
Symbiotic Jobscheduling with Priorities for a
Simultaneous Multithreading Processor

Allan Snavely
University of California, San

Diego
10100 Hopkins Drive
La Jolla, California

allans@sdsc.edu

Dean M. Tullsen
University of California, San

Diego
9500 Gilman Drive

La Jolla, California 92093

tullsen@cs.ucsd.edu

Geoff Voelker
University of California, San

Diego
9500 Gilman Drive

La Jolla, California 92093

voelker@cs.ucsd.edu

ABSTRACT
Simultaneous Multithreading machines benefit from jobscheduling
software that monitors how well coscheduled jobs share CPU re-
sources, and coschedules jobs that interact well to make more ef-
ficient use of those resources. As a result, informed coschedul-
ing can yield significant performance gains over naive schedulers.
However, prior work on coscheduling focused on equal-priority job
mixes, which is an unrealistic assumption for modern operating
systems.

This paper demonstrates that a scheduler for an SMT machine can
both satisfy process priorities and symbiotically schedule low and
high priority threads to increase system throughput. Naive priority
schedulers dedicate the machine to high priority jobs to meet prior-
ity goals, and as a result decrease opportunities for increased per-
formance from multithreading and coscheduling. More informed
schedulers, however, can dynamically monitor the progress and re-
source utilization of jobs on the machine, and dynamically adjust
the degree of multithreading to improve performance while still
meeting priority goals.

Using detailed simulation of an SMT architecture, we introduce
and evaluate a series of five software and hardware-assisted prior-
ity schedulers. Overall, our results indicate that coscheduling pri-
ority jobs can significantly increase system throughput by as much
as 40%, and that (1) the benefit depends upon the relative priority
of the coscheduled jobs, and (2) more sophisticated schedulers are
more effective when the differences in priorities are greatest. We
show that our priority schedulers can decrease average turnaround
times for a random jobmix by as much as 33%.

Categories and Subject Descriptors
B.8.2 [Hardware]: Performance Analysis and Design Aids; D.2
[Software]: Software Engineering; D.5.m [Computer Systems
Organization]: Miscellaneous—operating systems

General Terms
Design, Performance, Measurement

Keywords
Simultaneous Multithreading, Job Scheduling, Priorities

1. INTRODUCTION
Simultaneous Multithreading (SMT) [33, 32, 17] architectures exe-
cute instructions from multiple streams of execution (threads) each
cycle to increase instruction level parallelism. When there are more
jobs in the system than there is hardware support for simultaneous
execution (that is, more than the number of hardware contexts),
the jobscheduler implements multiprogramming at two levels. It
makes a running set of jobs that will be coscheduled and compete
in hardware for resources every cycle; it decides which jobs should
be coscheduled in the running set at a much coarser granularity.
Thus, from among the jobs available to be run, the jobscheduler
decides which ones should be run together.

The term symbiosis has been used to refer to the effectiveness with
which multiple jobs achieve speedup when run on multithreaded
machines [24] [25]. Symbiosis can be positive or negative. Jobs in
an SMT processor can conflict with each other on various shared
system resources. Throughput may go up or down depending on
how well the jobs in the running set symbios or ‘get along’. It
therefore makes a difference which jobs are coscheduled. A job
scheduler which takes symbiosis into account can yield enhanced
throughput and response time.

Previously [25] we presented a symbiotic OS-level jobscheduler for
SMT that dynamically adjusts its scheduling decisions to enhance
throughput and lower response time over what would be expected
if scheduling were left to chance. The scheduler is called SOS (for
Sample, Optimize, Symbios) because it first samples the space of
possible schedules while making progress through the job mix. It
then examines hardware performance counters and applies a heuris-
tic to guess at an optimal schedule, then runs this (presumed to be
optimal) schedule to boost system utilization. SOS scheduling was
shown to improve system response time by as much as 17% over a
naive scheduler.

However, that previous work neglects the important issue of job pri-
ority. Left to itself, SOS will fill issue slots as efficiently as it can
from available instruction streams without regard to the importance
of the instructions or the jobs they come from. Users have their
own notion of individual job importance which may run counter



to decisions the system would make to boost overall throughput
or to diminish average job response time. The preferences of the
user are embodied in priorities. Modern operating systems such
as Unix and NT allow users to specify the relative importance of
jobs; consequently, a system that allows coscheduling should pro-
vide mechanisms to allow resource allocation to be based upon user
specified priorities.

This paper presents several mechanisms for supporting the notion
of priority on an SMT processor while still allowing symbiotic
jobscheduling. These include a straightforward adaptation of a
UNIX priority scheme from a single-threaded machine, more com-
plex software mechanisms suitable for a multithreading machine,
a mechanism requiring hardware support for the notion of priority,
as well as a hybrid (hardware/software) scheme. Using detailed
simulation of an SMT architecture, we show that the promise of
SMT can still be realized when jobs of widely different priority are
coscheduled together. Low priority jobs can run beneficially with
high priority jobs, consuming unused resources without slowing
down the high priority jobs. System utilization (and thus overall
response time and throughput) can remain high, even when prior-
ity jobs are given the majority of system resources. Overall, our
results indicate that coscheduling priority jobs can increase system
throughput by as much as 40%, and that (1) the benefit depends
upon the relative priority of the coscheduled jobs, and (2) more
complex schedulers are more effective with greater differences in
priorities. We also show that our priority schedulers can decrease
average turnaround times for a random jobmix by as much as 33%.

The rest of this paper is organized as follows. Section 2 provides
background information on simultaneous multithreading architec-
tures and priority scheduling. Section 3 motivates the opportunities
for a scheduler for a multithreading machine to both coschedule
jobs and respect job priority, and increase system throughput as a
result. Section 4 describes our experimental methodology and eval-
uation metrics. Section 5 evaluates a series of both software and
hardware-assisted priority schedulers for SMT machines, with a fo-
cus on system throughput. Section 6 evaluates the impact of these
schedulers on response time. Finally, Section 7 describes previous
work, and Section 8 concludes.

2. BACKGROUND
This section provides background information on multithreading
architectures and the UNIX priority scheduler.

