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Reminder: New Review Assignments 

Â Due: Tuesday, November 13, 11:59pm. 

Ç Mutlu and Moscibroda, ñParallelism-Aware Batch Scheduling: 
Enhancing both Performance and Fairness of Shared DRAM 
Systems,ò ISCA 2008. 

Ç Kim et al., ñThread Cluster Memory Scheduling: Exploiting 
Differences in Memory Access Behavior,ò MICRO 2010. 

 

Â Due: Thursday, November 15, 11:59pm. 

Ç Ebrahimi et al., Fairness via Source Throttling: A Configurable 
and High-Performance Fairness Substrate for Multi-Core Memory 
Systems,  ASPLOS 2010. 

Ç Muralidhara et al., ñReducing Memory Interference in 
Multicore Systems via Application-Aware Memory Channel 
Partitioning,ò MICRO 2011. 
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Reminder: Literature Survey Process  

Â Done in groups: your research project group is likely ideal  

Â Step 1: Pick 3 or more research papers  

Ç Broadly related to your research project 

Â Step 2: Send me the list of papers with links to pdf copies (by 
Sunday, November 11) 

Ç I need to approve the 3 papers  

Ç We will iterate to ensure convergence on the list  

Â Step 3: Prepare a 2-page writeup on the 3 papers 

Â Step 3: Prepare a 15-minute presentation on the 3 papers  

Ç Total time: 15 -minute talk + 5 -minute Q&A 

Ç Talk should focus on insights and tradeoffs 

Â Step 4: Deliver the presentation in front of class (dates: 
November 26-28 or December 3-7) and turn in your writeup 
(due date: December 1) 
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Last Lecture 

Â Begin shared resource management 

 

Â Main memory as a shared resource 

Ç QoS-aware memory systems 

Ç Memory request scheduling 

Â Memory performance attacks 

Â STFM 

Â PAR-BS 

Â ATLAS 
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Today 

Â End QoS-aware Memory Request Scheduling 
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More on QoS-Aware  

Memory Request Scheduling 

 

 

 

 

 



Designing QoS-Aware Memory Systems: Approaches 

Â Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 

Ç QoS-aware memory controllers [Mutlu+ MICROô07] [Moscibroda+, Usenix Securityô07] 

[Mutlu+ ISCAô08, Top Picksô09] [Kim+ HPCAô10] [Kim+ MICROô10, Top Picksô11] [Ebrahimi+ ISCAô11, 
MICROô11] [Ausavarungnirun+, ISCAô12] 

Ç QoS-aware interconnects [Das+ MICROô09, ISCAô10, Top Picks ô11] [Grot+ MICROô09, 

ISCAô11, Top Picks ô12] 

Ç QoS-aware caches 
 

Â Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping 

Ç Source throttling to control access to memory system [Ebrahimi+ ASPLOSô10, 

ISCAô11, TOCSô12] [Ebrahimi+ MICROô09] [Nychis+ HotNetsô10] 

Ç QoS-aware data mapping to memory controllers [Muralidhara+ MICROô11] 

Ç QoS-aware thread scheduling to cores 
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QoS-Aware Memory Scheduling 

 

 

 

 

 

Â How to schedule requests to provide 

Ç High system performance 

Ç High fairness to applications 

Ç Configurability to system software  

 

Â Memory controller needs to be aware of threads 
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Memory 
Controller 

Core Core 

Core Core 

Memory 

Resolves memory contention 
by scheduling requests 



QoS-Aware Memory Scheduling: Evolution 

Â Stall-time fair memory scheduling [Mutlu+ MICROô07] 

Ç Idea: Estimate and balance thread slowdowns 

Ç Takeaway: Proportional thread progress improves performance, 
especially when threads are ñheavyò (memory intensive) 
 

Â Parallelism-aware batch scheduling [Mutlu+ ISCAô08, Top Picksô09] 

Ç Idea: Rank threads and service in rank order (to preserve bank 
parallelism); batch requests to prevent starvation  

Ç Takeaway: Preserving within-thread bank-parallelism improves 
performance; request batching improves fairness 
 

Â ATLAS memory scheduler [Kim+ HPCAô10] 

Ç Idea: Prioritize threads that have attained the least service from the 
memory scheduler  

Ç Takeaway: Prioritizing ñlightò threads improves performance 
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QoS-Aware Memory Scheduling: Evolution 

Â Thread cluster memory scheduling [Kim+ MICROô10] 

