s contribution to A and b.

Solve the system of equations A(m = b and update the motion parameters m(t+1)= m(t) + (m.

If this is the first iteration at this level, compute the threshold T such as to exclude the top 10% of the histogram.

Repeat the process under steps 2 and 3 for a maximum of 32 steps, but the process may stop earlier if the absolute value of the update term is smaller than a preset threshold of 0.001 for the translation component and 0.00001 for the other parameters.

The perspective motion parameters are propagated to the next level according to the following rule: m6 = m6/2 ; m7 = m7/2 ; m2 = m2 * 2 ; m5 = m5 * 2. The process goes back to step 2 and continues until completing the iterations at the base level of the pyramid.

For the convenience of other developers, we attach an example of the Levenberg-Marquardt algorithm C++ code in the end.

9.2	Sprite Generation Using the Perspective Motion Estimation

Let’s assume the image sequence includes n frames, Ii, i = 0, 1, …, n-1. The sprite Sk is generated using Ii, i = 0, …, k-1. The complete sprite generation algorithm includes the following steps:

S0 = I0 ; M0 = 0

For (i = 1; i < n; i++) {

Find perspective motion parameters Mi between Ii and Si-1;

Warp Ii towards Si-1 using Mi to get the warped image Wi (see 1.1.3.1.4.);

Blend Wi with Si-1 to obtain Si using Si = (i Si-1 + Wi) / (i + 1);

}

Note that the way we incrementally blend the new image to the previous sprite puts an equal weight to all the images contributing to the sprite. This could suppress the noise in individual images. We also attach the corresponding C++ code in the end.The final sprite is Sn.

The whole diagram of the sprite generation algorithm is shown below.

Some experimental results can be found from MPEG ftp site 'drop.chips.ibm.com:Chicago/Contrib/m1350.zip'.

�EMBED Unknown���

9.3	C++ Sample Code

Perspective motion estimation

Void CSprite::motionPerspective(CFloatImage *pI, CFloatImage *pIA,

const CRect &rctI, 				// Goal: minimize the error in pI. pI1 should be sprite.

CFloatImage *pI1, CFloatImage *pI1A, const CRect &rctI1,

CMatrix &M, Double &dE2) {

	UInt i, j;

	Double dm[3][3], db[8], dA[8][8];

	for (j = 0; j < 8; j++)

		for (i = 0; i < 8; i++)

			dA[j][i] = 0.;

	for (i = 0; i < 8; i++)

		db[i]=0.;

	dm[0][0] = M.GetCoeff(0,0);

	dm[0][1] = M.GetCoeff(0,1);

	dm[0][2] = M.GetCoeff(0,2);

	dm[1][0] = M.GetCoeff(1,0);

	dm[1][1] = M.GetCoeff(1,1);

	dm[1][2] = M.GetCoeff(1,2);

	dm[2][0] = M.GetCoeff(2,0);

	dm[2][1] = M.GetCoeff(2,1);

	dm[2][2] = M.GetCoeff(2,2);

	dE2 = 0.;

	Int stop = 0;

	for (CoordI y = rctI.top; y < rctI.bottom; y++) {

		Double dy = (Double) y;

		for (CoordI x = rctI.left; x < rctI.right; x++)

			if (pIA -> pixel (x, y) == 255.0) {

				CoordI x1, y1;

				Double dx1, dy1;

				Double dx = (Double) x;

				Double dt = dm[0][0] * dx + dm[0][1] * dy + dm[0][2];

				Double du = dm[1][0] * dx + dm[1][1] * dy + dm[1][2];

				Double dv = dm[2][0] * dx + dm[2][1] * dy + 1.;

				Double dtOv = dt / dv;

				Double duOv = du / dv;

				dx1 = dtOv;

				dy1 = duOv;

				x1 = (CoordI) (dx1);

				y1 = (CoordI) (dy1);

				if ((x1 >= rctI1.left) && ((x1+1) < rctI1.right)

					&& (y1 >= rctI1.top) && ((y1+1) < rctI1.bottom)

					&&(pI1A -> pixel (x1, y1) == 255.0)

					&&(pI1A -> pixel (x1, y1+1) == 255.0)

					&&(pI1A -> pixel (x1+1, y1) == 255.0)

					&&(pI1A -> pixel ((CoordI)(x1+1), (CoordI)(y1+1)) == 255.0)){

					stop++;

					Double d1Ov = 1 / dv;

					Double dxOv = dx / dv;

					Double dyOv = dy / dv;

					Double dk, d1mk, dl, d1ml;

					dk = dx1 - x1;

					d1mk = 1. - dk;

					dl = dy1 - y1;

					d1ml = 1. - dl;

					Double I1x1y1[2][2];

					I1x1y1[0][0] = (Double) pI1-> pixel x1, y1);

					I1x1y1[1][0] = (Double) pI1-> pixel(x1 + 1, y1);

					I1x1y1[0][1] = (Double) pI1-> pixel(x1, y1 + 1);

					I1x1y1[1][1] = (Double) pI1-> pixel((CoordI)(x1 + 1),(CoordI)(y1+1));

					Double dI1=d1mk*d1ml*I1x1y1[0][0] + dk*d1ml*I1x1y1[1][0]

								+ d1mk*dl*I1x1y1[0][1] + dk*dl*I1x1y1[1][1];

					Double de = dI1 - pI -> pixel (x, y);

					Double dI1dx = (I1x1y1[1][0]-I1x1y1[0][0])*d1ml

										+(I1x1y1[1][1]-I1x1y1[0][1])*dl;

					Double dI1dy = (I1x1y1[0][1]-I1x1y1[0][0])*d1mk

										+(I1x1y1[1][1]-I1x1y1[1][0])*dk;

					Double ddedm[8];

					ddedm[0] = dxOv*dI1dx;

					ddedm[1] = dyOv*dI1dx;

					ddedm[2] = d1Ov*dI1dx;

					ddedm[3] = dxOv*dI1dy;

					ddedm[4] = dyOv*dI1dy;

					ddedm[5] = d1Ov*dI1dy;

					ddedm[6] = -dtOv*dxOv*dI1dx-duOv*dxOv*dI1dy;

					ddedm[7] = -dtOv*dyOv*dI1dx-duOv*dyOv*dI1dy;

					db[0] += -de*ddedm[0];

					db[1] += -de*ddedm[1];

					db[2] += -de*ddedm[2];

					db[3] += -de*ddedm[3];

					db[4] += -de*ddedm[4];

					db[5] += -de*ddedm[5];

					db[6] += -de*ddedm[6];

					db[7] += -de*ddedm[7];

					for(j = 0; j < 8; j++)

						for (i = 0; i <= j; i++)

							dA[j][i] += ddedm[j] * ddedm[i];

					dE2 += de*de;

				}

			}

	}

	if (stop > -1) {

		for (j = 0; j < 8; j++)

			for (i = j + 1; i < 8; i++)

				dA[j][i] = dA[i][j];

		Double dL = 0.0;

		CMatrix A(8, 8, &dA[0][0]);

		CMatrix b(8, 1, &db[0]);

		CMatrix Dm(8, 1);

		CMatrix DM(3, 3);

		Dm = (A + dL * I(8)).Inv() * b;

		DM.SetCoeff(0,0,Dm.GetCoeff(0,0));

		DM.SetCoeff(0,1,Dm.GetCoeff(1,0));

		DM.SetCoeff(0,2,Dm.GetCoeff(2,0));

		DM.SetCoeff(1,0,Dm.GetCoeff(3,0));

		DM.SetCoeff(1,1,Dm.GetCoeff(4,0));

		DM.SetCoeff(1,2,Dm.GetCoeff(5,0));

		DM.SetCoeff(2,0,Dm.GetCoeff(6,0));

		DM.SetCoeff(2,1,Dm.GetCoeff(7,0));

		M += DM;

	}

	else

		dE2 = 1.0e+30;

}

Blending

Void CSprite::blending(CFloatImage* pSpriteY, CFloatImage* pSpriteU, CFloatImage* pSpriteV, CFloatImage* pSpriteA, CFloatImage* pSpriteWeight, CFloatImage* WarpedY, CFloatImage* WarpedU, CFloatImage* WarpedV, CFloatImage* WarpedA) {

	Long disp = pSpriteY -> where ().width() - WarpedY -> where ().width();

	CoordI leftWarped = WarpedY -> where ().left;

	CoordI rightWarped = WarpedY -> where ().right;

	CoordI topWarped = WarpedY -> where ().top;

	CoordI bottomWarped = WarpedY -> where ().bottom;

	PixelF* ppWarpedY = (PixelF*) WarpedY -> pixels ();

	PixelF* ppWarpedU = (PixelF*) WarpedU -> pixels ();

	PixelF* ppWarpedV = (PixelF*) WarpedV -> pixels ();

	PixelF* ppWarpedA = (PixelF*) WarpedA -> pixels ();

	PixelF* ppSpriteY = (PixelF*) pSpriteY -> pixels (leftWarped, topWarped);

	PixelF* ppSpriteU = (PixelF*) pSpriteU -> pixels (leftWarped, topWarped);

	PixelF* ppSpriteV = (PixelF*) pSpriteV -> pixels (leftWarped, topWarped);

	PixelF* ppSpriteA = (PixelF*) pSpriteA -> pixels (leftWarped, topWarped);

	PixelF* ppSpriteW = (PixelF*) pSpriteWeight -> pixels (leftWarped, topWarped);

	for (CoordI y = topWarped; y < bottomWarped; y++) {

		for (CoordI x = leftWarped; x < rightWarped; x++) {

			Float sumY = (*ppSpriteY) * (*ppSpriteW) + (*ppWarpedY) * (*ppWarpedA);

			Float sumU = (*ppSpriteU) * (*ppSpriteW) + (*ppWarpedU) * (*ppWarpedA);

				Float sumV = (*ppSpriteV) * (*ppSpriteW) + (*ppWarpedV) * (*ppWarpedA);

			if (*ppWarpedA == 255.0) {

				*ppSpriteW = *ppSpriteW + *ppWarpedA;	

				*ppSpriteY = sumY / (*ppSpriteW);

				*ppSpriteU = sumU / (*ppSpriteW);

				*ppSpriteV = sumV / (*ppSpriteW);

				*ppSpriteA = 255.0f;

			}

			ppSpriteY++; ppSpriteU++; ppSpriteV++; ppSpriteA++;	ppSpriteW++;

			ppWarpedY++; ppWarpedU++; ppWarpedV++; ppWarpedA++;

		}

		ppSpriteY += disp; ppSpriteU += disp; ppSpriteV += disp; ppSpriteA += disp;

		ppSpriteW += disp;

	}

}

10	Appendix E: C-source code for feathering filter

#define OPAQUE_LEVEL 255 /*255 or VOP_constant_alpha_value*/

#define TRUE 1

#define FALSE 0

#define BIN_TH 1				/*threshold for 0->0, [1,255]-> OPAQUE_LEVEL*/

#define MAX_ITERATION 7		/* video_object_layer_feather_dist*/

#define TAPERING_LIMIT 90	/* 0-100(%) */

/* image structure*/

typedef unsigned char PIXEL;

struct image{

	PIXEL * mat;

	int	width;

	int	height;

};

typedef struct image IMAGE;

/* encoder*/

void feathering_analysys(IMAGE *in, IMAGE *out);

/*encoder*/

void void feathering_iteration(IMAGE *in, int n_iteration, PIXEL table[MAX_ITERATION][15], IMAGE *out);

/* decision filter coefficient */

void make_table(IMAGE *grey, IMAGE *bin, PIXEL *table);

/* decision of cascade filtering*/

int is_filter_cascaded(PIXEL * table);

/* feathering filter */

void feathering(IMAGE *in_out, PIXEL *table);

void gray2binary(IMAGE *grey, IMAGE *bin, PIXEL threshold);

void print_table(PIXEL *table);

void get_work_image(IMAGE *in, IMAGE *work);

/***********************ENCODER********************/

void feathering_analysis(IMAGE *in, IMAGE *out){

	int itertaion = 0;

	int end_itertaion = FALSE;

	PIXEL table[MAX_ITERTAION][15];

	gray2binary(in, out, BIN_TH);

	while(itertaion<MAX_ITERTAION && end_itertaion==FALSE){

		make_table(in, out, table[itertaion]);

		/*OUTPUT of ENCODER, i.e., filter description*/

		print_table(table[itertaion]);

		end_itertaion = (is_filter_cascaded(table[itertaion]) == TRUE)? FALSE : TRUE;

		/* local decode */

		if(end_itertaion==FALSE) feathering(out, table[itertaion]);

			itertaion++;

	}

}

/***********************DECODER********************/

void feathering_iteration(IMAGE *in, int n_iteration,

									PIXEL table[MAX_ITERATION][15], IMAGE *out){

	int itertaion = 0;

	gray2binary(in, out, BIN_TH);

	while(iteration =0; itertaion<n_iteration; iteration++)

		feathering(out, table[itertaion]);

}

void feathering(IMAGE *in_out, PIXEL *table){

	int i, j;

	int pix, label;

	int w = in_out->width;

	int h = in_out->height;

	int w2 = w + 2;

	int h2 = h + 2;

	IMAGE *work;

	PIXEL *work_mat;

	PIXEL *in_out_mat = in_out->mat;

	work = new_image(w2, h2);

	get_work_image(in_out, work);

	work_mat = work->mat;

	work_mat += w2;

	for(i=0; i<h; i++){

		work_mat++;

			for(j=0; j<w; j++){

				if(*work_mat == OPAQUE_LEVEL){

					pix = (*(work_mat-w2)==OPAQUE_LEVEL)? 1 : 0 ;

					label = pix << 1;

					pix = (*(work_mat-1)==OPAQUE_LEVEL)? 1 : 0 ;

					label = (pix | label) << 1;

					pix = (*(work_mat+1)==OPAQUE_LEVEL)? 1 : 0 ;

					label = (pix | label) << 1;

					pix = (*(work_mat+w2)==OPAQUE_LEVEL)? 1 : 0 ;

					label = pix | label;

					if(label<15){ /* 15 -> 1111 */

						*in_out_mat = table[label];

				}

			}

			work_mat++; in_out_mat++;

		}

		work_mat++;

	}

	delete_image(work);

}

void gray2binary(IMAGE *grey, IMAGE *bin, PIXEL threshold){

	int i;

	int size = grey->width * grey->height;

	PIXEL *grey_mat = grey->mat;

	PIXEL *bin_mat = bin->mat;

	for(i=0; i<size; i++){

		*bin_mat = (*grey_mat<threshold)? 0 : OPAQUE_LEVEL ;

		grey_mat++; bin_mat++;

	}

}

void make_table(IMAGE *grey, IMAGE *bin, PIXEL *table){

	int pix, label;

	int sum[15] = {};

	int num[15] = {};

	int i, j;

	int w = grey->width;

	int h = grey->height;

	int w2 = w + 2;

	int h2 = h + 2;

	IMAGE *work_bin;

	PIXEL *work_bin_mat;

	PIXEL *grey_mat = grey->mat;

	work_bin = new_image(w2, h2);

	get_work_image(bin, work_bin);

	work_bin_mat = work_bin->mat;

	work_bin_mat += w2;

	for(i=0; i<h; i++){

	work_bin_mat++;

	for(j=0; j<w; j++){

		if(*work_bin_mat == OPAQUE_LEVEL){

			pix = (*(work_bin_mat-w2)==OPAQUE_LEVEL)? 1 : 0 ;

			label = pix << 1;

			pix = (*(work_bin_mat-1)==OPAQUE_LEVEL)? 1 : 0 ;

			label = (pix | label) << 1;

			pix = (*(work_bin_mat+1)==OPAQUE_LEVEL)? 1 : 0 ;

			label = (pix | label) << 1;

			pix = (*(work_bin_mat+w2)==OPAQUE_LEVEL)? 1 : 0 ;

			label = pix | label;

			if(label<15){ /* 15 -> 1111 */

				sum[label] += *grey_mat;

				num[label] ++;

			}

		}

		 work_bin_mat++; grey_mat++;

	}

	work_bin_mat++;

	}

	for(i=0; i<15; i++) table[i] = (num[i]>0)? (PIXEL)(sum[i]/num[i]) : OPAQUE_ELVEL;

	delete_image(work_bin);

}

void print_table(PIXEL * table){

	int i;

	for(i=0; i<15; i++)

		fprintf(stdout,"table[%2X] = %d\n", i, table[i]);

	fprintf(stdout,"\n");

}

int is_filter_cascaded(PIXEL *table){

	int i;

	PIXEL valid_value;

	valid_value = OPAQUE_LEVEL * TAPERING_LIMIT / 100;

	for(i=0; i<15; i++)

		if(table[i]<valid_value)

			return(TRUE);

	return(FALSE);

}

void get_work_image(IMAGE *in, IMAGE *work){

	int i, j;

	int w = in->width;

	int h = in->height;

	int w2 = work->width;

	int h2 = work->height;

	PIXEL *in_mat, *work_mat;

	in_mat = in->mat; work_mat = work->mat;

	for(i=0; i<h2; i++){

		for(j=0; j<w2; j++){

			if(i>0 && i<h+1 && j>0 && j<w+1){

				*work_mat = *in_mat;

				work_mat++; in_mat++;

			}

			else{

				*work_mat = 0;

				work_mat++;

			}

		}

	}

	work_mat = work->mat;

	for(i=0; i<h2; i++){

		for(j=0; j<w2; j++){

			 if(i<1) *work_mat = *(work_mat+w2);

			else if(i>h) *work_mat = *(work_mat-w2);

			else if(j<1) *work_mat = *(work_mat+1);

			else if(j>w) *work_mat = *(work_mat-1);

			work_mat++;

		}

	}

}

11	Appendix F: Probability tables for shape coding(CAE)

These tables contain the probabilities for a binary alpha pixel being equal to 0 for intra and inter shape coding using CAE. All probabilities are normalised to the range [1,65535].

As an example, given an INTRA context number C, the probability that the pixel is zero is given by intra_prob[C].

USInt intra_prob[1024] = {

65267,16468,65003,17912,64573,8556,64252,5653,

40174,3932,29789,277,45152,1140,32768,2043,

4499,80,6554,1144,21065,465,32768,799,

5482,183,7282,264,5336,99,6554,563,

54784,30201,58254,9879,54613,3069,32768,58495,

32768,32768,32768,2849,58982,54613,32768,12892,

31006,1332,49152,3287,60075,350,32768,712,

39322,760,32768,354,52659,432,61854,150,

64999,28362,65323,42521,63572,32768,63677,18319,

4910,32768,64238,434,53248,32768,61865,13590,

16384,32768,13107,333,32768,32768,32768,32768,

32768,32768,1074,780,25058,5461,6697,233,

62949,30247,63702,24638,59578,32768,32768,42257,

32768,32768,49152,546,62557,32768,54613,19258,

62405,32569,64600,865,60495,10923,32768,898,

34193,24576,64111,341,47492,5231,55474,591,

65114,60075,64080,5334,65448,61882,64543,13209,

54906,16384,35289,4933,48645,9614,55351,7318,

49807,54613,32768,32768,50972,32768,32768,32768,

15159,1928,2048,171,3093,8,6096,74,

32768,60855,32768,32768,32768,32768,32768,32768,

32768,32768,32768,32768,32768,55454,32768,57672,

32768,16384,32768,21845,32768,32768,32768,32768,

32768,32768,32768,5041,28440,91,32768,45,

65124,10923,64874,5041,65429,57344,63435,48060,

61440,32768,63488,24887,59688,3277,63918,14021,

32768,32768,32768,32768,32768,32768,32768,32768,

690,32768,32768,1456,32768,32768,8192,728,

32768,32768,58982,17944,65237,54613,32768,2242,

32768,32768,32768,42130,49152,57344,58254,16740,

32768,10923,54613,182,32768,32768,32768,7282,

49152,32768,32768,5041,63295,1394,55188,77,

63672,6554,54613,49152,64558,32768,32768,5461,

64142,32768,32768,32768,62415,32768,32768,16384,

1481,438,19661,840,33654,3121,64425,6554,

4178,2048,32768,2260,5226,1680,32768,565,

60075,32768,32768,32768,32768,32768,32768,32768,

32768,32768,32768,32768,32768,32768,32768,32768,

16384,261,32768,412,16384,636,32768,4369,

23406,4328,32768,524,15604,560,32768,676,

49152,32768,49152,32768,32768,32768,64572,32768,

32768,32768,54613,32768,32768,32768,32768,32768,

4681,32768,5617,851,32768,32768,59578,32768,

32768,32768,3121,3121,49152,32768,6554,10923,

32768,32768,54613,14043,32768,32768,32768,3449,

32768,32768,32768,32768,32768,32768,32768,32768,

57344,32768,57344,3449,32768,32768,32768,3855,

58982,10923,32768,239,62259,32768,49152,85,

58778,23831,62888,20922,64311,8192,60075,575,

59714,32768,57344,40960,62107,4096,61943,3921,

39862,15338,32768,1524,45123,5958,32768,58982,

6669,930,1170,1043,7385,44,8813,5011,

59578,29789,54613,32768,32768,32768,32768,32768,

32768,32768,32768,32768,58254,56174,32768,32768,

64080,25891,49152,22528,32768,2731,32768,10923,

10923,3283,32768,1748,17827,77,32768,108,

62805,32768,62013,42612,32768,32768,61681,16384,

58982,60075,62313,58982,65279,58982,62694,62174,

32768,32768,10923,950,32768,32768,32768,32768,

5958,32768,38551,1092,11012,39322,13705,2072,

54613,32768,32768,11398,32768,32768,32768,145,

32768,32768,32768,29789,60855,32768,61681,54792,

32768,32768,32768,17348,32768,32768,32768,8192,

57344,16384,32768,3582,52581,580,24030,303,

62673,37266,65374,6197,62017,32768,49152,299,

54613,32768,32768,32768,35234,119,32768,3855,

31949,32768,32768,49152,16384,32768,32768,32768,

24576,32768,49152,32768,17476,32768,32768,57445,

51200,50864,54613,27949,60075,20480,32768,57344,

32768,32768,32768,32768,32768,45875,32768,32768,

11498,3244,24576,482,16384,1150,32768,16384,

7992,215,32768,1150,23593,927,32768,993,

65353,32768,65465,46741,41870,32768,64596,59578,

62087,32768,12619,23406,11833,32768,47720,17476,

32768,32768,2621,6554,32768,32768,32768,32768,

32768,32768,5041,32768,16384,32768,4096,2731,

63212,43526,65442,47124,65410,35747,60304,55858,

60855,58982,60075,19859,35747,63015,64470,25432,

58689,1118,64717,1339,24576,32768,32768,1257,

53297,1928,32768,33,52067,3511,62861,453,

64613,32768,32768,32768,64558,32768,32768,2731,

49152,32768,32768,32768,61534,32768,32768,35747,

32768,32768,32768,32768,13107,32768,32768,32768,

32768,32768,32768,32768,20480,32768,32768,32768,

32768,32768,32768,54613,40960,5041,32768,32768,

32768,32768,32768,3277,64263,57592,32768,3121,

32768,32768,32768,32768,32768,10923,32768,32768,

32768,8192,32768,32768,5461,6899,32768,1725,

63351,3855,63608,29127,62415,7282,64626,60855,

32768,32768,60075,5958,44961,32768,61866,53718,

32768,32768,32768,32768,32768,32768,6554,32768,

32768,32768,32768,32768,2521,978,32768,1489,

58254,32768,58982,61745,21845,32768,54613,58655,

60075,32768,49152,16274,50412,64344,61643,43987,

32768,32768,32768,1638,32768,32768,32768,24966,

54613,32768,32768,2427,46951,32768,17970,654,

65385,27307,60075,26472,64479,32768,32768,4681,

61895,32768,32768,16384,58254,32768,32768,6554,

37630,3277,54613,6554,4965,5958,4681,32768,

42765,16384,32768,21845,22827,16384,32768,6554,

65297,64769,60855,12743,63195,16384,32768,37942,

32768,32768,32768,32768,60075,32768,62087,54613,

41764,2161,21845,1836,17284,5424,10923,1680,

11019,555,32768,431,39819,907,32768,171,

65480,32768,64435,33803,2595,32768,57041,32768,

61167,32768,32768,32768,32768,32768,32768,1796,

60855,32768,17246,978,32768,32768,8192,32768,

32768,32768,14043,2849,32768,2979,6554,6554,

65507,62415,65384,61891,65273,58982,65461,55097,

32768,32768,32768,55606,32768,2979,3745,16913,

61885,13827,60893,12196,60855,53248,51493,11243,

56656,783,55563,143,63432,7106,52429,445,

65485,1031,65020,1380,65180,57344,65162,36536,

61154,6554,26569,2341,63593,3449,65102,533,

47827,2913,57344,3449,35688,1337,32768,22938,

25012,910,7944,1008,29319,607,64466,4202,

64549,57301,49152,20025,63351,61167,32768,45542,

58982,14564,32768,9362,61895,44840,32768,26385,

59664,17135,60855,13291,40050,12252,32768,7816,

25798,1850,60495,2662,18707,122,52538,231,

65332,32768,65210,21693,65113,6554,65141,39667,

62259,32768,22258,1337,63636,32768,64255,52429,

60362,32768,6780,819,16384,32768,16384,4681,

49152,32768,8985,2521,24410,683,21535,16585,

65416,46091,65292,58328,64626,32768,65016,39897,

62687,47332,62805,28948,64284,53620,52870,49567,

65032,31174,63022,28312,64299,46811,48009,31453,

61207,7077,50299,1514,60047,2634,46488,235

};

