18-742 Fall 2012

Parallel Computer Architecture
Lecture 3: Programming Models and Architectures

Prof. Onur Mutlu
Carnegie Mellon University
9/12/2012

Reminder: Assignments for This Week

1. Review two papers from ISCA 2012 — due September 11,
11:59pm.

2. Attend NVIDIA talk on September 10 — write an online
review of the talk; due September 11, 11:59pm.

3. Think hard about

o Literature survey topics
o Research project topics

4. Examine survey and project topics from Spring 2011

5. Find your literature survey and project partner

Late Review Assignments

Even if you are late, please submit your reviews

You will benefit from this

Reminder: Reviews Due Sunday

Sunday, September 16, 11:59pm.

Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

Suleman et al., "Data Marshaling for Multi-core
Architectures,” ISCA 2010.

Joao et al., “"Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

Programming Models vs.
Architectures

What Will We Cover in This Lecture?

Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,”
pp. 551-560, in Readings in Computer Architecture.

Culler, Singh, Gupta, Chapter 1 (Introduction) in “Parallel
Computer Architecture: A Hardware/Software Approach.”

Programming Models vs. Architectures

Five major models
(Sequential)

Shared memory
Message passing
Data parallel (SIMD)
Dataflow

Systolic

o o 0O 0O 0O O

Hybrid models?

Shared Memory vs. Message Passing

Are these programming models or execution models
supported by the hardware architecture?

Does a multiprocessor that is programmed by “shared

memory programming model” have to support a shared
address space processors?

Does a multiprocessor that is programmed by “"message

passing programming model” have to have no shared
address space between processors?

Programming Models: Message Passing vs. Shared Memory

Difference: how communication is achieved between tasks

Message passing programming model

o Explicit communication via messages

o Loose coupling of program components

o Analogy: telephone call or letter, no shared location accessible to
all

Shared memory programming model

o Implicit communication via memory operations (load/store)

a Tight coupling of program components

o Analogy: bulletin board, post information at a shared space

Suitability of the programming model depends on the
problem to be solved. Issues affected by the model include:

o Overhead, scalability, ease of programming, bugs, match to
underlying hardware, ...

Message Passing vs. Shared Memory Hardware

Difference: how task communication is supported in
hardware
Shared memory hardware (or machine model)

o All processors see a global shared address space
Ability to access all memory from each processor

o A write to a location is visible to the reads of other processors

Message passing hardware (machine model)
o No global shared address space

o Send and receive variants are the only method of
communication between processors (much like networks of
workstations today, i.e. clusters)

Suitability of the hardware depends on the problem to be
solved as well as the programming model.

10

Message Passing vs. Shared Memory Hardware

PI|P||P
I I I
M M M
I ——
O] | 10| | IO

Join At: /0O (Network)

Program With: Message Passing

P P P
M M M
i i i
1O 1O 1O
Memory

Shared Memory

P P P
M M M
I I I
(@) [@)] [@)]
Processor

(Dataflow/Systolic),
Single-Instruction
Multiple-Data
(SIMD)

==> Data Parallel

Programming Model vs. Hardware

Most of parallel computing history, there was no separation
between programming model and hardware

o Message passing: Caltech Cosmic Cube, Intel Hypercube, Intel
Paragon

a Shared memory: CMU C.mmp, Sequent Balance, SGI Origin.
o SIMD: ILLIAC IV, CM-1

However, any hardware can really support any
programming model

Why?
o Application - compiler/library = OS services = hardware

12

Layers ot Abstraction

= Compiler/library/OS map the communication abstraction at
the programming model layer to the communication
primitives available at the hardware layer

CAD Database Scientific Modeling o
Parallel Applications
- - Shared Message Data -
Multiprogramming ‘A 44-acs Passiug Parle] Programming Models
Compilation Communication Abstraction
o User/System Boundary
Library = Operating Systems Support
Iy H ardware/Software Boundary

Commumication Hardware

Physical Communication Medium

13

Programming Model vs. Architecture

Machine - Programming Model

o Join at network, so program with message passing model
2 Join at memory, so program with shared memory model
o Join at processor, so program with SIMD or data parallel

Programming Model - Machine

o Message-passing programs on message-passing machine

o Shared-memory programs on shared-memory machine

o SIMD/data-parallel programs on SIMD/data-parallel machine

Isn’ t hardware basically the same?
o Processors, memory, interconnect (1/0)

o Why not have generic parallel machine and program with

model that fits the problem?
14

A Generic Parallel Machine

= Separation of
programming
models from
architectures

Node 0 Node 1

= All models require
communication

= Node with
processor(s),
memory,
communication
assist

Simple Problem

fori=1to N
Ali] = (A[i]+ B[i]) * CIi]

sum = sum + AJi]

= How do I make this parallel?