Ç Idea: Cluster threads into two groups (latency vs. bandwidth 
sensitive); prioritize the latency -sensitive ones; employ a fairness 
policy in the bandwidth sensitive group  

Ç Takeaway: Heterogeneous scheduling policy that is different based 
on thread behavior maximizes both performance and fairness 

 

Â Staged memory scheduling [Ausavarungnirun+ ISCAô12] 

Â Idea: Divide the functional tasks of an application -aware memory 
scheduler into multiple distinct stages, where each stage is 
significantly simpler than a monolithic scheduler 

Â Takeaway: Staging enables the design of a scalable and relatively 
simpler application-aware memory scheduler that works on very 
large request buffers 
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QoS-Aware Memory Scheduling: Evolution 

Â Parallel application memory scheduling [Ebrahimi+ MICROô11] 

Ç Idea: Identify and prioritize limiter threads of a multithreaded 
application in the memory scheduler; provide fast and fair progress 
to non-limiter threads 

Ç Takeaway: Carefully prioritizing between limiter and non -limiter 
threads of a parallel application improves performance 

 

Â Integrated Memory Channel Partitioning and Scheduling 
[Muralidhara+ MICROô11] 

Â Idea: Only prioritize very latency -sensitive threads in the scheduler; 
mitigate all other applicationsô interference via channel partitioning 

Â Takeaway: Intelligently ombining application -aware channel 
partitioning and memory scheduling provides better performance 
than either 
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QoS-Aware Memory Scheduling: Evolution 

Â Prefetch-aware shared resource management [Ebrahimi+ 

ISCAô12] [Ebrahimi+ MICROô09] [Lee+ MICROô08] 

Ç Idea: Prioritize prefetches depending on how they affect system 
performance; even accurate prefetches can degrade performance of 
the system  

Ç Takeaway: Carefully controlling and prioritizing prefetch requests 
improves performance and fairness 
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Properties of ATLAS 

ÁLAS-ranking 

ÁBank-level parallelism 

ÁRow-buffer locality  

 

ÁVery infrequent coordination 

 

 

ÁScale attained service with 
thread weight (in paper)  

 

ÁLow complexity : Attained 
service requires a single 
counter per thread in each MC 
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Á Maximize system performance 
 
 
 

Á Scalable to large number of controllers 
 
 
 

Á Configurable by system software 

Goals  Properties of ATLAS  



ATLAS Pros and Cons 

Â Upsides: 

Ç Good at improving performance 

Ç Low complexity 

Ç Coordination among controllers happens infrequently 

 

Â Downsides: 

Ç Lowest ranked threads get delayed significantly Ą high 

unfairness 
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TCM: 

Thread Cluster Memory Scheduling 

 

 

 

 

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter, 
"Thread Cluster Memory Scheduling:  

Exploiting Differences in Memory Access Behavior"   
43rd International Symposium on Microarchitecture (MICRO ),  
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)   

TCM Micro 2010 Talk 

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/kim_micro10_talk.pptx


No previous memory scheduling algorithm provides 
both the best fairness and system throughput 
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24 cores, 4 memory controllers, 96 workloads  

Throughput vs. Fairness 



Take turns accessing memory 

Throughput vs. Fairness 
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Fairness biased approach 

thread C 

thread B 

thread A 

less memory  
intensive 

higher 
priority 

Prioritize less memory-intensive threads 

Throughput biased approach 

Good for throughput 

starvation Č unfairness 

thread C thread B thread A 

Does not starve 

not prioritized Č  
reduced throughput 

Single policy for all threads is insufficient 



Achieving the Best of Both Worlds 
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Thread Cluster Memory Scheduling [Kim+ MICROô10] 

1. Group threads into two clusters 
2. Prioritize non-intensive cluster 
3. Different policies for each cluster 
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Clustering Threads 

Step1 Sort threads by MPKI (misses per kiloinstruction) 
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TCM: Quantum-Based Operation 
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Time 

Previous quantum 
(~1M cycles) 

During quantum: 
ÅMonitor thread behavior 

1.Memory intensity 
2.Bank-level parallelism 
3.Row-buffer locality 

Beginning of quantum: 
ÅPerform clustering 
ÅCompute niceness of 
intensive threads 

Current quantum 
(~1M cycles) 

Shuffle interval 
(~1K cycles) 