USInt inter_prob[512] = {

65532,62970,65148,54613,62470,8192,62577,8937,

65480,64335,65195,53248,65322,62518,62891,38312,

65075,53405,63980,58982,32768,32768,54613,32768,

65238,60009,60075,32768,59294,19661,61203,13107,

63000,9830,62566,58982,11565,32768,25215,3277,

53620,50972,63109,43691,54613,32768,39671,17129,

59788,6068,43336,27913,6554,32768,12178,1771,

56174,49152,60075,43691,58254,16384,49152,9930,

23130,7282,40960,32768,10923,32768,32768,32768,

27307,32768,32768,32768,32768,32768,32768,32768,

36285,12511,10923,32768,45875,16384,32768,32768,

16384,23831,4369,32768,8192,10923,32768,32768,

10175,2979,18978,10923,54613,32768,6242,6554,

1820,10923,32768,32768,32768,32768,32768,5461,

28459,593,11886,2030,3121,4681,1292,112,

42130,23831,49152,29127,32768,6554,5461,2048,

65331,64600,63811,63314,42130,19661,49152,32768,

65417,64609,62415,64617,64276,44256,61068,36713,

64887,57525,53620,61375,32768,8192,57344,6554,

63608,49809,49152,62623,32768,15851,58982,34162,

55454,51739,64406,64047,32768,32768,7282,32768,

49152,58756,62805,64990,32768,14895,16384,19418,

57929,24966,58689,31832,32768,16384,10923,6554,

54613,42882,57344,64238,58982,10082,20165,20339,

62687,15061,32768,10923,32768,10923,32768,16384,

59578,34427,32768,16384,32768,7825,32768,7282,

58052,23400,32768,5041,32768,2849,32768,32768,

47663,15073,57344,4096,32768,1176,32768,1320,

24858,410,24576,923,32768,16384,16384,5461,

16384,1365,32768,5461,32768,5699,8192,13107,

46884,2361,23559,424,19661,712,655,182,

58637,2094,49152,9362,8192,85,32768,1228,

65486,49152,65186,49152,61320,32768,57088,25206,

65352,63047,62623,49152,64641,62165,58986,18304,

64171,16384,60855,54613,42130,32768,61335,32768,

58254,58982,49152,32768,60985,35289,64520,31554,

51067,32768,64074,32768,40330,32768,34526,4096,

60855,32768,63109,58254,57672,16384,31009,2567,

23406,32768,44620,10923,32768,32768,32099,10923,

49152,49152,54613,60075,63422,54613,46388,39719,

58982,32768,54613,32768,14247,32768,22938,5041,

32768,49152,32768,32768,25321,6144,29127,10999,

41263,32768,46811,32768,267,4096,426,16384,

32768,19275,49152,32768,1008,1437,5767,11275,

5595,5461,37493,6554,4681,32768,6147,1560,

38229,10923,32768,40960,35747,2521,5999,312,

17052,2521,18808,3641,213,2427,574,32,

51493,42130,42130,53053,11155,312,2069,106,

64406,45197,58982,32768,32768,16384,40960,36864,

65336,64244,60075,61681,65269,50748,60340,20515,

58982,23406,57344,32768,6554,16384,19661,61564,

60855,47480,32768,54613,46811,21701,54909,37826,

32768,58982,60855,60855,32768,32768,39322,49152,

57344,45875,60855,55706,32768,24576,62313,25038,

54613,8192,49152,10923,32768,32768,32768,32768,

32768,19661,16384,51493,32768,14043,40050,44651,

59578,5174,32768,6554,32768,5461,23593,5461,

63608,51825,32768,23831,58887,24032,57170,3298,

39322,12971,16384,49152,1872,618,13107,2114,

58982,25705,32768,60075,28913,949,18312,1815,

48188,114,51493,1542,5461,3855,11360,1163,

58982,7215,54613,21487,49152,4590,48430,1421,

28944,1319,6868,324,1456,232,820,7,

61681,1864,60855,9922,4369,315,6589,14

};

12	Appendix G: Arithmetic encoding/decoding codes for shape coding

12.1	Structures and Typedefs

typedef void Void;

typedef int Int;

typedef unsigned short int USInt;

#define	CODE_BIT	32

#define 	HALF	 ((unsigned) 1 << (CODE_BITS-1))

#define 	QUARTER	(1 << (CODE_BITS-2))

struct arcodec {

	UInt L; /* lower bound */

	UInt R; /* code range */

	UInt V; /* current code value */

	UInt arpipe;

	Int bits_to_follow; /* follow bit count */

	Int first_bit;

	Int nzeros;

	Int nonzero;

	Int nzerosf;

	Int extrabits;

};

typedef struct arcodec ArCoder;

typedef struct arcodec ArDecoder;

#define MAXHEADING 8

#define MAXMIDDLE 16

#define MAXTRAILING 8

12.2	Encoder Source

/* START ENCODING A STREAM OF SYMBOLS */

Void StartArCoder(ArCoder *coder) {

	coder->L = 0;

	coder->R = HALF-1;

	coder->bits_to_follow = 0;

	coder->first_bit = 1;

	coder->nzeros = MAXHEADING;

	coder->nonzero = 0;

}

/* FINISH ENCODING THE STREAM */

Int StopArCoder(ArCoder *coder, Bitstream *bitstream) {

	Int a = (coder->L) >> (CODE_BITS-3);

	Int b = (coder->R + coder->L) >> (CODE_BITS-3);

	Int nbits, bits, i;

	if (b == 0)

		b = 8;

	if (b-a >= 4 || (b-a == 3 && a&1)) {

		nbits = 2;

		bits = (a>>1) + 1;

	}

	else {

		nbits = 3;

		bits = a + 1;

	}

	for (i = 1; i <= nbits; i++)

		BitPlusFollow(((bits >> (nbits-i)) & 1), coder, bitstream);

	if (coder->nzeros < MAXMIDDLE-MAXTRAILING || coder->nonzero == 0) {

		BitPlusFollow(1, coder, bitstream);

	}

	return;

}

Void BitByItself(Int bit, ArCoder *coder, Bitstream* bitstream) {

	BitstreamPutBit(bitstream,bit);	/* Output the bit */

	if (bit == 0) {

		coder->nzeros--;

		if (coder->nzeros == 0) {

			BitstreamPutBit(bitstream,1);

			coder->nonzero = 1;

			coder->nzeros = MAXMIDDLE;

		}

	}

	else {

		coder->nonzero = 1;

		coder->nzeros = MAXMIDDLE;

	}

}

/* OUTPUT BITS PLUS FOLLOWING OPPOSITE BITS */

Void BitPlusFollow(Int bit, ArCoder *coder, Bitstream *bitstream) {

	if (!coder->first_bit)

		BitByItself(bit, coder, bitstream);

	else

		coder->first_bit = 0;

	while ((coder->bits_to_follow) > 0) {

		BitByItself(!bit, coder, bitstream);

		coder->bits_to_follow -= 1;

	}

}

/* ENCODE A BINARY SYMBOL */

Void ArCodeSymbol(Int bit, USInt c0, ArCoder *coder, Bitstream *bitstream) {

	Int bits = 0;

	USInt c1 = (1<<16) - c0;

	Int LPS = (c0 > c1);

	USInt cLPS = (LPS) ? c1 : c0;

	unsigned long rLPS;

	rLPS = ((coder->R) >> 16) * cLPS;

	if (bit == LPS) {

		coder->L += coder->R - rLPS;

		coder->R = rLPS;

	}

	else

		coder->R -= rLPS;

	ENCODE_RENORMALISE(coder,bitstream);

}

Void ENCODE_RENORMALISE(ArCoder *coder, Bitstream *bitstream) {

	while (coder->R < QUARTER) {

	if (coder->L >= HALF) {

		BitPlusFollow(1,coder,bitstream);

		coder->L -= HALF;

	}

	else

		if (coder->L+coder->R <= HALF)

			BitPlusFollow(0,coder,bitstream);

		else {

			coder->bits_to_follow++;

			coder->L -= QUARTER;

		}

		coder->L += coder->L;

		coder->R += coder->R;

	}

}

12.3	Decoder Source

Void StartArDecoder(ArDecoder *decoder, Bitstream *bitstream) {

	Int i,j;

	decoder->V = 0;

	decoder->nzerosf = MAXHEADING;

	decoder->extrabits = 0;

	for (i = 1; i<CODE_BITS; i++) {

		j=BitstreamLookBit(bitstream,i+decoder->extrabits);

		decoder->V += decoder->V + j;

		if (j == 0) {

			decoder->nzerosf--;

			if (decoder->nzerosf == 0) {

				decoder->extrabits++;

				decoder->nzerosf = MAXMIDDLE;

			}

		}

		else

			decoder->nzerosf = MAXMIDDLE;

	}

	decoder->L = 0;

	decoder->R = HALF - 1;

	decoder->bits_to_follow = 0;

	decoder->arpipe = decoder->V;

	decoder->nzeros = MAXHEADING;

	decoder->nonzero = 0;

}

Void StopArDecoder(ArDecoder *decoder, Bitstream *bitstream) {

	Int a = decoder->L >> (CODE_BITS-3);

	Int b = (decoder->R + decoder->L) >> (CODE_BITS-3);

	Int nbits,i;

	if (b == 0)

		b = 8;

	if (b-a >= 4 || (b-a == 3 && a&1))

		nbits = 2;

	else

		nbits = 3;

	for (i = 1; i <= nbits-1; i++)

		AddNextInputBit(bitstream, decoder);

	if (decoder->nzeros < MAXMIDDLE-MAXTRAILING || decoder->nonzero == 0)

		BitstreamFlushBits(bitstream,1);

}

Void AddNextInputBit(Bitstream *bitstream, ArDecoder *decoder) {

	Int i;

	if (((decoder->arpipe >> (CODE_BITS-2))&1) == 0) {

		decoder->nzeros--;

		if (decoder->nzeros == 0) {

			BitstreamFlushBits(bitstream,1);

			decoder->extrabits--;

			decoder->nzeros = MAXMIDDLE;

			decoder->nonzero = 1;

		}

	}

	else {

		decoder->nzeros = MAXMIDDLE;

		decoder->nonzero = 1;

	}

	BitstreamFlushBits(bitstream,1);

	i = (Int)BitstreamLookBit(bitstream, CODE_BITS-1+decoder->extrabits);

	decoder->V += decoder->V + i;

	decoder->arpipe += decoder->arpipe + i;

	if (i == 0) {

		decoder->nzerosf--;

		if (decoder->nzerosf == 0) {

			decoder->nzerosf = MAXMIDDLE;

			decoder->extrabits++;

		}

	}

	else

		decoder->nzerosf = MAXMIDDLE;

}

Int ArDecodeSymbol(USInt c0, ArDecoder *decoder, Bitstream *bitstream) {

	Int bit;

	Int c1 = (1<<16) - c0;

	Int LPS = c0 > c1;

	Int cLPS = LPS ? c1 : c0;

	unsigned long rLPS;

	rLPS = ((decoder->R) >> 16) * cLPS;

	if ((decoder->V - decoder->L) >= (decoder->R - rLPS)) {

		bit = LPS;

		decoder->L += decoder->R - rLPS;

		decoder->R = rLPS;

	}

	else {

		bit = (1-LPS);

		decoder->R -= rLPS;

	}

	DECODE_RENORMALISE(decoder,bitstream);

	return(bit);

}

Void DECODE_RENORMALISE(ArDecoder *decoder, Bitstream *bitstream) {

	while (decoder->R < QUARTER) {

		if (decoder->L >= HALF) {

			decoder->V -= HALF;

			decoder->L -= HALF;

			decoder->bits_to_follow = 0;

		}

		else

			if (decoder->L + decoder->R <= HALF)

				decoder->bits_to_follow = 0;

			else{

				decoder->V -= QUARTER;

				decoder->L -= QUARTER;

				(decoder->bits_to_follow)++;

			}

		decoder->L += decoder->L;

		decoder->R += decoder->R;

		AddNextInputBit(bitstream, decoder);

	}

}

BitstreamPutBit(bitstream,bit): Writes a single bit to the bitstream.

BitstreamLookBit(bitstream,nbits) : Looks nbits ahead in the bitstream beginning from the current position in the bitstream and returns the bit.

BitstreamFlushBits(bitstream,nbits) : Moves the current bitstream position forward by nbits.

The parameter c0 (used in ArCodeSymbol() and ArDecodeSymbol()) is taken directly from the probability tables of Appendix H. That is, for the pixel to be coded/decoded, c0 is the probability than this pixel is equal to zero. The value of c0 depends on the context number of the given pixel to be encoded/decoded.

13	APPENDIX H: Adaptive Intra Refresh for Error Resilience

	This appendix describes the “Adaptive Intra Refresh (AIR)” Method. In the AIR, motion area is encoded frequently in Intra mode. Therefore, it is possible to recover the corrupted motion area quickly.

The method of the “AIR”

The number of Intra MBs in a VOP is fixed and pre-determined. It depends on bitrates and frame rate and so on.

The encoder estimates motion of each MB and the only motion area is encoded in Intra mode. The results of the estimation are recorded to the Refresh Map MB by MB. The encoder refers to the Refresh Map and decides to encode current MB in Intra mode or not. The estimation of motion is performed by the comparison between SAD and SAD_th. SAD is the Sum of the Absolute Differential value between the current MB and the MB in same location of the previous VOP. The SAD has been already calculated in the Motion Estimation part. Therefore, additional calculation for the AIR is not needed. SAD_th is the threshold value. If the SAD of the current MB is larger than the SAD_th, this MB is regarded as motion area. Once the MB is regarded as motion area, it is regarded as motion area until it is encoded in Intra mode predetermined times. The predetermined value is recorded to the Refresh Map. (See figure 1. In this figure, predetermined value is “1” as an example)

The holizontal scan is used to determine the MBs to be encoded in Intra mode within the moving area (see figure 2).

����������������������

������������

�����������������������������

����������������

��������������������

���������������

������������������������

��

The processing of the “AIR”

The following is the explanation of the processing of AIR (see figure 3). The fixed number of the Intra MB in a VOP should be determined in advance. Here, it is set to “2” as an example.

[1] 1st VOP ([a]~[b] in figure 3)

The all MBs in the 1st VOP are encoded in Intra mode [a]. The Refresh Map is set to “0”, because there is no previous VOP [b].

[2] 2nd VOP ([c] ~ [f])

The 2nd VOP is encoded as P-VOP. Intra refresh is not performed in this VOP, because all values in the Refresh Map is zero yet ([c] and [d]). The encoder estimates motion of each MB. If the SAD for current MB is larger than the SAD_th, it is regarded as motion area (hatched area in figure 3 [e]). And the Refresh Map is updated [f].

[3] 3rd VOP ([g] ~ [k])

When the 3rd VOP is encoded, the encoder refers to the Refresh Map [g]. If the current MB is the target of the Intra refresh, it is encoded in Intra mode [h]. The value of the MB in Refresh Map is decreased by 1 [i]. If the decreased value is 0, this MB is not regarded as motion area. After this, the processing is as same as the 2nd VOP [j]~[k].

[4] 4th VOP ([l]~[p])

It is as same as 3rd VOP...

��

������

�

�

������������������������������������

�����������������������������

��������������������������

�������������

���

�

������������������������������

������������������

����������������������������������

���������������������������������

����������������

��

���

�Implementation of the “AIR”

	The followings are the implementation of the encoder. The basic idea of the AIR is described in the previous section. In order to utilize the AIR more effectively, conventional Cyclic Intra Refresh is combined with AIR. The number of the Intra Refresh MB in a VOP is defined as the summation of the AIR_refresh_rate and the CIR_refresh_rate. AIR_refresh_rate MBs are encoded in the AIR mode and CIR_refresh_rate MBs are encoded in the conventional CIR mode. These values are user definable.

Utilization of the modules

In order to implement the AIR, the user shall carry out the following

[1] The user shall define and initialize the variables shown in the Table 1.

[2] The user shall call the function “RefreshDecision()” after the Inter/Intra decision module. If the return value from the RefreshDecision() is “1”, the MB type of the current MB is changed to “INTRA”, even if the result of the Inter/Intra decision module is “INTER”. If the return value is “0”, do nothing.

[3] In order to update the SAD_th, the following expression shall be inserted at the end of the each VOP.

	*SAD_th = *SADaccum / AllMB;

Table 1. The variables for the encoder

name of variables�Meaning�Initialization��EncMBNumAIR�This variable keeps the number of the MB, which is finished to encode in the AIR mode in the current VOP.�This value is reset to “0” at the start of the each VOP.��EncMBNumCIR�This variable keeps the number of the MB, which is finished to encode in the CIR mode in the current VOP.�This value is reset to “0” at the start of the each VOP.��AIR_refresh_rate�This value indicates the number of the Intra MBs, which should be encoded in AIR mode.�The user defines this value at the start of the sequence.��CIR_refresh_rate�Thie value indicates the number of the Intra MBs, which should be encoded in CIR mode.�The user defines this value at the start of the sequence.��sad0�This is the summation of absolute difference between the current MB and MB in the previous VOP.�The value is already calculated in the Motion Estimation part.��CurMBA�This is the current MB address�-��AIR_MBlocation�This value indicates the location of the MB, which is encoded in the AIR mode.�This value is reset to “0” at the start of the sequence.��CIR_MBlocation�This value indicates the location of the MB, which is encoded in the CIR mode.�This value is reset to “0” at the start of the sequence.��refresh_time�This is the value, which is set to the Refresh Map when the current MB is regarded as motion area.�The user defines this value at the start of the sequence.��SAD_th�The threshold value. This is the average of the SAD in the previous VOP.�This value is reset to “0” at the start of the sequence. And this value is updated at the end of the each VOP.��SADaccum�The summation of the sad0 of all MBs in the current VOP.�This value is reset to “0” at the start of the each VOP.��RefreshMap[AllMB]�Refresh Map. See figure 1. The number of the elements is same as the number of the MB in a VOP.�These values are reset to “0” at the start of the sequence.��RefreshMapAvailable�This is the flag whether the Refresh Map is available or not. If there is no MB, which should be encoded in AIR mode in the Refresh Map, RefreshMapAvailable is reset to 0. �This value is reset to “0” at the start of the sequence.��AllMB�The number of the MBs in a VOP. “AllMB” is 99 for QCIF, 396 for CIF.�-��

Encoder Process

/*

* AIR Encoder Software Copyright

The files in this distribution are copyrighted by Matsushita

Communication Industrial unless otherwise stated. Derived versions

are copyrighted jointly by all contributors whose copyrighted work

(e.g. source code) is used to produce them. Derived versions are for

instance compiled object files and executables.

The files in this directory and all derived versions of these files,

are further on referred to as the SOFTWARE.

COMMERCIAL use of this SOFTWARE is defined as any activity where this

SOFTWARE takes part that involves payment, including but not limited

to distributing this SOFTWARE for payment and using it in systems

providing paid services. Commercial use of this SOFTWARE is not

permitted without specific written prior permission from the copyright

owners.

For non-commercial use of this SOFTWARE Matsushita Communication

Industrial grants the following terms:

 1: You may use, copy and modify this SOFTWARE without fee provided

 this COPYRIGHT file and the copyright lines in the files themselves

 are left unchanged.

 2: Any modifications or additions you publish to this SOFTWARE are

 copyrighted by you. They should be made available under any terms

 specified by ISO/IEC JTC1 SC29 WG11 (MPEG).

 3: You may publish simulation results obtained with this SOFTWARE

 provided you refer to the "MPEG-4 Video VM C Implementation"

 as the source of the SOFTWARE used.

 4: You use this SOFTWARE at your own risk. Matsushita Communication

 Industrial has no responsibility for any damages arising from the

 use of this SOFTWARE, nor does Matsushita Communication Industrial

 guarantee the fitness of this SOFTWARE for any purpose.

Contact Person

 Koji Imura

 Matsushita Communication Industrial

 Tel.: +81 45 939 1287

 Fax.: +81 45 934 8765

 E-mail: imura@adl.mci.mei.co.jp

*/

/***

 * Name: RefreshDecision

 * This module decides whether the current MB is encoded in

 * Intra or not.

 * And the accumulation of the SAD is performed.

 * If the current MB is decided to encode in the AIR mode,

 * the RefreshMap is updated.

 * If the current MB is encoded in Intra mode, this module returns

 * the value 1.

***/

int RefreshDecision(int *EncMBNumAIR, int *EncMBNumCIR,

 int AIR_refresh_rate, int CIR_refresh_rate,

 int sad0, int CurMBA, int *AIR_MBlocation,

 int *CIR_MBlocation, int refresh_time,

 int *SAD_th, int *SADaccum, int RefreshMap[],

 int *RefreshMapAvailable, int AllMB){

int IntraOn;

IntraOn = 0;

/* AIR */

if(*EncMBNumAIR < AIR_refresh_rate){

if(*RefreshMapAvailable == 1){

if(CurMBA == *AIR_MBlocation){

				IntraOn = 1;

				(*EncMBNumAIR)++;

				RefreshMap[CurMBA]--;

				(*AIR_MBlocation)++;

				if(*AIR_MBlocation >= AllMB) *AIR_MBlocation = 0;

				*RefreshMapAvailable = SearchNextAIRMBlocation(RefreshMap,

AIR_MBlocation, AllMB);

}

}

}

/* CIR */

if(*EncMBNumCIR < CIR_refresh_rate && !IntraOn){

if(CurMBA == *CIR_MBlocation){

IntraOn = 1;

(*EncMBNumCIR)++;

(*CIR_MBlocation)++;

if(*CIR_MBlocation == AllMB)

				*CIR_MBlocation = 0;

}

}

*SADaccum += sad0;

if(*SAD_th != 0 && sad0 > *SAD_th){

RefreshMap[CurMBA] = refresh_time;

if(*RefreshMapAvailable == 0){

*RefreshMapAvailable = 1;

SearchNextAIRMBlocation(RefreshMap, AIR_MBlocation, AllMB);

}

}

return IntraOn;

}

/**

 * Name: SearchNextAIRMBlocation

 * This module searches the "NOT 0" in the RefreshMap.