Simple Problem

fori=1to N
Ali]= (A[i]+ B[i]) * C[i]

sum = sum + AJi]

Split the loops = Independent iterations

fori=1to N
Ali]= (A[i]+ B[i]) * C[i]
fori=1to N

sum = sum + A[i]

Data flow graph?

Data Flow Graph

A[O] B[0] A[1] B[1] A[2] B[2] A[3] B3]

N/ N/ N/ N/
C[0] @ C[1] @ C[2] @ C[3] @
\é . . .

2 + N-1 cycles to execute on N prc;.\

what assumptions?

Partitioning of Data Flow Graph

A[O] B[0] A[1] B[1] A[2] B[2] A[3] B3]
N/ / N/ /

N N
C[O] @ C[1] @ C[2] @ C[3] @

ORI R o o
B

Shared (Physical) Memory

Machine Physical Address Space

load, P
~nll Common Physical
- Add . . .
- T Communication, sharing,
store |3 and synchronization with
0 -1 -
2 N o store / load on shared
Shared Portion ,,/// :
of Address g T » Pn Private Varlables
Space |
Private Porti T _
of Address |s b, > Must map virtual pages to
Space P2 Private physical page frames
T erer t .
e Consider OS support for

4l PO Private gOOd mapplng

Shared (Physical) Memory on Generic MP

Node 0 0,N-1 (Addresses) Node 1 N,2N-1

)

Keep private data
and frequently
used shared data
on same node as
computation

Node 2 2N,3N-1 Node 3 3N,4N-1

Return of The Simple Problem

private int i, my_start, my_end, mynode;
shared float A[N], B[N], C[N], sum;
for i = to

Ali]= (A[iI]+B[i]) * C[i]
GLOBAL_SYNCH,;
if (== 0)

foriz=1to N

sum = sum + A[1]

Can run this on any shared memory machine

Message Passing Architectures

Node 0 0,N-1 Node 1 0,N-1

= Cannot directly
access memory
on another node

= IBM SP-2, Intel
Paragon

m Cluster of

Node 2 0,N-1 Node SON-1\\ restations

Message Passing Programming Model

Local Process Local Process
Address Space Address Space
Recvy, P, t
address x address y
Process P Process Q

User level send/receive abstraction
o local buffer (x,y), process (Q,P) and tag (t)
0 haming and synchronization

The Simple Problem Again

int i, my_start, my_end, mynode;
float A[N/P], B[N/P], C[N/P], sum;
for i = /to

Ali] = (A[i]+ B[i]) * C[i]

sum = sum + A[i]

if (1= 0)
send (sum,0);
if (== 0)
for i=1+toP-1
recv(tmp,i)

sum = sum + tmp

Send/Recv communicates and synchronizes
P processors

Separation of Architecture from Model

At the lowest level shared memory model is all about
sending and receiving messages

Q

What programming model/abstraction is supported at user
level?

Can I have shared-memory abstraction on message passing
HW? How efficient?

Can I have message passing abstraction on shared memory
HW? How efficient?

Challenges in Mixing and Matching

Assume prog. model same as ABI (compiler/library - OS
- hardware)

Shared memory prog model on shared memory HW

o How do you design a scalable runtime system/0S?

Message passing prog model on message passing HW
o How do you get good messaging performance?

Shared memory prog model on message passing HW

o How do you reduce the cost of messaging when there are
frequent operations on shared data?

o Li and Hudak, “"Memory Coherence in Shared Virtual Memory
Systems,” ACM TOCS 1989.

Message passing prog model on shared memory HW
o Convert send/receives to load/stores on shared buffers

o How do you design scalable HW?
27

Data Parallel Programming Model

Programming Model

o Operations are performed on each element of a large (regular)
data structure (array, vector, matrix)

o Program is logically a single thread of control, carrying out a
sequence of either sequential or parallel steps

The Simple Problem Strikes Back
A=(A+B)*C
sum =

Language supports array assignment

Data Parallel Hardware Architectures (I)

Early architectures directly mirrored programming model

Single control processor (broadcast each instruction to an
array/grid of processing elements)

o Consolidates control
Many processing elements controlled by the master

Examples: Connection Machine, MPP
o Batcher, “Architecture of a massively parallel processor,” ISCA

1980.
16K bit serial processing elements

o Tucker and Robertson, “Architecture and Applications of the
Connection Machine,” IEEE Computer 1988.

