
18-742 Fall 2012

Parallel Computer Architecture

Lecture 25: Main Memory Management II

Prof. Onur Mutlu

Carnegie Mellon University

11/12/2012

Reminder: New Review Assignments

Â Due: Tuesday, November 13, 11:59pm.

Ç Mutlu and Moscibroda, ñParallelism-Aware Batch Scheduling:
Enhancing both Performance and Fairness of Shared DRAM
Systems,ò ISCA 2008.

Ç Kim et al., ñThread Cluster Memory Scheduling: Exploiting
Differences in Memory Access Behavior,ò MICRO 2010.

Â Due: Thursday, November 15, 11:59pm.

Ç Ebrahimi et al., Fairness via Source Throttling: A Configurable
and High-Performance Fairness Substrate for Multi-Core Memory
Systems, ASPLOS 2010.

Ç Muralidhara et al., ñReducing Memory Interference in
Multicore Systems via Application-Aware Memory Channel
Partitioning,ò MICRO 2011.

2

Reminder: Literature Survey Process

Â Done in groups: your research project group is likely ideal

Â Step 1: Pick 3 or more research papers

Ç Broadly related to your research project

Â Step 2: Send me the list of papers with links to pdf copies (by
Sunday, November 11)

Ç I need to approve the 3 papers

Ç We will iterate to ensure convergence on the list

Â Step 3: Prepare a 2-page writeup on the 3 papers

Â Step 3: Prepare a 15-minute presentation on the 3 papers

Ç Total time: 15 -minute talk + 5 -minute Q&A

Ç Talk should focus on insights and tradeoffs

Â Step 4: Deliver the presentation in front of class (dates:
November 26-28 or December 3-7) and turn in your writeup
(due date: December 1)

3

Last Lecture

Â Begin shared resource management

Â Main memory as a shared resource

Ç QoS-aware memory systems

Ç Memory request scheduling

Â Memory performance attacks

Â STFM

Â PAR-BS

Â ATLAS

4

Today

Â End QoS-aware Memory Request Scheduling

5

More on QoS-Aware

Memory Request Scheduling

Designing QoS-Aware Memory Systems: Approaches

Â Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

Ç QoS-aware memory controllers [Mutlu+ MICROô07] [Moscibroda+, Usenix Securityô07]

[Mutlu+ ISCAô08, Top Picksô09] [Kim+ HPCAô10] [Kim+ MICROô10, Top Picksô11] [Ebrahimi+ ISCAô11,
MICROô11] [Ausavarungnirun+, ISCAô12]

Ç QoS-aware interconnects [Das+ MICROô09, ISCAô10, Top Picks ô11] [Grot+ MICROô09,

ISCAô11, Top Picks ô12]

Ç QoS-aware caches

Â Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping

Ç Source throttling to control access to memory system [Ebrahimi+ ASPLOSô10,

ISCAô11, TOCSô12] [Ebrahimi+ MICROô09] [Nychis+ HotNetsô10]

Ç QoS-aware data mapping to memory controllers [Muralidhara+ MICROô11]

Ç QoS-aware thread scheduling to cores

 7

QoS-Aware Memory Scheduling

Â How to schedule requests to provide

Ç High system performance

Ç High fairness to applications

Ç Configurability to system software

Â Memory controller needs to be aware of threads

8

Memory
Controller

Core Core

Core Core

Memory

Resolves memory contention
by scheduling requests

QoS-Aware Memory Scheduling: Evolution

Â Stall-time fair memory scheduling [Mutlu+ MICROô07]

Ç Idea: Estimate and balance thread slowdowns

Ç Takeaway: Proportional thread progress improves performance,
especially when threads are ñheavyò (memory intensive)

Â Parallelism-aware batch scheduling [Mutlu+ ISCAô08, Top Picksô09]

Ç Idea: Rank threads and service in rank order (to preserve bank
parallelism); batch requests to prevent starvation

Ç Takeaway: Preserving within-thread bank-parallelism improves
performance; request batching improves fairness

Â ATLAS memory scheduler [Kim+ HPCAô10]

Ç Idea: Prioritize threads that have attained the least service from the
memory scheduler

Ç Takeaway: Prioritizing ñlightò threads improves performance

9

QoS-Aware Memory Scheduling: Evolution

Â Thread cluster memory scheduling [Kim+ MICROô10]

Ç Idea: Cluster threads into two groups (latency vs. bandwidth
sensitive); prioritize the latency -sensitive ones; employ a fairness
policy in the bandwidth sensitive group

Ç Takeaway: Heterogeneous scheduling policy that is different based
on thread behavior maximizes both performance and fairness

Â Staged memory scheduling [Ausavarungnirun+ ISCAô12]

Â Idea: Divide the functional tasks of an application -aware memory
scheduler into multiple distinct stages, where each stage is
significantly simpler than a monolithic scheduler

Â Takeaway: Staging enables the design of a scalable and relatively
simpler application-aware memory scheduler that works on very
large request buffers

