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Reminder: New Review Assignments

Due: Tuesday, November 13, 11:59pm.

¢ Mutlu and Moscibroda, iParallelismAware Batch Scheduling:
Enhancing both Performance and Fairness of Shared DRAM
Systemso ISCA 2008.

¢ Kim et al., iThread Cluster Memory Scheduling: Exploiting
Differences in Memory Access Behaviojo MICRO 2010.

Due: Thursday, November 15, 11:59pm.

¢ Ebrahimi et al.,, Fairness via Source Throttling: A Configurable
and High-Performance Fairness Substrate for MultiCore Memory
Systems ASPLOS 2010.

¢ Muralidhara et al., iReducing Memory Interference in
Multicore Systems via ApplicationAware Memory Channel
Partitioning,0 MICRO 2011.



Reminder: Literature Survey Process

Done in groups: your research project group is likely ideal

Step 1: Pick 3 or more research papers

¢ Broadly related to your research project

Step 2: Send me the list of papers with links to pdf copies (by

Sunday, November 11)

¢ | need to approve the 3 papers

¢ We will iterate to ensure convergence on the list

Step 3. Prepare a 2-page writeup on the 3 papers

Step 3. Prepare a 15-minute presentation on the 3 papers

¢ Total time: 15-minute talk + 5 -minute Q&A

¢ Talk should focus on insights and tradeoffs

Step 4. Deliver the presentation in front of class (dates:
November 26-28 or December 3-7) and turn in your writeup
(due date: December 1)



Last Lecture

Begin shared resource management

Main memory as a shared resource
¢ QoSaware memory systems
¢ Memory request scheduling

Memory performance attacks

STFM

PARBS

ATLAS



Today

A End QoSaware Memory Request Scheduling




More on QoSAware
Memory Request Scheduling




Designing QoAware Memory Systems: Approact

A Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

QoSaware memory controllersymutiu+ MICRO®7] [Moscibroda+, Usenix Security®7]

viepsie e oL PR T Perd 0] [Kim+ MICROAO, Top Picksd 1] [Ebrahimi+ ISCAA1,
MICR(GA1] [Ausavarungnlrun+ ISCAQ 2]

¢

¢ QoSaware interconnects [Das+ MICRO®9, ISCAA0, Top Picks d.1] [Grot+ MICRO ®9,
ISCAA.L, Top Picksd2]

¢ QoSaware caches

A Dumb resources: Keep each resource freefor-all, but
reduce/control interference by injection control or data
mapping

¢ Source throttling to control access to memory system [Ebrahimi+ ASPLOSI0,
ISCAA1, TOCS12] [Ebrahimi+ MICRO®9] [Nychis+ HotNets d0]

¢ QoSaware data mapping to memory controllers [Muralidhara+ MICROA 1]
¢ QoSaware thread scheduling to cores

SAFARI !




QoSAware Memory Scheduling

Resolves memory contention
b y scheduling requests

A How to schedule requests to provide
¢ High system performance
¢ High fairness to applications
¢ Configurability to system software

A Memory controller needs to be aware of threads

SAFARI



QoSAware Memory Scheduling: Evolut

A Stall-time fair memory scheduling [Mutlu+ MICRO®7]
¢ ldea: Estimate and balance thread slowdowns

¢ Takeaway: Proportional thread progress improves performance,
especially when threads are fheavyo (memory intensive)

A Parallelismaware batch scheduling [Mutlu+ ISCA®8, Top Picks®9]

¢ ldea: Rank threads and service in rank order (to preserve bank
parallelism); batch requests to prevent starvation

¢ Takeaway: Preserving within-thread bank-parallelism improves
performance; request batching improves fairness

A ATLAS memory schedulenkim+ HPCAAO]

c ldea: Prioritize threads that have attained the least service from the
memory scheduler

¢ Takeaway: Prioritizing flighto threads improves performance

SAFARI J




QoSAware Memory Scheduling: Evolut

A Thread cluster memory scheduling [Kim+ MICRO&.0]

¢ ldea: Cluster threads into two groups (latency vs. bandwidth
sensitive); prioritize the latency -sensitive ones; employ a fairness
policy in the bandwidth sensitive group

¢ Takeaway:. Heterogeneous scheduling policy that is different based
on thread behavior maximizes both performance and fairness

A Staged memory scheduling [Ausavarungnirun+ ISCAA.2]

