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Reminder: Project Proposals 

Â Due: Tuesday, September 25, 11:59pm. 

 

Â What? 

Ç A clear, insightful writeup  

Ç Problem 

Ç Why is it important? 

Ç Your goal 

Ç Your solution idea 

Ç What have others done to solve the problem? 

Ç What are the advantages/disadvantages of your solution idea? 

Ç Your research and evaluation plan 

Â Clear goals for Milestones I, II, and final report  
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New Review Assignments 

Â Due: Sunday, September 30, 11:59pm. 

 

Â Mutlu, ñSome Ideas and Principles for Achieving Higher System 
Energy Efficiency,ò NSF Position Paper and Presentation 2012. 

 

Â Ebrahimi et al., ñParallel Application Memory Scheduling,ò MICRO 
2011. 

 

Â Seshadri et al., ñThe Evicted-Address Filter: A Unified Mechanism 
to Address Both Cache Pollution and Thrashing,ò PACT 2012. 

 

Â Pekhimenko et al., ñLinearly Compressed Pages: A Main Memory 
Compression Framework with Low Complexity and Low Latency,ò 
CMU SAFARI Technical Report 2012. 
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Last Lecture 

Â Bottleneck Identification and Scheduling 

 

Â Staged Execution 
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Today 

Â Asymmetry in Memory Scheduling 

 

Â Wrap up Asymmetry 

 

Â Multithreading 
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More Asymmetric Multi-Core 
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Review: Data Marshaling Summary 

Â Inter -segment data transfers between cores limit the benefit 
of promising Staged Execution (SE) models 
 

Â Data Marshaling is a hardware/software cooperative solution: 
detect inter-segment data generator instructions and push 
their data to next segment s core 

Ç Significantly reduces cache misses for inter-segment data 

Ç Low cost, high-coverage, timely for arbitrary address sequences 

Ç Achieves most of the potential of eliminating such misses 
 

Â Applicable to several existing Staged Execution models 

Ç Accelerated Critical Sections: 9% performance benefit 

Ç Pipeline Parallelism: 16% performance benefit 

Â Can enable new modelsĄ very fine-grained remote execution 
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Outline 

Â How Do We Get There: Examples 

 

Â Accelerated Critical Sections (ACS) 

Â Bottleneck Identification and Scheduling (BIS) 

Â Staged Execution and Data Marshaling 

 

Â Asymmetry in Memory 

Ç Thread Cluster Memory Scheduling 

Ç Heterogeneous DRAM+NVM Main Memory 
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Motivation 

ÅMemory is a shared resource 

 

 
 

ÅThreadsΩ requests contend for memory 

ïDegradation in single thread performance 

ïCan even lead to starvation 
 

ÅHow to schedule memory requests to increase 
both system throughput and fairness? 
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Previous Scheduling Algorithms are Biased 
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System throughput  
bias 

Fairness  
bias 

No previous memory scheduling algorithm provides 
both the best fairness and system throughput 

Better system throughput 
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Take turns accessing memory 

Why do Previous Algorithms Fail? 
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Fairness biased approach 

thread C 

thread B 

thread A 

less memory  
intensive 

higher 
priority 

Prioritize less memory-intensive threads 

Throughput biased approach 

Good for throughput 

starvation Č unfairness 

thread C thread B thread A 

Does not starve 

not prioritized Č  
reduced throughput 

Single policy for all threads is insufficient 



Insight: Achieving Best of Both Worlds 
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thread 

thread 

higher 
priority 

thread 

thread 

thread  

thread 

thread 

thread 

Prioritize memory-non-intensive threads 

For Throughput 

Unfairness caused by memory-intensive 
being prioritized over each other  
Å Shuffle threads 

 

Memory-intensive threads have  
different vulnerability to interference 
Å Shuffle asymmetrically 

For Fairness 

thread 

thread 

thread 

thread 



Overview: Thread Cluster Memory Scheduling 

1. Group threads into two clusters 
2. Prioritize non-intensive cluster 
3. Different policies for each cluster 
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thread 

Threads in the system 

thread 

thread 

thread 

thread 

thread 

thread 

Non-intensive  
cluster 

Intensive cluster 

thread 

thread 

thread 

Memory-non-intensive  

Memory-intensive  

Prioritized 

higher 
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higher 
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Throughput 

Fairness 



Prioritize threads according to MPKI 
 

 

 

 

 
 

 

ÅIncreases system throughput 

ïLeast intensive thread has the greatest potential 
for making progress in the processor 

 

Non-Intensive Cluster 
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thread 

thread 

thread 

thread 

higher 
priority lowest MPKI 

highest MPKI 



Periodically shuffle the priority of threads 
 

 

 

 

 

 

 

ÅIs treating all threads equally good enough? 