A simultaneous multithreading processor [33, 32] allows multiple
threads of execution to issue instructions to the functional units
each cycle. This can provide significantly higher instruction through-
put than conventional superscalar processors. The ability to com-
bine instructions from multiple threads in the same cycle allows
simultaneous multithreading to both hide latencies and more fully
utilize the issue width of a wide superscalar processor.

The simultaneous multithreading architecture we assume is the SMT
processor proposed by Tullsen et al. [32]. This is an out-of-order
issue processor which has the ability to fetch up to a total of eight
instructions from the instruction cache each cycle from up to two
different threads. Threads are given priority for fetch based on
the Icount mechanism, which favors those threads which have the
fewest instructions in the pre-execute portion of the pipeline. This
creates the most even mix of instructions from the various threads
and maximizes instruction-level parallelism in the instruction issue
queues.

The multiple threads which will run on an SMT processor might
come from parallel applications, multiple single-threaded applica-
tions, or a combination of both. For this research we assume a mul-
tiprogrammed workload of single-threaded applications, because
that forces the OS to make more fine-grained scheduling decisions.

Work on operating system issues relating to SMT is timely; Intel
has announced their future server and desktop processors will fea-
ture simultaneous multithreading (under the marketing name hyper-
threading technology) [1], joining the announced SMT-based Al-
pha 21464.

For further motivation as to the importance of investigations into
priorities on multithreaded systems, we found in previous work [19]
that users of a production multithreaded system may be unhappy
if the jobs of other users adversely affect their job’s performance.
Also we found that coscheduled jobs on multithreaded systems do
affect each other’s performance. And they do so more than they do
on space-shared multi-user systems (due likely to intimate sharing
of resources on multithreaded systems). Also we found users fre-
quently submit jobs in two modes (1) low-priority batch jobs which
can be preempted, and (2) high-priority interactive jobs that the
user would not wish to have preempted. Thus in brief, users expect
priorities, and users frequently use dramatically different priorities
for these two broad classes of jobs.

In designing an operating system for a new class of architecture,
it is important to understand what mechanisms users expect; the
traditional UNIX scheduler, as exemplified by BSD Unix [15], im-
plements a priority scheduler using a mulitilevel feedback queue.
Jobs are assigned one of 20 static priority levels. Each timeslice,
the job with the highest dynamic priority is chosen to run, and that
job’s dynamic priority is then aged (reduced). The aging mecha-
nism allows low static-priority jobs to eventually run, but still al-
lows high static-priority jobs to get the larger proportional share of
processor time. We use a simplified model of the effect of static
priorities in this paper for dual purposes. First, the aging mecha-
nism provides fairness and priority over very long runtimes but not
necessarily over the small time windows that can be simulated by
an instruction-level simulator, so we need a simpler mechanism for
our experiments. Second, some of our scheduling algorithms de-
pend on having a model of the effect of priorities so that they can
provide the same throughput guarantees on a multithreaded system
that a single-threaded system would provide. Note that these al-
gorithms could trivially be adapted to a more complex model of
UNIX priorities.

We found experimentally that the long term effect of differing pri-
orities can be accurately modeled as ‘proportional sharing’ where
jobs get a share of the system proportional to their priority. Vari-
ous numbers of jobs were submitted at different priorities and their
share of the system recorded using the UNIX utility ‘top’ after 60
seconds on a Alpha 21264 processor running Digital Unix V. Fig-
ure 1 shows the result for a simple cases of two jobs with different
priorities adding up to 19. In the rest of the paper we implement
policies that result in ‘proportional sharing’.

3. MOTIVATION
The opportunity presented by SMT hardware is to increase utiliza-
tion of the processor’s execution resources by fetching instructions
from independent instruction streams. The challenge we address
is that jobs of different priority should not be allowed to compete
equally for system resources (that would violate the intuition be-



Figure 1: Long-term effect of multilevel queues with feedback
mechanism on 2 jobs of differing priority. The X axis is the
difference between the priorities of the 2 jobs. The net result
over time is ‘proportional sharing’.

hind ‘priority’), yet straight-forward implementations of priority
decrease the opportunity for parallelism and high throughput.

On a conventional single-threaded processor, a job’s priority level,
when considered with respect to all other jobs’ priority levels, pro-
vides it two guarantees: (A) access to a certain percentage of the
CPU over time, and (B) throughput that is only degraded (rela-
tive to exclusive access to the processor) by a certain percentage.
For a single-threaded processor, those two guarantees are nearly
identical. However, on an SMT machine, they are not. This pa-
per demonstrates that an SMT scheduler that provides the second
guarantee, while being allowed to violate the first, provides higher
system-level performance than one that preserves the first.

We want to provide the effect of proportional sharing on an SMT
machine while not being necessarily bound to the mechanisms of
single-threaded machines. The default OS configuration of Digital
UNIX V allows the following mechanism for users to manage user-
level priorities. Users assign job priority numbers in the range 0-19.
Priority 19 is a special-case lowest priority job which sleeps in the
presence of any other job having a higher priority (lower priority
number). A runnable job i with priority pi is scheduled on the CPU
for a fraction of total available cycles equal to

FRACi = (19 − pi) /

jobs∑

j=1

(19 − pj)

In other words, jobs get scheduled for a fraction of available cycles
based on a weighted sum of priority numbers. Note that

jobs∑

i=1

FRACi = 1

which is to say that all the available cycles are distributed among
the runnable jobs.

On an SMT machine, more than one runnable job is scheduled for
execution in the same timeslice. This adds a degree of complexity
to the division of system resources among runnable jobs because a
job does not get exclusive use of the machine during its timeslice.

Jobs of equal priority can presumably be coscheduled in the same
timeslice and compete for resources equally. However, what about
jobs of different priority? We need a way of enforcing priorities
while allowing as much coscheduling as possible (to boost utiliza-
tion). If we assume that a job coscheduled with P other jobs gets
1/P of the system then a job whose priority number entitles it to
FRACi of the system is willing to be coscheduled for

(1)

COFRACi = MIN(1, (1 − FRACi) / (1 − 1/P ))

of the time and should be scheduled to run by itself for

SOLOFRACi = 1 − COFRACi (2)

of the time to obtain the additional cycles to which its priority enti-
tles it.