A Idea: Divide the functional tasks of an application -aware memory
scheduler into multiple distinct stages, where each stage is
significantly simpler than a monolithic scheduler

A Takeaway: Staging enables the design of a scalable and relatively
simpler application-aware memory scheduler that works on very
large request buffers

SAFARI 10



QoSAware Memory Scheduling: Evolut

A Parallel application memory scheduling [Ebrahimi+ MICROA 1]
¢ Idea: Identify and prioritize limiter threads of a multithreaded
application in the memory scheduler; provide fast and fair progress
to non-limiter threads

¢ Takeaway: Carefully prioritizing between limiter and non -limiter
threads of a parallel application improves performance

A Integrated Memory Channel Partitioning and Scheduling
[Muralidhara+ MICROQ4 1]

A Ildea: Only prioritize very latency -sensitive threads in the scheduler;
mitigate all other applications dinterference via channel partitioning

A Takeaway: Intelligently ombining application -aware channel
partitioning and memory scheduling provides better performance
than either

SAFARI 11



QoSAware Memory Scheduling: Evolut

A Prefetch-aware shared resource management [Ebrahimi+
ISCAA. 2] [Ebrahimi+ MICRO®9] [Lee+ MICRO®8]

¢ ldea: Prioritize prefetches depending on how they affect system
performance; even accurate prefetches can degrade performance of

the system

¢ Takeaway: Carefully controlling and prioritizing prefetch requests
Improves performance and fairness

SAFARI 12



Properties of ATLAS

A LASranking
AMaximize system performance A Bank-level parallelism

A Row-buffer locality

AScalable to large number of controllers {A Very infrequent coordination

A Configurable by system software A Scale attained service with
thread weight (in paper)

A Low complexity : Attained

service requires a single
counter per thread in each MC

SAFARI 13



ATLAS Pros and Cons

Upsides:

¢ Good at improving performance

¢ Low complexity

¢ Coordination among controllers happens infrequently

Downsides:

¢ Lowest ranked threads get delayed significantly A high
unfairness

SAFARI
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TCM:
Thread Cluster Memory Schedulirrg

Yoongu Kim, Michael Papamichael Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling:
Exploiting Differences in Memory Access Behavior"
43rd International Symposium on Microarchitecture (MICRO ),
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

TCM Micro 2010 Talk



http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/kim_micro10_talk.pptx

Throughput vs. Fairness

24 cores, 4 memory controllers, 96 workloads
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Better system throughput
No previous memory scheduling algorithm provide:

both the best fairness and system throughput
SAFARI 16



Throughput vs. Fairness

Prioritize less memorntensive threads  Take turns accessing memory

Good for throughput Does not starve
<

thread A A C >
. —>—
less memor thread B higher

Intensive priority
M not prioritized C

starvation C unfairness reduced throughput

Single policy for all threads Is insufficient

SAFARI 17



Achieving the Best of Both Worlds
$ higher

priority L . .
Prioritize memorynon-intensive threads
i

- For Fairness

Unfairness caused by memoiiptensive
being prioritized over each other
AShuffle thread ranking

Memory-intensive threads have
different vulnerabillity to interference
AShuffleasymmetrically

SAFARI 18



Thread Cluster Memory Schedulipgh+ microato]

1. Group threads into twoclusters
2. Prioritize non-intensive cluster N
3. Different policies for each cluster ( higher

priority
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SAFARI 19
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Clustering Threads

SteplSort threads byIPKI(missesper kiloinstruction)
—

higher
MPKI
Non-intensive Intensive
cluster cluster
_'I_
h <10%

T =Totalmemory bandwidth usage  clysterThreshold

Step2Memory bandwidth usageT divides clusters

SAFARI 20



TCM: QuanturmBased Operation

Previous quantum Current guantum
(~1M cycles) (~1M cycles)
| |

r | \
—_—t > Time

S T
_ Shuffle interval
During quantum: (~1K cycles)
AMonitor thread behavior
1.Memory intensity Beginning of quantum
2.Banklevel parallelism APerform clustering

. >
3.Rowbuffer locality ACompute niceness of
Intensive threads

SAFARI 28



TCM: Scheduling Algorithm

1. Highestrank: Requests from higher ranked threads prioritized

| ANon-Intensivecluster> Intensivecluster |
| ANorrIntensivecluster: bwer intensityC higher rank |

| Alntensivecluster: ank shuffling |

2. Rowhit: Rowbuffer hit requests are prioritized

3. Oldest Older requests are prioritized

SAFARI 22



TCM: Throughput and Fairness

24 cores, 4 memory controllers, 96 workloads
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TCM, a heterogeneous scheduling policy,
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TCM: FairnessThroughput Tradeoff
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Better system throughput

TCM allows robust fairnessroughput tradeoff
SAFARI 24




TCM Pros and Cons

Upsides:
¢ Provides both high fairness and high performance

Downsides:
¢ Scalability to large buffer sizes?
¢ Effectiveness in a heterogeneous system?

