Fault Tolerant Distributed Systems (18-749)
Team 5


Fault Tolerance Design for “HouseFull”
This document discusses the Fault Tolerance design for the HouseFull project. It discusses the methodology we will use for building fault tolerance into our online DVD rental store “HouseFull”.
Fault Detection

The fault detection is the responsibility of the client. Failure could be a naming service failure or server failure. If the naming service were to die, it would throw a COMM_FAILURE exception. We catch this on the client side and give client option to retry or quit with right error message. 
In case of server faults (i.e. primary fails), it too throws a COMM_FAILURE exception – the client catches the same and switches to one of the replicas. The client would have cached the IORs of the various replicas by contacting the naming service initially. The detection time depends on how long it takes for the stub to timeout waiting for response from the server. 

Managing Duplicate Transactions

Ensuing, we list the various mechanisms that we use in order to take care of duplicate operations:

· A counter (unique per client) is present on client side for transaction id, which the client passes as one of the parameters in each invocation. The global counter per client ensures that there is no issue with duplicate transaction ids appearing across two services by the same client.
· In order to prevent multiple logins, we will associate the IP address and process ID pair to associate a client program with a username. If another client program tries to use a username that is already logged in (i.e. present in the login table), the old login session entry will be invalidated and the new one now associated with the new IP, process ID pair. This way, we ensure that across multiple clients, the same username cannot be used at one point in time.

· A list of completed transactions is present on the database along with the corresponding username.

· Since all state is pushed to the database there is no issue with duplicate operations during fail-over. If the transaction completed on server side, but there is a failure while replying to the client, the client will re-invoke the operation again (with the same transaction id) on the replica. The replica first goes and checks with the database to see if the transaction has already been done. If so, it returns back to the client with the appropriate exception (DUPLICATE_OPERATION).

· If the server has completed processing the transaction, but has some issue with writing the transaction and user id to the database, it will return a HouseFullException (a user-defined exception) to the client, who will have to try again. Since all state is in the database, by ensuring that the server first writes to the database and then replies to the client it is possible to ensure transactional atomicity.

· No transaction id will be generated for read-only operations. Only those transactions that will cause a change to the state on the database will have a transaction id associated with them.

· There are many individual database transactions that either need to execute all of them successful, or none! E.g. if the login succeeds, the username and ticket number will be written to the ticket table in database. We also need to add the transaction id corresponding to this transaction id to the transactions table. So either both of these should succeed, or none. There are many other such scenarios. We will make them happen as transactions, so either all of these sub-transactions will commit, or none!

Fail-Over

Since our servers are stateless, fail-over is mainly concerned with notification of IOR changes to the naming service by the backup, which would reflect for new clients connecting to the system. 

Let us take a scenario where Primary is on IP1 and Backup is on IP2. The client initially contacts IP1, but when IP1 fails he contacts IP2 as part of his catch block and continues to contact this from then on. To ensure new clients contact IP2 directly, the backup registers with the naming service as the primary.

Recovery

When the failed primary comes back up:

· It re-registers itself as the backup IOR with the naming service.

· Since it is stateless, it needs to contact the database only when the client invokes a method on it. On receiving a client request, it initially checks to see if the transaction id passed by the client is a new one and then goes ahead to process the transaction.

Checkpointing

Since all state is pushed to the database, checkpointing does not seem to be required for recovery of a replica.
Failure Scenario
A typical failure scenario could be:

· Server crashes while processing client request. The client catches this as a COMM_FAILURE exception, and contacts the backup server.
· The backup acts as a cold passive replica, until a client invokes a method on it. On receiving client request, the backup assumes that the primary is dead (whether or not the primary is actually dead or not!) and decides to become the primary. It takes over as primary by registering with the naming service as the primary to ensure that new clients talk to it first and do not waste time unnecessarily talking to the old primary which is dead. 
· When the client contacts this new primary for a transaction that it had requested the failed server with, it would use the same transaction id as earlier. Based on whether the transaction previously completed or not, there will be a transaction and username recorded in the database. 

· The backup replica checks with the database to see if the transaction id and username pair is present or not. If it is, it returns a DUPLICATE_OPERATION exception. If it is not present it goes ahead and processes the transaction and records the transaction ID.

· Since all state is present in the database, even if the server crashes, the faults are tolerated completely and duplicate operations can be easily caught.
Page 1 of 2