64K bit serial processing elements
29

Connection Machine

Connection Machine
Parallel Processor Unit

Conneclion Machine Connection Machine
16,384 processors 16,384 processors
¢ ISsqutncar ISequancer *
1] 3
[=
i
ISequencen gquencer
e 1 2 -—
Connection Machine Connection Machine
16,384 processors 16,384 processors
] |] [
Connection Machine /O System
| | I
Data | | Data | |Data | |Grephic|

|'

Frontend 1
(DEC VAX oOr

Symbolics)

Bus interface -

Frontend 2
(DEC VAX Or
Symbolics)

Bus interface

Front end 3

(DEC VAX OF
Symbolics)

Bus imerface

30

Data Parallel Hardware Architectures (1I)

Later data parallel architectures
o Higher integration - SIMD units on chip along with caches

o More generic &> multiple cooperating multiprocessors with
vector units

o Specialized hardware support for global synchronization
E.g. barrier synchronization

Example: Connection Machine 5

o Hillis and Tucker, “The CM-5 Connection Machine: a scalable
supercomputer,” CACM 1993.

o Consists of 32-bit SPARC processors
o Supports Message Passing and Data Parallel models
o Special control network for global synchronization

31

Review: Separation of Model and Architecture

Shared Memory

o Single shared address space

o Communicate, synchronize using load / store
o Can support message passing

Message Passing

o Send / Receive

o Communication + synchronization
o Can support shared memory

Data Parallel

o Lock-step execution on regular data structures

o Often requires global operations (sum, max, min...)
o Can be supported on either SM or MP

Review: A Generic Parallel Machine

= Separation of
programming
models from
architectures

= All models require
communication

= Node with
processor(s),
memory,
communication
assist

Node 0 Node 1

Data Flow Programming Models and Architectures

A program consists of data flow nodes

A data flow node fires (fetched and executed) when all its
inputs are ready

o i.e. when all inputs have tokens
No artificial constraints, like sequencing instructions
How do we know when operands are ready?

o Matching store for operands (remember Oo00O execution?)
o large associative search!

Later machines moved to coarser grained dataflow (threads
+ dataflow across threads)

o allowed registers and cache for local computation
o Introduced messages (with operations and operands)

34

Scalability, Convergence, and
Some Terminology

Scaling Shared Memory Architectures

| e
B B Devices
Mem || Mem || Mem | Mem/| | IOC || IOC
[T 1]]
Interconnect)

Proc Proc

Interconnection Schemes for Shared Memory

Scalability dependent on interconnect

$

3

IO

10

P

P

(a) Cross-bar Switch

(b) Multistage Interconnection Network

B K
51787 [10][10
P|| P

(c) Bus Interconnect

37

UMA /UCA: Uniform Memory or Cache Access

« All processors have the same uncontended latency to memory
« Latencies get worse as system grows
« Symmetric multiprocessing (SMP) ~ UMA with bus interconnect

Main Memor
I f Y I

Interconnection Network

contehltion in memory banks

long

latency
contention in network

‘o ; ;

Processor Processor S Processor

Uniform Memory/Cache Access

+ Data placement unimportant/less important (easier to optimize code and
make use of available memory space)

- Scaling the system increases all latencies
- Contention could restrict bandwidth and increase latency

Main Memor
I f Y I

| conterition in memory banks |

Interconnection Network

long

latency
contention in network

‘o ! 3

Processor Processor T Processor

Example SMP

= Quad-pack Intel Pentium Pro

CPU

P-Pro

1] 230KD | Modul
12§ ©

1

P-Pro
Module

P-Pro
Module

#

<

P-Pro bus (64-bit data, 36-bit address, 66 MHz)

)

;

PCI
bridge

¢

PCI
bridge

#

Mem
|
Controller

MIU

I-.I- or 3-way

interleaved

DFEAM

40

How to Scale Shared Memory Machines?

Two general approaches

Maintain UMA
o Provide a scalable interconnect to memory

o Downside: Every memory access incurs the round-trip network
latency

Interconnect complete processors with local memory
o NUMA (Non-uniform memory access)
Local memory faster than remote memory

o Still needs a scalable interconnect for accessing remote
memory

Not on the critical path of local memory access

41

NUMA/NUCA: NonUniform Memory/Cache Access

« Shared memory as local versus remote memory
+ Low latency to local memory

- Much higher latency to remote memories
+ Bandwidth to local memory may be higher

- Performance very sensitive to data placement

Interconnection Network

long contention in network

‘o t !