 * If there is no "NOT 0" in the RefreshMap, this module

 * returns 0.

 ***/

int SearchNextAIRMBlocation(int RefMap[], int *AIR_MBlocation,

 int AllMB)

{

int ZeroNum;

ZeroNum=0;

while((RefMap[*AIR_MBlocation]==0) && (ZeroNum < AllMB)){

(*AIR_MBlocation)++;

if(*AIR_MBlocation >= AllMB) *AIR_MBlocation = 0;

ZeroNum++;

}

if(ZeroNum >= AllMB)

return 0;

else

return 1;

}

14	Version 2

14.1	Coding Arbitrarily Shaped Texture

Shape adaptive wavelet (SA-Wavelet) coding is used for coding arbitrarily shaped texture. SA-Wavelet coding is different from the regular wavelet coding mainly in its treatment of the boundaries of arbitrarily shaped texture. SA-Wavelet coding ensures that the number of wavelet coefficients to be coded is exactly the same as the number of pixels in the arbitrarily shaped region and coding efficiency for the boundaries is the same as that for the middle of the region. SA-Wavelet coding includes rectangular boundaries as a special case and it becomes the regular wavelet coding when the boundary is rectangular.

14.1.1	Shape Adaptive Wavelet Transform

Shape information of an arbitrarily shaped region is used in performing SA-Wavelet transform. The (9,3) biorthogonal wavelet filter given in 3.10.2 is used. Let low-pass filter coefficients be {h4, h3, h2, h1, h0, h1, h2, h3, h4} and high-pass filter coefficients be {g1, g0, g1}. SA-Wavelet transform can be described as the following steps:

 1. Within each region, use shape information to identify the first row of pixels belonging to the region and the first segment of consecutive pixels in the row. Let the start position of this segment be start and thelength of this segment be length.

 2. If length == 1, this pixel is scaled by sqrt(2) and put into the corresponding position start/2 in low-pass band. Otherwise, the following steps are performed.

 3. If length is even and start is even, wavelet filtering is performed on this segment with Type-B symmetric extension on both leading and trailing boundaries for analysis in the same way as specified in Table 14. The length/2 low pass coefficients are obtained by subsampling the low pass filtering results at even number positions relative to start, and are put into low-pass band starting from position start/2. The length/2 high-pass coefficients are obtained by subsampling the high pass filtering results at odd number positions relative to start, and are put in high pass band starting from position start/2. The corresponding synthesis uses Type-B leading and Type-A trailing boundaries for low-pass and Type-A leading and Type-B trailing boundaries for high-pass as specified in Table 15. The following example illustrates this process in detail:

 LOW PASS:

 signal: a2 a3 a2 a1 | a0 a1 a2 a3 | a2 a1 a0

 <------------> <------------> <-------->

 extension: Type B ext. original Type B ext.

 low pass filt.: h4 h3 h2 h1 h0 h1 h2 h3 h4

 ... h4 h3 h2 h1 h0 h1 h2 h3 h4

 ...

 Transformed: x0 x1 | x0 x1 | x1 x0

 <----------> <------------> <--------->

 Type B ext. low pass band type A ext.

 HIGH PASS:

 signal: a2 a3 a2 a1 | a0 a1 a2 a3 | a2 a1 a0

 <------------> <------------> <-------->

 extension: Type B ext. original Type B ext.

 high pass filt.: g1 g0 g1

 ... g1 g0 g1

 ...

 Transformed: y1 y0 | y0 y1 | y0

 <--------> <---------> <--------->

 Type A ext. high pass band type B ext.

 4. If length is even and start is odd, wavelet filtering is performed on this segment with Type-B symmetric extension on both leading and trailing boundaries for analysis. The length/2 low pass coefficients are obtained by subsampling the low pass filtering results at even number positions starting from start, and are put into low pass band starting from postion (start+1)/2. The length/2 high pass coefficients are obtained by subsampling the high pass filtering results at odd number positions starting from start, and are put in high pass band starting from position start/2. The corresponding synthesis uses Type-A leading and Type-B trailing boundaries for low-pass and Type-B leading and Type-A trailing boundaries for high-pass. The following example illustrates this process in detail.

 LOW PASS:

 signal: a3 a4 a3 a2 | a1 a2 a3 a4 | a3 a2 a1 a2

 <------------> <------------> <------------>

 extension: Type B ext. original Type B ext.

 low pass filt.: h4 h3 h2 h1 h0 h1 h2 h3 h4

 ... h4 h3 h2 h1 h0 h1 h2 h3 h4

 ...

 Transformed: x0 x1 | x1 x2 | x1 x0

 <--------> <----------> <--------->

 Type A ext. low pass band type B ext.

 HIGH PASS:

 signal: a3 a4 a3 a2 | a1 a2 a3 a4 | a3 a2 a1 a2

 <------------> <------------> <------------>

 extension: Type B ext. original Type B ext.

 high pass filt.: g1 g0 g1

 ... g1 g0 g1

 ...

 Transformed: y1 y1 | y0 y1 | y1 y0

 <--------> <---------> <--------->

 Type B ext. high pass band type A ext.

5. If length is odd and start is even, wavelet filtering is performed on this segment with Type-B symmetric extension on both leading and trailing boundaries for analysis. The (length+1)/2 low pass coefficients are obtained by subsampling the low pass filtering results at even number positions starting from start, and are put into low pass band starting from postion start/2. The length/2 high pass coefficients are obtained by subsampling the high pass filtering results at odd number positions starting from start, and are put in high pass band starting from position start/2. The corresponding synthesis uses both Type-B leading and trailing boundaries for low-pass and both Type-A leading and trailing boundaries for high-pass. The following example illustrates this process in detail.

 LOW PASS:

 signal: a2 a3 a2 a1 | a0 a1 a2 a3 a4 | a3 a2 a1 a0

 <------------> <-----------------> <------------>

 extension: Type B ext. original Type B ext.

 low pass filt.: h4 h3 h2 h1 h0 h1 h2 h3 h4

 ... h4 h3 h2 h1 h0 h1 h2 h3 h4

 ... h4 h3 h2 h1 h0 h1 h2 h3 h4

 ...

 Transformed: x0 x1 | x0 x1 x2 | x1 x0

 <----------> <-----------------> <--------->

 Type B ext. low pass band type B ext.

 HIGH PASS:

 signal: a2 a3 a2 a1 | a0 a1 a2 a3 a4 | a3 a2 a1 a0

 <------------> <----------------> <------------>

 extension: Type B ext. original Type B ext.

 high pass filt.: g1 g0 g1

 ... g1 g0 g1

 ...

 Transformed: y1 y0 | y0 y1 | y1

 <--------> <---------> <--------->

 Type A ext. high pass band type A ext.

 6. If length is odd and start is odd, wavelet filtering is performed on this segment with Type-B symmetric extension on both leading and trailing boundaries for analysis. The length/2 low pass coefficients are obtained by subsampling the low pass filtering results at even number positions starting from start, and are put into low pass band starting from postion (start+1)/2. The (length+1)/2 high pass coefficients are obtained by subsampling the high pass filtering results at odd number positions starting from start, and are put in high pass band starting from position start/2. The corresponding synthesis uses both Type-B leading and trailing boundaries for low-pass and both Type-A leading and trailing boundaries for high-pass. The following example illustrates this process in detail.

 LOW PASS:

 signal: a3 a4 a3 a2 | a1 a2 a3 a4 a5 | a4 a3 a2 a1

 <------------> <----------------> <------------>

 extension: Type B ext. original Type B ext.

 low pass filt.: h4 h3 h2 h1 h0 h1 h2 h3 h4

 ... h4 h3 h2 h1 h0 h1 h2 h3 h4

 ...

 Transformed: x0 x1 | x1 x2 | x2 x1

 <--------> <----------> <---------->

 Type A ext. low pass band type A ext.

 HIGH PASS:

 signal: a3 a4 a3 a2 | a1 a2 a3 a4 a5 | a4 a3 a2 a1

 <------------> <----------------> <------------>

 extension: Type B ext. original Type B ext.

 high pass filt.: g1 g0 g1

 ... g1 g0 g1

 ... g1 g0 g1

 ...

 Transformed: y1 y1 | y0 y1 y2 | y1 y0

 <--------> <-----------------> <-->

 Type B ext. high pass band type B ext.

 7. Repeat the above operations for the next segment of consecutive pixels in the same row.

 8. Repeat the above operations for the next row of the region.

 9. Repeat the above operations for each column of the horizontally low-pass and high-pass region.

 10. Repeat the above operations on the LL object until the number of decomposition level is reached.

The mask associated with the arbitrarily shaped region is decomposed into the corresponding wavelet trees.

14.1.2	Modified Zero-Tree Coding According to Decomposed Mask

Coding the SA-Wavelet coefficients is the same as coding regular wavelet coefficients except a modification is needed to handle partial wavelet trees that have wavelet coefficients corresponding to the pixels out of the shape boundary. Such wavelet coefficients are called out-nodes of the wavelet trees. Coding of the lowest band is the same as specifed in 3.10.3 with out-nodes not coded. The wavelet trees are formed in the same way as in the regular zero-tree coding. Coding of the higher bands is the same as specified in 3.10.4 except the modifications described below to handle the out-nodes. For any wavelet trees without out-nodes, the regular zero-tree coding is applied. For a partial tree, a minor modification to the regular zero-tree coding is needed to deal with the out-nodes. If an entire branch of a partial tree has out-nodes only, no coding is needed for this branch because the shape information is available to the decoder to indicate this case. If a parent node is not an out-node, all the children out-nodes are set to zero so that the out-node does not affect the status of the parent node as the zero-tree root or valued zero-tree root. At the decoder, the shape information is used to identify such zero values as out-nodes. If the parent node is an out-node and not all of its children are out-nodes, there are two possible cases. The first case is that some of its children are not out-nodes but they are all zeros. This case is treated as a zero-tree root and there is no need to go down the tree. The shape information indicates which children are zeros and which ones are out-nodes. The second case is that some of its children are not out-nodes and at least one of such nodes is non-zero. In this case, the out-node parent is set to zero and the shape information helps decoder know that this is an out-node, and coding continues further down the tree. There is no need to use a separate symbol for any out-nodes.

14.1.3	Texture Object Layer Class

14.1.3.1	Texture Object Layer

Syntax�No. of bits�Note��TextureObjectLayer() {����	texture_object_layer_start_code�sc+4=28���	texture_object_layer_id�4���	texture_object_layer_shape�2���	if(texture_object_layer_shape == ‘00’) {����		texture_object_layer_width�16���		texture_object_layer_height

 wavelet_transform()�16���	} else if (texture_object_layer_shape == ‘01’) {

 shape_coding()

 sa_wavelet_transform()

 }����	wavelet_decomposition_levels �8���	Y_mean �8���	U_mean �8���	V_mean�8���	Quant_DC_Y�8���	Quant_DC_UV�8���	for (Y, U, V){����		lowest_subband_bitstream_length�16���		band_offset�8 (or more)���		band_max_value�8 (or more)���		if(texture_object_layer_shape == ‘00’) {

 lowest_subaband_texture_coding()

 } else if(texture_object_layer_shape == ‘01’) {

 lowest_subband_texture_sa_coding()

 }����	}����	spatial_scalability_levels�5���	quantization_type�2���	SNR_length_enable�1���	for (Y, U, V){����		for (i=0; i <spatial_scalability_levels; i++)����			spatial_bitstream_length�24���		if (quantization_type == 0){����			Quant�8�skipped for V��			if(texture_object_layer_shape == ‘00’) {

 wavelet_zero_tree_coding()

 } else if(texture_object_layer_shape == ‘01’) {

 wavelet_zero_tree_sa_coding()

 }����		}����		else if (quantization_type == 1){����			SNR_Scalability_Levels�5�skipped for U,V��			for(i=0;i<SNR_scalability_levels; i++){����				Quant�8�skipped for V��				SNR_all_zero�1���				if(all_zero_flg == 0){����					if(SNR_length_enable == 1)����						SNR_bitstream_length�16 or more�refer to description��					if(texture_object_layer_shape == ‘00’) {

 wavelet_zero_tree_coding()

 } else if(texture_object_layer_shape == ‘01’) {

 wavelet_zero_tree_sa_coding()

 }����				}����			}����		}����		else {����			Quant�16���			if (SNR_length_enable == 1)����				SNR_bitstream_length�16 or more�refer to description��			if(texture_object_layer_shape == ‘00’) {

 wavelet_zero_tree_coding()

 } else if(texture_object_layer_shape == ‘01’) {

 wavelet_zero_tree_sa_coding()

 }����		}����	}����	next_start_code()����}����

14.2	Scalable shape coding

14.2.1	Spatial Scalable Coding

Figure 1 shows an example of spatial scalable coding. As shown in the figure, the enhancement layer is built from the base layer (I-VOP) like a P-VOP. For the base layer (P-VOP), the enhancement layer is built like a B-VOP.

�

Figure 1. An Example of Spatial Scalable Coding

14.2.1.1	Base Layer Coding

The base layer is encoded as the same way as non-scalable binary shape coding (i.e. CAE). VOP_CR may be utilized when there is a resolution difference between shape and texture.

14.2.1.2	Modes for Enhancement Layer MBs

For B-VOP in enhancement layer in Figure 1, there are four modes;

Shape_mode = “intra not coded”

Shape_mode = “intra coded”

Shape_mode = “inter not coded”

Shape_mode = “inter coded”

When the Shape_mode = “intra coded”, the MB is predicted from the collocated MB in the lower layer and is encoded as described in Section ???

The Shape_mode = “intra not coded” means that “all_zero”�, “all_255”, or the error of the predicted MB from the lower layer is less than the threshold�. At the decoder, if the corresponding samples of the collocated MB in the lower layer have only the value 0 (or 255), then the MB in the current layer is "all_zero" (or "all_255"). Otherwise, the predicted MB (using the method in Section 1.5) from the lower layer is used as the MB in the current layer.

For two “inter” modes, no motion vector is transmitted for enhancement layer MBs. The corresponding motion vector can be utilized from the lower layer. If the MB in the lower layer is “intra” mode, the value of the motion vector is set to zero. If the error of the predicted MB from the previous VOP is less than the threshold6 , then the MB is “inter not coded” mode.

For P-VOP in enhancement layer in Figure 1, there are only two modes, “intra coded” and “intra not coded”, and they are coded by 1 bit.(if the mode is “intra coded”, then the code is ‘0’, otherwise ‘1’)

14.2.1.2.1	Coding the mode information for enhancement layer MBs

In order to encode/decode the mode information, the collocated MB of the lower layer is examined. Based on the result of this analysis, the following VLC table is used for encoding the shape mode.

The Lower Layer�The Enhancement Layer

���(1)�(2)�(3)�(4)��(1)�0�10�110�111��(2)�110�0�10�111��(3)�110�10�0�111��(4)�111�0�111�10��

Note that the numbers (1)-(4) in these tables correspond to the shape modes given in the list above. When the lower layer is the base layer, "MVDs==0&&No Update"and "MVDs!=0&&No Update", "all_0" and "all_255", and "MVDs==0&&interCAE" and "MVDs!=0&&interCAE" modes are included in mode (3), (1), and (4), respectively

14.2.1.2.2	Mode Decisions for Enhancement Layer MBs

There are two new decisions used in the coding of enhancement layer MBs in P-VOPs and B-VOPs.

1. Not Coded/Coded Decision

There are 2 modes which involve prediction without coding i.e. (3) with INTER prediction and (1) with INTRA prediction. In the decision process, it is firstly ascertained whether "all_zero" or "all_255" in “intra not coded” can be used.

Condition1 = “intra not coded” ("all_0" or "all_255") may be used.

It is then ascertained whether “inter not coded” can be used. This decision is performed in the same way as for the base layer and relies on the value of alpha_th.

Condition2 = “inter not coded” may be used.

Lastly, it is ascertained whether “intra not coded”, except for "all_0" and "all_255", can be used. A MB can be encoded as “intra not coded” if the prediction from lower layer yields error PBs with value less than 16xalpha_th.

Condition3 = “intra not coded”, except for "all_0" and "all_255", may be used.

if(Condition1) MB is coded as “intra not coded”;

else if(Condition2) MB is coded as“inter not coded”;

else if(Condition3) MB is coded as“intra not coded”;

else MB is coded by one of the other “coded” modes.

2. Intra coded/Inter coded decision

If an enhancement MB is coded, it may be coded as “intra coded” or “inter coded”. Both methods are applied and the shortest code is sent.

14.2.1.3	Enhancement Layer Coding with the Base Layer (I-VOP)

14.2.1.3.1	Down Sampling

In order to achieve the spatial scalability, a BAB is firstly downsampled into 8x8 subblock. Figure 2 Shows the subsampling process. In every 2x2 pixel block, the bottom-right pixel is chosen to be the subsampled pixel.

SubXi/2,j/2 = Xi,j, (i, j = 0, 2, 4, …, 14)

�

Figure 2. An Example of BAB Subsampling

14.2.1.3.2	Scan Interleaving

The spatial (or resolution) scalability can be easily sought by incorporating the so-called scan interleaving (SI) method. In SI, every other scanlines are encoded by the prediction from the neighboring two scan lines as shown in Fig. 13. In the figure, you can use the upper and lower neighboring pixel values for encoding the current pixel value. If the two neighboring pixels are the same colors, it is very likely that the current pixel is also the same color. If two neighbor pixels are different from each other, you need to encode the current pixel information: we call it a transitional sample. Even if the two upper and lower neighboring pixels are the same, the current pixel may be different in a relatively small probability: we call it a exceptional sample. Hence, each enhancement layer yields two types of data: transitional sample data (TSD) and exceptional sample data (ESD). SI modules are paired for the purpose of vertical and horizontal scanning alternatively.

�

Figure 3. Scan Interleaving for Scalable Coding: an Example.

14.2.1.3.3	Transitional Sample Only BAB Encoding

Depending on the scanning direction, the context information for the current pixel is decided as shown in Fig. 4. By using neighboring 7 contexts, the current pixel is arithmetic encoded as in CAE, such that:

	Compute a context number.

	Index a probability table using the context number.

	Use the indexed probability to drive an arithmetic encoder.

14.2.1.3.4	Exceptional Sample Included BAB Encoding

 When there is any exceptional sample in a BAB, all the pixels (both transitional and exceptional) are encoded in a raster scan order using the contexts in Fig. 4. The encoding is the same procedure as above (Section � REF _Ref392724328 \n �14.2.1.3.3�).

�

Figure 4. The context information at different scanning.

14.2.1.3.5	Determination of the scanning order

The scanning order of encoded pixels can be determined to be HV scanning or VH scanning. For HV scanning horizontal scanning is performed first and then vertical scanning. For VH scanning vertical scanning is performed first. The order of scanning is determined by the base layer information. Normally HV scanning is selected for the regular scanning order, except when the scale between the layers is square times (i.e. 200x300 (400x600). This time we efficiently choose the scanning order of encoded pixels in the enhancement layer by the base layer shape information.

The top and left borders are extended with neighboring pixels like Fig. 5. If an extended border is outside VOP, the pixel values of the extended border are set to zero. Two counts, NL and NU are calculated (NL: the number of pixels which have different values from the left neighboring pixel value; NU: the number of pixels which have different values from the upper neighboring value). If NU is greater than NL, the scanning order is set to VH scanning and otherwise to HV scanning. Fig. 6 shows one example. In the figure, NL is 8 and NU is 6. The scanning order is set to HV scanning because NL is larger than NU.

�EMBED Word.Picture.8���

Figure 5. Extension of border pixels.

�EMBED Word.Picture.8���

Figure 6. Example of the scanning order determination

14.2.1.4	Enhancement Layer Coding with the Base Layer (P-VOP)

For the enhancement layer with P-VOP or B-VOP base layer, the context information in Fig. 7 is utilized. The encoding of the current pixel is done in the same way as CAE.

�EMBED Word.Picture.8���

Figure 7. INTER Templates and Context Construction.

14.2.2	Prediction with the context probability tables

In the case that shape is encoded QCIF and texture is encoded CIF, we need to extend the current shape based on what we have: known pixels and unknown pixels. These unknown pixels can be predicted by the probability table values based on the contexts shown in Fig. 4 and 7. Likewise, for "intra not coded" mode, the prediction of MB in current layer from the lower layer is needed. For this, the probability table values based on the context shown in Figure 4 is used. The context number is firstly calculated. If the probability of its context number is greater than, or equal to 0.5 , then it is predicted as 0. Otherwise, 1 is used as prediction value.

14.2.3	Quality(SNR) Scalable Coding

Quality Scalability can be easily sought by spatial scalability. One can use alpha_th to achieve different levels of granularity. In quality scalable coding, we can achieve the enhancement of only an important part of the shape by coding relatively larger number of enhancement layers for macroblocks belonging to this important part. For instance, part of the shape corresponding to head in a video object containing head and shoulders of a human can be identified as the important part. Non-important parts of the shape can be coded without enhancement by invoking the “intra_not_coded” mode at the encoder.

14.2.4	Region- (or Content-) based Scalable Coding

Region- (or Content-) based scalability of shape can be simply implemented by CAE. This mode is set when scalability is ON and enhancement_type is ON. This means that only a special region of shape and texture will be enhanced. This region is CAE encoded. The proper syntax is reflected in Section � REF _Ref393238716 \n �14.2.5�.

14.2.5	Syntax

14.2.5.1	Video Object Layer

scalability �1��if (scalability){���ref_layer_id�4��use_ref_shape�1��use_ref_texture�1��shape_hor_sampling_factor�1��shape_vert_sampling_factor�1��ref_layer_sampling_direc�1��hor_sampling_factor_n�5��hor_sampling_factor_m�5��vert_sampling_factor_n�5��vert_sampling_factor_n�5��enhancement_type�1��}���

use_ref_shape

When this one bit is set, no update for shape is done. Instead, the available shape in the layer ref_layer_id will be used.

use_ref_texture

When this one bit is set, no update for texture is done. Instead, the available texture in the layer ref_layer_id will be used.

shape_hor_sampling_factor, shape_vert_sampling_factor

shape_hor_sampling_factor and shape_vert_sampling_factor denote the sampling factors of shape in horizontal and vertical directions, respectively..

14.2.5.2	Shape Coding

Syntax�No. of bits��binary_shape_coding() {��� if(!scalability || (scalability && enhancement_type)){��� if (video_object_layer_shape != '00') {��� do ��� if (Shape_mode = “MVDs!=0 && NotCoded” ||

 Shape_mode=”interCAE && MVDs!=0”)��� MVDs�3-36�� if (Shape_mode = ”intraCAE”

 || Shape_mode=”interCAE && MVDs==0”

 || Shape_mode=”interCAE && MVDs!=0”) {��� if (change_CR_disable==”0”)��� CR�1-2�� ST�1�� BAC��� }��� } while (count of macroblock != total number of macroblocks)��� }��� else if (scalability && !enhancement_type) ��� enh_layer_shape_coding();���}���

enh_layer_shape_coding()

For spatial scalable coding, or when scalability is set and enhancement_type is '0', enh_layer_shape_coding() is performed.

