
18-742 Fall 2012

Parallel Computer Architecture

Lecture 9: Multithreading

Prof. Onur Mutlu

Carnegie Mellon University

9/26/2012

Reminder: Project Proposals

Â Due: Tuesday, September 25, 11:59pm.

Â What?

Ç A clear, insightful writeup

Ç Problem

Ç Why is it important?

Ç Your goal

Ç Your solution idea

Ç What have others done to solve the problem?

Ç What are the advantages/disadvantages of your solution idea?

Ç Your research and evaluation plan

Â Clear goals for Milestones I, II, and final report

2

New Review Assignments

Â Due: Sunday, September 30, 11:59pm.

Â Mutlu, ñSome Ideas and Principles for Achieving Higher System
Energy Efficiency,ò NSF Position Paper and Presentation 2012.

Â Ebrahimi et al., ñParallel Application Memory Scheduling,ò MICRO
2011.

Â Seshadri et al., ñThe Evicted-Address Filter: A Unified Mechanism
to Address Both Cache Pollution and Thrashing,ò PACT 2012.

Â Pekhimenko et al., ñLinearly Compressed Pages: A Main Memory
Compression Framework with Low Complexity and Low Latency,ò
CMU SAFARI Technical Report 2012.

 3

Last Lecture

Â Bottleneck Identification and Scheduling

Â Staged Execution

4

Today

Â Asymmetry in Memory Scheduling

Â Wrap up Asymmetry

Â Multithreading

5

More Asymmetric Multi-Core

6

Review: Data Marshaling Summary

Â Inter -segment data transfers between cores limit the benefit
of promising Staged Execution (SE) models

Â Data Marshaling is a hardware/software cooperative solution:
detect inter-segment data generator instructions and push
their data to next segment s core

Ç Significantly reduces cache misses for inter-segment data

Ç Low cost, high-coverage, timely for arbitrary address sequences

Ç Achieves most of the potential of eliminating such misses

Â Applicable to several existing Staged Execution models

Ç Accelerated Critical Sections: 9% performance benefit

Ç Pipeline Parallelism: 16% performance benefit

Â Can enable new modelsĄ very fine-grained remote execution

7

Outline

Â How Do We Get There: Examples

Â Accelerated Critical Sections (ACS)

Â Bottleneck Identification and Scheduling (BIS)

Â Staged Execution and Data Marshaling

Â Asymmetry in Memory

Ç Thread Cluster Memory Scheduling

Ç Heterogeneous DRAM+NVM Main Memory

8

Motivation

ÅMemory is a shared resource

ÅThreadsΩ requests contend for memory

ïDegradation in single thread performance

ïCan even lead to starvation

ÅHow to schedule memory requests to increase
both system throughput and fairness?

 9

Core Core

Core Core
Memory

Previous Scheduling Algorithms are Biased

10

System throughput
bias

Fairness
bias

No previous memory scheduling algorithm provides
both the best fairness and system throughput

Better system throughput

B
e

tt
e

r f
a

ir
n

e
ss

Take turns accessing memory

Why do Previous Algorithms Fail?

11

Fairness biased approach

thread C

thread B

thread A

less memory
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation Č unfairness

thread C thread B thread A

Does not starve

not prioritized Č
reduced throughput

Single policy for all threads is insufficient

Insight: Achieving Best of Both Worlds

12

thread

thread

higher
priority

thread

thread

thread

thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive
being prioritized over each other
Å Shuffle threads

Memory-intensive threads have
different vulnerability to interference
Å Shuffle asymmetrically

For Fairness

thread

thread

thread

thread

Overview: Thread Cluster Memory Scheduling

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

13

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

Prioritize threads according to MPKI

ÅIncreases system throughput

ïLeast intensive thread has the greatest potential
for making progress in the processor

Non-Intensive Cluster

14

thread

thread

thread

thread

higher
priority lowest MPKI

highest MPKI

Periodically shuffle the priority of threads

ÅIs treating all threads equally good enough?

