Carnegie Mellon University
Page 1 of 5
18749 - Fault tolerant distributed systems

April 22, 2005
Jinhee Lee
Luis D. Maya
Soumya Simanta
Min Wang
Gabriel Zenarosa

High performance statistics baseline
The focus of this baseline is to improve the performance of the application. To do this we:

1. Optimized the start-up time of JBoss.

2. Reduced the variability of the client by using a thread pool. Before implementing this we had performance problems because we were creating new threads per every server invocation.

To make this baseline more interesting we decided to introduce a voting manager and compare it to the previous situation where we would accept the first successful reply.

1 Optimizing JBoss
By removing unnecessary services (jars and xmls) from JBoss we managed to reduce the recovery time from an average of 2.5 minutes to an average of 50 seconds (30 seconds to 80 seconds depending on the machine).
2 The new client architecture

Includes a living thread per replica and a voting manager

[image: image1]
3 Implementation results
The following graphs show the results from introducing a voting manager and thread pool. Clearly the voting manager adds a tremendous overhead to the system.
[image: image2.png]Round trip time and its components (stacked)

301 401 501 601 701 801 901 1001

101 20

600 A

500

400

Voting manager time — Round trip time

— DB time Time until served

Figure 1 Round trip time 2 servers
[image: image3.png]4 servers Round trip time and its components (stacked)
700

600

500

400

oo I L 1] Ll

200 |y ‘mi“H M

100

0+ : : : : : : : S
101 201 301 401 501 601 701 801 901

— DBtime Time until served — Voting manager time — Round trip time

Figure 2 Round trip time for 4 servers
The deep blue line describes the total roundtrip: the time since the request was made until the moment when the voting manager reports the operation as a success or a failure.
The other lines try to explain the components of the blue line. The database time is drawn in pink. On top of it the time that it takes the are supports the make more
Note the increase in jitter and peaks in Figure 2. This is just what we expected since now we are waiting for more servers to finish their operations. Adding new servers to the system actually decreases the performance of the application.
3.a How much jitter are we adding by adding new servers to the system?
To keep away from tables and show this in an understandable way we created a couple histograms where we show the distribution of the values. As the reader may see, the average is slightly increased, but the jitter dispersion increases dramatically.

[image: image4.png]il

il

70

60

50

0

0

Eil

10

Total

L
Al alllllnalllla la o HHH 1lndanlonnndaapnnalaaalanas
50 80 91 103 120 138 1852 180 200 21 241 31 3 490

Figure 3: Histogram for 2 servers
[image: image5.png]il

il

70

60

50

0

0

Eil

10

0

Count of RTT)]

il

Ll

e

ull

N[

60 78 91

105

120

129

140

149

160

170

181

191

210 21

2% 21

300 349 460 590

Figure 4: Histogram for 4 servers

The range of the first graph is [50, 500] but the average is around 130 and the standard deviation is about 50. On the second graph the range is [60, 700] and the standard deviation is more than 100.
Finding an upper bound to the first graph is simpler. The traditional

	
	2 servers
	4 servers
	Difference (%)

	Average
	128
	157
	123%

	standard deviation
	46.7
	92.7
	199%

	% of data outside the [avg + 2 σ] range
	0.25%
	0.18%
	72%

	% of data outside the [avg + 3 σ] range
	0.17%
	0.11%
	65%

	% of data outside the [avg + 4 σ] range
	0.14%
	0.08%
	57%

4 The client without voting manager
[image: image6.png]350

300

250

200

150

100

50

Round trip time no voting manager, 4 servers

1

101 201 301 401 501 601 701 801 901

Figure 5: Round trip time, no voting manager
Heartbeats isAlive()

Vault Client

Replication Manager

Voting

Manager

JBoss

Replica 3

JBoss

Replica 4

JBoss

Replica 1

JBoss

Replica 1

JBoss

Global JNDI

Server

The Worker Threads read messages from the input queue..

JNDI Cache Manager updates the Cache at a regular basis.

JNDI Cache Manager

Worker Threads (one per Replica)

Requests From the Interactive Client are pushed into the Queue

Output Queues

Input Queues

R2

R2

R2

R2

R1

R1

R1

R1

R2

R1

JNDI Cache

Vault Client

Vault Interactive

Client