25



Staged Memory Scheduling

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, andnur Mutlu,
"Staged Memory Scheduling: Achieving High Performance
and Scalability in Heterogeneous Systems 0
39th International Symposium on Computer Architecture (ISCA ),
Portland, OR, June 2012.

SMS ISCA 2012 Talk



http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/rachata_isca12_talk.pptx

Memory Control in CPAGPU Systems

Observation: Heterogeneous CPUGPU systems require
memory schedulers with large request buffers

Problem: Existing monolithic application-aware memory
scheduler designs arehard to scale to large request buffer sizes

Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

Compared to state-of-the-art memory schedulers:
¢ SMS is significantly simpler and more scalable
¢ SMS provides higher performance and fairness

Ausavarungnirun et al., iStaged Memory Schedulingd ISCA 2012. e?



file://localhost/Users/omutlu/Documents/presentations/CMU/Samsung%20Memory%20June%2021%202012/Previous%20Presentations/rachata_isca12_talk.pptx

Key ldea: Decouple Tasks into Stages

A ldea: Decouple the functional tasks of the memory controller
¢ Partition tasks across several simpler HW structures (stages)

1) Maximize row buffer hits
¢ Stage 1: Batch formation

¢ Within each application, groups requests to the same row into
batches

2) Manage contention between applications
¢ Stage 2: Batch scheduler
¢ Schedules batches from different applications
3) Satisfy DRAM timing constraints
¢ Stage 3: DRAM command scheduler
¢ Issues requests from the already-scheduled order to each bank

28



SMS: Staged Memory Scheduling

Core 1 Core 2 Core 3 Core 4 GPU
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SMS: Staged Memory Scheduling

Stage 1

Batch
Formation
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SMS: Staged Memory Scheduling

Stage 1.
Batch

Formation ||
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Command
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SMS Complexity

Compared to a row hit first scheduler, SMS consumes*
¢ 66% less area
¢ 46% less static power

Reduction comes from:
¢ Monolithic scheduler A stages of simpler schedulers

¢ Each stage has a simpler scheduler(considers fewer
properties at a time to make the scheduling decision)

¢ Each stage has simpler buffers (FIFO instead of out-of-order)

¢ Each stage has a portion of the total buffer size (buffering is
distributed across stages)

* Based on a Verilog model using 180nm library 32



SMS Performance
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SMS Performance
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A At every GPU weight, SMS outperforms the best previous

scheduling algorithm for that weight
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Memory QoS in a Parallel Application

Threads in a multithreaded application are inter-dependent

Some threads can be on the critical path of execution due
to synchronization; some threads are not

How do we schedule requests of inter-dependent threads
to maximize multithreaded application performance?

|ldea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non -limiter threads
to reduce memory interference among them [Ebrahimi+, MICROA 1]

Hardware/software cooperative limiter thread estimation:

Thread executing the most contended critical section
Thread that is falling behind the most in a parallel for loop

SAFARI Ebrahimi et al., fParallel Application Memory Schedulingd MICRO 2011. 35



file://localhost/Users/omutlu/Documents/presentations/CMU/Samsung%20Memory%20June%2021%202012/Previous%20Presentations/ebrahimi_micro2011_talk.pptx

Designing QoAware Memory Systems: Approact

A Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

¢ QoSaware memory controllers [Mutiu+ MICRO®7] [Moscibroda+, Usenix Security®7]
[Mutlu+ ISCA®8, Top Picks®9] [Kim+ HPCAAO] [Kim+ MICROAO0, Top Picksd 1] [Ebrahimi+ ISCAdA1,
MICR@4.1] [Ausavarungnirun+, ISCAA2]

¢ QoSaware interconnects [Das+ MICRO®9, ISCAA0, Top Picks d1] [Grot+ MICRO ®9,
ISCAA.L, Top Picks d2]

