Carnegie Mellon University

Department of Electrical and Computer Engineering

1. (20\%) Suppose we are estimating $f(x)$, a Gaussian PDF (with mean m and variance σ^{2}) using the following Parzen density estimation procedure.

$$
\hat{f}_{n}(x)=\frac{1}{n h_{n_{j}}} \sum_{=1}^{n} w\left(\frac{x-x_{j}}{h_{n}}\right)
$$

where $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is the set of samples drawn independently from $\left.f(x), W(x)\right)$ is a unit Gaussian window (with zero mean and unit variance) and h_{n} is the window width. Show that

$$
\operatorname{Var}\left\{\hat{f}_{n}(x)\right\} \cong \frac{1}{2 \sqrt{\pi} \mathrm{nh}_{\mathrm{n}}} f(x)
$$

You may have to make some judicious assumptions to obtain the above approximation.
2. (20\%) Consider a 2-class problem with equal a priori probabilities, i.e., $P\left(\omega_{1}\right)=P\left(\omega_{2}\right)=\frac{1}{2}$. The conditional PDFs $f\left(\mathbf{x} \mid \omega_{1}\right)$ and $f\left(\mathbf{x} \mid \omega_{2}\right)$ are uniformly distributed in hyperspheres of radius 1 unit whose origins are separated by 11 units. Show that the average P_{e} for K -NNM (assuming that K is odd) based on n independently drawn training samples is given by

$$
P_{e}(\mathrm{n})=\frac{1}{2^{n}} \sum_{j=0}^{(\mathrm{K}-1) / 2}\binom{n}{j}
$$

Determine $P_{e}(\mathrm{n})$ for $\mathrm{K}=1,3,5$ for $\mathrm{n}=10$. Do you see anything strange?
3. (20\%) Consider a C class problem where all classes are equally likely and the class conditional PDF for the i-th class ($i=1,2, \ldots$, C) is as follows.

$$
f\left(x \mid \omega_{1}\right)= \begin{cases}1 & \text { for } 0 \leq x \leq \frac{c r}{(c-1)} \\ 1 & \text { for } i \leq x \leq(i+1)-\frac{c r}{(c-1)} \\ 0 & \text { elsewhere }\end{cases}
$$

Here $0 \leq r \leq(C-1) / C$. Determine $P_{e}{ }^{*}$, the minimum (i.e., Bayesian) error probability as well as $P_{e, 1-\mathrm{NNM}}$, the asymptotic error probability of $1-\mathrm{NNM}$.
4. (20\%) Determine and sketch the decision boundaries resulting from a 1-NNM classifier using the following training data.

$$
\begin{aligned}
& \text { class } \omega_{1}=\left\{(1,0)^{\top},(0,0)^{\top},(0,1)^{\top}\right\} \\
& \text { class } \omega_{2}=\left\{(0,-1)^{\top},(1,-1)^{\top},(-1,0)^{\top}\right\}
\end{aligned}
$$

5. (20%) In a 2 -class problem using a single feature, following labeled samples are available. Sketch the decision boundaries obtained by using 3-NNM classifier with the following training data.

$$
\begin{aligned}
\text { class } \omega_{1} & =\{-4,-2,0,2,4\} \\
\text { class } \omega_{2} & =\{-3,-1,1,3\}
\end{aligned}
$$