ÅBUT: Equal turns ґ Same slowdown

Intensive Cluster

15

thread

thread

thread

Increases fairness

Most prioritized higher
priority

thread

thread

thread

Results: Fairness vs. Throughput

16

Better system throughput

B
e

tt
e

r f
a

ir
n

e
ss

5%

39%

8%

5%

TCM provides best fairness and system throughput

Averaged over 96 workloads

Results: Fairness-Throughput Tradeoff

17

²ƘŜƴ ŎƻƴŦƛƎǳǊŀǘƛƻƴ ǇŀǊŀƳŜǘŜǊ ƛǎ ǾŀǊƛŜŘΧ

Adjusting
ClusterThreshold

TCM allows robust fairness-throughput tradeoff

STFM
PAR-BS

ATLAS

TCM

Better system throughput

B
e

tt
e

r f
a

ir
n

e
ss

 FRFCFS

TCM Summary

18

ÅNo previous memory scheduling algorithm provides
both high system throughput and fairness

ïProblem: They use a single policy for all threads

ÅTCM is a heterogeneous scheduling policy

1.Prioritize non-intensive cluster Č throughput

2.Shuffle priorities in intensive cluster Č fairness

3.Shuffling should favor nice threads Č fairness

ÅHeterogeneity in memory scheduling provides the
best system throughput and fairness

More Details on TCM

ÅKim et al., άThread Cluster Memory Scheduling:
Exploiting Differences in Memory Access Behavior,έ
MICRO 2010, Top Picks 2011.

19

Memory Control in CPU-GPU Systems

Â Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

Â Problem: Existing monolithic application-aware memory

scheduler designs are hard to scale to large request buffer sizes

Â Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:

1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications

3) DRAM command scheduler: issues requests to DRAM

Â Compared to state-of-the-art memory schedulers:

Ç SMS is significantly simpler and more scalable

Ç SMS provides higher performance and fairness

 20 Ausavarungnirun et al., ñStaged Memory Scheduling,ò ISCA 2012.

file://localhost/Users/omutlu/Documents/presentations/CMU/Samsung%20Memory%20June%2021%202012/Previous%20Presentations/rachata_isca12_talk.pptx

Asymmetric Memory QoS in a Parallel Application

Â Threads in a multithreaded application are inter -dependent

Â Some threads can be on the critical path of execution due
to synchronization; some threads are not

Â How do we schedule requests of inter-dependent threads
to maximize multithreaded application performance?

Â Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non -limiter threads
to reduce memory interference among them [Ebrahimi+, MICROô11]

Â Hardware/software cooperative limiter thread estimation:

Â Thread executing the most contended critical section

Â Thread that is falling behind the most in a parallel for loop

 21 Ebrahimi et al., ñParallel Application Memory Scheduling,ò MICRO 2011.

file://localhost/Users/omutlu/Documents/presentations/CMU/Samsung%20Memory%20June%2021%202012/Previous%20Presentations/ebrahimi_micro2011_talk.pptx

Outline

Â How Do We Get There: Examples

Â Accelerated Critical Sections (ACS)

Â Bottleneck Identification and Scheduling (BIS)

Â Staged Execution and Data Marshaling

Â Asymmetry in Memory

Ç Thread Cluster Memory Scheduling

Ç Heterogeneous DRAM+NVM Main Memory

22

Heterogeneous Memory Systems

Meza, Chang, Yoon, Mutlu, Ranganathan, ñEnabling Efficient and Scalable Hybrid Memories,ò

IEEE Comp. Arch. Letters, 2012.

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

One Option: DRAM as a Cache for PCM

Â PCM is main memory; DRAM caches memory rows/blocks

Ç Benefits: Reduced latency on DRAM cache hit; write filtering

Â Memory controller hardware manages the DRAM cache

Ç Benefit: Eliminates system software overhead

Â Three issues:

Ç What data should be placed in DRAM versus kept in PCM?

Ç What is the granularity of data movement?

Ç How to design a low-cost hardware-managed DRAM cache?

Â Two idea directions:

Ç Locality-aware data placement [Yoon+ , ICCD 2012]

Ç Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

 24

Summary
Â Applications and phases have varying performance requirements

Â Designs evaluated on multiple metrics/constraints: energy,
performance, reliability, fairness, é

Â One-size-fits-all design cannot satisfy all requirements and metrics:
cannot get the best of all worlds

Â Asymmetry enables tradeoffs: can get the best of all worlds

Ç Asymmetry in core microarch. Ą Accelerated Critical Sections, BIS, DM
Ą Good parallel performance + Good serialized performance

Ç Asymmetry in memory scheduling Ą Thread Cluster Memory Scheduling
Ą Good throughput + good fairness

Ç Asymmetry in main memory Ą Data Management for DRAM-PCM
Hybrid Memory Ą Good performance + good efficiency

Â Simple asymmetric designs can be effective and low-cost

25

Multithreading

26

Readings: Multithreading
Â Required

Ç Spracklen and Abraham, Chip Multithreading: Opportunities and
Challenges, HPCA Industrial Session, 2005.

Ç Kalla et al., IBM Power5 Chip: A Dual-Core Multithreaded Processor, IEEE
Micro 2004.

Ç Tullsen et al., Exploiting choice: instruction fetch and issue on an
implementable simultaneous multithreading processor, ISCA 1996.