ÅBUT: Equal turns ґ Same slowdown 

Intensive Cluster 
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thread 

thread 

thread 

Increases fairness 

Most prioritized higher 
priority 

thread 

thread 

thread 



Results: Fairness vs. Throughput 
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Better system throughput 
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5% 

39% 

8% 

5% 

TCM provides best fairness and system throughput 

Averaged over 96 workloads 



Results: Fairness-Throughput Tradeoff 
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Adjusting  
ClusterThreshold 

TCM allows robust fairness-throughput tradeoff  

STFM 
PAR-BS 

ATLAS 

TCM 

Better system throughput 
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TCM Summary 
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ÅNo previous memory scheduling algorithm provides 
both high system throughput and fairness 

ïProblem: They use a single policy for all threads 
 

ÅTCM is a heterogeneous scheduling policy 

1.Prioritize non-intensive cluster Č throughput 

2.Shuffle priorities in intensive cluster Č fairness 

3.Shuffling should favor nice threads Č fairness 

 

ÅHeterogeneity in memory scheduling provides the  
best system throughput and fairness 

 



More Details on TCM 

ÅKim et al., άThread Cluster Memory Scheduling: 
Exploiting Differences in Memory Access Behavior,έ 
MICRO 2010, Top Picks 2011. 
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Memory Control in CPU-GPU Systems 

Â Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 
 

Â Problem: Existing monolithic application-aware memory 

scheduler designs are hard to scale to large request buffer sizes 
 

Â Solution: Staged Memory Scheduling (SMS)  

decomposes the memory controller into three simple stages: 

1) Batch formation: maintains row buffer locality  

2) Batch scheduler: reduces interference between applications 

3) DRAM command scheduler: issues requests to DRAM 
 

Â Compared to state-of-the-art memory schedulers: 

Ç SMS is significantly simpler and more scalable 

Ç SMS provides higher performance and fairness 

 20 Ausavarungnirun et al., ñStaged Memory Scheduling,ò ISCA 2012. 

file://localhost/Users/omutlu/Documents/presentations/CMU/Samsung%20Memory%20June%2021%202012/Previous%20Presentations/rachata_isca12_talk.pptx


Asymmetric Memory QoS in a Parallel Application 

Â Threads in a multithreaded application are inter -dependent 

Â Some threads can be on the critical path of execution due 
to synchronization; some threads are not 

Â How do we schedule requests of inter-dependent threads 
to maximize multithreaded application performance? 

 

Â Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non -limiter threads 
to reduce memory interference among them [Ebrahimi+, MICROô11] 

 

Â Hardware/software cooperative limiter thread estimation:  

Â Thread executing the most contended critical section 

Â Thread that is falling behind the most in a parallel for loop 

 

 21 Ebrahimi et al., ñParallel Application Memory Scheduling,ò MICRO 2011. 

file://localhost/Users/omutlu/Documents/presentations/CMU/Samsung%20Memory%20June%2021%202012/Previous%20Presentations/ebrahimi_micro2011_talk.pptx


Outline 

Â How Do We Get There: Examples 

 

Â Accelerated Critical Sections (ACS) 

Â Bottleneck Identification and Scheduling (BIS) 

Â Staged Execution and Data Marshaling 

 

Â Asymmetry in Memory 

Ç Thread Cluster Memory Scheduling 

Ç Heterogeneous DRAM+NVM Main Memory 
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Heterogeneous Memory Systems 

 

 

 

 

 

 

 

 

 

 

 
Meza, Chang, Yoon, Mutlu, Ranganathan, ñEnabling Efficient and Scalable Hybrid Memories,ò 

IEEE Comp. Arch. Letters, 2012. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CPU 
DRA
MCtrl 

Fast, durable  
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 



One Option: DRAM as a Cache for PCM 

Â PCM is main memory; DRAM caches memory rows/blocks 

Ç Benefits: Reduced latency on DRAM cache hit; write filtering 

Â Memory controller hardware manages the DRAM cache 

Ç Benefit: Eliminates system software overhead 

 

Â Three issues: 

Ç What data should be placed in DRAM versus kept in PCM? 