TCM: Scheduling Algorithm 

1.Highest-rank: Requests from higher ranked threads prioritized 

ÅNon-Intensive cluster > Intensive cluster 

ÅNon-Intensive cluster: lower intensity Č higher rank 

ÅIntensive cluster: rank shuffling 

 

 

2.Row-hit: Row-buffer hit requests are prioritized 

 

3.Oldest: Older requests are prioritized 
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TCM: Throughput and Fairness 
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Better system throughput 
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24 cores, 4 memory controllers, 96 workloads  

TCM, a heterogeneous scheduling policy, 
provides best fairness and system throughput 



TCM: Fairness-Throughput Tradeoff 
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TCM Pros and Cons 

Â Upsides: 

Ç Provides both high fairness and high performance 

 

Â Downsides: 

Ç Scalability to large buffer sizes? 

Ç Effectiveness in a heterogeneous system? 
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Staged Memory Scheduling 

 

 

 

 

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu, 

"Staged Memory Scheduling: Achieving High Performance  
and Scalability in Heterogeneous Systems ò 

39th International Symposium on Computer Architecture (ISCA ),  
Portland, OR, June 2012.  

SMS ISCA 2012 Talk 

http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/rachata_isca12_talk.pptx


Memory Control in CPU-GPU Systems 

Â Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 
 

Â Problem: Existing monolithic application-aware memory 

scheduler designs are hard to scale to large request buffer sizes 
 

Â Solution: Staged Memory Scheduling (SMS)  

decomposes the memory controller into three simple stages: 

1) Batch formation: maintains row buffer locality  

2) Batch scheduler: reduces interference between applications 

3) DRAM command scheduler: issues requests to DRAM 
 

Â Compared to state-of-the-art memory schedulers: 

Ç SMS is significantly simpler and more scalable 

Ç SMS provides higher performance and fairness 

 27 Ausavarungnirun et al., ñStaged Memory Scheduling,ò ISCA 2012. 

file://localhost/Users/omutlu/Documents/presentations/CMU/Samsung%20Memory%20June%2021%202012/Previous%20Presentations/rachata_isca12_talk.pptx


Key Idea: Decouple Tasks into Stages 

Â Idea: Decouple the functional tasks of the memory controller  

Ç Partition tasks across several simpler HW structures (stages) 
 

1) Maximize row buffer hits  

Ç Stage 1: Batch formation  

Ç Within each application, groups requests to the same row into 
batches 

2) Manage contention between applications 

Ç Stage 2: Batch scheduler  

Ç Schedules batches from different applications 

3) Satisfy DRAM timing constraints 

Ç Stage 3: DRAM command scheduler 

Ç Issues requests from the already-scheduled order to each bank 
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SMS: Staged Memory Scheduling 
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Stage 1 

Stage 2 

SMS: Staged Memory Scheduling 
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RR 

Batch Scheduler 

Bank 1 Bank 2 Bank 3 Bank 4 

SMS: Staged Memory Scheduling 
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SMS Complexity 

Â Compared to a row hit first scheduler, SMS consumes* 

Ç 66% less area 

Ç 46% less static power 

 

 

Â Reduction comes from: 

Ç Monolithic scheduler Ą stages of simpler schedulers 

Ç Each stage has a simpler scheduler (considers fewer 
properties at a time to make the scheduling decision)  

Ç Each stage has simpler buffers (FIFO instead of out-of-order) 

Ç Each stage has a portion of the total buffer size (buffering is 
distributed across stages) 

32 * Based on a Verilog model using 180nm library  



SMS Performance 
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Â At every GPU weight, SMS outperforms the best previous 
scheduling algorithm for that weight  

SMS Performance 
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Memory QoS in a Parallel Application 

Â Threads in a multithreaded application are inter -dependent 

Â Some threads can be on the critical path of execution due 
to synchronization; some threads are not 

Â How do we schedule requests of inter-dependent threads 
to maximize multithreaded application performance? 