14.2.5.2.1	Enhancement Layer Shape Coding

Syntax�No. of bits��enh_layer_shape_coding() {��� if (video_object_layer_shape != '00') {��� do ��� if (Shape_mode == ”intra_coded” || Shape_mode==”inter_coded”) {��� ST�1�� BAC_TRANS ��� } while (count of macroblock != total number of macroblocks) ��� } ���

ST

If shape_mode == "intra coded", ST is set when it contains only transitional samples, whereas ST is unset when all pixels are coded. If shape mode == 'inter coded", the usage is the same as CAE.

BAC_TRANS

If ST is '1', it is the bitstream for transitional pels. Otherwise the usage is the same as BAC.

14.2.6	APPENDIX A: Probability Tables

USInt scaleable_shape_Intra[256]={

 65476, 64428, 62211, 63560, 52253, 58271, 38098, 31981, 50087, 41042,

 54620, 31532, 8382, 10754, 3844, 6917, 63834, 50444, 50140, 63043,

 58093, 45146, 36768, 13351, 17594, 28777, 39830, 38719, 9768, 21447,

 12340, 9786, 60461, 41489, 27433, 53893, 47246, 11415, 13754, 24965,

 51620, 28011, 11973, 29709, 13878, 22794, 24385, 1558, 57065, 41918,

 25259, 55117, 48064, 12960, 19929, 5937, 25730, 22366, 5204, 32865,

 3415, 14814, 6634, 1155, 64444, 62907, 56337, 63144, 38112, 56527,

 40247, 37088, 60326, 45675, 51248, 15151, 18868, 43723, 14757, 11721,

 62436, 50971, 51738, 59767, 49927, 50675, 38182, 24724, 48447, 47316,

 56628, 36336, 12264, 25893, 24243, 5358, 58717, 56646, 48302, 60515,

 36497, 26959, 43579, 40280, 54092, 20741, 10891, 7504, 8109, 30840,

 6772, 4090, 59810, 61410, 53216, 64127, 32344, 12462, 23132, 19270,

 32232, 24774, 9615, 17750, 1714, 6539, 3237, 152, 65510, 63321,

 63851, 62223, 64959, 62202, 63637, 48019, 57072, 33553, 37041, 9527,

 53190, 50479, 54232, 12855, 62779, 63980, 49604, 31847, 57591, 64385,

 40657, 8402, 33878, 54743, 17873, 8707, 34470, 54322, 16702, 2192,

 58325, 48447, 7345, 31317, 45687, 44236, 16685, 24144, 34327, 18724,

 10591, 24965, 9247, 7281, 3144, 5921, 59349, 33539, 11447, 5543,

 58082, 48995, 35630, 10653, 7123, 15893, 23830, 800, 3491, 15792,

 8930, 905, 65209, 63939, 52634, 62194, 64937, 53948, 60081, 46851,

 56157, 50930, 35498, 24655, 56331, 59318, 32209, 6872, 59172, 64273,

 46724, 41200, 53619, 59022, 37941, 20529, 55026, 52858, 26402, 45073,

 57740, 55485, 20533, 6288, 64286, 55438, 16454, 55656, 61175, 45874,

 28536, 53762, 58056, 21895, 5482, 39352, 32635, 21633, 2137, 4016,

 58490, 14100, 18724, 10461, 53459, 15490, 57992, 15128, 12034, 4340,

 6761, 1859, 5794, 6785, 2412, 35

};

USInt scaleable_shape_SI_mode[1] = { 59808 }

14.3	Matching pursuit inter texture coding mode

14.3.1	Introduction to Matching Pursuit mode

Matching pursuit (MP) is an over-complete expansion technique that can be used in place of the DCT for prediction error coding. Matching pursuit uses an over-complete 2-D Gabor dictionary to code motion prediction errors. This dictionary is extremely redundant, containing 400 2-D basis shapes, each of which may exist at any integer-pixel location in the coded residual image. MP insures that each coded basis function is well-matched to structures in the residual signal.

14.3.2	INTRA Frame Coding

The INTRA frame coding is the same as the one used in the DCT mode.

14.3.3	Motion Compensation

Motion estimation is nearly the same as for the DCT mode. Motion vectors are found and encoded in the usual way. Macroblock prediction within a matching pursuit P-frame may be INTRA, INTER, or INTER4v.

The INTRA case differs from that of DCT coded P-frames. In DCT mode, the INTRA block prediction is reset to zero and the block data is later coded using the DCT. In MP mode, the block prediction is filled in with DC level information. The DC level of each of the six subblocks (four luma and two chroma) is quantized to five bits and transmitted to the decoder. There the values are weighted by the Overlapping Block Motion Compensation (OBMC) window and combined with the motion prediction image. This provides a low frequency approximation to the intra block in the prediction image; detail information is coded by the matching pursuit basis in the usual residual coding stage.

14.3.4	Prediction Error Encoding Using Matching Pursuit

After the motion prediction stage, the prediction image is formed and subtracted from the current original image. Matching pursuit prediction error coding is performed frame-wide on the resulting prediction error image. This subsection describes how the matching pursuit algorithm is used to decompose this error image into a weighted summation of coded basis functions or atoms, which are then efficiently coded.

14.3.4.1	The Dictionary Set

The 2-D basis functions used to decompose the prediction error image can be generated in the following way. Define a prototype 1-D Gaussian function as:

�EMBED Equation.3���

Then a discrete 1-D Gabor function of size N can be defined as:

�EMBED Equation.3���

Here �EMBED Equation.3��� is a triple consisting respectively of a positive scale, a modulation frequency, and a phase shift. The constant �EMBED Equation.3��� is chosen such that the resulting sequence is of unit norm. Now assume that a finite set of such parameter triples is available. This would define a finite set of discrete 1-D functions, �EMBED Equation.3���. Then the separable products of these 1-D functions forms a collection of 2-D discrete functions, as:

�EMBED Equation.3���

The above notation assumes that all the 1-D functions have the same size �EMBED Equation.3���, but in practice each 1-D function may have its own associated size, �EMBED Equation.3���. In this case the resulting 2-D basis functions may have an arbitrary rectangular extent. This idea is used in our basis set, which consists of all of the 2-D separable products of the 1-D discrete Gabor functions defined by the parameter triples shown in the following table.

Scale

�EMBED Equation.3����Freq

�EMBED Equation.3����Phase

�EMBED Equation.3����Size (pixels)

�EMBED Equation.3�����1�0�0�1��3�0�0�5��5�0�0�9��7�0�0�11��9�0�0�15��12�0�0�21��14�0�0�23��17�0�0�29��20�0�0�35��1.4�1��EMBED Equation.3���/2 �3��5�1��EMBED Equation.3���/2 �9��12�1��EMBED Equation.3���/2 �21��16�1��EMBED Equation.3���/2 �27��20�1��EMBED Equation.3���/2 �35��4�2�0�7��4�3�0�7��8�3�0�13��4�4�0�7��4�2��EMBED Equation.3���/4�7��4�4��EMBED Equation.3���/4�7��Parameter triples defining the 2-D Separable Gabor Basis Dictionary

Note that these parameter triples define 20 1-D Gabor functions and thus our dictionary consists of 400 different 2-D discrete Gabor basis shapes. Each of these shapes is windowed in both dimensions by �EMBED Equation.3���, so the edges of most of the functions decay smoothly to zero. The first nine 1-D functions in the table represent Gaussians of increasing scale with no modulation; the remaining functions are modulated by a cosine function.

14.3.4.2	Finding Atoms

Matching pursuits can be simply described as a multi-stage decomposition process. In theory, each basis function in the 2-D dictionary is compared to the residual image at all possible locations, and the basis shape and location which provide the best match are coded and subtracted from the residual image. The remaining residual energy is passed to the next stage, and the process is repeated. After m such basis functions are coded, the process stops, and the coded residual image consists of a weighted summation of m basis functions. At this point, parameters describing the basis shapes, locations and weighting values must be efficiently coded and transmitted to the receiver to allow the coded residual image to be reconstructed.

The decomposition is done differently in practice, since a full search using 2-D basis functions over the entire residual image would require a large amount of computing time. Instead of searching the entire image for the best match, a likely location is first identified using a procedure which is called “Find Energy” in the sequel. In this process, the residual image is partitioned into blocks and a sum-squared energy measure is computed for each block. The block with the largest energy measure is used for the center of a local inner product search which determines the shape and position of the coded atom. The remainder of this section describes the “Find Energy” and “Find Atom” procedures in more detail.

14.3.4.3	Detail Description of Find Energy

Find Energy is applied to each of the three color sub-images (Y,U,V), and the returned energy values are used to decide which of the sub-images will receive the next coded atom, and also what location within that sub-image will be the center for the local atom search. When the search is performed, each motion residual sub-image is partitioned into blocks and the sum-of-squares energy measure for each block is computed. A block-size of 16´16 is used for the Y-sub-image, and a block-size of 8´8 is used for the U and V sub-images. A penalty weighting may be applied to the energy measure computed for each block, based on the number of times the particular block has been awarded the local atom search during previous iterations. This reduces the likelihood of many atoms clustering in the same local region. After the penalty weights are applied, the maximum energy value and location are chosen for the sub-image: the value is the largest weighted sum-of-squares energy measure, and the location is the center of the block which produced the maximum value.

Once the maximum value and location are known for each of the three sub-images, the values are compared to decide which sub-image will receive the local atom search. This decision is made using a color weighting parameter, currently defined as CW = 4.0. The sub-image decision is made as follows:

If((max_energy_Y > CW*max_energy_U) && (max_energy_Y > CW*max_energy_V))

	CODE A Y-ATOM AROUND LOCATION FOUND IN Y-SUBIMAGE

else if(max_energy_U > max_energy_V)

	CODE A U-ATOM AROUND LOCATION FOUND IN U-SUBIMAGE

else

	CODE A V-ATOM AROUND LOCATION FOUND IN V-SUBIMAGE

The local atom search procedure is the same regardless of which sub-image it is performed on. This procedure is described in the next subsection.

14.3.4.4	Detail Description of Find Atom

The search area for matching pursuit consists of a 16´16 pixel area centered around the best energy location found in “Find Energy”. To perform the search, center each of the 2-D basis functions at each of the locations in the search area and compute the 2-D inner product between the basis function and the underlying image data. The largest inner product corresponds to the best match in a mean square error sense; thus the shape and location corresponding to the largest inner product are coded and transmitted. The value of the largest inner product becomes the expansion coefficient, which must be quantized and transmitted to the decoder. A fixed-stepsize linear quantizer with a quantization stepsize of 30 is used. Quantization is performed in the loop; that is, the expansion coefficient is quantized before the resulting basis function is subtracted from the remaining error signal. After this subtraction, the remaining energy in the error signal is passed to the next coding stage (i.e. the Find Energy and Find Atom procedures are repeated).

The issue of when to stop coding atoms is a rate control problem, and is discussed in corresponding section.

A global mean adjustment for luminance is also allowed. This is effectively a flat basis function with the extent of the prediction error image. When the global mean adjustment is used, the mean value of the prediction error image is calculated before atoms are coded. This value is quantized to 8 bits and transmitted according to the bitstream syntax description (see Syntax section). At the encoder, the quantized mean value is subtracted from the prediction error before atom coding. At the decoder, the recovered mean is added to the reconstructed image.

14.3.4.5	Coding Atom Parameters

After the residual image is decomposed, the encoder is left with a list of the chosen atoms, which must be efficiently coded and transmitted to the receiver. Each atom is defined by five parameters which describe the position (x,y), basis shape (h,v), and the quantized expansion coefficient or modulus (m). The subimage (Y, U, or V) to which each atom belongs must also be identified in the bitstream. The atom parameters are coded using a combined motion-texture syntax. Each coded macroblock consists of a macroblock mode, motion information, and all atoms whose center positions fall within the current macroblock. More details on the mode and motion information are described in the subsection on bitstream syntax.

After the motion parameters, the atoms for the current macroblock are sent. First a codeword is sent describing the number of atoms associated with the current macroblock. This is followed by the parameters which describe each atom. For each atom, the horizontal and vertical basis indices (h,v) are transmitted first, followed by the quantized weighting coefficient (m). The position of the atom is then sent. Position information is sent differentially along a modified spiral scan path within the macroblock:

1�5�6�7�8�9�10�11�12�13�14�15�16�17�18�2��60�61�62�63�64�65�66�67�68�69�70�71�72�73�74�19��59�112�113�114�115�116�117�118�119�120�121�122�123�124�75�20��58�111�156�157�158�159�160�161�162�163�164�165�166�125�76�21��57�110�155�192�193�194�195�196�197�198�199�200�167�126�77�22��56�109�154�191�220�221�222�223�224�225�226�201�168�127�78�23��55�108�153�190�219�240�241�242�243�244�227�202�169�128�79�24��54�107�152�189�218�239�252�253�254�245�228�203�170�129�80�25��53�106�151�188�217�238�251�256�255�246�229�204�171�130�81�26��52�105�150�187�216�237�250�249�248�247�230�205�172�131�82�27��51�104�149�186�215�236�235�234�233�232�231�206�173�132�83�28��50�103�148�185�214�213�212�211�210�209�208�207�174�133�84�29��49�102�147�184�183�182�181�180�179�178�177�176�175�134�85�30��48�101�146�145�144�143�142�141�140�139�138�137�136�135�86�31��47�100�99�98�97�96�95�94�93�92�91�90�89�88�87�32��3�46�45�44�43�42�41�40�39�38�37�36�35�34�33�4��

Macroblock scan pattern used for atom position coding.

The differential position along the scan path is coded using one of four codeword tables, according to the number of atoms in the macroblock. This is described by the following chart:

Number of Atoms

in Macroblock�Position Code Table��1�Fixed 8-bit code��2 to 4�Table D1 (VLC)��5 to 9�Table D2 (VLC)��10 or more�Table D3 (VLC)��

No special codeword is needed to indicate the end of the atom field, since the number of coded atoms is transmitted as header information.

The VLC tables for all the atom parameters are provided in the Bitstream Syntax section. Note that the horizontal and vertical shape tables (h,v) have one entry for each of the twenty 1-D basis shapes, and the modulus table (m) has one entry for each of thirty-two quantized values. Two additional escape codes are added to the horizontal basis shape table to indicate when an atom belongs to either the U or V sub-images; thus the horizontal shape table contains 22 codewords, while the vertical table contains only 20. Each of the differential position coding tables (D1, D2, D3) contains 256 codewords.

To illustrate atom coding, a Y-atom would be coded using the following syntax:

 Codeword Comment

--

 HORZ_SHAPE Horizontal shape index

 VERT_SHAPE Vertical shape index

 QCOEF_SIGN 1-bit sign of quantized coefficient

 QCOEF_VAL Value of quantized coefficient

 POSITION Differential code (8-bit or VLC)

To illustrate the chroma escape codes, a U-atom would be represented as:

 Codeword Comment

--

 U-ESCAPE A special entry in the horizontal shape table

 indicating that the current atom is a U-atom.

 A second entry from horizontal shape table

 is expected to follow.

 HORZ_SHAPE Horizontal shape index

 VERT_SHAPE Vertical shape index

 QCOEF_SIGN 1-bit sign of quantized coefficient

 QCOEF_VAL Value of quantized coefficient

 POSITION Differential code (8-bit or VLC)

Atoms from the V subimage are coded in the same way.

14.3.5	Rate Control (informative)

The Matching Pursuit coder achieves its target rate in the following manner. First it computes the prediction error bit budget by subtracting the bits necessary to code motion and header information from the total frame budget. Since the encoder cannot compute the macroblock mode cost before the atom search is performed, this value is estimated from the previous frame. A target number of atoms is then computed by dividing the prediction error budget by the average bit cost per atom in the previous frame. By coding this number of atoms, the overall target bit rate is approximately met. If a previous frame cost per atom is not available (e.g. when the first matching pursuit frame is being coded) then the atom cost is initialized to 21 bits.

A constant-quality encoder can be achieved by setting up the MP coder to stop coding atoms when a certain quality metric is met. With either scheme, the matching pursuit coder does a good job of distributing the available bits to where they are needed, since atoms are essentially coded in decreasing order of importance.

14.3.6	Bitstream Syntax

14.3.6.1	Video Object Layer Class

Matching pursuit inter-frame coding is enabled in the VOL layer by a 1-bit inter_mp_enable flag. If this flag is set, all VOP-layer prediction error coding is done using matching pursuits. Matching pursuit mode does not currently support some modes, including arbitrary shaped texture coding, scalability and error resillience.

14.3.6.2	Video Object Plane Class

When matching pursuit mode is enabled, a modified version of the combined motion texture syntax is used. The syntax which follows corresponds to the combined_motion_shape_texture_coding() field in the VOP layer. The global mean adjustment parameter is sent first, followed by the motion-texture data for each macroblock:

CODMEAN (MEAN) MACROBLOCK1 MACROBLOCK2 MACROBLOCK3…

CODMEAN (1-bit) Was the mean luminance basis function coded?

MEAN (8-bits) Global mean adjustment for luminance, if used.

Each individual macroblock is coded using the syntax which follows. The macroblock mode and motion parameters for each macroblock are sent first:

--

MBMODE (MVD (MVD MVD MVD)) (DC DC DC DC DC DC)

--

MBMODE describes the prediction method for the macroblock and also whether any coded atoms are present. It takes one of 8 values as shown below.

Prediction Mode�Coded

Atoms?�MBMODE

Codeword�Prediction

Mode�Coded

Atoms?�MBMODE

Codeword��INTRA�Yes�101110�INTRA�No�101111��INTER�Yes�110�INTER�No�111��INTER4v�Yes�1010�INTER4v�No�10110��ZeroVector�Yes�100�ZeroVector�No�0��

If the mode is ZeroVector, then no additional motion data is sent. For INTER or INTER4v macroblocks, the motion vector or vectors (MVD) are differentially coded as they are in the DCT-mode. For INTRA macroblocks, the DC intra coefficients for each sub-block are quantized to 5 bits and transmitted without prediction in the usual block order. This is the only INTRA information sent with the macroblock. At the decoder, these average block values are used along with the overlapping motion window to form the prediction image.

If the MBMODE indicates that the current macroblock contains atoms, then these are sent immediately following the motion data. The overall syntax for the atoms in a macroblock looks like this:

NUMATOMS ATOM1 (ATOM2) (ATOM3)…

The NUMATOMS field indicates the number of atoms associated with the current macroblock. This is sent using a VLC table specified in the following section. The allowed range is from 1 to 99 atoms. For each atom, the following data is sent in the ATOM field:

HORZ_SHAPE VERT_SHAPE QCOEF_SIGN QCOEF_VALUE POSITION

HORZ_SHAPE (vlc) Index into horizontal basis shape table

VERT_SHAPE (vlc) Index into vertical basis shape table

QCOEF_SIGN (1-bit) Sign of weighting coefficient

QCOEF_VAL (vlc) Quantized coefficient value

POSITION (vlc*) Atom position

 *Note: if only one atom is present, POSITION is 8-bit fixed length.

 Otherwise one of three VLC tables (D1,D2,D3) are used.

 See description in Coding Atom Parameters section.

Escape codes within the horizontal basis shape table are used to indicate which subimage (Y, U, or V) the atom belongs to; this is described in the Coding Atom Parameters section. At the encoder the U and V atoms are interleaved with the Y atoms by position doubling, i.e. the coded position is (2x, 2y). This is accounted for at the decoder by dividing U and V atom positions by two.

14.3.7	Matching pursuit VLC Tables

14.3.7.1	Modulus

Index�Modulus Code�Index�Modulus Code�Index�Modulus Code��0�00�11�0111001100�22�01110011010111��1�1�12�01110001111�23�0111001101011001��2�010�13�01110011011�24�011100011101110��3�0110�14�011100110100�25�011100011101111��4�01111�15�0111000111001�26�0111000111000010��5�011101�16�0111001101010�27�0111000111000011��6�01110000�17�0111000111010�28�011100110101100000��7�01110010�18�01110001110001�29�01110011010110001��8�011100010�19�011100011101101�30�011100110101100001��9�011100111�20�011100110101101�31�011100011101100��10�0111000110�21�011100011100000����

14.3.7.2	Basis

Basis

Index�Horizontal

Code �Vertical

Code�Basis

Index�Horizontal

Code �Vertical

Code��0�001�0100�11�10000�1111��1�1001�0011�12�111101�101100��2�00010�1001�13�010011�10111��3�11010�00011�14�1100�0110��4�11111�01011�15�1110�1010��5�111100�010100�16�00011�1000��6�0100100�010101�17�0110�1110��7�0100101�101101�18�0111�0010��8�11011�00010�19�101�0000��9�0000�0111�U-ESC� 01000�---��10� 0101�110�V-ESC� 10001�---��

14.3.7.3	Number of Atoms

#�NUMATOMS�#�NUMATOMS�#�NUMATOMS��1�0�34�100000111111010�67�100001100001110��2�11�35�100000110010111�68�100001100001111��3�101�36�100000111111011�69�100000111111000��4�1001�37�100001100101111�70�100000111111001��5�10001�38�100001100100110�71�100001100011000��6�1000000�39�100000111101010�72�100001100011001��7�1000010�40�100000111101000�73�100000111110010��8�10000010�41�100000111110100�74�100000111110011��9�10000111�42�100000111101001�75�100000111100110��10�100001101�43�100001100101110�76�100000111100111��11�1000001110�44�100001100100111�77�100001100101100��12�10000011011�45�100001100001100�78�100001100101101��13�10000011010�46�100000111110000�79�100001100011110��14�100000110001�47�100000111101111�80�100001100011111��15�10000110011�48�100000111101011�81�100001100101000��16�100000110011�49�100001100010000�82�100001100101001��17�1000001100100�50�100001100100001�83�100000111100100��18�10000011001010�51�100001100001010�84�100000111100101��19�1000001111000�52�100001100001011�85�100001100011100��20�1000001100001�53�100001100000010�86�100001100011101��21�1000001100000�54�100001100000011�87�100001100000100��22�100000111101110�55�100001100010100�88�100001100000101��23�100001100101010�56�100001100010101�89�100001100100100��24�100001100001000�57�100000111111100�90�100001100100101��25�100000111110001�58�100000111111101�91�100001100100010��26�100001100100000�59�100000111111110�92�100001100100011��27�100000111110101�60�100000111111111�93�100001100011010��28�100001100101011�61�100001100000110�94�100001100011011��29�100000110010110�62�100001100000111�95�100001100010110��30�100000111110111�63�100000111101100�96�100001100010111��31�100001100010001�64�100000111101101�97�100001100000000��32�100000111110110�65�100001100010010�98�100001100000001��33�100001100001101�66�100001100010011�99�100001100001001��

14.3.7.4	Differential Position Coding

Index�D1 Codeword�D2 Codeword�D3 Codeword��0�001000�10100�1000��1�011000�01110�1011��2�101111�10011�00101��3�101101�11100�1101��4�110100�000000�00010��5�110101�11101�01010��6�0000110�000110�01001��7�0000001�000100�01011��8�111010�001010�10100��9�111011�000111�11000��10�110001�010000�11110��11�0000000�010011�11101��12�011101�001000�01100��13�111110�001011�11111��14�0100000�011000�000010��15�111000�010111�000111��16�0011101�010010�001000��17�0010101�001111�11001��18�0101011�011011�000000��19�0101000�100101�001100��20�111100�100000�100111��21�0001101�100011�001110��22�0100111�0000101�0000111��23�0111100�110101�111000��24�0111110�110111�001111��25�1011000�110110�100101��26�0110100�101110�0010010��27�1000011�101011�0100011��28�1001010�110001�0001100��29�0111000�110000�0100001��30�0110110�0000100�0001101��31�0101111�0000010�1001101��32�0101100�101100�0011010��33�0010100�111101�0011011��34�0001000�110011�1010100��35�1000101�0101000�1010101��36�1001100�0010011�00001100��37�1100110�0011000�00100110��38�1010100�0011100�1010110��39�00001000�0101100�00000111��40�1010001�0110101�10011000��41�1010101�0101101�111001011��42�1101101�0011101�1110011��43�1100111�0110011�00000110��44�1110011�1000101�01000000��45�1001101�1000010�100100011��46�1011001�0111111�01000001��47�1000110�0101011�0000010000��48�1000001�0011010�0111010��49�1111011�1011111�000011010��50�1010000�1101001�10011001��51�1010110�1001000�0111101101��52�1010010�00010101�01000100��53�1100001�00100100�00100111��54�1000000�0111101�0100010100��55�0110011�1000100�1010111��56�1110010�00110011�0111111100��57�00011000�1100101�0000010001��58�00001010�1111001�11100100��59�00011110�00001110�0000010010��60�1100101�00001100�011011100��61�00011100�00110111�01101101101��62�00010010�00010110�0000010101��63�00100111�00001111�0111111111��64�00111001�1011011�000011011��65�1111110�1111101�0110100011��66�00100101�00110110�111001010��67�1011101�00010100�0000010111��68�0110010�01010011�0110101010��69�00010111�01000111�0111100010��70�00010011�01000101�0000010100��71�00001110�00110010�0000010110��72�00101111�01111000�01111011111��73�00101100�10000111�0110111101��74�00101101�01111101�01110010010��75�00111110�01111100�0110110011��76�00010110�10101000�0110100000��77�01010011�10010011�0000010011��78�00111111�000001110�01111101101��79�01000011�10101001�10010011001��80�00110011�10111101�01101110111��81�00110100�01010101�100100111��82�01011100�10110100�01101101000��83�00110001�11110001�01110110101��84�00011101�10111100�01110110011��85�00110010�000011011�01101011010��86�01000110�000001111�01110110100��87�01010010�11111000�0100010111��88�1101111�10101011�10010000001��89�1010011�11010000�10010001011��90�01011011�11110000�01101100010��91�01101111�000101110�01111101110��92�01001101�010001001�01111101100��93�01001000�011001011�01101011001��94�01001011�11010001�0111011111��95�01001100�000101111�01101100000��96�10010001�010100101�01101100011��97�01101011�010100100�01101111001��98�01001010�010001101�10010000100��99�01010100�010001100�01110010011��100�01000111�011010011�01111101111��101�1100000�11111001�10010010000��102�0011011�000011010�0110101011��103�00010100�110010010�10010000101��104�00000110�011110011�10010011011��105�00101110�100001100�01101011000��106�01111011�011001000�01101100001��107�10111000�011010001�01111011100��108�10101111�011001001�01111011000��109�01000100�110010001�01101001110��110�10010010�100100100�01111011001��111�10011111�101101010�01111100111��112�01101110�110010000�01111100110��113�11110101�011010000�01101101111��114�000101011�101010100�01101101110��115�10010011�1000011010�0110100110��116�10001110�0101010000�01111011101��117�10001000�110010011�01101011011��118�00100100�0000011011�01111011110��119�00111101�0010010101�01101101001��120�00111000�1011010111�10010001010��121�00110101�0010010111�01101100101��122�10011101�1010101011�01101110110��123�000001011�0111100100�01101111000��124�000001111�00100101001�01111000110��125�11001001�0110010101�01101011110��126�10001001�1001001011�01111000111��127�11011001�0100010001�01101100100��128�000111111�1011010110�01110110010��129�000010010�00100101000�10010010011��130�000011110�1111111111�10010000000��131�11111111�1111111010�10010010010��132�010010010�0111100101�01101001111��133�010001010�1111110100010�10010010001��134�10010111�111111110�10010011000��135�00001011�0110100101�10010011010��136�11111110�1111111011�01101011111��137�01111110�00100101100�01111001100��138�011111111�11111101010�01111001101��139�010110100�00100101101�01101010000��140�011110101�01101001001�01101010001��141�010110101�10010010101�01101010010��142�10011110�01100101001�01101010011��143�001100001�01010100100�01110010110��144�011100100�0101010001�01110010111��145�100100001�01101001000�01111101000��146�001111001�11111101111�01111101001��147�100001000�000001100001�01111000000��148�010111010�111111011010�01111000001��149�011010100�10000110110�01111000010��150�010000101�01000100000�01111000011��151�000101010�10010010100�01101111110��152�000110011�010101001011�01101111111��153�001001101�01000100001�01101001000��154�110110000�111111001110�01101001001��155�100011111�0000011010010�01110000100��156�0000111111�1111110011010�01110000101��157�100011110�01010100110�01110000110��158�100101101�111111011101�01110000111��159�100001010�011001010000�01111110110��160�100001011�111111100110�01111110111��161�101110011�000001100101�01111010000��162�100101100�000001100000�01111010001��163�0000011101�11111110010�01111100000��164�101110010�10000110111�01111100001��165�101011100�1010101010111�01111100010��166�0000010000�00000110101010�01111100011��167�0001111101�101010101010�10010010110��168�110111001�111111010010�10010010111��169�0011000001�11111111100�01111111100��170�110111010�010101001111�01111111101��171�100100000�111111000000�01110001000��172�0000011100�111111000001�01110001001��173�0001100100�011001010001�01110001010��174�101011101�10101010100�01110001011��175�0000010001�1111110110110�01110000010��176�110111000�111111100000�01110000011��177�0011110001�11111100001�01110001100��178�0010011000�11111111101�01110001101��179�111101001�111111001001�01110011100��180�0000100110�1111110011110�01110011101��181�0011000000�1111110001010�01110011110��182�0110101011�1111110110111�01110011111��183�0111001101�0000011001100�01110111010��184�0111001011�1111110001101�01110111011��185�110010001�1111110011011�01000101100��186�011111110�1010101010110�01000101101��187�0000010011�00000110100000�01111001000��188�1101110110�00000110001101�01111001001��189�0100001001�1111110001011�01111001010��190�0100100110�0000011010100�01111001011��191�0000010101�1111110100110�01111001110��192�110110001�1111110100011�01111001111��193�0010011001�1111110001100�01110111100��194�0101010110�1111110001111�01110111101��195�0111001010�1111110001110�01101111100��196�0101010101�1111111000011�01101111101��197�0100100111�1111110011001�01101001010��198�1001110000�00000110101011�01101001011��199�1100100001�1111110011000�01111010100��200�0101110110�1111111000010�01111010101��201�1100100000�00000110011011�01110011000��202�0101010111�00000110100001�01110011001��203�1001110001�00000110011010�01111101010��204�00001111101�00000110011101�01111101011��205�01010101001�1111110110001�01000101010��206�1001110010�010101001110�01000101011��207�0111001110�1111110110000�01110000000��208�0101110111�00000110011100�01110000001��209�1000010010�111111100111�01110001110��210�01110011001�1111110100111�01110001111��211�0100010110�1111110001000�10010010100��212�000110010110�1111110001001�10010010101��213�1111010000�1111110010100�01110111000��214�00001001111�1111110010101�01110111001��215�01000101110�010101001010�01101000100��216�01111010010�1111110011111�01101000101��217�01000101111�00000110100010�10010000110��218�00011111001�00000110100011�10010000111��219�00000100101�00000110001000�10010000010��220�1111010001�00000110001001�10010000011��221�00111100001�00000110001010�01111111010��222�01000010000�00000110001011�01111111011��223�00001111100�00000110010000�01101110100��224�1101110111�00000110010001�01101110101��225�10011100110�00000110010010�01111110100��226�01110011111�00000110010011�01111110101��227�00011111000�00000110100110�10010001000��228�0111101000�00000110100111�10010001001��229�00011001010�00000110101100�01111010010��230�00000101001�00000110101101�01111010011��231�01101010100�1111110010000�01111100100��232�01101010101�1111110010001�01111100101��233�00111100000�1111110111000�01110011010��234�01111010011�1111110111001�01110011011��235�000110010111�1111110101100�01101101010��236�01010101000�1111110101101�01101101011��237�10000100111�1111110101110�01110010100��238�000010011101�1111110101111�01110010101��239�10000100110�1111110110010�01101011100��240�00000100100�1111110110011�01101011101��241�011100111101�1111111000100�01101000010��242�000010011100�1111111000101�01101000011��243�011100111100�00000110011110�01110110110��244�100111001110�00000110011111�01110110111��245�000001010000�1111111000110�01110110000��246�010000100011�1111111000111�01110110001��247�011100110000�1111110010110�01110010000��248�011100110001�1111110010111�01110010001��249�100111001111�00000110101110�01111110010��250�0000010100011�00000110101111�01111110011��251�000001010001010�1111110100000�01111010110��252�000001010001011�1111110100001�01111010111��253�0100001000100�00000110001110�01111110000��254�0100001000101�00000110001111�01111110001��255�00000101000100�00000110001100�01101101100��

14.4	Arbitrary shaped spatial scalability

VM 8 supports both temporal and spatial scalability in the combined syntax, which is referred to as generalized scalability. Since VOPs can have a rectangular shape or an arbitrary shape, both the traditional frame based and the object based scalability should be available. The extension to the object based scalability is described in this appendix.

14.4.1	Semantics for Object Based Scalability

At this moment, this extension is based on the same syntax in VM8. The encoding and decoding process is the same as the case for the rectangular shaped scalability, which is described in VM8. However, it will be possible to reduce the overhead with additional syntax change. The following semantics modifications are necessary for the extension to the object based scalability.

Padding and upsampling process

The size and the locations for the reference and the current VOP.

background_composition

14.4.2	Padding and upsampling process

If the reference VOP in the base layer has rectangular shape, the reference VOP is up - sampled. If the reference layer refereed has arbitrary shape, padding should be done before the up-sampling process. Otherwise, the boundary will be degraded.

14.4.3	Location of VOP

In the case of arbitrary shape VOPs, its size and locations change from time to time. In order to ensure the operation of motion compensation and the prediction from the base layer, it is necessary to identify the location of the VOPs in the absolute coordinate system.

First of all, the location of the reference VOPs should be identified.

14.4.3.1	With up-sampling process

This is the case that hor_sampling_factor_n/hor_sampling_factor_m or vert_sampling_factor_n/vert_sampling_factor_m is not equal to 1. In this case, the upsampled base layer is used as the reference VOP. If the base layer is rectangular in shape, the spatial reference of the

upsampled VOP is set to (0,0). If the base layer is an arbitrary shape, VOP_horizontal_mc_spatial_ref and VOP_vertical_mc_spatial_ref in base layer is scaled by*_sampling_factor_n/*_sampling_factor_m.

14.4.3.2	Without up-sampling process

This is the case that hor_sampling_factor_n/hor_sampling_factor_m and vert_sampling_factor_n/vert_sampling_factor_m is equal to 1. In this case, up - sampling is not done. If the reference layer has rectangular shape, the spatial reference of the reference VOP is set to (0,0). If the reference layer has arbitrary shape, the locations are encoded as VOP_horizontal_mc_spatial_ref and VOP_vertical_mc_spatial_ref in the reference layer.

14.4.4	Background composition

background_composition is encoded when enhancement_type is set to ‘1’. The definition of the background composition is extend to the spatial scalability. In addition to the current definition, the following definition is included. If background_composition is set to 1, the output image from the enhancement layer decoder should be placed on the upsampled decoded image of reference layer. In the case of spatial scalability, load_backward_shape and load_forward_shape is always set to ‘0’.

14.5	Multiple Video Object Rate Control

This section describes an algorithm which achieves a constant bit rate when coding multiple video objects. This implementation is based on the quadratic rate-distortion model presented in [MPEG95/0436]. For I-frame and first P-frame coding, macroblock-based quantization parameters are determined according to an algorithm based on human visual sensitivity (HVS) [MPEG97/0566]. For the remaining P-frames, the framework as proposed in [MPEG97/2219,2554] is used. For this scheme, each object maintains its own set of parameters. With these parameters an initial target estimate is made for each object. Based on the buffer fullness, the total target is adjusted and then distributed proportional to the size of the object, the motion which the object is experiencing, and its MAD. Based on the new individual targets and second order model parameters, appropriate quantization parameters can be calculated for each video object. To compromise the tradeoffs in spatial and temporal coding, two modes of operation have been introduced. With these modes, suitable decisions can be made to differentiate between low and high bit rate coding. In addition, a shape rate control algorithm has been included.

This scheme assumes that the encoder rate-distortion function for the ith VO is modeled as:

R[i]=X1[i]*S[i]*Q[i]**(-1)+X2[i]*S[i]*Q[i]**(-2)

The notation above is consistent with the model for SVOP described in 3.7.1. However, all variables have been extended to vector quantities to reflect the information in each VO.

The algorithm for performing the joint rate control can be decomposed into a pre-encoding stage and a post-encoding stage. As shown in Fig. 1, the pre-encoding stage consists of: i) the target bit estimation, ii) joint buffer control, iii) pre-frameskip control and iv) the quantization level and alpha threshold calculation; whereas the post-encoding stage consists of: i) updating the rate-distortion model, ii) post-frameskip control, and iii) determine mode of operation.

14.5.1	Initialization

The initialization process is very similar to the SVOP initialization process. Since a single buffer is used, the buffer drain rate and initializations remains the same, but many of the parameters are extended to vector quantities. A new feature of this block is the automatic selection of quantization parameters for the I-frame coding. This techniques to accomplish this are covered in the next section. This technique applies to multiple-VO rate control, single-VO rate control, and MB rate control.

14.5.2	Quantization level calculation for I-frame and first P-frame

To calculate the quantization parameters which are used for the I-frame and first P-frame, a bit allocation table based on Human Visual Sensitivity (HVS) of color tolerance is used. This scheme assigns a target bit rate which is predicted by histogram of variance and HVS classification.

Color/Variance classification: A macro block is classified into one of 32 macro block classes based on HVS and one of 16 classes based on the variance. A reference quantization step size is assigned to the macro block according to its macro block class. A macro block is classified into a sensitive category if the number of pixels in the macro block which satisfy LUT is larger than a threshold value. Otherwise the macro block is classified into insensitive category.

�������������

The block variance classification allows us to estimate the number of coded bits in a block. Generally, the number of coded bits generated in a block is proportional to the block variance when the quantization step size is assumed to be constant. We divide the magnitude of block variance into 16 intervals. Threshold values in each interval can be found in Table 1. Table 2 illustrates the reference quantization step size based on HVS for each macro block class and picture type.

Table 1. Block variance classes

 Bv

VOP�0�1�2�3�4�5�6�7�8�9�10�11�12�13�14�15��I�16�32�64�128�256�384�512�768�1024�1280�1792�2048�3072�4096�6154�¥��P�8�16�32�48�64�96�128�160�192�256�320�448�640�896�1536�¥��

Table 2. Reference quantization step size

Mc�0�1�2�3�4�5�6�7�8�9�10�11�12�13�14�15��Qss�6�5�5�4�4�4�4�4�4�5�6�5�4�4�4�4��Mc�16�17�18�19�20�21�22�23�24�25�26�27�28�29�30�31��Qss�4�5�5�5�5�4�4�4�4�5�5�5�5�5�5�6��

Initial QP setting method

SetInitialQP()

{

	PreDiff = 1000000;

	Classification();

	if(Flat Image)		TargetBit = AverageBitPerFrame * 9;

	else			TargetBit = AverageBitPerFrame * 4;

	/* Find Optimal Qp value */

	for(i=1; i<31; i++){

	 SetMB_QP();	/* Allocate HVS optimal QP to each MB */

	 EstimatedBit = Bitestimation(); /* Pre-bit-estimation */

	 Diff = abs(TargetBit - EstimatedBit);

	 if(Diff<PreDiff){

		PreDiff = Diff;

		MinErrorQ = i;

	 }

	} /* MinErrorQ is the final average Qp value */

	SetMB_QP(); /* Allocate HVS Optimal Qp to each MB */

}

Frame target bit allocation

�

 Frame coded-bit estimation: There are 512 classes which are combinations of 32 macro block color classes(Mc) and 16 block variance classes(Bv). We can estimate the total number of coded bits in a frame with the histogram and the bit model table. FrameEstimatedBit is the estimated number of coded bit in the current frame

�

or

�

In the above equation, B[Mc][Bv] is the number of bits in the bit table and H[Mc][Bv] is the computation result of the histogram when a block is classified into Bv. The histogram can be computed with the information of macro block classes and block classes of the previous frame because the current frame to be coded and the previous frame are very highly correlated. Therefore the real-time coding process is possible.

VOP texture-bit estimation

�

14.5.3	Post-Encoding Stage

Update Rate-Distortion Model: After the encoding stage, the parameters for the RD model must be sought. Given the number of texture bits used to code the current VO, R[i], the quantization level, Q[i], and the sum of absolute difference, S[i], the algorithm calculates the parameters X1[i] and X2[i] for every VO.

Post-Frameskip Control: The post-frameskip control determines the value of N_skip_post. After the buffer has been updated, i.e., by adding the sum of bits for coding every VO and subtracting the number of bits to be removed per picture, then the post-frameskip control is invoked. Essentially, if the “virtual buffer” has exceeded 75% of the buffer size, the encoder will skip the upcoming frames so as to reduce the current buffer level. The virtual buffer level (VB) is given by:

VB = B + Bp - (N_skip_post+1)*Rp

where the new variable, Bp, denotes the number of bits used in the previous frame. As before, B is the current buffer level and Rp is the number of bits removed from the buffer per picture. The above functionalities can be summarized in the psuedocode below:

�

Figure 1. Block diagram for multi-VO rate control

Post_Encoding()

{

B += Rc - Rp;						/* update buffer fullness, Rc=bits for coded VO */

Rr -= Rc;						/* update the remaining bit counts */

S[i] = Rc[i];						/* update previous bit counts for every VO */

Hp[i] = Hc[i]; 						/* update previous header counts for every VO*/

Qp[i] = Qc[i]; 						/* update the previous quant level for every VO */

Nr[i]--;						/* update the VO counter for every VO*/

UpdateRDModel(Qc[i],Rc[i],Ec[i],Hc[i],X1[i],X[i])	/* estimation of a new model */

if (VB > 0.75 * Bs) {					/* VB = virtual buffer level */

	N_skip_post[i]++;

	Nr[i]--;

	B -= Rp;

 }

 N_skip[i] = N_skip_pre[i] + N_skip_post[i];

}

Please note that the above is implemented for a scheme in which all VO are coded at the same frame rate. This implies that the frameskip applies to every VO. The notion suggests that this will be extended to different frame rate coding, but a more complex buffering algorithm will be needed.

After the value of N_skip_post has been found the value of N_skip_pre is added to it. The determination of N_skip_pre will be discussed shortly. The time instant update is based on the total frames to be skipped N_skip = N_skip_pre + N_skip_post. Note that the only time that the time instant can be updated is after the post-frameskip control.

14.5.4	Pre-Encoding Stage

Target Estimation: The initial target bit rate is calculated based on the number of available bits for the segment and the number of bits used in the previous corresponding VO. A similar lower bound to the SVOP algorithm is used, where Rs: bit rate for sequence, Nr[i]: number of ith VO remaining, S[i]: bit count for coding previous ith VO.

Target_Estimation()

{

	T[i]=Max{Rs/(30*numVOs), Rr/(Nr[i]*numVOs)}

	T[i] = T[i] * 0.8 + S[i] * 0.2

}

Joint Buffer Control: The joint buffer control symbolizes the same operation as buffer control in SVOP rate control, however, the target is a sum of individual targets, i.e., T = sum of T[i].

Target Distribution: From the joint buffer control, a new total target is calculated. It is this target which will be distributed among the VO. The distribution is based on the size, the motion and the MAD2 of each object.

Target_Distribution()

{

 valid = Check_target();

 if(valid) {

	for (j = every MB in ith VO) {

		/* calculate mean motion vector for ith VO */

	 	MMV[i] = (abs(dx[j]) + abs(dy[j]))/N_mb[i];	

	}

	/* calculate MAD_SQ for ith VO */

	MAD_SQ[i] = (error_sq[i])/N_mb[i];	/* error_sq[i]: squared MAD of ith VO */

	

	MAD2[i] = MAD_SQ[i]/MAD_SQ;		/* MAD_SQ: sum of MAD_SQ[i] */

	MOTION[i] = MMV[i]/MMV;		/* MMV: sum of MMV[i] for all VO */

	SIZE[i] = N_mb[i]/N_mb;	/* N_mb[i]: MBs in ith VO */

				/* N_mb: total MBs in picture */

						

	T[i] = (MOTION[i]*wm + SIZE[i]*ws + MAD2[i]*wv)*T;

 }

 else {

	T[i] = negative value;

 }

}	

The distribution is only executed when the target is valid. The target is valid when it is greater than the sum of header bits used for coding the previous frame. If it is not valid, all the targets are made negative. The negative targets will serve as a flag for clipping the quantization parameters. Also, if the target is negative, the value of N_skip_pre will be non-zero for the next time instant update. The routines below summarize the remaining steps of the pre-encoding stage.

int Check_target()

{

	s = T - H;		/* T: total target from joint buffer control */

				/* H: sum of header bits for all VO */

	if(s<0)

	 while(s<0) {

		N_skip_pre++;

		s += Rp;	/* add number of bits to be removed from buffer/picture */

	 }

	 return(0);		/* invalid target */

	else

	 return(1);		/* valid target */

}

Once the targets have been established, the quantization level for each object can be calculated individually.

Quantization_Level_Calculation()

{

if (X2==0) Qc = X1*Ec/T;					/* fall back 1st order mode */

else Qc= (2*X2*Ec)/(sqrt((X1*Ec)**2+4*X2*Ec*T)-X1*Ec)	/* 2nd order mode */

/* clipping */

Qc = Min (ceil(Ql*1.25), Qc, 31);

if(negative target)

	Qc = Max (ceil(Ql*0.75), Qc, LB_QUANT);

else

 Qc = Max (ceil(Ql*0.75), Qc, 1);

}

The value of LB_QUANT limits the number of texture bits for cases in which the target is not even sufficient to code the header information. This safety measure assists in preventing overflow for coding the current frame. As a corrective measure, the value of N_skip_pre is applied to the next time coding instant.

14.5.5	Modes of Operation

As a means of regulating the trade-offs between spatial and temporal coding, two modes of operation are introduced: LowMode and HighMode. When encoding at high bit rates, the availability of bits allows the algorithm to be flexible in its target assignment to each VO. Under these circumstances, it is reasonable to impose homogeneous quality among each VO. Therefore, the inclusion of MAD2[i] is essential to the target distribution and should carry the highest weighting. On the other hand, when the availability of bits is limited, it is very difficult (if not impossible) to achieve homogeneous quality among the VO. Under these conditions, it is desirable to spend less bits on the background and more bits on the foreground. Consequently, the significance of the variance has decreased and the significance of the motion has increased. Based on the above arguments and experimental trial-and-error, the weights used in our experiments were: wm = 0.6, ws = 0.4, wv = 0.0 for LowMode and wm = 0.25, ws = 0.25, wv = 0.5 for HighMode.