For example, a high priority job with priority entitling it to 75%
of the system is willing to be scheduled with a lower priority job
(entitled to 25% of the system) for (1 − .75)/(1 − .5) = .5 of the
time under the assumption that the high priority job gets half the
system when run with the low priority job. The high priority job
gets 100% of the system .5 of the time and 50% of the system .5 of
the time giving it an average of 75% of the system overall.

A viable schedule is one that preserves priorities by giving each
job at least the fraction of system resources its priority entitles it to.
We can use equations 1 and 2 to enforce viability; in section 5 we
will show several mechanisms that boost utilization and throughput
by solo-scheduling job i for SOLOFRACi and coscheduling jobs
(when sufficient runnable jobs are available) at the level of multi-
threading supported by the hardware for the rest of the time CS
where

CS = 1 −
jobs∑

i=1

SOLOFRACi (3)

Scheduling in this way limits the combinatorial space of schedules
since we are not considering schedules that coschedule at a level
lower than the hardware supports when there are more runnable
jobs than that available. Multithreading machines are designed un-
der the assumption that (at least up to some modest level) more
multithreading is better. This maximizes the opportunity for la-
tency hiding via issue from independent instruction streams. Previ-
ous work has shown that coscheduling to the maximum supported
level on modest (up to 8 way) SMT is in general best, [33] and
[23] showed that cases of negative symbiosis are rare and actually
required (to exhibit it in that study) crippling the base SMT config-
uration to artificially create bottlenecks on system resources.

There are two related factors in a schedule that can boost utiliza-
tion. We want to dynamically identify these and exploit them while
maintaining schedule viability.

First, if we determine that a job gets more than 1/P of the resources
it would obtain running alone when it runs with P other jobs then
its COFRAC can be increased. In other words we can violate
property (A) above because property (B), and thus the apparent af-
fect to the user, is preserved. In fact jobs usually get more than 1/P
of system resources (such as issue slots) which they would have
obtained if run alone when they are run with P other jobs on SMT
hardware. This is because jobs running alone do not fully utilize
all system resources and so leave ‘gaps’ that other jobs can exploit
when run contemporaneously. This is the premise of hardware mul-



Figure 2: IPC of 8 jobs coscheduled 4 at a time, depending upon
the sets chosen for coscheduling.

tithreading to begin with; there should be an increase in throughput
over singe-threaded hardware due to this effect. The challenge is to
determine what fraction of its solo-execution resources a job does
obtain when coscheduled so that priorities can be enforced against
that baseline. If we know a priori that a job will obtain fraction
Xi of its solo dedicated IPC when run with P other jobs where
Xi > 1/P then that job can be coscheduled for

COFRAC′
i = MAX(1, (1 − FRACi) / (1 − 1/Xi)

where now COFRAC′
i > COFRACi This in turn yields a greater

fraction of the time that jobs can be coscheduled

CS′ = 1 −
jobs∑

i=1

SOLOFRAC′
i

and should boost throughput by boosting the percentage of time
when jobs are simultaneously executed.

Second, when the number of jobs in the system P is greater than
M where M is the level of multithreading supported in hardware,
there is a choice to be made as to which sets of jobs should ex-
ecute together in the same timeslice. We previously showed how
performance can vary depending upon which jobs run together in
the same timeslice [24]; changing partners can boost throughput.
In section 5 we show how to adapt the same scheme to allow us to
compute COFRAC′

i and further increase throughput.

4. METHODOLOGY
Table 1 summarizes the benchmarks used in our simulations. All

benchmarks are taken from the SPEC2000 and SPEC95 suite and
use the reference data set. The benchmarks were fast-forwarded to
get out of the startup phase before being simulated for 250 million
instructions times the number of threads being simulated.

Execution is simulated on an out-of-order superscalar processor
model which runs unaltered Alpha executables. The simulator is
derived from SMTSIM [32]. The simulator models all reasonable
sources of latency, including caches, branch mispredictions, TLB
misses, and various resource conflicts, including renaming regis-
ters, queue entries, etc. It models both cache latencies and the effect
of contention for caches and memory buses. It also carefully mod-

Figure 3: WS(t) of 8 jobs coscheduled 4 at a time, depending
upon the sets chosen for coscheduling.

els execution down the wrong path between branch misprediction
and branch misprediction recovery.

The baseline processor configuration used for most simulations is
shown in Table 2.

4.1 Weighted Speedup
This section explains a previously developed metric for throughput
appropriate for SMT architectures [25] and also explains why we
use it in this study.

When jobs are run on an SMT machine, processor utilization can
go up dramatically. This is because thread level parallelism (TLP)
is converted into instruction level parallelism (ILP). The net effect
is to increase the pool of available-to-execute instructions and thus
the opportunity for the functional units to be utilized on every cycle.

We wish to have a formal measure of the goodness or speedup of
a coschedule. Intuitively, if one jobschedule executes more use-
ful instructions than another in the same interval of time, the first
jobschedule is more symbiotic and exhibits higher speedup. This
suggests IPC as a measure of speedup. But an unfair schedule can
appear to have good speedup, at least for awhile, by favoring high-
IPC threads. To ensure that we are measuring real increases in the
rate of progress through the entire jobmix, we define the quantity

WS(t) ’Weighted Speedup in interval t’ =
n∑

i=1

(realized IPC jobi/ single-threaded IPC jobi)

WS(t) equalizes the contribution of each thread to the sum of total
work completed in the interval by dividing the instructions execut-
ing on each job’s behalf by its natural offer rate if run alone. Im-
plicit in the definition is a precise idea of the interval t. An interval
is not just a measure of elapsed time. An interval starts on a certain
cycle, but also at a particular point in the execution of each job. An
interval ends on a certain cycle and at a specific point of execution
of each job.

