Final Report for the HouseFull project

This report discusses the various phases of the HouseFull project. These experiments were conducted using two Account server and two Order Fulfillment server processes running on separate ECE cluster machines. As per system design, there is no limitation on the number of Account or Order Fulfillment server processes that could be started up as active replicas. Also, each of these invocations was a separate client program, as opposed to a single client program making the same invocations in a loop.
Phase I

We implemented Active Replication for Phase I. Our client starts up, as many threads as the number of active replicas, for every request. The client waits for ALL the threads to return before moving on to the next request. Below is a graph for one of our methods: createAccount in a fault-free scenario. The average time taken is around 82ms.

[image: image1.emf]CreateAccount (Phase I, Fail free)

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800 900 1000

Request #

Time in Milliseconds

Figure 1
In the fault-induced scenario, we conducted our experiments by killing both the servers and then restarting them immediately, 10 times in a 1000 client run. Since the IORs on the client side would have gotten stale, the invocation would fail – COMM_FAILUREs are caused due to Account/Order Fulfillment servers that have been killed. Since BOTH the threads return COMM_FAILURE exception, the client goes off to the Naming Service, gets the new IORs, and reattempts the invocation/request. In this case, our client's RTT sees a spike corresponding to each failure (10 in this experiment) as can be seen in figure 2 below:
[image: image2.emf]CreateAccount (Phase I, Fault Induced)

0

100

200

300

400

500

0 100 200 300 400 500 600 700 800 900 1000

Request #

Time in Milliseconds

Figure 2
(Just as a side note, even if one of the many threads succeeds and the other(s) return a COMM_FAILURE exception, we consider it a successful completion of request, and do not fetch fresh IORs. Fresh IORs are fetched only in case all threads return a Corba failure.)
Phase II – Bounded fail-over
Before moving on to Phase II we needed to analyze which part of our system was taking up most of the spike time in a failure-induced scenario and hence work on that part of our system in order to attain a bounded fail-over time. As can be seen by the pie-chart in figure 3, the time taken by the client to go back to the naming service in case of complete failure of servers is around 37 milliseconds. We targeted this, and added a caching thread that periodically goes to the Naming Service to refresh the client IOR cache. The time period of this poll was kept to be 0.5 seconds. We chose this time period because it was just sufficient for the caching thread to make one query to the naming service during the life of a typical client program performing about five operations (createAccount, login, search, checkoutMovie and logout).
[image: image3.emf]Phase I Fault Induced - Breakup of the spike

DB,

55 msec,

15%

File Creation on the

Middle Tier,

218 msec,

57%

Exception Catching,

40 msec,

11%

Naming Service

After Catching

Exception,

37 msec,

10%

Thread Creation,

27 msec,

7%

Figure 3
(The file creation time on the middle tier as shown in the pie-chart in figure 3 is the time that it takes for creation of instances of classes whose constructor creates a bunch of files for purposes of recording timing measurements. We talk more about this later in the document.
Earlier, we had automated our entire testbed, and were using the screen command to kill and restart servers at the specified times. The use of screen command was causing the COMM_FAILURE exception to be reported after 2-3 seconds instead of the actual 50-100ms. In order to get around this problem we started killing and restarting the servers using Ctrl-C manually.)
The addition of caching thread was expected to improve the failover time by eliminating the time for exception catching (40 ms) and fetching the new IORs from the naming service (37 ms) after receiving exceptions – as the client will not hit the failure case of using stale IORs, due to existence of the caching thread.
[image: image4.emf]CreateAccount (Phase II, Fault Induced)

0

100

200

300

400

500

0 100 200 300 400 500 600 700 800 900 1000

Request #

Time in Milliseconds

Figure 4
We did achieve this failure bounded behavior as can be seen in the figure 4 above. However smaller spikes still remained. Upon further inspection we realized that a spike occurs everytime the server services the first client after restarting. This behavior occurs due to the fact that one of our classes internally is singleton and its object gets created once the first client request is received and is then reused for the remaining clients. Inside the constructor of this class we are opening files for logging the timings taken by the different methods. Upon measuring the time taken for creation of these files we realized that this is the culprit for the remaining part of the spike, and that it is taking about 220 ms (as shown in the pie-chart in figure 3). As can be seen by the graph above, the average time in a fault-induced scenario improved to 290ms from the value of 375ms as in Phase I (figure 2). Not considering the time taken for opening these files in the constructor for a practical run of the system, the improvement due to caching thread appears significant, and helps us achieve a bounded failover.
The graph shown in figure 5 below depicts the fault-free run of the HouseFull system as in phase II.
[image: image5.emf]CreateAccount (Phase II, Fault Free)

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700 800 900 1000

Request #

Time in Milliseconds

Figure 5
Phase III – Performance Improvement
In order to realize as to which part of the system was a client invocation spending most of its time in, we plotted a pie-chart depicting the split of entire time taken by a typical client invocation (figure 6).

[image: image6.emf]Login Phase II (Fail-free)

Thread Join,

8.641481481,

9%

Thread Create,

27.81037037,

30%

DB Login,

54.81037037,

61%

Figure 6
From the pie-chart, moving from threads per invocation to persistent threads per client program seemed an obvious choice – it would help us save the thread create time that we are spending per invocation. Below we compare the timing readings of the login function as in Phase II compared with Phase III, in order to evaluate the performance gain achieved by implementing persistent threads.
[image: image7.emf]Login Phase II (Fail-free)

0

100

200

300

400

500

600

1 101 201 301 401 501 601

Number of Clients

Time (msec)

[image: image8.emf]Login Phase III (Fail-free)

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700 800 900 1000

Number of Clients

Time (msec)

Figure 7
As can be seen from the plots in figure 7, the average time taken by the login invocation reduces from 92 ms to 68 ms, as was expected due to a move from threads per invocation to threads per client program. A thread create operation didn’t happen for login since the persistent threads were already formed when the client program began.
--------End of document--------

Page 1 of 5