	Besides regulating the quality within each frame, it is also important to regulate the temporal quality as well, i.e., keep the frame skipping to a minimum. In HighMode, this is very easy to do since the availability of bits is plentiful. However, in LowMode, frame skipping occurs much more often. In fact, the number of frames being skipped is a good indication of which mode the algorithm should be operating. This is expressed as follows:

			if (total_frames_skipped > SKIP_TH)

				Operate in LowMode

			else

				Operate in HighMode

In the current implementation, the skip threshold was set to 2.

	The decision process to obtain a mode of operation can also be seen as a constraint on the temporal resolution. If we are in LowMode, we know that the encoder has skipped some specified number of frames. To obtain a reasonable compromise between the spatial and temporal quality, LowMode will impose a lower bound on the calculated quantization parameter. This lower bound, LB_QUANT, is the same as that used in [MPEG97/1631] when the target from the joint buffer control was less that the amount of header bits used in the last frame.

14.5.6	Shape Rate Control

From section 3.2.1.5 of the VM, it is evident that the value of AlphaTH has considerable effect over the number of bits which will be spent on the shape information. In the following, a scheme is proposed for controlling the shape information based on the selection of the AlphaTH in light of the two modes of operation - LowMode and High Mode.

	Assume that AlphaTH is initially set to AlphaINI. After the encoding stage, the rate control algorithm will determine the mode of operation, such that:

If the mode of operation is LowMode then increment the current AlphaTH by AlphaINC;

If the mode of operation is HighMode then decrement the current AlphaTH by AlphaDEC.

The maximum and minimum values of AlphaTH are AlphaMAX and 0, respectively. Recommended parameter values are AlphaMAX=12, AlphaINC=AlphaDEC=4 and AlphaINI=0.

14.5.7	Summary

The algorithms described in this section illustrates how the framework of the existing VM7.1 rate control is extended to multiple VO encoding. Automatic selection of quantization parameters for I-frame and first P-frame are used. Overall, the algorithm is able to successfully achieve the target bit rate, effectively code arbitrarily shaped objects, and maintain a stable buffer.

14.6	Joint Macroblock-Layer Rate Control

Samsung’s technique [1] uses a model of the human visual system (HVS).

Sarnoff’s technique [2] attempts to maintain a constant value of QP for the entire image. More appropriate for lower bit rates.

Sharp’s [3] technique adapts QP with the energy of the block. More appropriate for higher bit rates.

14.6.1	Rate-Distortion Model

We model the number of bits Bi produced for the i-th macroblock :		

	�EMBED Equation.3���		 (1)

A�1 , A2 and A3 are the model parameters,

Bitrate is the rate in bits per pixel for the texture of VOP,

R is a threshold. By default, we set R=0.085.

14.6.2	Target number of bits for each macroblock

Let N be the number of macroblocks in a VOP.

The target number of bits, Ti, for the i-th macroblock :

�EMBED Equation.3���,				 (2)

where:

Wi is a weight that indicates the perceptual importance of the i-th macroblock.

T is the target number of bits for the DCT coefficients (luminance and chrominance components) of the VOP, which is the target frame bits from VM7.0’s frame-layer rate control [4] minus the bits for motion, shape, and syntax overhead.

If we combine (1) and (2), we obtain:

		 	�EMBED Equation.3��� 		 (3)

C1 is a function of A1, MAD1, …, MADN and T.

C2 is a function of A2, A3, MAD1, …, MADN, and T.

14.6.3	The Macroblock Rate Control Technique

Step 1. Initialization.

	

 	N - number of macroblocks in the VOP ,

T - number of bits available for encoding the macroblocks’ texture

If first frame, let A1= A1_in= 100, A2= A2_in= 400, A3= A3_in= 0

Otherwise, let A1= A1_in , A2= A2_in, and A3= A3_in.

If Bitrate > R = 0.085, let K=1, otherwise let K=2.

Here, we set W1= W2= …=WN = 1, but could be obtained from [1].

Finally, let �EMBED Equation.3���.

Step 2. Compute QP for i_th macroblock

Let �EMBED Equation.3���, the target number of bits per macroblock.

		 		�EMBED Equation.3���

Round QP to value in 1, …, 31, and QP change constrained by DQUANT.

Step 3. Encode Macroblock with QP

Step 4. Update Counters 	

�EMBED Equation.3��� - number of bits used for i_th macroblock. Compute:

	 	�EMBED Equation.3��� �EMBED Equation.3��� and �EMBED Equation.3���.

Step 5. Update A1 or A2, B

If K = 1, �EMBED Equation.3����EMBED Equation.3���	

Let �EMBED Equation.3���			

If K = 2, use linear regression to estimate A2 and A3 as in VM rate control [4]

 	 	

Step 6. If i = N, Stop (all macroblocks are encoded), let Af_prev = Af for f =1,2,3.

Otherwise, i = i+1, and go to Step 2.

14.7	Boundary block merging (BBM)

BBM (Boundary Block Merging) is applied to the luminance component of boundary macroblocks after padding (the zero padding for inter coding and the LPE padding for intra coding) and before the texture coding of DCT.

Three types of merging mode in � REF _Ref394721486 * MERGEFORMAT �Figure 82� are performed sequentially (horizontal -> vertical -> diagonal). Two block mergings at most can happen in a merging mode. If one block merging occurs at least in a merging mode, the next merging mode(s) are not executed.

For the pairs of block1 and block 2 shown in � REF _Ref394721486 * MERGEFORMAT �Figure 82�, if there are no overlaps between the 180o-rotated reconstructed shape of block 2 and the reconstructed shape of block 1 and they are boundary blocks, the 180o-rotated block 2 is merged into block 1, filling transparent pixels of the merged block 1 by the average padding values of block 1 and block 2 (c.f.� REF _Ref394721502 * MERGEFORMAT �Figure 83�). The block 2 is set to transparent block. The merged block is DCT coded.

In case of intra-coded macroblocks, when block 2 is merged into block 1, the DC value of merged block 1 is copied to the DC coefficient of block 2. This DC copy method improves coding efficiency in AC/DC prediction of neighboring bocks. The AC values of block 2 are set to zero.

For decoding, the merged texture is redistributed into the blocks before merging, after verifying that it is merged by testing if there are no overlaps between the 180o-rotated reconstructed shape of block 2 and the reconstructed shape of block 1 and they are boundary blocks as in the encoder.

In case of intra-coded macroblocks, for block 2 which is verified as transparent block by merging, its DC value is set to the DC value of block 1.

	

�EMBED Word.Picture.8���

Horizontal Mode (b) Vertical Mode (c) Diagonal Mode

Figure � SEQ Figure * ARABIC �82�: Three modes of merging blocks in a macroblock for BBM

� REF _Ref394721502 * MERGEFORMAT �Figure 83� shows an example of BBM applied to a macroblock. Upper two boundary blocks are merged in the horizontal mode.

�EMBED Word.Picture.8���

(a) Luminance blocks before applying BBM (b) Luminance blocks after applying BBM (c) DC Copy method

Figure � SEQ Figure * ARABIC �83�: Boundary Block Merging (BBM) Process

14.8	Adaptive 3D VLC for intra block coding

The adaptive 3D VLC is only applied to the encoding of intra DCT coefficients. In particular, the CBPY I in Table 52, Section 6.1.5, is replaced by a CBPYi in this appendix, and the block data in Table 43, Section 6.1, is also replaced by the block syntax in this appendix.

14.8.1	Coded Block Pattern for Luminance Block

For intra macroblock, the CBPY I in Table 52, Section 6.1.5, is replaced by the intra Coded Block Pattern (CBPYi). The CBPYi is a four bit unsigned integer (b1b2b3b4). The bit bi = 1, if the i-th block has at least one nonzero coefficients, otherwise bi = 0. The VLC table of CBPYi is in � REF _Ref402085034 \h ��Table 72�.

INDEX�PATTERN

(b1b2b3b4)�BITS�VLC ��1�15�1�1��2�0�2�01��3�7�5�0011 1��4�14�5�0011 0��5�13�5�0010 1��6�11�6�0010 01��7�12�6�0010 00��8�10�6�0001 11��9�5�6�0001 10��10�3�6�0001 01��11�8�6�0001 00��12�2�6�0000 11��13�4�6�0000 10��14�1�6�0000 01��15�9�7�0000 001��16�6�8�0000 0001 ��Table � SEQ Table * ARABIC �72�VLC table for CBPYi.

14.8.2	Block

The following block syntax replaced the block syntax in macroblock. For intra, the block structure comprises of four zones of DCT coefficients, and a DC component when ACDC prediction is not used. A zone is present if any of the DCT coefficients inside the zone is not zero. A zone is presented when indicated by the Initial State Pattern. Instead of zigzag scan, the coefficients in the four zones are scanned by a new Instantaneous Power Matching (IPM) Scan described later in Section 14.� REF _Ref394818907 \n * MERGEFORMAT �14.8.3�.

block(i) {�No. of bits�Mnemonic�� if (pattern_code[i]) {���� if (mb_intra) {���� if (i<4) {���� dct_dc_size_luminance�2-11�vlclbf�� if (dct_dc_size_luminance!=0) ���� dct_dc_differential�1-11�uimsbf�� }���� else {���� dct_dc_size_chrominance�2-12�vlclbf�� if (dct_dc_size_chrominance!=0) ���� dct_dc_differential�1-11�uimsbf�� }���� initial_state_pattern�3-12�vlclbf�� for (j=1; j<=4; j++) ���� zone(j,initial_state_pattern[j])���� }���� else {���� first_DCT_coefficient�2-24�vlclbf�� while (nextbits()!= lastcoef) ���� subsequent_DCT_coefficient�3-24�vlclbf�� }����}����14.8.3	Instantaneous Power Matching (IPM) Scan for Intra Blocks

The DCT coefficients in an 8x8 intra block are divided into 4 zones and DC. The coefficients in each zone are scanned into a one-dimensional array in the order as shown in Figure 1. The four zone scanning is used to match the instantaneous power of an 8x8 DCT coefficient block. By matching the instantaneous power instead of the average power as in Zig-Zag Scan, the coding efficiency is improved.

0�1�2�3�4�5�6�7��8�15�16�18�19�23�24�30��9�43�17�20�22�25�29�31��10�44�45�21�26�28�32�36��11�46�48�49�27�33�35�37��12�47�50�54�55�34�38�40��13�51�53�56�59�60�39�41��14�52�57�58�61�62�63�42��

Figure 14.� STYLEREF 1 \n �14�-� SEQ Figure * ARABIC \r 1 �1� 	Four-zone scan: zone 1 (coefficient 1-7), zone 2 (coefficient 8-14), zone 3 (coefficient 15-42), and zone (coefficient 43-63).

14.8.4	Initial State Pattern for I-Blocks

The Initial State Pattern for I-blocks (ISPi) is given by the symbol (s1s2s3s4). The initial state of zone j, initial_sate_pattern[j], is given by sj. A state of 0 indicates that the zone contains all zeros and is not coded. Zones 1 and 2 that contain non-zero coefficients can begin in state 1, 2 or 3. Zones 3 and 4 that contain non-zero coefficients can begin in state 1 or 2. The index is calculated by the following formula, index = 36s1 + 9s2 + 3s3 + s4. The following table gives the variable length codes (VLC) associated with each possible ISPi.

INDEX�INITIAL STATE PATTERN

ISPi�BITS�VLC ���s1�s2�s3�s4����1�0�0�0�1�7�0000001��2�0�0�0�2�13�0000000111000��3�0�0�1�0�6�000001��4�0�0�1�1�8�11010010��5�0�0�1�2�13�0000000110101��6�0�0�2�0�12�111111111100��7�0�0�2�1�13�0000000101010��8�0�0�2�2�13�0000000111001��9�0�1�0�0�3�001��10�0�1�0�1�6�011110��11�0�1�0�2�12�111111111101��12�0�1�1�0�6�011111��13�0�1�1�1�7�1010100��14�0�1�1�2�10�1111110000��15�0�1�2�0�12�111111111110��16�0�1�2�1�10�1111110001��17�0�1�2�2�12�111111111111��18�0�2�0�0�5�00001��19�0�2�0�1�6�100000��20�0�2�0�2�10�1111110010��21�0�2�1�0�7�1010101��22�0�2�1�1�7�1010110��23�0�2�1�2�8�11010011��24�0�2�2�0�12�000000010000��25�0�2�2�1�9�111100000��26�0�2�2�2�10�1111110011��27�0�3�0�0�7�1010111��28�0�3�0�1�8�11010100��29�0�3�0�2�10�1111110100��30�0�3�1�0�9�111100001��31�0�3�1�1�8�11010101��32�0�3�1�2�9�111100010��33�0�3�2�0�13�0000000101011��34�0�3�2�1�10�1111110101��35�0�3�2�2�8�11010110��36�1�0�0�0�3�010��37�1�0�0�1�9�111100011��38�1�0�0�2�13�0000000111011��39�1�0�1�0�6�100001��40�1�0�1�1�8�11010111��41�1�0�1�2�13�0000000110110��42�1�0�2�0�9�111100100��43�1�0�2�1�12�000000010001��44�1�0�2�2�13�0000000101100��45�1�1�0�0�5�01100��46�1�1�0�1�8�11011000��47�1�1�0�2�13�0000000101101��48�1�1�1�0�6�100010��49�1�1�1�1�6�100011��50�1�1�1�2�9�111100101��51�1�1�2�0�9�111100110��52�1�1�2�1�8�11011001��53�1�1�2�2�9�111100111��54�1�2�0�0�6�100100��55�1�2�0�1�8�11011010��56�1�2�0�2�10�1111110110��57�1�2�1�0�7�1011000��58�1�2�1�1�7�1011001��59�1�2�1�2�8�11011011��60�1�2�2�0�9�111101000��61�1�2�2�1�8�11011100��62�1�2�2�2�8�11011101��63�1�3�0�0�8�11011110��64�1�3�0�1�8�11011111��65�1�3�0�2�9�111101001��66�1�3�1�0�8�11100000��67�1�3�1�1�7�1011010��68�1�3�1�2�7�1011011��69�1�3�2�0�10�1111110111��70�1�3�2�1�8�11100001��71�1�3�2�2�6�100101��72�2�0�0�0�5�01101��73�2�0�0�1�12�000000010010��74�2�0�0�2�13�0000000111100��75�2�0�1�0�7�1011100��76�2�0�1�1�10�1111111000��77�2�0�1�2�13�0000000110111��78�2�0�2�0�9�111101010��79�2�0�2�1�10�1111111001��80�2�0�2�2�13�0000000101110��81�2�1�0�0�6�100110��82�2�1�0�1�9�111101011��83�2�1�0�2�13�0000000101111��84�2�1�1�0�6�100111��85�2�1�1�1�7�1011101��86�2�1�1�2�10�1111111010��87�2�1�2�0�8�11100010��88�2�1�2�1�8�11100011��89�2�1�2�2�9�111101100��90�2�2�0�0�8�11100100��91�2�2�0�1�9�111101101��92�2�2�0�2�13�0000000110000��93�2�2�1�0�7�1011110��94�2�2�1�1�7�1011111��95�2�2�1�2�8�11100101��96�2�2�2�0�7�1100000��97�2�2�2�1�7�1100001��98�2�2�2�2�7�1100010��99�2�3�0�0�9�111101110��100�2�3�0�1�10�1111111011��101�2�3�0�2�10�1111111100��102�2�3�1�0�9�111101111��103�2�3�1�1�8�11100110��104�2�3�1�2�7�1100011��105�2�3�2�0�9�111110000��106�2�3�2�1�7�1100100��107�2�3�2�2�5�01110��108�3�0�0�0�7�1100101��109�3�0�0�1�13�0000000110001��110�3�0�0�2�13�0000000111101��111�3�0�1�0�8�11100111��112�3�0�1�1�10�1111111101��113�3�0�1�2�13�0000000111110��114�3�0�2�0�9�111110001��115�3�0�2�1�9�111110010��116�3�0�2�2�13�0000000110010��117�3�1�0�0�8�11101000��118�3�1�0�1�11�11111111100��119�3�1�0�2�13�0000000111111��120�3�1�1�0�7�1100110��121�3�1�1�1�8�11101001��122�3�1�1�2�12�000000010011��123�3�1�2�0�8�11101010��124�3�1�2�1�8�11101011��125�3�1�2�2�9�111110011��126�3�2�0�0�9�111110100��127�3�2�0�1�12�000000010100��128�3�2�0�2�13�0000000111010��129�3�2�1�0�8�11101100��130�3�2�1�1�8�11101101��131�3�2�1�2�9�111110101��132�3�2�2�0�7�1100111��133�3�2�2�1�7�1101000��134�3�2�2�2�6�101000��135�3�3�0�0�11�11111111101��136�3�3�0�1�13�0000000110011��137�3�3�0�2�13�0000000110100��138�3�3�1�0�9�111110110��139�3�3�1�1�9�111110111��140�3�3�1�2�8�11101110��141�3�3�2�0�8�11101111��142�3�3�2�1�6�101001��143�3�3�2�2�4�0001��

Table 14.� SEQ Table * ARABIC �73�	VLC table for Initial State Pattern of I-Blocks.

14.8.5	Zone

The coefficients in each zone are encoded by using multiple 3D VLC tables. The 3D symbols in each VLC table have the following form:

NEXT�RUN�LEVEL��

RUN and LEVEL is the same as in Section 6.2.2. NEXT is used to indicate which VLC table should be used to encode the next 3D symbol.

Similar to Section 6.2.2, a series of (RUNi,LEVELi) pair is generated by IPM scan for intra DCT blocks. Then NEXTi is determined as follows. If there are n pairs in a zone,

		{(RUNi,LEVELi)| i = 1,..,n},

The state transition, NEXTi is computed in two steps. First, the least upper bound on {LEVELk | k = i+1,...,n} is computed recursively by

		BOUNDi = max (LEVELi+1, BOUNDi+1), 	i = n-1, ..., 1.

with BOUNDn = 0. Then BOUNDi is converted to NEXTi by � REF _Ref394820869 * MERGEFORMAT �Table 14.74� and � REF _Ref394820928 * MERGEFORMAT �Table 14.75�.

BOUNDi�NEXTi��0�0 (EOZ)��1�1��2,3�2��4,5,...,255�3��

Table 14.� SEQ Table * ARABIC �74� Conversion table for horizontal-vertical (zone 1 and 2) intra DCT symbols.

BOUNDi�NEXTi��0�0 (EOZ)��1�1��2,3,...,255�2��

Table 14.� SEQ Table * ARABIC �75� Conversion table for diagonal (zone 3 and 4) intra DCT symbols.

The DCT coefficients in a zone are encoded using the following syntax:

zone(j , state) {�No. of bits�Mnemonic�� for (i = 1; state != 0; i++) {���� if (j==1 || j==2) ���� HV_TCOEFF(state,NEXTi,RUNi,LEVELi)�2-20�vlclbf�� else ���� D_TCOEFF(state,NEXTi,RUNi,LEVELi)�2-22�vlclbf�� state = NEXTi;���� }����}����

For intra DCT coefficients, the HV_TCOEFF(state,NEXTi,RUNi,LEVELi) is a 3D VLC for the symbol (NEXTi,RUNi,LEVELi) from the horizontal-vertical zone intra VLC table indexed by the state. The D_TCOEFF(state,NEXTi,RUNi,LEVELi) is a 3D VLC for the symbol (NEXT,RUN,LEVEL) from the intra diagonal zone VLC table indexed by the state.

In general, the first symbol in each zone is always encoded by the VLC table indicated by the ISP. Subsequent symbols are encoded by other tables indexed by NEXT of the current symbol. Because of the manor that NEXTi is determined, NEXTi is a monotonic non-increasing function of i. This limits how VLC table transitions can be made.

�Next Table��Current Table�3�2�1�EOZ��3�X�X�X�X��2��X�X�X��1���X�X��Table 14.� SEQ Table * ARABIC �76� VLC table transition for intra horizontal-vertical zones.

�Next Table��Current Table�2�1�EOZ��2�X�X�X��1��X�X��Table 14.� SEQ Table * ARABIC �77� VLC table transitions for intra diagonal zones.

To reduce the number of intra DCT VLC entries, Zone 1 and 2 jointly use three VLC tables corresponding to three states, while Zone 3 and Zone 4 shared two VLC tables corresponding to two states.

The first symbol is encoded by the VLC table indicated by the Initial State Pattern, ISPi. The next symbol is encoded by the state NEXTi-1 VLC table. For intra DCT symbols in Zone 1 and 2, (NEXTi, RUNi, LEVELi) is encoded by the VLC tables in Section 14.� REF _Ref394826007 \n * MERGEFORMAT �14.8.6�.

For intra DCT symbols in Zone 3 and 4, (NEXTi, RUNi, LEVELi) is encoded by the state NEXTi-1 VLC table in Section 14.� REF _Ref394826052 \n * MERGEFORMAT �14.8.7�.

14.8.6	Intra Horizontal-Vertical Zone (Zone 1 and Zone 2) DCT VLC Tables

14.8.6.1	State 1 Intra VLC Table

No escape sequence is necessary as the table contains all the possible event in this state.

INDEX�NEXT�RUN�LEVEL�BITS�VLC CODE��1�EOZ�0�1�2�1s��2�1�0�1�3�01s��3�EOZ�1�1�4�001s��4�1�1�1�5�0001 s��5�EOZ�2�1�6�0000 1s��6�EOZ�3�1�7�0000 01s��7�1�2�1�8�0000 001s��8�EOZ�4�1�9�0000 0001 s��9�1�3�1�10�0000 0000 1s��10�EOZ�5�1�11�0000 0000 01s��11�1�4�1�12�0000 0000 001s��12�EOZ �6�1�13�0000 0000 0001s ��13�1�5�1�14�0000 0000 0000 1s��

Table 14.� SEQ Table * ARABIC �78� VLC table for State 1 intra horizontal-vertical zone.

14.8.6.2	State 2 Intra VLC Table

The escape sequence is ESC+NEXT+RUN+LEVEL+SIGN, where ESC is 10 bits, NEXT is a 2 bit unsigned int, RUN is a 3 bit unsigned int, LEVEL is a 2 bits unsigned int, SIGN is a 1 bit unsigned int.

INDEX�NEXT�RUN�LEVEL�BITS�VLC CODE��1�1�0�2�3�11s��2�EOZ�0�2�4�101s��3�2�0�1�4�100s��4�2�0�2�4�011s��5�2�0�3�5�0101 s��6�1�0�3�5�0100 s��7�EOZ�0�3�5�0011 s��8�EOZ�1�2�6�0010 1s��9�1�1�2�6�0010 0s��10�2�1�1�6�0001 1s��11�2�1�2�7�0001 01s��12�1�1�3�7�0001 00s��13�EOZ�1�3�7�0000 11s��14�2�1�3�7�0000 10s��15�EOZ�2�2�8�0000 011s��16�1�2�2�8�0000 010s��17�2�2�1�9�0000 0011 s��18�2�2�2�10�0000 0010 1s��19�EOZ�2�3�10�0000 0010 0s��20�EOZ�3�2�10�0000 0001 1s��21�1�2�3�11�0000 0001 01s��22�2�2�3�11�0000 0001 00s��23�ESC���10�0000 0000 11��24�1�3�2�11�0000 0000 10s��25�2�3�1�12�0000 0000 011s��26�EOZ�4�2�12�0000 0000 010s��27�EOZ�3�3�12�0000 0000 001s��28�2�3�2�13�0000 0000 0001 s��

Table 14.� SEQ Table * ARABIC �79�	VLC table for State 2 intra horizontal-vertical zone.