Ç Eyerman and Eeckhout, A Memory-Level Parallelism Aware Fetch Policy for
SMT Processors, HPCA 2007.

Â Recommended

Ç Hirata et al., An Elementary Processor Architecture with Simultaneous
Instruction Issuing from Multiple Threads , ISCA 1992

Ç Smith, A pipelined, shared resource MIMD computer, ICPP 1978.

Ç Gabor et al., Fairness and Throughput in Switch on Event Multithreading,
MICRO 2006.

Ç Agarwal et al., APRIL: A Processor Architecture for Multiprocessing, ISCA
1990.

27

Multithreading (Outline)

Â Multiple hardware contexts

Â Purpose

Â Initial incarnations

Ç CDC 6600

Ç HEP

Ç Tera

Â Levels of multithreading

Ç Fine-grained (cycle-by-cycle)

Ç Coarse grained (multitasking)

Â Switch-on-event

Ç Simultaneous

Â Uses: traditional + creative (now that we have multiple
contexts, why do we not do é)

28

Multithreading: Basics

Â Thread

Ç Instruction stream with state (registers and memory)

Ç Register state is also called thread context

Â Threads could be part of the same process (program) or
from different programs

Ç Threads in the same program share the same address space
(shared memory model)

Â Traditionally, the processor keeps track of the context of a
single thread

Â Multitasking: When a new thread needs to be executed, old
thread s context in hardware written back to memory and
new thread s context loaded

 29

Hardware Multithreading

Â General idea: Have multiple thread contexts in a single
processor

Ç When the hardware executes from those hardware contexts
determines the granularity of multithreading

Â Why?

Ç To tolerate latency (initial motivation)

Â Latency of memory operations, dependent instructions, branch
resolution

Â By utilizing processing resources more efficiently

Ç To improve system throughput

Â By exploiting thread-level parallelism

Â By improving superscalar/OoO processor utilization

Ç To reduce context switch penalty

30

Initial Motivations

Â Tolerate latency

Ç When one thread encounters a long-latency operation, the
processor can execute a useful operation from another thread

Â CDC 6600 peripheral processors

Ç I/O latency: 10 cycles

Ç 10 I/O threads can be active to cover the latency

Ç Pipeline with 100ns cycle time, memory with 1000ns latency

Ç Idea: Each I/O processor executes one instruction every 10
cycles on the same pipeline

Ç Thornton, Design of a Computer: The Control Data 6600,
1970.

Ç Thornton, Parallel Operation in the Control Data 6600,
AFIPS 1964.

 31

Hardware Multithreading

Â Benefit

+ Latency tolerance

+ Better hardware utilization (when?)

+ Reduced context switch penalty

Â Cost

- Requires multiple thread contexts to be implemented in
hardware (area, power, latency cost)

- Usually reduced single-thread performance

 - Resource sharing, contention

 - Switching penalty (can be reduced with additional hardware)

32

Types of Multithreading

Â Fine-grained

Ç Cycle by cycle

Â Coarse-grained

Ç Switch on event (e.g., cache miss)

Ç Switch on quantum/timeout

Â Simultaneous

Ç Instructions from multiple threads executed concurrently in
the same cycle

33

Fine-grained Multithreading

Â Idea: Switch to another thread every cycle such that no two
instructions from the thread are in the pipeline concurrently

Â Improves pipeline utilization by taking advantage of multiple
threads

Â Alternative way of looking at it: Tolerates the control and
data dependency latencies by overlapping the latency with
useful work from other threads

Â Thornton, Parallel Operation in the Control Data 6600, AFIPS
1964.

Â Smith, A pipelined, shared resource MIMD computer, ICPP 1978.

34

Fine-grained Multithreading

Â CDC 6600 s peripheral processing unit is fine-grained
multithreaded

Ç Processor executes a different I/O thread every cycle

Ç An operation from the same thread is executed every 10
cycles

Â Denelcor HEP
Ç Smith, A pipelined, shared resource MIMD computer, ICPP 1978.

Ç 120 threads/processor

Â 50 user, 70 OS functions

Ç available queue vs. unavailable (waiting) queue

Ç each thread can only have 1 instruction in the processor pipeline; each
thread independent

Ç to each thread, processor looks like a sequential machine

Ç throughput vs. single thread speed

35

Fine-grained Multithreading in HEP

Â Cycle time: 100ns

Â 8 stages Ą 800 ns to

complete an
instruction

Ç assuming no memory
access

36

Fine-grained Multithreading

Â Advantages

+ No need for dependency checking between instructions

 (only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

Â Disadvantages

- Extra hardware complexity: multiple hardware contexts, thread
selection logic

- Reduced single thread performance (one instruction fetched every N
cycles)

- Resource contention between threads in caches and memory

- Dependency checking logic between threads remains (load/store)

37

Multithreaded Pipeline Example

Â Slide from Joel Emer

38

Sun Niagara Multithreaded Pipeline

39

Tera MTA Fine-grained Multithreading

Â 256 processors, each with a 21-cycle pipeline

Â 128 active threads

Â A thread can issue instructions every 21 cycles

Ç Then, why 128 threads?

