	Fault Tolerant Model

Fault-Tolerant Distributed System

Team6 (SURE) Feb/28/05

Diagram

[image: image1.wmf]TPC Server2

Pool of Call generator

(Client Object)

Caller

(SP:service

Provider)

Callee

TPC Server1

TPC Service

FT Manager

Local & Peer Server Checker

and Recovery Purpose

Database for FT handling

TPC Service Logic Server

FT Checker & FT Manager

TPC Service

FT Manager

Client

service

TPC_

Gateway

FT

_Stub

TPC_

Gateway

Stub

FT Checker

The States

	Modules
	States

	TPC Server states
	initial, success and end

	Caller and Callee states
	idle, busy

Module descriptions

1. TPC Service

1. The TPC Service should supply the interface that the Fault Manager wants to check whether the TPC service is alive or not.

2. Whenever the TPC service serves the call connection, this should write the log into the database.

3. The table in database should keep the data, such as Start time, End time, TID, CallerId, CalleeId and State. State will have 3 types, initial, success and end.

4. Whenever the TPC service starts to serve the call initiation, this component should check the state that is kept in database by using TIP, CallerId and CalleeId.

5. If the TPC service find the state that is not ‘End’, the TPC service should follow logic

i. Initial: The TPC service should ask to the state of both Caller and Callee. If the results are busy, TPC service should return the success message to the client. Otherwise, TPC service should try to call initiation again.

ii. Success: The TPC service should return success message to the client without any action.
2. Fault Manager

1. The Fault Manager should be installed and run for each TPC server 1 and 2.

2. The Fault Manager periodically gathers the information (1. TPC service is alive or not, 2. CPU load) from TPC server where Fault Manager is running. (The period data will be configurable.)

3. The Fault Manager supports the interface that supplies gathering information.

4. This interface might be served to the client checker and another Fault Manager.

5. The Fault Manager periodically gathers another TPC server’s information (TPC service is alive or dead) by interaction with another Fault Manager.

6. When the other TPC service or Fault Manager is down. The Fault manager can order to restart another TPC service of Fault Manager by using shell script.
3. Fault Checker

1. The checker is invoked when the client invoke.

2. The checker periodically asks the information (1. TPC service alive, 2. CPU load) to each Fault Manager in TPC server1 and TPC server 2. (The period data will be configurable.)

3. After getting the information from TPC server 1 and 2, the checker analyze the information, such as;

· Which TPC server is dead or alive?
· Which TPC server is more available (from CPU information)?
4. After analyzing, the checker updates the chosen TPC server name into the dedicated memory.
4. Fault Stub (FT_Stub)

1. Whenever the client wants to ask a service to TPC server, the Helper class should be modified to call the FT_Stub that we made.

2. The FT_Stub that we made gathers the IOR from the naming server. After that the FT_Stub gets the primary TPC server name from dedicated memory and call the stub related with primary TPC server.

3. When the FT_Stub gets the return an exception from target TPC server because of fault, the FT_Stub should send the same message and TID again to the secondary TPC server.

4. The client generates the client checker by thread.

Scenario

[image: image2.wmf]TPC Server2

Pool of Call generator

(Client Object)

Caller

(SP:service

Provider)

Callee

TPC Server1

TPC Service

FT Manager

Local & Peer Server Checker

and Recovery Purpose

Database for FT handling

TPC Service Logic Server

FT Checker & FT Manager

TPC Service

FT Manager

Client

service

TPC_

Gateway

FT

_Stub

TPC_

Gateway

Stub

FT Checker

5. Fail & Recovery - 1

TPC server is down before completing the call-setup between TPC server and Caller.

[1] Failure procedure

(1) Client sends the “CallReq()” to appropriate TPC server.

(2) TPC server1 check duplication from DB. If it is new call, TPC saves all the information to DB (TID, Caller, Callee, Time, and State = ”initial”).

(3) TPC server1 sends “callSetup()” to Caller.

(4) Before TPC server1 receives the return message from Caller, TPC server1 is down.

(5) Caller catches the exception because of return error. Caller does not change the state (Caller’s state = “idle’).

[2] Recovery procedure

(6) Client retries the failed call through TPC server 2 with the same TID.

(7) TPC sever2 checks TID and the state of the failed call from DB.
(8) When TPC server2 perceives the same call (same TID, Caller and Callee). TPC requests the state of Caller and Callee through “getState()”.
(9) If both of the subscriber’s state is “idle”, TPC server2 saves the changed call information to DB.

(10) TPC server 2 precedes the “callSetup()” to subscriber. After then, change the state from “initial” to “success” and return success to client.
[3] Exception case
If the FT_Stub in client side doesn’t work properly, we should delete the record whose the state remains initial during 5 seconds (the duration time is configurable).

· The stored procedure in DB check a record whose state is ‘initial’ periodically, and if the trigger find the record time pass the 5 seconds, the stored procedure delete the this records.