Ç What is the granularity of data movement?  

Ç How to design a low-cost hardware-managed DRAM cache? 

 

Â Two idea directions: 

Ç Locality-aware data placement [Yoon+ , ICCD 2012]  

Ç Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]  
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Summary 
Â Applications and phases have varying performance requirements 

Â Designs evaluated on multiple metrics/constraints: energy, 
performance, reliability, fairness, é  

 

Â One-size-fits-all design cannot satisfy all requirements and metrics: 
cannot get the best of all worlds  
 

Â Asymmetry enables tradeoffs: can get the best of all worlds  

Ç Asymmetry in core microarch. Ą Accelerated Critical Sections, BIS, DM             
Ą Good parallel performance + Good serialized performance 

Ç Asymmetry in memory scheduling Ą Thread Cluster Memory Scheduling 
Ą Good throughput + good fairness  

Ç Asymmetry in main memory Ą Data Management for DRAM-PCM 
Hybrid Memory Ą Good performance + good efficiency 
 

Â Simple asymmetric designs can be effective and low-cost 
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Multithreading 
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Readings: Multithreading 
Â Required 

Ç Spracklen and Abraham, Chip Multithreading: Opportunities and 
Challenges,  HPCA Industrial Session, 2005.  

Ç Kalla et al., IBM Power5 Chip: A Dual-Core Multithreaded Processor,  IEEE 
Micro 2004. 

Ç Tullsen et al., Exploiting choice: instruction fetch and issue on an 
implementable simultaneous multithreading processor,  ISCA 1996. 

Ç Eyerman and Eeckhout, A Memory-Level Parallelism Aware Fetch Policy for 
SMT Processors,  HPCA 2007. 

 

Â Recommended 

Ç Hirata et al., An Elementary Processor Architecture with Simultaneous 
Instruction Issuing from Multiple Threads ,  ISCA 1992 

Ç Smith, A pipelined, shared resource MIMD computer,  ICPP 1978. 

Ç Gabor et al., Fairness and Throughput in Switch on Event Multithreading,  
MICRO 2006. 

Ç Agarwal et al., APRIL: A Processor Architecture for Multiprocessing,  ISCA 
1990. 
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Multithreading (Outline) 

Â Multiple hardware contexts 

Â Purpose 

Â Initial incarnations  

Ç CDC 6600 

Ç HEP 

Ç Tera 

Â Levels of multithreading 

Ç Fine-grained (cycle-by-cycle) 

Ç Coarse grained (multitasking) 

Â Switch-on-event 

Ç Simultaneous 

Â Uses: traditional + creative (now that we have multiple 
contexts, why do we not do é) 
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Multithreading: Basics 

Â Thread 

Ç Instruction stream with state (registers and memory)  

Ç Register state is also called thread context  

 

Â Threads could be part of the same process (program) or 
from different programs  

Ç Threads in the same program share the same address space 
(shared memory model) 

 

Â Traditionally, the processor keeps track of the context of a 
single thread 

Â Multitasking: When a new thread needs to be executed, old 
thread s context in hardware written back to memory and 
new thread s context loaded 
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Hardware Multithreading 

Â General idea: Have multiple thread contexts in a single 
processor 

Ç When the hardware executes from those hardware contexts 
determines the granularity of multithreading  

 

Â Why? 