WS(t) of a single-threaded job running alone is 1. This is intuitive
since there is no speedup due to multithreading when running only
one thread. More importantly, WS(t) is a fair measure of real work
done in processing the jobmix. In order for it to have a value greater



SPEC CPU2000 Benchmarks
mcf, crafty, parser, eon, perlbmk, gap, vortex, bzip2, twolf,
wupwise, swim, mgrid, applu, mesa, galgel, art, equake, facerec, ammp, lucas, fma3d, sixtrack, apsi, mcf
SPEC95 Benchmark
li95, hydro2d95, fpppp95, gcc95, tomcatv95, turbo95, go95, su2cor95, wave95

Table 1: Benchmarks used in this study.

Parameter Value
Fetch width 8 instructions per cycle
Fetch policy ICOUNT.2.8 [32]
Pipeline depth 8 stages
Min branch misprediction penalty 6 cycles
Branch predictor 2K gshare
Branch Target Buffer 256 entry, 4-way associative
Active List Entries 256 per thread
Functional Units 6 Integer (4 also load/store), 3 FP
Instruction Queues 64 entries (32 int, 32 fp)
Registers For Renaming 100 Int, 100 FP
Inst Cache 64KB, 2-way, 64-byte lines
Data Cache 64KB, 2-way, 64-byte lines
L2 Cache 512 KB, 2-way, 64-byte lines
L3 Cache 4 MB, 2-way, 64-byte lines
Latency from previous level L2 10 cycles
(with no contention) L3 20 cycles

Memory 100 cycles

Table 2: Processor configuration.

than 1 it has to be that more instructions are executed than would
be the case if each job simply contributed instructions in proportion
to its single-threaded IPC.

A short exercise may make WS(t) even more intuitive; if we have
one job with single threaded IPC of 2 and another with single threaded
IPC of 1 and run them separately each for 1 million cycles then one
will have executed 2 million instructions and the other 1 million.
Now, if we instead coschedule them for 1 million cycles and the
first contributes 1 million instructions and the second contributes
500 thousand then WS(t) will equal 1. This makes sense because
the total number of instructions executed was exactly what would
be predicted by the natural IPC of each and their fair share of the
machine (1/2) when scheduled together. However, if machine uti-
lization goes up due to coscheduling (which is the primary aim and
purpose of multithreading to begin with) then we may see some-
thing like 1.2 million instructions executed on behalf of the first
job and 600 thousand on behalf of the other for a total WS(t) of
1.2. It is also possible for WS(t) to be less than 1 if coscheduled
jobs interact in pathological ways [24].

Figure 2 illustrates the danger of using IPC as the objective func-
tion. It shows the worst and best IPC observed when 8 jobs are
coscheduled 4 at a time on an SMT machine. The jobs are Swim,
Mgrid, Applu, Li95, Hydro2d95, Fppp95, Gcc95, and Tomcatv95
from Table 2. The columns represent different choices as to which
sets of 4 jobs run together in the same timeslice. IPC varies by as
much as 8% in this case, depending on which jobs run together. It is
not clear though that a schedule with (possibly temporarily) higher
IPC is actually making more rapid progress through an entire job-
mix than is a schedule with lower IPC. It could just be preferenc-
ing jobs with high solo IPC. Figure 3 shows the worst and best
WS(t) observed in the same experiment. Again there is an 8%
variation; however, WS(t) varies in different ways across the work-

load than IPC. We have found weighted speedup correlates well
with response-time improvements in open-system experiments –
this experiment shows that IPC is not particularly well correlated
with that metric.

In the next section we report results in terms of WS(t), which has
been shown to fairly measure throughput progress through the job-
mix.

5. IMPLEMENTING PRIORITIES WITH
SOS

We explore a spectrum of hardware and software that can support
priorities on SMT. First we try an obvious way of implementing
priority on SMT, then we explore more complicated schemes that
could boost throughput while preserving schedule viability.

Recall (from Section 4) that there are 2 different possible meanings
of priority:

(A) guarantee a fraction of machine proportional to priority

(B) guarantee a fraction of single-threaded performance propor-
tional to priority

These are indistinguishable implementation-wise on single-threaded
machines but possibly different on multithreaded machines.

5.1 A simple priority mechanism
The first priority mechanism we implement is based on the assump-
tion that a job coscheduled to execute with P other jobs gets 1/P
of the system. We call the scheduling mechanism Naive. Based
on the assumption, high priority jobs are coscheduled for CS of
the time and solo scheduled for SOLOFRACi of the time (these



fractions were defined in Section 3). The result is a viable sched-
ule in the sense that jobs get an opportunity to issue instructions
proportional to their priority (barring unlikely anti-symbiotic be-
havior). So Naive preserves property (B) above if the assump-
tion holds, though it violates property (A). Also, one can expect
throughput due to multithreading to be good during the CS times-
lice. Therefore this simple scheduling mechanism works well with
SMT hardware. Figure 4 shows the division of job throughput and
total job throughput that results from an example of the simplest
possible case (coscheduling 2 jobs) using Naive. In this case Hy-
dro2d95 and Li95 are run together according to different priori-
ties and resulting fractions of single-threaded throughput guaran-
tees ranging from 90% for Lisp95 and 10% for Hydro2d95 to 90%
for Hydro2d95 and 10% for Lisp95. The heights of the bars are all
greater than 1, meaning all of the Naive schedules with these prior-
ity ratios result in an increase in throughput due to multithreading.
However, throughput drops significantly ‘on the wings’ where the
priorities are most different. This is because the high priority thread
is solo-scheduled a great deal of the time in these cases, so oppor-
tunities for symbiosis are reduced.

5.2 A symbiotic priority mechanism
The next priority mechanism we implement is based on the idea
that if we can observe how well jobs symbios we can do better than
Naive. SOS (Sample, Optimize, Symbios) is a CPU scheduler that
dynamically discovers efficient schedules on the fly and runs these
to boost throughput and turnaround. In the sample phase it runs
jobs together in different combinations (when P > M ) to deter-
mine the efficiency of groups of candidates for coscheduling; also
it can run jobs by themselves to determine their ‘natural’ IPC as a
baseline. After sampling, the scheduler makes a scheduling deci-
sion based on observed performance counters (the optimize phase)
and then runs a predicted-to-be optimal schedule for a relatively
long time (compared to the sample phase) before again sampling to
capture changes in jobmix and job execution phase.