Â Memory latency: approximately 150 cycles

Ç No data cache

Ç Threads can be blocked waiting for memory

Ç More threads Ą better ability to tolerate memory latency

Â Thread state per processor

Ç 128 x 32 general purpose registers

Ç 128 x 1 thread status registers

 40

Tera MTA Pipeline

Â Threads move
to/from different
pools as an
instruction
executes

Ç More accurately,
thread IDs are
kept in each
pool

41

Coarse-grained Multithreading

Â Idea: When a thread is stalled due to some event, switch to
a different hardware context

Ç Switch-on-event multithreading

Â Possible stall events

Ç Cache misses

Ç Synchronization events (e.g., load an empty location)

Ç FP operations

Â HEP, Tera combine fine-grained MT and coarse-grained MT

Ç Thread waiting for memory becomes blocked (un-selectable)

Â Agarwal et al., APRIL: A Processor Architecture for Multiprocessing,
ISCA 1990.

Â Explicit switch on event
42

Coarse-grained Multithreading in APRIL

Â Agarwal et al., APRIL: A Processor Architecture for
Multiprocessing, ISCA 1990.

Â 4 hardware thread contexts

Ç Called task frames

Â Thread switch on

Ç Cache miss

Ç Network access

Ç Synchronization fault

Â How?

Ç Empty processor pipeline, change frame pointer (PC)

 43

Fine-grained vs. Coarse-grained MT

Â Fine-grained advantages

+ Simpler to implement, can eliminate dependency checking,
branch prediction logic completely

+ Switching need not have any performance overhead (i.e. dead
cycles)

 + Coarse-grained requires a pipeline flush or a lot of hardware
 to save pipeline state

 Ą Higher performance overhead with deep pipelines and

 large windows

Â Disadvantages

- Low single thread performance: each thread gets 1/Nth of the
bandwidth of the pipeline

 44

IBM RS64-IV

Â 4-way superscalar, in-order, 5-stage pipeline

Â Two hardware contexts

Â On an L2 cache miss

Ç Flush pipeline

Ç Switch to the other thread

Â Considerations

Ç Memory latency vs. thread switch overhead

Ç Short pipeline, in-order execution (small instruction window)
reduces the overhead of switching

45

Intel Montecito
Â McNairy and Bhatia, Montecito: A Dual-Core, Dual-Thread Itanium

Processor, IEEE Micro 2005.

Â Thread switch on

Ç L3 cache miss/data return

Ç Timeout ï for fairness

Ç Switch hint instruction

Ç ALAT invalidation ï synchronization fault

Ç Transition to low power mode

Â <2% area overhead due to CGMT

46

Fairness in Coarse-grained Multithreading

Â Resource sharing in space and time always causes fairness
considerations

Ç Fairness: how much progress each thread makes

Â In CGMT, the time allocated to each thread affects both
fairness and system throughput

Ç When do we switch?

Ç For how long do we switch?

Â When do we switch back?

Ç How does the hardware scheduler interact with the software
scheduler for fairness?

Ç What is the switching overhead vs. benefit?

Â Where do we store the contexts?

47

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

Fairness in Coarse-grained Multithreading

Â Gabor et al., Fairness and Throughput in Switch on Event Multithreading,
MICRO 2006.

Â How can you solve the below problem?

49

Fairness vs. Throughput

Â Switch not only on miss, but also on data return

Â Problem: Switching has performance overhead

Ç Pipeline and window flush

Ç Reduced locality and increased resource contention (frequent
switches increase resource contention and reduce locality)

Â One possible solution

Ç Estimate the slowdown of each thread compared to when run
alone

Ç Enforce switching when slowdowns become significantly
unbalanced

Ç Gabor et al., Fairness and Throughput in Switch on Event
Multithreading, MICRO 2006.

 50

Thread Switching Urgency in Montecito

Â Thread urgency levels

Ç 0-7

Â Nominal level 5: active progress

Â After timeout: set to 7

Â After ext. interrupt: set to 6

Â Reduce urgency level for each
blocking operation

Ç L3 miss

Â Switch if urgency of foreground
lower than that of background

51