¢ QoSaware caches

A Dumb resources: Keep each resource freefor-all, but
reduce/control interference by injection control or data

¢ Source throttling to control access to memory system [Ebrahimi+ ASPLOS0,
ISCAA1, TOCS12] [Ebrahimi+ MICRO®9] [Nychis+ HotNets d0]

¢ QoSaware data mapping to memory controllers [Muralidhara+ MICROA 1]
¢ QoSaware thread scheduling to cores

SAFARI 36




We did not cover the following slides in lecture
These are for your preparation for the next lectu




SeltOptimizing Memory Controllers

Engin Ipek, Onur Mutlu, José F. Marthez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on Computer Architecture (ISCA),
Beijing, China, June 2008.



http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Why are DRAM Controllers Difficult to Design”.

Need to obey DRAM timing constraints for correctness

¢
¢

¢

There are many (50+) timing constraints in DRAM

tWTR: Minimum number of cycles to wait before issuing a
read command after a write command is issued

tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

é

Need to keep track of many resources to prevent conflicts

¢

Channels, banks, ranks, data bus, address bus, row buffers

Need to handle DRAM refresh
Need to optimize for performance (in the presence of constraints)

¢
¢

Reordering is not simple
Predicting the future?

39



Why are DRAM Controllers Difficult to Design”.

r

From Lee et al.,

April 2010.

DRAMAware LastLevel Cache Writeback: Reducing
Write-Caused Interference in Memory Systems HPS Technical Report,

Latency | Symbol | DRAM cveles || Latency | Symbol | DRAM cveles |

Precharge ‘RP 11 Activate to read/write *RCD 11

Read column address strobe CL 11 Write column address strobe CWL 8
Additive AL 0 Activate to activate ‘RC 39

Activate to precharge ‘RAS 28 Read to precharge ‘RTP 6

Burst length ‘BL 4 Column address strobe to column address strobe | ‘CC'D 4
Activate to activate (different bank) | * RRD 6 Four activate windows tFAW 24
Write to read ‘WTR 6 Write recovery ‘WR 12

Table 4. DDR3 1600 DRAM timing specifications

40



SeltOptimizing DRAM Controllers

Problem: DRAM controllers difficult to design A It is difficult for
human designers to design a policy that can adapt itself very well
to different workloads and different system conditions

ldea: Design a memory controller that adapts its scheduling
policy decisions to workload behavior and system conditions
using machine learning.

Observation: Reinforcement learning maps nicely to memory
control.

Design: Memory controller is a reinforcement learning agent that
dynamically and continuously learns and employs the best
scheduling policy.

41



SeltOptimizing DRAM Controllers

" ENVIRONMENT

Action a(t+1) Agent

’ ‘ SYSTEM

<— Data Bus Utilization (t)
<— Gtate Attributes (t)

— Scheduled Command (t+1) 1 Scheduler

Figure 2: (a) Intelligent agent based on reinforcement learning
principles; (b) DRAM scheduler as an RL-agent


http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/

SeltOptimizing DRAM Controllers

A Engin Ipek, Onur Mutlu, José F. Marthez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA ), pages 39-50, Beijing, China, June 2008.
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Figure 4: High-level overview of an RL-based scheduler.


http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Performance Results
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Figure 7: Performance comparison of in-order, FR-FCFS, RL-based, and optimistic memory controllers
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Figure 15: Performance comparison of FR-FCFS and RL-based memory controllers on systems with 6.4GB/s and 12.8GB/s peak
DRAM bandwidth
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DRAM-Aware Cache Design:
An Example of Resource Coordinatiol

Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"DRAM-Aware Last-Level Cache Writeback: Reducing Write-Caused Interference in Memory Systems"
HPS Technical Report, TR-HPS-2010-002, April 2010.



http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf

DRAM-Aware LLC Writeback

Problem 1: Writebacks to DRAM interfere with reads and

cause additional performance penalty
¢ Write-to-read turnaround time in DRAM bus

¢ Write-recovery latency in DRAM bank
¢ Change of row buffer A reduced row-buffer locality for read requests

Problem 2: Writebacks that occur once in a while have low
row buffer locality

ldea: When evicting a dirty cache block to a row,
proactively search the cache for other dirty blocks to the
same row A evict them A write to DRAM in a batch

¢ Improves row buffer locality
¢ Reduces write-to-read switching penalties on DRAM bus

¢ Improves performance on both single-core and multi-core systems
46