The ability of SOS to determine the ‘natural’ IPC of jobs allows it
to enforce priorities by comparing a job’s progress to its estimated
progress if run by itself. This allows precise definition and imple-
mentation of priorities in a multithreaded environment. If a job
starts falling behind it can be solo-scheduled for a while to catch
up. In fact, SOS implements a notion of priority that is more pre-
cise than that usually found on single-threaded machines. Tradi-
tional machines simply enforce property (A) above via timeslicing
with no notion of the natural rate of progress that a job makes if it
has the machine to itself, the assumption being that jobs on a time-
shared machine do not affect each other. This assumption can be
false due to cache or other side effects.

The Symb mechanism implements priorities by first doing a sample
phase among the runnable jobs to estimate their solo IPC. It then
samples the performance of the jobs when run in an (arbitrary) set
of groups for equal timeslices at the highest level of multithread-
ing possible. It next uses the information gathered to compute
COFRAC′

i and CS′ from Section 4. Typically CS′ >= CS.
Every so often it repeats the sample phase to capture changes in
‘natural’ solo IPC. So Symb determines how jobs utilize the system
when run alone and in groups and uses this information to schedule
the machine as efficiently as possible while still preserving prior-
ities. Typically we can expect Symb to outperform Naive unless
the cost in reduced performance during the solo-scheduled sample
phase exceeds the benefits conferred by increasing the timeslice
(CS′) in which the machine is fully coscheduled. Figure 5 shows

the division of job throughput and total job throughput that results
from an example of the simplest possible case (coscheduling 2 jobs)
using Symb. Comparing this to Figure 4 we see that throughput has
improved significantly ‘on the wings’ because Symb takes into ac-
count how much progress jobs actually make when coscheduled
rather than making a naive assumption about it. Since one job typ-
ically does not use all available issue slots, there is a symbiotic
effect resulting in increased throughput due to coscheduling. Symb
quantifies this and uses it to coschedule as much as possible while
still preserving schedule viability.

5.3 A priority mechanism requiring hardware
support

The next priority mechanism we implement is based on the idea
that if we could control job issue rate cycle-by-cycle according
to priority, we could coschedule more often. The Icount mecha-
nism uses additional hardware that was proposed in [32] to support
biased fetching of instructions to maximize parallelism in the in-
struction window. Threads which are least represented in the pre-
execute stages of the pipeline have preference for fetch. Here we
take advantage of the existence of that hardware – we give fetch
preference to threads of higher priority. Each thread receives a
handicap number equal to pi where pi is its priority number. A job
with higher handicap gets fewer fetch opportunities than a job with
lower handicap. This enables enforcement of priorities on a cycle-
by-cycle basis. This comes very close to enforcing property (A)
above except that if the priority job cannot issue, a lower priority
job can ‘sneak in’ and issue. A job thus gets a fraction of fetch op-
portunities proportional to its FRACi. In most cases this increases
CS′ to nearly 1 (little or no solo-scheduling) since a coscheduled
low priority job cannot disproportionably interfere with a high pri-
ority job. We may expect Icount to outperform the software disci-
plines in cases where it significantly increases CS′. We will see be-
low however that this ‘micromanagement’ approach may be coun-
terproductive in cases where CS′ is already high. However Fig-
ure 6 shows that, in the simple case, Icount significantly increases
throughput ‘on the wings’ where priorities are most different.

In the above experiments, after accounting for sampling overhead,
Symb outperforms Naive by as much as 20%, as little as 0% (when
the priorities are equal), and by an average of 8% over the points
sampled. While an 8% performance boost may seem modest it
is also cheap. It is brought about by simply adding a bit of so-
phistication to the software CPU scheduler. Also recall that on
a multi-user system it is common to have low priority batch jobs
and high priority interactive jobs. So the case where priorities are
quite different is a common case. And the symbiotic schemes con-
fer the most benefit in this scenario. Icount further boosts per-
formance by as much as 30%, as little as 0%, and an average of
15%. Icount requires additional hardware counters to keep track
of the count of issued but not-yet-retired instruction per thread and
a mechanism for preferential fetch. However, this hardware has
been proposed to increase performance for SMT machines in gen-
eral. We exploit it in another way but with the same result.

5.4 Priority mechanisms for multiprogrammed
environments

The next priority mechanisms implemented only apply when there
are more runnable jobs in the system than there are hardware con-
texts available to coschedule them. They are based on the idea
that some combinations of jobs ‘get along’ better than others so it



Figure 4: Division of throughput for Hydro and Lisp with vari-
ous priorities using the Naive priority scheme.

Figure 5: Division of throughput for Hydro and Lisp with vari-
ous priorities using the Symb priority scheme.

Figure 6: Division of throughput for Hydro and Lisp with vari-
ous priorities using the Icount priority scheme.

makes a difference which jobs are coscheduled. The SOS mech-
anism works similar to the Symb mechanism, except that when
P > M it increases the length of the sample phase, trying several
different ways of grouping jobs to run together. It uses observa-
tions about the solo IPC of jobs to evaluate which schedule has the
highest WS(t). It is important to note though that increasing the
length of the sample phase to try several different coschedules in
this way does not increase the overhead associated with sampling
(!) because, in the absence of better information, the scheduler is
constrained to co-schedule according to some grouping. So trying
different groupings is no worse than simply picking one at random
and progress is still being made through the jobs during the sample
phase. Typically, we can expect SOS to do better than Symb if some
ways of groupings jobs to run together are better than others (the
symbiosis effect).

SOS can also be combined with Icount. The last priority mecha-
nism we implement combines the two. We will see in the next sec-
tion, however, that controlling priorities through the fetch mecha-
nism is not always most efficient. It may be unnecessary to severely
handicap a low priority job from being fetched. It may prove more
efficient (and still viable) to let it in at a somewhat higher rate if it
is not interfering unduly with high priority threads (i.e. is highly
symbiotic). Icount-SOS handicaps lower priority threads in hard-
ware but only as much as is necessary to enforce priority. It com-
bines sampling to determine ‘natural’ IPC with handicapping to
suppress fetch from low priority threads. When the standard de-
viation among job priorities is high it degenerates to (essentially)
Icount. When the standard deviation is low, it degenerates to SOS.
Typically, we may expect Icount-SOS to strikes a dynamic balance
between the best throughput achievable with hardware alone and
that with software alone.