Memory Memory e Memory

dow 4 ! !

Processor Processor C Processor

latency

Example NUMA Machines (I) — CM5
CM-5 .

Data and control network

Hillis and Tucker, “The
CM-5 Connection
Machine: a scalable

(I £ 9 0 5 [

Processing
nodes

@@
<5

LAN

Processing

Dlsk nodes nodes

supercomputer,” CACM

1993 . To data To control
network network
Figure 2. ‘
CM-5 processing node with vector :
units '”S"l;g:fr:‘ RISC Data Control
Each processing node of the curreni - microprocessor network network
g program . s !

mmplementation of the ChM-5 consists ol control (SPARC) interface interface
a RISC microprocessor, 32MB of ’ $
ITIC 0Ty and an imterface 1o the control 64-bit bus
and data interconnection networks, The Instructions Datat
processor also includes four indepen Vector unit - -

TP) ; . i a Al Floating- . e =
l.|l..rl.-'-.l C1al lII:|Il-.,.¢ Al || W |r1| i IZ!II': [oap(r:i?\t Vector unit - - Memory 3
!'-'.--|'|I1 .'.l-l.'lll L0 An -"-f"-.1|‘§- bank of memaory, procggg)?; Vector unit BRI v (32MB)

I his gives .!._,|]|.-||::.*-II.:L_[r1-u|:-| with a N & 4
|||||||.l-:'-!::|'| LSO I:|-¢|I'||q-|::1|r|| rate ol 64-bit
128N F1 '[JIJ“"i and a memaory hand- data paths

12MB/sec.

widith of 51

43

Example NUMA Machines (I) — CM5

Figure 4.
Data network topalagy

[he data network uses a fat tree
topology, Each interior node connects
I' AT« Il|||:|'.‘ LOF W0 OF TRGne: I'.I.""I-"-
fonly two parcnis are shown. Process.
e redes form the leal nodes of the
Iree. s P ProsCessiTg nodes are
ilded, the number of level: of the tree
increases, allowing the toal bandwideh
T ':‘""\-:IIL' :II-"|'|I||!'H.|l|i||l':'.|'\-| Ill:llll\.l"

to the number of processors

Processors and I/O nodes

44

Example NUMA Machines (I1I)

= Sun Enterprise Server

= Cray T3E
P | CPU/Mem
S|LS Cards _ —[ExternalTO - —
l | [|
$/| %2 me ‘\ O
' : CTLTL) '1..
ERE OFOFOFOR
T ORI
Gigaplane™ bus (256 data, 41 address, 83 MHz) .‘J.I‘ J.'t J.l‘
. SEOEOECS
Bus Interface /O Cards VT VP
z :
it 2
Z[2|2]2] 2
2215 13]5

Convergence of Parallel Architectures

Scalable shared memory architecture is similar to scalable
message passing architecture

Main difference: is remote memory accessible with

loads/stores?
< Scalable Network >

46

Historical Evolution: 1960s & 70s

« Early MPs

— Mainframes

— Small number of processors
— crossbar interconnect

- UMA

Mer

Me

Me

Mer

Memory

Processor

Processor

Processor

Processor

Historical Evolution: 1980s

e Bus-Based MPs

— enabler: processor-on-a-board
— economical scaling

— precursor of today’ s SMPs

— UMA

Memory Memory Memory Memory

—

cache cache cache cache

Proc Proc Proc Proc

Historical Evolution: Late 80s, mid 90s

Large Scale MPs (Massively Parallel Processors)

multi-dimensional interconnects

each node a computer (proc + cache + memory)

both shared memory and message passing versions

NUMA
still used for “supercomputing’

M

M

I'l

M

I‘J

M

M

I'l

M

I‘.I

M

M

M

M

M

Historical Evolution: Current

Chip multiprocessors (multi-core)

Small to Mid-Scale multi-socket CMPs

o One module type: processor + caches + memory
Clusters/Datacenters

o Use high performance LAN to connect SMP blades, racks

Driven by economics and cost

a Smaller systems => higher volumes

o Off-the-shelf components

Driven by applications

o Many more throughput applications (web servers)
o ... than parallel applications (weather prediction)
o Cloud computing

Historical Evolution: Future

Cluster/datacenter on a chip?
Heterogeneous multi-core?

Bounce back to small-scale multi-core?

2??

51

Required Readings

Hillis and Tucker, “"The CM-5 Connection Machine: a scalable
supercomputer,” CACM 1993.

Seitz, “The Cosmic Cube,” CACM 1985.

52

