Prof. Vijayakumar Bhagavatula

Homework Assignment #6

Due: May 3, 4:00pm (in HH A305)

1. (25%) Following data represents a collection of vectors each containing three features. Determine the best linear combination of the three features using the K-L transform. What is the resulting mean squared error?

0	1	_1	1	[-1]
0	1	_1	-1	1
0	1	_1	1_	1]

2. (25%) The convex hull of a set of vectors $\{\bm{x}_1, \bm{x}_2, ..., \bm{x}_N\}$ is the set C_X where

$$C_{X} = \{ \mathbf{x} = a_{1}\mathbf{x}_{1} + a_{2}\mathbf{x}_{2} + \dots + a_{N}\mathbf{x}_{N}, a_{j} \ge 0, a_{1} + a_{2} + \dots + a_{N} = 1 \}$$

Given two training vector sets $\mathbf{Y} = \{\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_N\}$ and $\mathbf{Z} = \{\mathbf{z}_1, \mathbf{z}_2, ..., \mathbf{z}_N\}$ representing two classes, prove that either \mathbf{y} and \mathbf{z} are linearly separable or that their convex hulls intersect.

3. (25%) Following 4 training vectors represent two classes.

class
$$\omega_1 = \left\{ \begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 2\\0 \end{bmatrix} \right\}$$

class $\omega_2 = \left\{ \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 2\\2 \end{bmatrix} \right\}$

Use single-sample perceptron method with $\rho_n = 1$ to determine a solution vector. Use the all-zero vector as the initial weight vector.

4. (25%) Test the linear separability for the following 2-class training data using Ho-Kashyap method. Assume that all initial safety margins are set to 1.

class
$$\omega_1 = \left\{ \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$

class $\omega_2 = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$

18-794, Spring 1999, HW#6

Prof. Vijayakumar Bhagavatula