Figure 7 shows an example of the common case where there are
more jobs to be run than there are available hardware contexts to
hold their state. In this case there are 8 jobs (from SPEC2000
and SPEC95 Turbo, Gcc, Go, Hydro, Su2cor, Swim, Tomcatv, and
Wave). We simulate an SMT processor with 4 hardware contexts;
the scheduler runs 4 jobs at a time for 5M cycles and then has a
swap opportunity when it may replace one or more of the jobs in the
running set with another runnable job. In this experiment one job
is chosen to have high priority and the rest compete among them-
selves at equal (lower) priority. As before, the benefits of the more
sophisticated methods (taken in increasing order of sophistication
and complexity, Naive, Symb, SOS, and Icount-SOS) are greater
for greater differences in priority. Over the points measured Symb
improves on Naive by as much as 17% in terms of WS(t) and av-
erages 8% better. SOS improves by as much as 23% over Naive and
averages 14% better. Icount improves by as much as 37% and aver-
ages 19% better. Figure 7 is fairly typical of results when there are
about twice as many runnable jobs as hardware contexts. Although
in this case Icount did better than either SOS or Symb, we will see
in the next section that when there are lots of jobs in the system and
less standard deviation among their priorities, the software methods
may do better than the hardware methods. Icount-SOS combines
the best features of both and does as well as the better of either (in
this case the same as Icount).

6. RESPONSE TIME
Here we summarize results from many experiments that model the
general case where multiprogramming is high relative to hardware
available for multithreading and jobs come and go in the system. In
order to model a system under load we implement a system where



Figure 7: Performance of Naive, Symb, SOS, Icount, and
Icount-SOS for 8 threads coscheduled 4 at a time.

jobs enter and leave the system with exponentially distributed ar-
rival rate λ and exponentially distributed average time to complete
a job T. We further associate a randomly generated priority with
each job that comes into the system; jobs have an equal likelyhood
of getting any priority in the range 0 to 19. We study a stable sys-
tem where λ and T are such that the number of jobs in the system
(N) does not grow without bound. In such a system it makes sense
to measure response time rather than throughput, since throughput
cannot possibly exceed the rate of job arrival. If two stable systems
are compared and one is faster, the faster one will complete jobs
more quickly and thus typically have fewer queued up waiting to
run.

The jobs are drawn from Table 1. We randomly generate jobs with
an average distribution of T centered around 2 billion cycles by first
generating random numbers with this distribution and then fetch-
ing that many instructions multiplied by single-threaded IPC from
the jobs. So, for the purposes of these experiments, a job is about
2 billion cycles worth of instructions from one of the SPEC95 or
SPEC2000 benchmarks.

We use a job arrival rate (λ) with an exponential distribution that
will cause the system to remain stable with N about equal to double
the SMT level (based on Little’s law [16] N = λ ∗ T ). So most
of the time there are about N = 2 * SMT-level jobs in the system.
To model a random system but produce repeatable results, we fed
the same jobs in the same order with the same arrival times to the
scheduler.

Figure 8 shows the percent improvement in turnaround time achieved
over repeated trials at a multithreading level of 8 by our various pri-
ority disciplines.

Notice that in this case, contrary to the results of Figure 7, Icount
did worse than SOS or Symb. Icount is particularly effective at
enforcing priorities when there is a great standard deviation in pri-
orities among jobs in the system. The other disciplines are unable
to avoid a substantial amount of solo-scheduling in that scenario.
When there are many jobs of many different priorities in the sys-
tem, no particular job is entitled to a large slice of the system. Un-
der these conditions it appears that Icount unnecessarily limits the
fetching of independent and heterogeneous instructions from low
priority threads. But Icount-SOS combines the cycle-by-cycle pri-

Figure 8: Average percent improvement in turnaround time
over Naive for Symb, SOS, Icount, and Icount-SOS with a mul-
tithreading level of 8.

Figure 9: Percent improvement in turnaround over Naive de-
pending on priority category.

ority enforcement of Icount with the flexibility and dynamic opti-
mizing behavior of SOS to obtain the best performance of either (in
this case the same as SOS, 33%.)

It is reasonable to wonder if increases in average turnaround are
coming at the expense of turnaround for high priority jobs. How-
ever, this is not the case. Even though in the short term we take
resources from high-priority jobs, and make them available to low-
priority jobs, this short-term effect is overcome by the long-term
benefit of increasing system throughput, and accelerating the com-
pletion of low-priority jobs out of the system, decreasing the aver-
age queue length. Figure 9 shows the fractional improvement in re-
sponse time over Naive that resulted from the experiment. Jobs are
divided into 3 bins; Low Priority (priorities in the range 12 to 19),
Medium Priority (priorities in the range 6 to 11), and High Priority
(priorities in the range 0 to 5). The lower priority jobs benefited
most but the high priority jobs also turned around faster (Icount
showed a very small but non-zero improvement for the High Prior-
ity bin).

7. PREVIOUS WORK



A simultaneous multithreading processor [33, 32, 17, 13, 35]
holds the state of multiple threads (execution contexts) in hard-
ware, allowing the execution of instructions from multiple threads
each cycle on a wide superscalar processor. This organization re-
sults in more than doubling the throughput of the processor without
excessive increases in hardware [32].

The techniques described here also apply to other multithreaded
architectures [3, 10, 2]; however, the SMT architecture is most rel-
evant here because threads interact at such a fine granularity in the
architecture, and because it is closest to widespread commercial
use. By contrast, the Tera MTA supercomputer [3], which features
fine-grain multithreading, has fewer shared system resources and
less intimate interactions between threads. It issues one LIW in-
struction per cycle, does not support out-of-order execution, does
not have shared renaming registers, and has no data cache.