Ç To tolerate latency (initial motivation)  

Â Latency of memory operations, dependent instructions, branch 
resolution 

Â By utilizing processing resources more efficiently 

Ç To improve system throughput  

Â By exploiting thread-level parallelism 

Â By improving superscalar/OoO processor utilization 

Ç To reduce context switch penalty 
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Initial Motivations 

Â Tolerate latency 

Ç When one thread encounters a long-latency operation, the 
processor can execute a useful operation from another thread 

 

Â CDC 6600 peripheral processors 

Ç I/O latency: 10 cycles 

Ç 10 I/O threads can be active to cover the latency  

Ç Pipeline with 100ns cycle time, memory with 1000ns latency 

Ç Idea: Each I/O processor  executes one instruction every 10 
cycles on the same pipeline 

Ç Thornton, Design of a Computer: The Control Data 6600,  
1970.  

Ç Thornton, Parallel Operation in the Control Data 6600,  
AFIPS 1964. 
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Hardware Multithreading 

Â Benefit 

+ Latency tolerance 

+ Better hardware utilization (when?)  

+ Reduced context switch penalty 

 

Â Cost 

- Requires multiple thread contexts to be implemented in 
hardware (area, power, latency cost)  

- Usually reduced single-thread performance 

 - Resource sharing, contention 

    - Switching penalty (can be reduced with additional hardware)  
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Types of Multithreading 

Â Fine-grained 

Ç Cycle by cycle 

 

Â Coarse-grained 

Ç Switch on event (e.g., cache miss) 

Ç Switch on quantum/timeout  

 

Â Simultaneous 

Ç Instructions from multiple threads executed concurrently in 
the same cycle 
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Fine-grained Multithreading 

Â Idea: Switch to another thread every cycle such that no two 
instructions from the thread are in the pipeline concurrently  

 

Â Improves pipeline utilization by taking advantage of multiple 
threads 

Â Alternative way of looking at it: Tolerates the control and 
data dependency latencies by overlapping the latency with 
useful work from other threads  

 

Â Thornton, Parallel Operation in the Control Data 6600,  AFIPS 
1964. 

Â Smith, A pipelined, shared resource MIMD computer,  ICPP 1978. 
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Fine-grained Multithreading 

Â CDC 6600 s peripheral processing unit is fine-grained 
multithreaded 

Ç Processor executes a different I/O thread every cycle 

Ç An operation from the same thread is executed every 10 
cycles 

 

Â Denelcor HEP 
Ç Smith, A pipelined, shared resource MIMD computer,  ICPP 1978. 

Ç 120 threads/processor  

Â 50 user, 70 OS functions  

Ç available queue vs. unavailable (waiting) queue  

Ç each thread can only have 1 instruction in the processor pipeline; each 
thread independent  

Ç to each thread, processor looks like a sequential machine 

Ç throughput vs. single thread speed   
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Fine-grained Multithreading in HEP 

Â Cycle time: 100ns 

 

Â 8 stages Ą 800 ns to 

complete an 
instruction 

Ç assuming no memory 
access 
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Fine-grained Multithreading 

Â Advantages 

+ No need for dependency checking between instructions 

    (only one instruction in pipeline from a single thread)  

+ No need for branch prediction logic  

+ Otherwise-bubble cycles used for executing useful instructions from 
different threads 

+ Improved system throughput, latency tolerance, utilization  

 

Â Disadvantages 

- Extra hardware complexity: multiple hardware contexts, thread 
selection logic 

- Reduced single thread performance (one instruction fetched every N 
cycles)  

- Resource contention between threads in caches and memory 

- Dependency checking logic between threads remains (load/store) 
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Multithreaded Pipeline Example 

 

 

 

 

 

 

 

 

 

 

Â Slide from Joel Emer 
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Sun Niagara Multithreaded Pipeline 
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Tera MTA Fine-grained Multithreading 

Â 256 processors, each with a 21-cycle pipeline 

Â 128 active threads 

Â A thread can issue instructions every 21 cycles 

Ç Then, why 128 threads? 