14.8.6.3	State 3 Intra VLC Table

The escape sequence is ESC+NEXT+RUN+LEVEL+SIGN, where ESC is 6 bits, NEXT is a 2 bit unsigned int, RUN is a 3 bit unsigned int, LEVEL is an 8 bit unsigned int, SIGN is a 1 bit unsigned int.

INDEX�NEXT�RUN�LEVEL�BITS�VLC ��1�3�0�1�5�1111 s��2�3�0�2�5�1110 s��3�2�0�4�5�1101 s��4�3�0�3�5�1100 s��5�3�0�4�5�1011 s��6�3�0�5�6�1010 1s��7�1�0�4�6�1010 0s��8�2�0�5�6�1001 1s��9�3�0�6�6�1001 0s��10�3�0�7�6�1000 1s��11�3�0�8�6�1000 0s��12�EOZ�0�4�6�0111 1s��13�2�0�6�6�0111 0s��14�3�0�9�6�0110 1s��15�1�0�5�7�0110 01s��16�3�0�10�7�0110 00s��17�2�0�7�7�0101 11s��18�3�0�11�7�0101 10s��19�ESC���6�0101 01��20�3�0�12�7�0101 00s��21�EOZ�0�5�7�0100 11s��22�3�0�13�7�0100 10s��23�2�0�8�7�0100 01s��24�1�0�6�7�0100 00s��25�3�0�14�7�0011 11s��26�3�0�15�8�0011 101s��27�3�0�16�8�0011 100s��28�2�0�9�8�0011 011s��29�EOZ�0�6�8�0011 010s��30�3�0�17�8�0011 001s��31�1�0�7�8�0011 000s��32�3�0�18�8�0010 111s��33�3�0�19�8�0010 110s��34�2�0�10�8�0010 101s��35�3�1�1�9�0010 1001 s��36�3�0�20�9�0010 1000 s��37�2�1�4�9�0010 0111 s��38�EOZ�0�7�9�0010 0110 s��39�3�0�21�9�0010 0101 s��40�3�1�2�9�0010 0100 s��41�1�1�4�9�0010 0011 s��42�3�0�22�9�0010 0010 s��43�1�0�8�9�0010 0001 s��44�2�0�11�9�0010 0000 s��45�3�0�23�9�0001 1111 s��46�3�1�3�9�0001 1110 s��47�EOZ�1�4�9�0001 1101 s��48�3�0�24�9�0001 1100 s��49�EOZ�0�8�9�0001 1011 s��50�2�0�12�9�0001 1010 s��51�3�0�25�9�0001 1001 s��52�3�1�4�9�0001 1000 s��53�3�0�26�9�0001 0111 s��54�2�1�5�9�0001 0110 s��55�1�0�9�9�0001 0101 s��56�3�0�27�10�0001 0100 1s��57�3�0�28�10�0001 0100 0s��58�3�1�5�10�0001 0011 1s��59�2�0�13�10�0001 0011 0s��60�EOZ�0�9�10�0001 0010 1s��61�3�0�29�10�0001 0010 0s��62�3�0�30�10�0001 0001 1s��63�1�1�5�10�0001 0001 0s��64�1�0�10�10�0001 0000 1s��65�3�1�6�10�0001 0000 0s��66�3�0�32�10�0000 1111 1s��67�3�0�31�10�0000 1111 0s��68�2�0�14�10�0000 1110 1s��69�EOZ�0�10�10�0000 1110 0s��70�2�1�6�10�0000 1101 1s��71�3�0�33�10�0000 1101 0s��72�3�0�34�10�0000 1100 1s��73�EOZ�1�5�10�0000 1100 0s��74�2�0�15�10�0000 1011 1s��75�3�1�7�10�0000 1011 0s��76�1�0�11�11�0000 1010 11s��77�3�0�36�11�0000 1010 10s��78�EOZ�0�11�11�0000 1010 01s��79�3�0�35�11�0000 1010 00s��80�3�0�37�11�0000 1001 11s��81�2�0�16�11�0000 1001 10s��82�3�0�38�11�0000 1001 01s��83�2�1�7�11�0000 1001 00s��84�3�1�8�11�0000 1000 11s��85�EOZ�0�12�11�0000 1000 10s��86�3�0�39�11�0000 1000 01s��87�1�1�6�11�0000 1000 00s��88�3�1�9�11�0000 0111 11s��89�1�0�12�11�0000 0111 10s��90�3�0�40�11�0000 0111 01s��91�3�0�41�11�0000 0111 00s��92�2�0�17�11�0000 0110 11s��93�EOZ�1�6�11�0000 0110 10s��94�3�0�43�11�0000 0110 01s��95�3�0�42�11�0000 0110 00s��96�EOZ�0�13�11�0000 0101 11s��97�3�0�45�11�0000 0101 10s��98�3�0�44�11�0000 0101 01s��99�2�1�8�11�0000 0101 00s��100�2�0�18�11�0000 0100 11s��101�EOZ�0�14�12�0000 0100 101s��102�3�0�46�12�0000 0100 100s��103�3�1�10�12�0000 0100 011s��104�1�0�13�12�0000 0100 010s��105�3�0�47�12�0000 0100 001s��106�3�1�11�12�0000 0100 000s��107�3�2�1�12�0000 0011 111s��108�EOZ�2�4�12�0000 0011 110s��109�3�0�48�12�0000 0011 101s��110�1�1�7�12�0000 0011 100s��111�2�0�19�12�0000 0011 011s��112�EOZ�0�15�12�0000 0011 010s��113�3�0�49�12�0000 0011 001s��114�3�0�50�12�0000 0011 000s��115�1�0�14�12�0000 0010 111s��116�EOZ�1�7�12�0000 0010 110s��117�3�0�51�12�0000 0010 101s��118�3�1�13�12�0000 0010 100s��119�2�1�9�12�0000 0010 011s��120�3�0�52�12�0000 0010 010s��121�2�0�21�12�0000 0010 001s��122�2�0�20�12�0000 0010 000s��123�2�2�4�12�0000 0001 111s��124�1�0�15�12�0000 0001 110s��125�3�0�53�12�0000 0001 101s��126�EOZ�0�16�12�0000 0001 100s��127�3�1�12�12�0000 0001 011s��128�1�2�4�12�0000 0001 010s��129�3�2�2�12�0000 0001 001s��130�3�0�54�13�0000 0001 0001 s��131�2�0�22�13�0000 0001 0000 s��132�3�0�55�13�0000 0000 1111 s��133�EOZ�1�8�13�0000 0000 1110 s��134�1�0�16�13�0000 0000 1101 s��135�EOZ�0�17�13�0000 0000 1100 s��136�2�1�10�13�0000 0000 1011 s��137�EOZ�0�18�13�0000 0000 1010 s��138�3�1�14�13�0000 0000 1001 s��139�3�0�56�13�0000 0000 1000 s��140�3�0�57�13�0000 0000 0111 s��141�3�0�58�13�0000 0000 0110 s��142�3�2�3�13�0000 0000 0101 s��143�2�0�23�13�0000 0000 0100 s��144�3�1�15�13�0000 0000 0011 s��145�1�1�8�13�0000 0000 0010 s��146�EOZ�0�19�13�0000 0000 0001 s��

Table 14.� SEQ Table * ARABIC �80�	 VLC table for State 3 intra horizontal-vertical zone.

14.8.7	Diagonal Zone (Zone 3 and Zone 4) Intra DCT VLC Tables

14.8.7.1	State 1 Intra VLC Table

The escape sequence is ESC+NEXT+RUN+SIGN, where ESC is 10 bits, NEXT is 1 a bit unsigned int, RUN is a 5 bit unsigned int, SIGN is a 1 bit unsigned int.

INDEX�NEXT�RUN�LEVEL�BITS�VLC ��1�1�0�1�3�11s��2�EOZ�0�1�4�101s��3�1�1�1�4�100s��4�EOZ�1�1�4�011s��5�1�2�1�5�0101 s��6�EOZ�2�1�5�0100 s��7�EOZ�3�1�5�0011 s��8�1�3�1�6�0010 1s��9�EOZ�4�1�6�0010 0s��10�EOZ�5�1�6�0001 1s��11�1�4�1�7�0001 01s��12�EOZ�6�1�7�0001 00s��13�1�5�1�7�0000 11s��14�EOZ�7�1�8�0000 101s��15�1�6�1�8�0000 100s��16�EOZ�8�1�8�0000 011s��17�EOZ�9�1�9�0000 0101 s��18�EOZ�10�1�9�0000 0100 s��19�1�7�1�9�0000 0011 s��20�EOZ�11�1�10�0000 0010 1s��21�1�8�1�10�0000 0010 0s��22�EOZ�12�1�10�0000 0001 1s��23�1�9�1�11�0000 0001 01s��24�1�10�1�11�0000 0001 00s��25�EOZ�13�1�11�0000 0000 11s��26�ESC���10�0000 0000 10��27�EOZ�14�1�12�0000 0000 011s��28�EOZ�15�1�12�0000 0000 010s��29�1�11�1�12�0000 0000 001s��30�EOZ�16�1�13�0000 0000 0001 s��31�EOZ�17�1�14�0000 0000 0000 1s��

Table 14.� SEQ Table * ARABIC �81�	VLC table for State 1 intra diagonal zone.

14.8.7.2	State 2 Intra VLC Table

The escape sequence is ESC+NEXT+RUN+LEVEL+SIGN, where ESC is 7 bits, NEXT is a 2 bit unsigned int, RUN is a 5 bit unsigned int, LEVEL is an 8 bit unsigned int, SIGN is a 1 bit unsigned int.

INDEX�NEXT�RUN�LEVEL�BITS�VLC ��1�2�0�1�3�11s��2�2�0�2�4�101s��3�2�0�3�5�1001 s��4�2�0�4�5�1000 s��5�2�1�1�5�0111 s��6�1�0�2�5�0110 s��7�2�0�5�6�0101 1s��8�2�1�2�6�0101 0s��9�2�0�6�6�0100 1s��10�2�0�7�7�0100 01s��11�2�2�1�7�0100 00s��12�1�1�2�7�0011 11s��13�1�0�3�7�0011 10s��14�2�1�3�7�0011 01s��15�2�0�8�7�0011 00s��16�EOZ�0�2�7�0010 11s��17�2�0�9�8�0010 101s��18�2�2�2�8�0010 100s��19�2�1�4�8�0010 011s��20�2�0�10�8�0010 010s��21�ESC���7�0010 001��22�1�2�2�8�0010 000s��23�2�3�1�8�0001 111s��24�2�0�11�8�0001 110s��25�2�0�12�9�0001 1011 s��26�2�1�5�9�0001 1010 s��27�1�0�4�9�0001 1001 s��28�2�0�13�9�0001 1000 s��29�EOZ�1�2�9�0001 0111 s��30�1�3�2�9�0001 0110 s��31�1�1�3�9�0001 0101 s��32�2�2�3�9�0001 0100 s��33�2�0�14�9�0001 0011 s��34�2�1�6�9�0001 0010 s��35�2�3�2�9�0001 0001 s��36�2�0�15�9�0001 0000 s��37�2�4�1�9�0000 1111 s��38�EOZ�2�2�10�0000 1110 1s��39�2�0�16�10�0000 1110 0s��40�EOZ�0�3�10�0000 1101 1s��41�2�0�17�10�0000 1101 0s��42�1�4�2�10�0000 1100 1s��43�2�1�7�10�0000 1100 0s��44�2�2�4�10�0000 1011 1s��45�2�0�18�10�0000 1011 0s��46�EOZ�3�2�10�0000 1010 1s��47�1�0�5�10�0000 1010 0s��48�1�2�3�10�0000 1001 1s��49�2�0�19�10�0000 1001 0s��50�2�1�8�10�0000 1000 1s��51�2�0�20�10�0000 1000 0s��52�2�3�3�10�0000 0111 1s��53�EOZ�4�2�11�0000 0111 01s��54�2�4�2�11�0000 0111 00s��55�1�1�4�11�0000 0110 11s��56�2�0�21�11�0000 0110 10s��57�2�5�1�11�0000 0110 01s��58�2�2�5�11�0000 0110 00s��59�2�0�22�11�0000 0101 11s��60�2�1�9�11�0000 0101 10s��61�1�5�2�11�0000 0101 01s��62�2�0�23�11�0000 0101 00s��63�1�3�3�11�0000 0100 11s��64�2�0�24�11�0000 0100 10s��65�2�1�10�11�0000 0100 01s��66�1�0�6�11�0000 0100 00s��67�EOZ�1�3�11�0000 0011 11s��68�EOZ�5�2�11�0000 0011 10s��69�EOZ�0�4�11�0000 0011 01s��70�2�0�25�12�0000 0011 001s��71�2�0�26�12�0000 0011 000s��72�2�2�6�12�0000 0010 111s��73�2�3�4�12�0000 0010 110s��74�2�1�11�12�0000 0010 101s��75�2�0�27�12�0000 0010 100s��76�1�2�4�12�0000 0010 011s��77�2�4�3�12�0000 0010 010s��78�2�0�28�12�0000 0010 001s��79�2�6�1�12�0000 0010 000s��80�2�5�2�12�0000 0001 111s��81�1�1�5�12�0000 0001 110s��82�2�0�29�12�0000 0001 101s��83�1�4�3�12�0000 0001 100s��84�2�1�12�12�0000 0001 011s��85�1�6�2�12�0000 0001 010s��86�EOZ�2�3�12�0000 0001 001s��87�2�0�30�12�0000 0001 000s��88�2�2�7�12�0000 0000 111s��89�1�0�7�13�0000 0000 1101 s��90�2�0�31�13�0000 0000 1100 s��91�2�1�13�13�0000 0000 1011 s��92�2�0�32�13�0000 0000 1010 s��93�EOZ�6�2�13�0000 0000 1001 s��94�2�3�5�13�0000 0000 1000 s��95�2�0�33�13�0000 0000 0111 s��96�EOZ�0�5�13�0000 0000 0110 s��97�2�2�8�13�0000 0000 0101 s��98�2�1�14�13�0000 0000 0100 s��99�2�0�34�13�0000 0000 0011 s��100�EOZ�3�3�13�0000 0000 0010 s��101�1�3�4�13�0000 0000 0001 s��

Table 14.� SEQ Table * ARABIC �82�	VLC table for State 2 intra diagonal zone

14.9	Dynamic Resolution Conversion

14.9.1	Algorithm Overview of Dynamic Resolution Conversion

	Dynamic Resolution Conversion(DRC) scheme encodes the I and P-VOP in reduced spatial resolution or normal resolution(normal VM scheme) adaptively. In the reduced resolution mode, the motion compensated interframe prediction is done by expanded macroblock of 32 x 32 size bases, and the prediction error is down sampled before DCT in order to fit the syntax of this mode to the syntax of the normal VM texture coding. As the data in the reference VOP memory is not down sampled, the details of static background is preserved.

	As the encoding / decoding process include down sampling and up sampling of prediction error, the number of macroblocks per VOP and macroblock size are different from normal VM scheme. The differences in number of macroblocks per VOP and maroblock size between the normal resolution and the reduced resolution mode are summerized as the following.

 Normal resolution mode(current VM) Reduced resolution mode

 Number of MBs/VOP vop_width x vop_hights / (16x16) vop_width x vop_hights / (32x32)

 Macoblock size

 Prediction part(ME,MC) 16 x 16 32 x 32

 Texture coding/decoding part 16 x 16 16 x 16

�EMBED Word.Picture.8���

Figure 14.9.� SEQ Figure * ARABIC �2� Encoder Block Diagram of DRC

� REF _Ref383586021 * MERGEFORMAT �Figure 14.9.2� shows the block diagram of the encoder of DRC scheme. At the encoder side, encoding scheme of each frame comprise of the following stages(underline highlights the difference from the current VM scheme).

Resolution Decision: The resolution of the prediction error in the current VOP to be coded is decided(see section 14.9.2.1). The decided resolution is signaled to decoder through the “vop_reduced_resolution” flag in VOP header. If the normal resolution is selected, the VOP is encoded as described in the current VM(one exception is the restriction of DCT coefficients after switching back from low resolution mode to normal resolution mode. See section 14.9.2.6). If the reduced resolution is selected, the VOP is encoded as the following.

Motion Estimation : Motion estimation is done in each 32 x 32 macroblock with the expanded search area and with the restricted search positions in half pel search(see 14.9.2.2).

Motion Compensation : Motion compensation is done in each 32 x 32 macroblock with the estimated motion vectors(see 14.9.2.3), and the prediction error is generated in each 32 x 32 macroblock.

Scaling down of the Motion Vectors : The motion vectors are scaled down(see 14.9.2.4). The scaled down motion vectors are encoded as described in the current VM.

Down Sampling of the Prediction Error : The prediction error is down-sampled to the half resolution(see 14.9.2.5). After the down sampling, the size of macroblock is 16x16 and the size of block is 8x8.

Texture Coding of the Prediction Error : The down sampled prediction error is encoded exactly same as described in the current VM(DCT, Q, VLC)

Local decoding part of the encoder is same as the decoder(see the following description of decoder)

�EMBED Word.Picture.8���

Figure 14.9.� SEQ Figure * ARABIC �3� Decoder Block Diagram of DRC

Figure 14.9.2 shows the block diagram of decoder. At the decoder side, decoding scheme of each VOP comprise of the following stages.

Resolution Mode Decoding : The VOP header including the “vop_reduced_resolution” flag is decoded. This flag indicates the resolution mode of the VOP. If “vop_reduced_resolution” flag indicates normal resolution, the VOP is decoded as described in the current VM. If the reduced resolution is indicated, the VOP is decoded as the following.

Texture Decoding of the Prediction Error : The prediction error is decoded in exactly the same way as described in the current VM(VLD, IQ, IDCT)

Up Sampling of the Prediction Error : The IDCTed prediction error is up sampled to the normal resolution(see 14.9.3.1). After the up sampling, the size of macroblock is 32x32 and the size of block is 16x16.

Scaling up of the Motion Vectors : The motion vectors are decoded as described in the current VM. The decoded motion vectors are scaled up(see 14.9.3.2).

Motion Compensation : Motion compensation is done in each 32 x 32 macroblock with the scaled up motion vectors(see 14.9.3.3), and the data is reconstructed by adding the prediction error to the predicted data in each 32 x 32 macroblock.

Block Boundary Filtering : The simple block boundary filter is applied at the boundary of coded 16 x 16 blocks of the reconstructed data(see 14.9.3.4). The filtered reconstructed data is saved to the frame memory.

	In the following sub-sections, newly introduced or modified functional modules of encoder and decoder are described.

14.9.2	Encoder Module Specification

14.9.2.1	Resolution Decision

	Following two parameters which are already used in the VM rate control algorithm are used to decide the resolution of the prediction error of current VOP.

�EMBED Equation.3��� : the mean QP of previous encoded VOP

�EMBED Equation.3��� : the number of bits used for the previous encoded VOP.

	Assuming that the relation between �EMBED Equation.3���and �EMBED Equation.3��� is close to inverse proportion (such as MPEG2 rate control), the product of �EMBED Equation.3��� and �EMBED Equation.3��� can be regarded as an index of the approximate complexity of the coded frame.

 In the case that the resolution of previous encoded VOP is normal resolution, switching to reduced resolution is done if the product of �EMBED Equation.3��� and �EMBED Equation.3��� is larger than the threshold TH1. (Then, �EMBED Equation.3��� is divided by the constant value C1 and this �EMBED Equation.3��� is used to the rate control of the current VOP). Otherwise the normal resolution is used for the current VOP.

	In the case that the resolution of previous encoded VOP is reduced resolution, switching back to normal resolution is done if this product of �EMBED Equation.3��� and �EMBED Equation.3��� is smaller than the threshold TH2. (Then, �EMBED Equation.3��� is multiplied by the constant value C2 and this �EMBED Equation.3��� is used to the rate control of the current VOP.)

	These are summarized as the following.

�

Resolution of previous encoded VOP is normal

	if(�EMBED Equation.3���* �EMBED Equation.3��� > TH1){

		Switch to rediced resolution;

		�EMBED Equation.3��� = �EMBED Equation.3��� / C1;

	} else{

		keep normal resolution

} �

Resolution of previous encoded VOP is low

	if(�EMBED Equation.3���* �EMBED Equation.3��� < TH2){

		Switch to normal resolution;

		�EMBED Equation.3��� = �EMBED Equation.3��� * C2;

	} else {

keep reduced resolution

}

	Though the VM rate control utilizes �EMBED Equation.3���of past several encoded VOPs, the window length of past encoded frames is reset to 1 when resolution is swiched between normal resolution and reduced resolution and only the �EMBED Equation.3��� is scaled by C1 when switching to reduced resolution, and descaled by C2 when switching back to normal resolution as shown above.

	TH1 is determined in the following equation, where QP1 and FR1 represents the lowest subjective quality which we allow to encode in CIF resolution.

		TH1 = QP1 * (Target_Bitrate / FR1)

	In the same way, TH2 is determined in the following equation, where QP2 and FR2 represents the highest subjective quality which we allow to encode in QCIF resolution.

		TH2 = QP2 * (Target_Bitrate / FR2)	

	In the VM, we reccomend to use the values of QP1 = 14, FR1 = 6, C1 = 2.5, QP2 = 6, FR2 = 8, C2 = 2.5, respectively.

14.9.2.2	Motion Estimation

	In the reduced resolution mode, the size of macroblocks is 32x32, and the size of blocks is 16x16. In order to cover the expanded vector range in reduced resolution mode, we used the “half-zero search”. This allows that the motion vector in approximately double size search range can be encoded using same motion vector VLC table with same f-code by restricting the candidate vector position to be only half-pel vector and zero vector.

	� REF _Ref383586559 * MERGEFORMAT �Figure 14.9.4� and � REF _Ref383586574 * MERGEFORMAT �Figure 14.9.5� illustrate the difference of the conventional vector position and “half-zero search” vector position. The dashed lines indicate the integer pel grid. In order to make the explanation simple, only 11x11 vectors can be searched in this example.

	� REF _Ref383586559 * MERGEFORMAT �Figure 14.9.4� is the example of conventional vector search. Dotted line is the integer vector grid. In this example, the range of vector is (2.5.

	� REF _Ref383586574 * MERGEFORMAT �Figure 14.9.5� is the example of Half-Zero vector search. The number of possible candidate vector is the same as that of � REF _Ref383586559 * MERGEFORMAT �Figure 14.9.4�. Because we can search only the half-pel and Zero vectors, the range of vector is widen to (4.5.

	

�

Figure 14.9.� SEQ Figure * ARABIC �4� Conventional Vector Search��

Figure 14.9.� SEQ Figure * ARABIC �5� Half-Zero Vector Search

	Motion estimation method for reduced resolution mode is described in the following section. This algorithm is the modified version of the motion estimation algorithm in VM In this mode, motion estimation is performed on the luminance macroblock. SAD (Sum of Absolute Difference) is used as error measure.

14.9.2.2.1	Integer pixel motion estimation

Both 16x16 and 32x32 vectors are obtained from the search algorithm. Only a small amount of additional computation is needed to obtain the 16x16 integer vectors in addition to the 32x32 vectors.

The search is made with integer pixel displacement and for the Y component. The comparisons are made between the incoming block and the displaced block in the previous reconstructed VOP. A full search around the original macroblock position is used with a maximum search area depending on the range provided by the f_code.

				�EMBED Equation.3� � �EMBED Equation.3���

				 x,y =“up to [-31,30]”(in case of f-code = 1), N = 32 or 16

For the zero vector SAD32(0,0) is reduced to favor the zero vector when there is no significant difference.