Snavely, et al., [24] first used the term symbiosis to refer to an in-
crease in throughput that can occur when particular jobs are cosched-
uled on multithreaded machines, and in [23] exhibit a user-level
schedule that boosts throughput on the Tera MTA. But that ap-
plication is for a massively parallel system which largely protects
threads from each other. Thus, while the scale of the scheduling
problem is great, the number of factors determining how threads
interact are few and relatively straight-forward.

Sobalvarro and Weihl [27], Gupta, et al., [11], and Dusseau, et
al., [4] all explore the benefits of coscheduling parallel jobs based
on their communication patterns. In fact, a multiprocessor sched-
uler should solve a similar problem – how to coschedule threads
on different processors to maximize efficiency in the face of bot-
tlenecks on shared system resource (such as main memory or com-
munication fabric). Chapin [7] emphasizes load balancing, as does
Tucker and Gupta [31]; the idea is to migrate threads to under-
utilized processors. Others have concentrated on keeping the cache
warm by favoring the mapping of threads to processors where they
have executed before [6] [30] [34].

Coscheduling on traditional single-threaded architectures often leads
to increased throughput due to overlapping of I/O from some job(s)
with the calculations of others. The scheduling discipline Multi-
level Feedback, implemented in several flavors of Unix[29], 4.3
BSD Unix, Unix System V, and Solaris TS (timesharing scheduling
class), encourages I/O bound jobs to run more frequently, thus lead-
ing to higher overall machine utilization. I/O bound jobs tend to re-
linquish the CPU as soon as they obtain it. If the hardware and O/S
support asynchronous I/O, this allows the CPU to stay busy with
the next job while I/O is serviced ([28] [15]). Patterson and Gib-
son [18] describe an extension to the Mach O/S that does informed
prefetching to exploit I/O parallelism in coscheduled jobs to boost
throughput on a DEC workstation with multiple SCSI strings.

Several systems schedule software threads on single-threaded pro-
cessors or clusters of single-threaded processors. Delany [9] ex-
plains how the Daylight Multithreading Toolkit Interface does this
to overlap I/O with computation and increase system throughput.
Blumofe and Leiserson [5] describes a method for scheduling soft-
ware threads on a hardware single-threaded multiprocessor via a
workstealing heuristic.

Many scheduling techniques strive to coschedule jobs that commu-
nicate frequently on massively parallel (MPP) systems conglomer-
ated from single-threaded processors. Sistare et al. [22] describe

a system that dynamically coschedules jobs that communicate fre-
quently to increase system utilization and job response time. Sobal-
varro et al. [26] improve upon gang scheduling to dynamically
produce emergent coscheduling of the processes constituting a par-
allel job. Silva and Scherson [21] improve upon gang scheduling to
fill holes in utilization around gang scheduled jobs with pieces of
work from jobs that do not require all resources in order to to make
progress. Lee et al. [14] evolve methods of balancing the demands
of parallel jobs waiting to be gang scheduled with those of I/O-
bound jobs, which require high CPU priority to achieve interactive
response times. The goal is to keep the system highly utilized.

Several works have explored the tension between scheduling a sys-
tem for high utilization and meeting an objective function on single-
threaded hardware devoted to a real-time mix of jobs. Hamidzadeh
and Atif [12] account for the scheduling overhead in a system that
dynamically schedules real-time applications with a goal of using a
multiprocessor single-threaded system efficiently to meet the max-
imum number of deadlines.

Coffer et al. [8] describe scheduling mechanisms allowing the sys-
tem administrator to balance the demand for fast turnaround with
demand for high throughput. The administrator can over-allocate
resources to allow high utilization of system resources on the Ori-
gin 2000.

Schauser et al. [20] describes a hierarchical scheduling policy that
allowed the TAM machine to schedule logically related threads
closely together in time.

Previous work focused on coarse-grained overlapping of I/O with
computation on single-threaded hardware, or concentrated on ways
to coschedule logically related jobs on MPP systems conglomer-
ated from single-threaded hardware, or focused on mechanisms to
pack low priority jobs around high priority jobs to raise utiliza-
tion on hardware-single-threaded machines. We previously [25]
considered OS mechanisms for increasing fine-grained, overlap-
ping, resource utilization on hardware-multithreaded machines for
jobs that run well together but have no other reason to be cosched-
uled. This work considers how to make the scheme work when one
must balance decisions that the scheduler would make in terms of
jobs to co-execute, with preferences of the user as to how much
of the system should be devoted to high or low priority jobs under
co-execution. So, while most previous work only takes into ac-
count communication interaction and the need to coschedule par-
allel jobs, this work incorporates much more complex interactions
between coscheduled jobs and the desires of the user. Many of
these interactions are phenomena particular to multithreaded sys-
tems.

8. CONCLUSION
This paper shows that the benefits of multithreading, and those of
symbiotic jobscheduling, need not be sacrificed to enforce priori-
ties. A clever jobscheduler keeps track of how much resource a job
is consuming, how much its priority entitles it to, how well the job
gets along with other coscheduled jobs, and uses this information
to make scheduling decisions accordingly.

SOS uses a sample phase in which it collects information about
how jobs run when executed by themselves and in groups to pro-
duce efficient schedules that keep the machine well utilized while
preserving the semantics of priority. SOS works gracefully with
hardware support for enforcing priorities. Our results indicated that



coscheduling priority jobs can increase system throughput by as
much as 40%. The benefit depends upon the relative priority of the
coscheduled jobs, and more complex schedulers are more effective
with greater differences in priorities. We also showed that, although
our priority schedulers focus on increasing system throughput, as a
result they can also decrease average turnaround times for a random
jobmix by as much as 33%.

9. REFERENCES
[1] http://developer.intel.com/technology/hyperthread/.

[2] A. Agarwal, B. Lim, D. Kranz, and J. Kubiatowicz. APRIL:
a processor architecture for multiprocessing. In 17th Annual
International Symposium on Computer Architecture, pages
104–114, May 1990.

[3] R. Alverson, D. Callahan, D. Cummings, B. Koblenz,
A. Porterfield, and B. Smith. The tera computer system. In
International Conference on Supercomputing, pages 1–6,
June 1990.

[4] A. Arpaci-Dusseau, D. Culler, and A. Mainwaring.
Scheduling with implicit information in distributed systems.
In Sigmetrics, 1998.