6. Fail & Recovery - 2

TPC server is down after completing the call-setup with only Caller and before completing call set up with Callee.
[1] Failure procedure

(1) Client sends the “CallReq()” to appropriate TPC server.
(2) TPC server1 check duplication from DB. If it is new call, TPC saves all the information to DB (TID, Caller, Callee, Time, and State = ”initial”).
(3) After completing call-setup of Caller, the Caller changes the state to “busy” and starts the timer, which is for recovering state when the Callee doesn’t contact within 5 seconds.

(4) TPC server1 completes “callSetup()” with Caller and try to “callSetup” to Callee.
(5) Before TPS server1 receive the return message from Callee, TPC server1 is down.
[2] Recovery procedure
(6) Client retries the failed call through TPC server 2 with the same TID.
(7) TPC sever2 checks TID and the state of the failed call from DB.
(8) TPC server2 perceive the same call (same TID, Caller and Callee). TPC requests the state of Caller and Callee through “getState()”. After returning this call, Caller returns “busy” and Callee return ” idle” to TPC server 2.
(9) TPC server2 perceive the failed call that was failed after call-setup of Caller

(10) TPC server2 send “callSetup()” to the Callee.

(11) TPC server2 return success to Client after changing the call state to “success”.

[3] Exception case

If the FT_Stub in client side doesn’t work properly, we should delete the record whose the state remains initial during 5 seconds (the duration time is configurable).

· When the Caller doesn’t get the “sendVoice()” from the callee during 5 seconds, the Caller change the state to “idle”.
· The stored procedure in DB check a record whose state is ‘initial’ periodically, and if the trigger find the record time pass the 5 seconds, the stored procedure delete the this records.

7. Fail & Recovery - 3

TPC server is down after completing the call set up and before changing the state to “success”.
[1] Failure procedure

(1) Client sends the “CallReq()” to appropriate TPC server.
(2) TPC server1 check duplication from DB. If it is new call, TPC saves all the information to DB (TID, Caller, Callee, Time, and State = ”initial”).
(3) After completing call-setup of Caller and the Caller, When TPC server1 try to change the state to ”success”, TPC server1 is down.
[2] Recovery procedure
(1) Client retries the failed call through TPC server2 with the same TID.
(2) TPC sever2 checks TID and the state of the failed call from DB.
(3) TPC server2 perceive the same call (same TID, Caller and Callee). TPC requests the state of Caller and Callee through “getState()”. After returning this call, Caller and Callee return ” busy” to TPC server 2.
(4) TPC server2 perceive the failed call that was failed after call-setup of Caller and Callee

(5) TPC sever2 change the state to “success” and return success to Client.
8. Fail & Recovery - 4

TPC server is down after completing the call set up and before return success message to client.
[1] Failure procedure

(1) Client sends the “CallReq()” to appropriate TPC server.
(2) TPC server1 check duplication from DB. If it is new call, TPC saves all the information to DB (TID, Caller, Callee, Time, and State = ”initial”).
(3) After completing call-setup of Caller and the Caller, TPS server changes the state to “success”.

(4) When TPC server1 try to return success message to client, TPC server1 is down.
[2] Recovery procedure
(6) Client retries the failed call through TPC server2 with the same TID.
(7) TPC sever2 checks TID and the state of the failed call from DB.
(8) TPC server2 perceive the same call (same TID, Caller and Callee).
(9) TPC server2 perceive the failed call whose state is “success”.

(10) TPC sever2 return success to Client.

Fault Detection
· The Fault Manager of a TPC server periodically gathers information from another TPC server where Fault Manager is running. Information is ‘TPC service is alive or not’ and ‘CPU load’. If there is connection exception or if Fault manager get information that TPC service is down, the Fault Manager should try it again. If the error still occurs, The Fault Manager accepts that another TPC server is down.

· The Fault Checker of a client periodically asks the information, which is same as above, to each Fault Manager in TPC server1 and TPC server 2. . If there is connection exception from a TPC server or if Fault Checker gets information that TPC service of a TPC server is down, the Fault Checker should try it again. If the error still occurs, The Fault Checker accepts that a TPC server is down.

· Whenever The Third party (Caller and Callee) asks the ‘callRelease()’ to the TPC server1 or TPC server 2. . If there is connection exception from a TPC server Third party accepts that a TPC server is down.
Failover

· When the FT_Stub gets the return an exception from target TPC server because of fault, the FT_Stub should send the same message and TID again to the secondary TPC server without notification to client.

Recovery

· The Fault Manager discerns that another TPC server is down. The Fault Manager has to start the remote script that restarts another TPC server.

Checking point

Whenever TPC system is fail, TPC system checks the state of TPC server, Caller and Callee. The below table are states which is related with Fail & Recovery Scenario.

	Fail & Recovery number
	TPC State
	Caller State
	Callee State

	1
	initial
	idle
	idle

	2
	initial
	busy -> idle (timeout)
	idle

	3
	initial
	busy
	busy

	4
	success
	busy
	busy

PAGE
8