				�EMBED Equation.3���

where �EMBED Equation.3��� = number of macroblock pixels inside VOP. The (x,y) pair resulting in the lowest SAD32 is chosen as the 32x32 integer pixel motion vector, V0. The corresponding SAD is SAD32(x,y).

Likewise, the (x,y) pairs resulting in the lowest SAD16(x,y) are chosen to give the 4 16x16 vectors V1, V2, V3 and V4.

The 16x16 based SAD for the macroblock is

				�EMBED Equation.3���

where 0<K<=4 is the number of 16x16 blocks that do not lie outside of the VOP shape. The following rule , and

	�EMBED Equation.3����EMBED Equation.3���

Instead of full search, the 16x16 search is centered around 32x32 vector, with a search window of ± 2 pixels

14.9.2.2.2	INTRA/INTER mode decision

After the integer pixel motion estimation the coder makes a decision on whether to use INTRA or INTER prediction in the coding. The following parameters are calculated to make the INTRA/INTER decision:

				�EMBED Equation.3���

				�EMBED Equation.3���

INTRA mode is chosen if:	�EMBED Equation.3���

Notice that if SAD32(0,0) is used, this is the value that is already reduced as explained above.

If INTRA mode is chosen, no further operations are necessary for the motion search. If INTER mode is chosen the motion search continues with half sample search around the V0 position.

14.9.2.2.3	Half sample search

Half sample search is performed for 32x32 vectors as well as for 16x16 vectors. The half sample search is done using the previous reconstructed VOP. The search is performed on the luminance component of the macroblock, and the search area is ±1 half sample around the target matrix pointed to by V0, V1, V2, V3 or V4. Among these 9 candidate positions(1 integer pixel position and 8 half-pel positions), only the vector positions defined in “Half-zero search”(see Fig. 14.9.4) are evaluated. For the 32x32 search the zero vector sad, SAD(0,0), is reduced by NB/2+1 as for the integer search.

The vector resulting in the best match during the half sample search is named MV. MV consists of horizontal and vertical components (MVx, MVy), both measured in half sample units.

14.9.2.2.4	Decision on 32x32 or 16x16 prediction mode

SAD for the best half sample 32x32 vector (including subtraction of NB/2+1 if the vector is (0,0)):

				�EMBED Equation.3���

SAD for the whole macro block for the best half sample 16x16 vectors:

				�EMBED Equation.3���

where 0<K<=4 is the number of 16x16 blocks that do not lie outside of the VOP shape. The following rule applies:

If:

				�EMBED Equation.3���,

choose 16x16 prediction

otherwise choose 32x32 prediction

14.9.2.3	Motion Compensation

	In the reduced resolution mode, the motion compensation is done by Macroblock of 32x32(block of 16x16). If the OBMC mode is applied, the double sized weighting matrices is used. � REF _Ref383586657 * MERGEFORMAT �Figure X6� shows the doubled weighting matrices for reduced resolution mode MC. Except that the block size is two times larger, the way of calculation of the motion conpensated prediction is the same as VM.

4�4�5�5�5�5�5�5�5�5�5�5�5�5�4�4��4�4�5�5�5�5�5�5�5�5�5�5�5�5�4�4��5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5��5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5��5�5�5�5�6�6�6�6�6�6�6�6�5�5�5�5��5�5�5�5�6�6�6�6�6�6�6�6�5�5�5�5��5�5�5�5�6�6�6�6�6�6�6�6�5�5�5�5��5�5�5�5�6�6�6�6�6�6�6�6�5�5�5�5��5�5�5�5�6�6�6�6�6�6�6�6�5�5�5�5��5�5�5�5�6�6�6�6�6�6�6�6�5�5�5�5��5�5�5�5�6�6�6�6�6�6�6�6�5�5�5�5��5�5�5�5�6�6�6�6�6�6�6�6�5�5�5�5��5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5��5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5��4�4�5�5�5�5�5�5�5�5�5�5�5�5�4�4��4�4�5�5�5�5�5�5�5�5�5�5�5�5�4�4��Current Macroblock

�

2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2��2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2��1�1�1�1�2�2�2�2�2�2�2�2�1�1�1�1��1�1�1�1�2�2�2�2�2�2�2�2�1�1�1�1��1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1��1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1��1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1��1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1��1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1��1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1��1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1��1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1��1�1�1�1�2�2�2�2�2�2�2�2�1�1�1�1��1�1�1�1�2�2�2�2�2�2�2�2�1�1�1�1��2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2��2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2��Top and Bottom Macroblock

�

2�2�1�1�1�1�1�1�1�1�1�1�1�1�2�2��2�2�1�1�1�1�1�1�1�1�1�1�1�1�2�2��2�2�2�2�1�1�1�1�1�1�1�1�2�2�2�2��2�2�2�2�1�1�1�1�1�1�1�1�2�2�2�2��2�2�2�2�1�1�1�1�1�1�1�1�2�2�2�2��2�2�2�2�1�1�1�1�1�1�1�1�2�2�2�2��2�2�2�2�1�1�1�1�1�1�1�1�2�2�2�2��2�2�2�2�1�1�1�1�1�1�1�1�2�2�2�2��2�2�2�2�1�1�1�1�1�1�1�1�2�2�2�2��2�2�2�2�1�1�1�1�1�1�1�1�2�2�2�2��2�2�2�2�1�1�1�1�1�1�1�1�2�2�2�2��2�2�2�2�1�1�1�1�1�1�1�1�2�2�2�2��2�2�2�2�1�1�1�1�1�1�1�1�2�2�2�2��2�2�2�2�1�1�1�1�1�1�1�1�2�2�2�2��2�2�1�1�1�1�1�1�1�1�1�1�1�1�2�2��2�2�1�1�1�1�1�1�1�1�1�1�1�1�2�2��Left and Right Macroblock

Figure X� SEQ Figure * ARABIC �6� Weighting values for prediction in the reduced resolution mode

14.9.2.4	Scaling down of the Motion Vectors

	In order to suit half-zero vectors to the VM syntax with same f-code, the real vector VR is converted to the quasi-vector VQ in the following way. This is the 1 to 1 mapping from the vector in Figure 14.9.4(VR) to the vector in Figure 14.9.3(VQ).

	If(VR == 0) 	VQ = 0;

	else		VQ = sign(VR) * (|VR| + 1) / 2;

	And the same differential vector coding as current VM is applied to VQ.

14.9.2.5	Down-Sampling of the prediction error

	In order to convert 32 x 32 Macroblock(16x16 block) to 16 x 16 Macroblock(8x8 block), the prediction error is down sampled in the reduced resolution mode. The down-sampling filter is described in � REF _Ref383586678 * MERGEFORMAT �Figure 14.9.7�. As seen from Figure 14.9.6, this down-sampling filtering process is closed within a block.

�EMBED Word.Picture.8���

Figure 14.9.� SEQ Figure * ARABIC �7� Down-Sampling Filters for Prediction Error

14.9.2.6	Restriction of DCT coefficients after switching from reduced resolution mode to normal resolution mode

	Once the resolution is switched from normal to reduced, the detail of moving area is likely to be lost. When the resolution switches back to normal again, the detail of moving area must be reproduced, and that consumes a large amount of bits. This sudden increase of coding bits often causes an unintentional frame skips. Furthermore, because our resolution-decision algorithm uses the product of mean QP and the amounts of bits, this sudden increase of the bits cause to switch back to reduced resolution, and the oscillation between reduced resolution and normal resolution often occurs. In order to avoid this degradation, the restriction of DCT coefficients to be sent is applies to the several encoded VOPs after switching back from reduced resolution to normal resolution. In the first normal resolution VOP after switching back, the coefficients only within 4x4 low frequency can be sent, then in the same way, 5x5 in the second, 6x6 in the third, and 7x7 in the forth VOP. This “smooth-landing” algorithm could suppress the unintentional frame skip and the oscillation of the resolution effectively.

14.9.3	Decoder Module Specification

14.9.3.1	Up-Sampling of the prediction error

	In order to convert back 16 x 16 Macroblock(8x8 block) to 32 x 32 Macroblock(16x16 block), the IDCTed prediction error is up sampled in the reduced-resolution mode. The up-sampling filter is described in � REF _Ref383586678 * MERGEFORMAT �Figure 14.9.7�. As seen from Figure 14.9.7, this up-sampling filtering process is closed within a block.

�EMBED Word.Picture.8���

Figure 14.9.� SEQ Figure * ARABIC �8� Up-Sampling Filters for Prediction Error

14.9.3.2	Scaling up of the Motion Vectors

	By the VM’s motion vector decoding scheme, the quasi-vector VQ is obtained. After decoding VQ,, this quasi-vector is scaled up by the following way and the real vector VR is reproduced. This is the 1 to 1 mapping from the vector in Figure 14.9.3(VQ) to the vector in Figure 14.9.4(VR).

		If(VQ == 0)	 VR = 0;

		else		VR = sign(VQ) * (2*|VQ| - 1);

	The chrominance vector is derived by applying the normal luminance vector to chrominance vector conversion scheme of VM to the scaled up vector VR .

14.9.3.3	Motion Compensation

	Using the scaled up motion vector , motion compensation is done. See section 14.9.2.3.

14.9.3.4	Block Boundary Filter

	A simple non-adaptive low-pass filter is applied to the 16 x 16 block boundary pixels of the coded blocks. The way of this filtering is shown in � REF _Ref383586743 * MERGEFORMAT �Figure 14.9.9�. Filtering for horizontal boundary is done first, and then the filtering for vertical boundary is done.

�EMBED Word.Document.8 \s���

Figure 14.9.� SEQ Figure * ARABIC �9� Block Bound

14.10	NEWPRED mode

14.10.1	Introduction to NEWPRED mode

NEWPRED mode is one of the error resilience tools. It uses backward channel message. Backward channel message indicates which NEWPRED segment (NP segment) is correctly decoded or which NP segment is erroneously decoded. The encoder, which gets a backward channel message, uses only correctly decoded part for prediction in an inter-frame coding. This prevents a temporal error propagation without the insertion of Intra coded MBs and improves the picture quality in the erroneous environments.

In single VOP mode, one Video Packet is treated as one NP segment. On the other hand in multiple VOPs mode, one VOP is treated as one NP segment.

14.10.2	Syntax Definition

14.10.2.1	Forward Channel Syntax

The forward channel syntax is shown in VOL syntax and VOP syntax definition.

14.10.2.2	Backward Channel Syntax

The logical channel is newly opened for the backward channel. The syntax of the backward channel is the following.

backward_channel_message() {�No. of bits�Mnemonic�� backward_message_type�2�bslbf�� if (backward_message_type == “NACK”)���� unreliable_flag�1�bslbf�� vop_id�4-15�uimsbf�� if (video_object_layer_shape == “rectangular”) {���� macroblock_number�1-12�uimsbf�� if (backward_message_type == “Intra Refresh Command”)���� end_macroblock_number�1-12�uimsbf�� }���� if (backward_message_type == “NACK”)���� requested_vop_id_for_prediction�4-15�uimsbf�� byte_align_for_back-channel()����}����

backward_message_type -- This indicates if the corresponding NP segment is correctly decoded or not. Which type of message is required for the encoder is indicated in newpred_mode_flag in the VOL header of the forward channel data.

00: NACK. It indicates the erroneous decoding of the NP segment.

01: ACK. It indicates the correct decoding of the NP segment.

10: Intra refresh command.

11: Reserved.

unreliable_flag -- This field presents only if backward_message_type is ‘NACK’. The unreliable_flag is set to 1 when a reliable value for vop_id is not available at the decoder. (When the NP segment is erred, a reliable vop_id may not be available at the decoder. On the other hand, a reliable vop_id is available, when the decoder cannot decode due to the luck of the reference picture.)

0: reliable�1: unreliable

vop_id – When the backward_message_type is ‘NACK’ or ‘ACK’, this indicates the ID of VOP which is incremented by 1 whenever a VOP is encoded. The vop_id is copied from the vop_id field of the NP segment header in the corresponding forward channel data when the reliable vop_id is available. Otherwise, it may happen in the case of NACK, vop_id is incremented by 1 from the reliable vop_id of the previously received NP segment in the same location of the current NP segment.

When the backward_message_type is ‘Intra refresh command’, this indicates the ID of Intra refresh which is incremented by 1 whenever new refreshment is required. The length of this field is 4 bits in the Intra refresh case. In the case that Intra refresh command is continuously returned for the same error until the proper action corresponding to the previous Intra refresh command reaches, this ID is set to the same number as the previous Intra refresh command.

macroblock_number – This field presents only in single VO (rectangular) mode. The macroblock_number is the macroblock address of the start of the corresponding NP segment or the refresh area.

end_macroblock_number – This field presents only in rectangular mode and the backward_message_type is ‘Intra refresh command’. The end_macroblock_number is the macroblock address of the end of the refresh area.

requested_vop_id_for_prediction -- This field presents only if backward_message_type is ‘NACK’. This indicates the requested vop_id of the NP segment for reference by the decoder. Typically it is the vop_id of the last correctly decoded NP segment in the same location of the current NP segment.

Definition of byte_align_for_back-channel() function

The byte_align_for_back-channel() function removes any zero bit and a string of ‘1’ bits used for stuffing and locates the next start code.	

Byte_align_for_back-channel() {�No. of bits�Mnemonic��	zero_bit�1�‘0’��	while (!byte_aligned())����		one_bit�1�‘1’��}����

14.10.3	Definition of NEWPRED

NEWPRED is a technique in which the reference picture for inter-frame coding is replaced adaptively according to the backward channel messaging from the decoder. In single VOP mode, one VOP may be segmented into some Video Packet by inserting the resync markers, and one Video Packet is treated as one NEWPRED segment (NP segment). On the other hand in multiple VOPs mode, one VOP is treated as one NP segment. The reference picture is replaced independently in each NP segment.

The encoder has two kinds of NEWPRED mode, ACK mode and NACK mode, and switches these modes according to the channel error conditions. The encoder takes different actions depending on the modes. How to select the reference picture is different and how to control the reference picture buffer is also different depening on the mode. The decoder, however, takes the same action regardless of the modes. The decoder uses the NP segment which is indicated in the vop_id_for_prediction field as a reference picture if it exists in the picture buffer memory, and returns ether ACK or NACK message. This section describes the processes of the encoder and the decoder.

14.10.3.1	Encoder Definition

14.10.3.1.1	ACK Mode

In ACK mode, the encoder uses only an acknowledged segment as a reference for inter-frame encoding. In this mode, reference picture is replaced according to only ACK corresponding to each NP segment, and reference picture buffer is controlled by both ACK and NACK messages. Figure 1 illustrates which NP segment is referenced in ACK mode, in the case that the constant round trip delay is twice as long as the coded frame interval and reference picture buffer size is 3 frames. Note that the figure illustrates the behavior of a certain NP segment location. Each frame buffer is divided into the number of NP segments and each portion is treated independently with other portions of the frame.

�EMBED Word.Picture.8���

Figure 1 ACK Mode

Let VOPpred be the VOP of the referenced NP segment for inter-frame encoding. The VOPpred is updated when the ACK message is received. The encoder puts the VOPpred in the field of vop_id_for_prediction in the forward channel syntax. If the ACK messaged NP segment does not exist in the buffer memory at the time the message is received, the encoder does Intra coding and sets the VOPpred NULL. Error detected backward messages are discarded.

The encoder adds the encoded segment into the buffer memory. When ACK message is received, all older segments than the ACK messaged segment are removed from the buffer memory. When NACK message is received, the NACK messaged segment is removed. In the case of the buffer memory overflow, the oldest other than the segment, whose ACK message is most recently received, is removed.

14.10.3.1.2	NACK Mode

In NACK mode, the encoder replaces the referenced segment with the requested segment by the decoder when a non-acknowledged message is received. In this mode, referenced segment is replaced according to only NACK messages, and the reference frame buffer is controlled according to both ACK and NACK messages. Figure 2 illustrates the behavior in the NACK mode.

�EMBED Word.Picture.8���

Figure 2 NACK Mode

The encoder uses the last encoded NP segment as the referenced picture for inter-frame encoding until a NACK message is received. The NACK message includes the requested_vop_id_for_prediction field which indicates the vop_id of the last correctly decoded NP segment of the corresponding location at the decoder. The encoder sets the requested NP segment to the referenced NP segment when the NACK message is received. If the NP segment does not exist in the buffer memory, the encoder does Intra coding. Once the encoder responds to the NACK message, it discards the following consecutively received NACKs whose vop_id is less than the responded one since these NACKs come due to the round trip delay. Error detected backward messages are also discarded.

The encoder adds the encoded NP segment into the buffer memory. When ACK message is received, the encoder removes all older segments than the ACK messaged segment from the buffer memory. When NACK message is received, the NACK messaged segment and the segments which directly or indirectly refer the NACK messaged segment are removed from the buffer memory. In the case of the buffer memory overflow, the oldest NP segment other than the NP segment whose ACK message is most recently received, is removed.

14.10.3.1.3	Strategy of Mode Switching

The encoder switches two kinds of mode according to back channel messaging from the decoder. For instance, the following switching mode can be used.

When N times of NACKs are continuously messaged, the mode is switched from NACK mode to ACK mode.

When M times of ACKs are continuously messaged, the mode is switched from ACK mode to NACK mode.

We call (N,M) “mode switching parameter”. Both N and M are continuously counted for all NP segments. Figure 3 illustrates the behavior of the mode switching for all segments when the number of NP segments is 5 and (N,M) = (1,5). Round trip delay is assumed to be 3 times as long as the coded frame interval in the figure.

�EMBED Word.Picture.8���

Figure 3 Mode Switching for all segments

14.10.3.2	Decoder Definition

The decoder decodes a NP segment with the previously decoded segment whose vop_id is vop_id_for_prediction as a referenced segment for inter-frame decoding. After the received NP segment is correctly decoded, the ACK message of the NP segment is returned.

When any error is detected during the decoding process, the decoder returns a NACK message with the requested_vop_id_for_prediction which is the vop_id of the last correctly decoded NP segment of the same location of the current NP segment in the buffer memory. The error event includes the case that the NP segment whose vop_id is vop_id_for_prediction does not exist in the decoder. This occurs when the NP segment cannot be successfully decoded due to the previous errors. The vop_id field of the backward channel message is copied from the corresponding field of the forward channel message when the reliable vop_id is available. Otherwise, it may happen in the case of NACK, vop_id is incremented by 1 from the reliable vop_id of the previously received NP segment of the same location of the current NP segment.

The decoder adds the correctly decoded NP segment into the buffer memory. If any errors are detected in the decoding process, the NP segment is not added into the buffer memory. In the case of the buffer memory overflow, the oldest NP segment of the same location except for the segment which is referenced in the preceding encoding, is removed.

14.10.4	Interaction between the video layer and the system layer

In the forward channel, one NP segment forms an Access Unit of the system standard . When the error is detected in the Access Unit at the forward channel, the erred NP segment data with the error indication message is delivered to the video layer (decoder).

In the backward channel, a backward channel message forms an Access Unit of the system standard . When the error is detected in the Access Unit in the backward channel, the erred backward message data is simply discarded and nothing is delivered to the video layer (encoder).

14.10.5	Position of Resynchronization Marker

In single VOP mode, the positions of Resynchronization Markers shall not be changed between I_VOPs in order to prevent to the spatial error propagation. The suggested position of RM is descrived in table 1.

Table 1 Suggested Resynchronization Marker Positions

Bit Rate (kbit/s)�the number of RM�MB number of the first MB��0-24�3�0, 33, 66��25-48�5�0, 11, 33, 55, 77��49-�TBD�TBD��14.10.6	Independent NP segment decoding

NP segment boundaries are treated as VOP boundaries, including the treatment of motion vectors which cross those boundaries. Unrestricted motion vector technique is used. MV prediction, OBMC and Intra AC/DC prediction are restricted in NP segment.

15	MPEG-4 video version management

Technology�CE�VideoVM�VisualWD�Software����Ver. 8.0�Ver 4.0�Mo�MS��I and P modes��X�X�X�X��Binary shape��X�X�X�X��AC/DC prediction��X�X�X�X��Padding��X�X�X�X��Quantization types��X�X�X�X��Slice synchronization��X�X�X���OBMC mode��X�X�X�X��B modes��X�X�X�X��Temporal scalability rectangular shape��X�X�(X)���Temporal scalability (arbitrary shape)��X�X�(X)���Spatial scalability rectangular shape��X�X�X�X��Static sprites��X�X�X�X��Data partitioning��X�X�X���Reversible VLC��X�X�X���Scalable wavelet ��X�X��X��Interlaced coding��X�X����Dynamic sprites��X��X���Global motion compensation��X��X���Gray level alpha shape��X��X�X��Effects��X���(X)��SA-DCT�X�X��X�X��12 bit video��X�����Temporal scalable shape coding ��X�����Adaptive 3D VLC��X�����Matching pursuits��X�����Multiple VO rate control��X�����Macroblock rate control��X�����Frame level rate control��X��X�X��Shape adaptive wavelet��X�X����Spatial scalable shape coding��X�����Boundary block merging��X�����¼ pel motion compensation�X������Dynamic resolution conversion�X������VOP-CR��X�����Interlaced shape coding�X������Universal VLC for motion coding�X������Arbitrary shape spatial scalability (texture)�X�X�����(Chroma-key shape coding)�������Last update July 25th, 1997

� This mode is not used, but its meaning is the same with for the base layer coding.

� This decision is the same with for the base layer coding.

MPEG4 Video Verification Model		VM 10.0

�PAGE �241�

� PAGE �307�

MPEG4 Video Verification Model		VM 10.0	

� PAGE �326�

TypeA:		

symmetry point

…e d c b | a b c d e …

…e d c b a | a b c d e …

TypeB :

symmetry point

… v w x y z | y x w v …

…v w x y z | z y x w v …

TypeB :

TypeA:		

Highpass band:

Lowpass band:

|a’ # c’ # e’ … …# w’ # y’ #|

|a # c # e … …# w # y #|

�EMBED Word.Picture.8���

�EMBED Equation.3���

�EMBED Equation.3���

�EMBED Equation.3���

�EMBED Equation.3���

�EMBED Equation.3���

�EMBED Equation.3���

�EMBED Equation.3���

�EMBED Equation.3���

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

1

0

1

1

1

1

0

0

0

0

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

1

0

0

0

0

0

Figure 2 Scan order for the AIR

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

Figure 1 Refresh Map for QCIF

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

[b] Refresh Map

1st VOP

0

0

0

0

0

0

[a] Encode the I-VOP

2nd VOP

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

1

1

1

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

[c]

[e] Estimate the motion of MB.

[d] Encode the P-VOP

[f] Motion MB is set to “1” in the Refresh Map.

3rd VOP

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

1

1

1

0

0

0

1

1

1

0

0

0

1

1

1

0

0

0

1

1

0

0

0

0

1

1

0

0

0

1

1

1

0

0

[h] Encode the P-VOP. Some MBs are encoded as INTRA refresh.

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

[k]

0

[i] Intra MBs in Refresh Map are updated.

[g]

0

[j]

[o]

figure 3 The explanation of the AIR

[l]

[p]

0

0

0

0

0

0

0

0

1

1

0

0

1

1

1

0

0

1

1

0

0

0

1

0

4th VOP

[m]

[n]

0

0

0

0

0

0

0

0

1

1

0

0

1

1

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

1

1

1

0

1

1

1

0

0

1

0

0

0

0

0

0