 

Â Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non -limiter threads 
to reduce memory interference among them [Ebrahimi+, MICROô11] 

 

Â Hardware/software cooperative limiter thread estimation:  

Â Thread executing the most contended critical section 

Â Thread that is falling behind the most in a parallel for loop 

 

 35 Ebrahimi et al., ñParallel Application Memory Scheduling,ò MICRO 2011. 

file://localhost/Users/omutlu/Documents/presentations/CMU/Samsung%20Memory%20June%2021%202012/Previous%20Presentations/ebrahimi_micro2011_talk.pptx


Designing QoS-Aware Memory Systems: Approaches 

Â Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 

Ç QoS-aware memory controllers [Mutlu+ MICROô07] [Moscibroda+, Usenix Securityô07] 

[Mutlu+ ISCAô08, Top Picksô09] [Kim+ HPCAô10] [Kim+ MICROô10, Top Picksô11] [Ebrahimi+ ISCAô11, 
MICROô11] [Ausavarungnirun+, ISCAô12] 

Ç QoS-aware interconnects [Das+ MICROô09, ISCAô10, Top Picks ô11] [Grot+ MICROô09, 

ISCAô11, Top Picks ô12] 

Ç QoS-aware caches 
 

Â Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping 

Ç Source throttling to control access to memory system [Ebrahimi+ ASPLOSô10, 

ISCAô11, TOCSô12] [Ebrahimi+ MICROô09] [Nychis+ HotNetsô10] 

Ç QoS-aware data mapping to memory controllers [Muralidhara+ MICROô11] 

Ç QoS-aware thread scheduling to cores 
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We did not cover the following slides in lecture. 

These are for your preparation for the next lecture.  



Self-Optimizing Memory Controllers 

 

 

 

 

Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,  

"Self Optimizing Memory Controllers: A Reinforcement Learning Approach" 

Proceedings of the 35th International Symposium on Computer Architecture (ISCA),  

Beijing, China, June 2008. 

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


Why are DRAM Controllers Difficult to Design? 

Â Need to obey DRAM timing constraints for correctness 

Ç There are many (50+) timing constraints in DRAM 

Ç tWTR: Minimum number of cycles to wait before issuing a 
read command after a write command is issued 

Ç tRC: Minimum number of cycles between the issuing of two 
consecutive activate commands to the same bank 

Ç é 

Â Need to keep track of many resources to prevent conflicts  

Ç Channels, banks, ranks, data bus, address bus, row buffers 

Â Need to handle DRAM refresh 

Â Need to optimize for performance (in the presence of constraints)  

Ç Reordering is not simple 

Ç Predicting the future? 
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Why are DRAM Controllers Difficult to Design? 

 

 

 

 

 

 

 

 

Â From Lee et al., DRAM-Aware Last-Level Cache Writeback: Reducing 
Write-Caused Interference in Memory Systems,  HPS Technical Report, 
April 2010. 
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Self-Optimizing DRAM Controllers 

Â Problem: DRAM controllers difficult to design Ą It is difficult for 

human designers to design a policy that can adapt itself very well 
to different workloads and different system conditions  

 

Â Idea: Design a memory controller that adapts its scheduling 
policy decisions to workload behavior and system conditions 
using machine learning. 

 

Â Observation: Reinforcement learning maps nicely to memory 
control. 

 

Â Design: Memory controller is a reinforcement learning agent that 
dynamically and continuously learns and employs the best 
scheduling policy. 
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Self-Optimizing DRAM Controllers 

Â Engin Ipek, Onur Mutlu, José F. Martínez, and Rich 
Caruana,  
"Self Optimizing Memory Controllers: A 
Reinforcement Learning Approach"  
Proceedings of the 35th International Symposium on 
Computer Architecture (ISCA ), pages 39-50, Beijing, 
China, June 2008. 
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/


Self-Optimizing DRAM Controllers 

Â Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,  
"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"  
Proceedings of the 35th International Symposium on Computer Architecture 
(ISCA ), pages 39-50, Beijing, China, June 2008. 
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


Performance Results 
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DRAM-Aware Cache Design: 

An Example of Resource Coordination 

 

 

 

 Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,  

"DRAM-Aware Last-Level Cache Writeback: Reducing Write-Caused Interference in Memory Systems" 

HPS Technical Report, TR-HPS-2010-002, April 2010.  

http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf


DRAM-Aware LLC Writeback 

Â Problem 1: Writebacks to DRAM interfere with reads and 
cause additional performance penalty 
Ç Write-to-read turnaround time in DRAM bus 

Ç Write-recovery latency in DRAM bank 

Ç Change of row buffer Ą reduced row-buffer locality for read requests  

 

Â Problem 2: Writebacks that occur once in a while have low 
row buffer locality  

 

Â Idea: When evicting a dirty cache block to a row, 
proactively search the cache for other dirty blocks to the 
same row Ą evict them Ą write to DRAM in a batch 
Ç Improves row buffer locality  

Ç Reduces write-to-read switching penalties on DRAM bus 

Ç Improves performance on both single-core and multi-core systems 
46 