 

Â Memory latency: approximately 150 cycles 

Ç No data cache 

Ç Threads can be blocked waiting for memory 

Ç More threads Ą better ability to tolerate memory latency  

 

Â Thread state per processor 

Ç 128 x 32 general purpose registers 

Ç 128 x 1 thread status registers 
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Tera MTA Pipeline 

Â Threads move 
to/from different 
pools as an 
instruction 
executes 

Ç More accurately, 
thread IDs are 
kept in each 
pool 
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Coarse-grained Multithreading 

Â Idea: When a thread is stalled due to some event, switch to 
a different hardware context  

Ç Switch-on-event multithreading  

 

Â Possible stall events 

Ç Cache misses 

Ç Synchronization events (e.g., load an empty location) 

Ç FP operations 

 

Â HEP, Tera combine fine-grained MT and coarse-grained MT 

Ç Thread waiting for memory becomes blocked (un-selectable) 

Â Agarwal et al., APRIL: A Processor Architecture for Multiprocessing,  
ISCA 1990. 

Â Explicit switch on event 
42 



Coarse-grained Multithreading in APRIL 

Â Agarwal et al., APRIL: A Processor Architecture for 
Multiprocessing,  ISCA 1990. 

 

Â 4 hardware thread contexts 

Ç Called task frames  

 

Â Thread switch on 

Ç Cache miss 

Ç Network access 

Ç Synchronization fault 

 

Â How? 

Ç Empty processor pipeline, change frame pointer (PC) 
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Fine-grained vs. Coarse-grained MT 

Â Fine-grained advantages 

+ Simpler to implement, can eliminate dependency checking, 
branch prediction logic completely 

+ Switching need not have any performance overhead (i.e. dead 
cycles) 

 + Coarse-grained requires a pipeline flush or a lot of hardware   
  to save pipeline state  

  Ą Higher performance overhead with deep pipelines and  

     large windows 

 

Â Disadvantages 

- Low single thread performance: each thread gets 1/Nth of the 
bandwidth of the pipeline  
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IBM RS64-IV 

Â 4-way superscalar, in-order, 5-stage pipeline 

Â Two hardware contexts 

Â On an L2 cache miss 

Ç Flush pipeline 

Ç Switch to the other thread  

 

Â Considerations 

Ç Memory latency vs. thread switch overhead 

Ç Short pipeline, in-order execution (small instruction window) 
reduces the overhead of switching 
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Intel Montecito 
Â McNairy and Bhatia, Montecito: A Dual-Core, Dual-Thread Itanium 

Processor,  IEEE Micro 2005. 

 

 

 

 

 

 

Â Thread switch on 

Ç L3 cache miss/data return 

Ç Timeout ï for fairness 

Ç Switch hint instruction  

Ç ALAT invalidation ï synchronization fault 

Ç Transition to low power mode  

Â <2% area overhead due to CGMT 
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Fairness in Coarse-grained Multithreading 

Â Resource sharing in space and time always causes fairness 
considerations 

Ç Fairness: how much progress each thread makes  

 

Â In CGMT, the time allocated to each thread affects both 
fairness and system throughput 

Ç When do we switch? 

Ç For how long do we switch? 

Â When do we switch back? 

Ç How does the hardware scheduler interact with the software 
scheduler for fairness? 

Ç What is the switching overhead vs. benefit?  

Â Where do we store the contexts? 
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We did not cover the following slides in lecture. 

These are for your preparation for the next lecture.  



Fairness in Coarse-grained Multithreading 

Â Gabor et al., Fairness and Throughput in Switch on Event Multithreading,  
MICRO 2006. 

Â How can you solve the below problem? 
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Fairness vs. Throughput 

Â Switch not only on miss, but also on data return  

 

Â Problem: Switching has performance overhead 

Ç Pipeline and window flush 

Ç Reduced locality and increased resource contention (frequent 
switches increase resource contention and reduce locality) 

 

Â One possible solution 

Ç Estimate the slowdown of each thread compared to when run 
alone 

Ç Enforce switching when slowdowns become significantly 
unbalanced  

Ç Gabor et al., Fairness and Throughput in Switch on Event 
Multithreading,  MICRO 2006. 
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Thread Switching Urgency in Montecito 

Â Thread urgency levels 

Ç 0-7 

 

Â Nominal level 5: active progress 

Â After timeout: set to 7  

Â After ext. interrupt: set to 6  

 

Â Reduce urgency level for each 
blocking operation 

Ç L3 miss 

 

Â Switch if urgency of foreground 
lower than that of background  
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