[5] R. Blumofe and C. Leiserson. Scheduling multithreaded
computations by work stealing. In Proceedings of the 35th
Annual Symposium on Foundations of Computer Science,
Nov. 1994.

[6] R. Chandra, S. Devine, and B. Verghese. Scheduling and
page migration for multiprocessor computer servers. In 6th
International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct. 1994.

[7] S. Chapin. Distributed and multiprocessor scheduling. ACM
Computing surveys, Mar. 1996.

[8] H. Cofer, N. Camp, and R. Gomperts. Turnaround vs.
throughput: Optimal utilization of a multiprocessor system.
In SGI Technical Reports, May 1999.

[9] J. Delany. Daylight multithreading toolkit interface.
http://www.daylight.com, May 1999.

[10] M. Fillo, S. Keckler, W. Dally, N. Carter, A. Chang,
Y. Gurevich, and W. Lee. The M-Machine multicomputer. In
28th Annual International Symposium on Microarchitecture,
Nov. 1995.

[11] A. Gupta, A. Ticker, and S. Urushibara. The impact of
operating scheduling policies and synchronization methods
on the performance of parallel applications. In Proceedings
of the 1999 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pages 392–403, June
1999.

[12] B. Hamidzadeh and Y. Atif. Dynamic scheduling of real-time
aperiodic tasks on multiprocessor architectures. In
Proceedings of the 29th Hawaii International Conference on
System Sciences, Oct. 1999.

[13] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki,
A. Nishimura, Y. Nakase, and T. Nishizawa. An elementary
processor architecture with simultaneous instruction issuing
from multiple threads. In 19th Annual International
Symposium on Computer Architecture, pages 136–145, May
1992.

[14] W. Lee, M. Frank, V. Lee, K. Mackenzie, and L. Rudolph.
Implications of i/o for gang scheduled workloads. In 3rd
Workshop on Job Scheduling Strategies for Parallel
Processing, Apr. 1997.

[15] S. Leffler, M. McKusick, M. Karels, and J. Quarterman. The
Design and Implementation of the 4.3BSD UNIX Operating
System. Addison-Wesley, 1989.

[16] J. Little. A simple proof of the queuing formula L = λ W.
Operations Research, 9:383–387, 1961.

[17] J. L. Lo, S. J. Eggers, J. S. Emer, H. M. Levy, R. L. Stamm,
and D. Tullsen. Converting thread-level parallelism to
instruction-level parallelism via simultaneous
multithreading. In ACM Transactions on Computer Systems,
Aug. 1997.

[18] H. Patterson and G. Gibson. Exposing I/O concurrency with
informed prefetching. In Proceedings of Third International
Conference on Parallel and Distributed Information Systems,
Sept. 1994.

[19] W. Pfeiffer, L. Carter, A. Snavely, R. Leary, A. Majumdar,
S. Brunett, J. Feo, B. Koblenz, L. Stern, J. Manke, and
T. Boggess. Evaluation of a multithreaded architecture for
defense applications. In SDSC Techical Report, June 1999.

[20] K. Schauser, D. Culler, and E. Thorsten. Compiler-controlled
multithreading for lenient parallel languages. In Proceedings
of FPCA ’91 Conference on Functional Programming
Languages and Computer Architecture, July 1991.

[21] F. Silva and I. Scherson. Improving throughput and
utilization in parallel machines through concurrent gang. In
Proceedings of the IEEE International Parallel and
Distributed Processing Symposium, May 2000.

[22] S. Sistare, N. Nevin, T. Kimball, and E. Loh. Coscheduling
mpi jobs using the spin daemon. In SC 99, Nov. 1999.

[23] A. Snavely and L. Carter. Symbiotic jobscheduling on the
MTA. In Workshop on Multi-Threaded Execution,
Architecture, and Compilers, Jan. 2000.

[24] A. Snavely, N. Mitchell, L. Carter, J. Ferrante, and
D. Tullsen. Explorations in symbiosis on two multithreaded
architectures. In Workshop on Multi-Threaded Execution,
Architecture, and Compilers, Jan. 1999.

[25] A. Snavely and D. Tullsen. Symbiotic jobscheduling for a
simultaneous multithreading processor. In Ninth
International Conference on Architectural Support for
Programming Languages and Operating Systems, Nov. 2000.

[26] P. Sobalvarro, S. Pakin, W. Weihl, and A. Chien. Dynamic
coscheduling on workstation clusters. In SRC Technical Note
1997-017, Mar. 1997.

[27] P. G. Sobalvarro and W. E. Weihl. Demand-based
coscheduling of parallel jobs on multiprogrammed
multiprocessors. In Proceedings of the IPPS 1995 Workshop
on Job Scheduling Strategies for Parallel Processing, pages
63–75, Apr. 1995.

[28] K. Thompson. Unix implementation. In The Bell System
Technical Journal, July 1978.



[29] K. Thompson and D. Ritchie. The unix time-sharing system.
In Communications of the ACM, July 1974.

[30] J. Torrellas, A. Tucker, and A. Gupta. Benefits of
cache-affinity scheduling issues for multiprogrammed shared
memory multi-processors. In Proceedings of the 1993 ACM
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, May 1993.

[31] A. Tucker and A. Gupta. Process control and scheduling
issues for multiprogrammed shared memory multiprocessors.
In Symposium on Operating Systems Principals, Dec. 1989.

[32] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and
R. Stamm. Exploiting choice: Instruction fetch and issue on
an implementable simultaneous multithreading processor. In
ISCA96, pages 191–202, May 1996.

[33] D. Tullsen, S. Eggers, and H. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In 22nd
Annual International Symposium on Computer Architecture,
pages 392–403, June 1995.

[34] R. Vaswani and J. Zahorjan. The implications of
cache-affinity on processor scheduling for multiprogrammed,
shared memory multiprocessors. In Symposium on Operating
Systems Principals, Oct. 1991.

[35] W. Yamamoto and M. Nemirovsky. Increasing superscalar
performance through multistreaming. In Conference on
Parallel Architectures and Compilation Techniques, pages
49–58, June 1995.