10

QoS-Aware Memory Scheduling: Evolution

Â Parallel application memory scheduling [Ebrahimi+ MICROô11]

Ç Idea: Identify and prioritize limiter threads of a multithreaded
application in the memory scheduler; provide fast and fair progress
to non-limiter threads

Ç Takeaway: Carefully prioritizing between limiter and non -limiter
threads of a parallel application improves performance

Â Integrated Memory Channel Partitioning and Scheduling
[Muralidhara+ MICROô11]

Â Idea: Only prioritize very latency -sensitive threads in the scheduler;
mitigate all other applicationsô interference via channel partitioning

Â Takeaway: Intelligently ombining application -aware channel
partitioning and memory scheduling provides better performance
than either

11

QoS-Aware Memory Scheduling: Evolution

Â Prefetch-aware shared resource management [Ebrahimi+

ISCAô12] [Ebrahimi+ MICROô09] [Lee+ MICROô08]

Ç Idea: Prioritize prefetches depending on how they affect system
performance; even accurate prefetches can degrade performance of
the system

Ç Takeaway: Carefully controlling and prioritizing prefetch requests
improves performance and fairness

12

Properties of ATLAS

ÁLAS-ranking

ÁBank-level parallelism

ÁRow-buffer locality

ÁVery infrequent coordination

ÁScale attained service with
thread weight (in paper)

ÁLow complexity : Attained
service requires a single
counter per thread in each MC

13

Á Maximize system performance

Á Scalable to large number of controllers

Á Configurable by system software

Goals Properties of ATLAS

ATLAS Pros and Cons

Â Upsides:

Ç Good at improving performance

Ç Low complexity

Ç Coordination among controllers happens infrequently

Â Downsides:

Ç Lowest ranked threads get delayed significantly Ą high

unfairness

14

TCM:

Thread Cluster Memory Scheduling

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling:

Exploiting Differences in Memory Access Behavior"
43rd International Symposium on Microarchitecture (MICRO),
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

TCM Micro 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/kim_micro10_talk.pptx

No previous memory scheduling algorithm provides
both the best fairness and system throughput

16

System throughput bias

Fairness bias

Better system throughput

B
e

tt
e

r f
a

ir
n

e
ss

24 cores, 4 memory controllers, 96 workloads

Throughput vs. Fairness

Take turns accessing memory

Throughput vs. Fairness

17

Fairness biased approach

thread C

thread B

thread A

less memory
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation Č unfairness

thread C thread B thread A

Does not starve

not prioritized Č
reduced throughput

Single policy for all threads is insufficient

Achieving the Best of Both Worlds

18

thread

thread

higher
priority

thread

thread

thread

thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive
being prioritized over each other
Å Shuffle thread ranking

Memory-intensive threads have
different vulnerability to interference
Å Shuffle asymmetrically

For Fairness

thread

thread

thread

thread

Thread Cluster Memory Scheduling [Kim+ MICROô10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

19

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

Clustering Threads

Step1 Sort threads by MPKI (misses per kiloinstruction)

20

th
re

a
d

th
re

a
d

th
re

a
d

th
re

a
d

th
re

a
d

th
re

a
d

higher
MPKI

T
 h< 10%

ClusterThreshold

Intensive
cluster Th

Non-intensive
cluster

T = Total memory bandwidth usage

Step2 Memory bandwidth usage hT divides clusters

TCM: Quantum-Based Operation

21

Time

Previous quantum
(~1M cycles)

During quantum:
ÅMonitor thread behavior

1.Memory intensity
2.Bank-level parallelism
3.Row-buffer locality

Beginning of quantum:
ÅPerform clustering
ÅCompute niceness of
intensive threads

Current quantum
(~1M cycles)

Shuffle interval
(~1K cycles)

TCM: Scheduling Algorithm

1.Highest-rank: Requests from higher ranked threads prioritized

ÅNon-Intensive cluster > Intensive cluster

ÅNon-Intensive cluster: lower intensity Č higher rank

ÅIntensive cluster: rank shuffling

2.Row-hit: Row-buffer hit requests are prioritized

3.Oldest: Older requests are prioritized

22

TCM: Throughput and Fairness

23

Better system throughput

B
e

tt
e

r f
a

ir
n

e
ss

24 cores, 4 memory controllers, 96 workloads

TCM, a heterogeneous scheduling policy,
provides best fairness and system throughput

TCM: Fairness-Throughput Tradeoff

24

²ƘŜƴ ŎƻƴŦƛƎǳǊŀǘƛƻƴ ǇŀǊŀƳŜǘŜǊ ƛǎ ǾŀǊƛŜŘΧ

Adjusting
ClusterThreshold

TCM allows robust fairness-throughput tradeoff

STFM
PAR-BS

ATLAS

TCM

Better system throughput

B
e

tt
e

r f
a

ir
n

e
ss

 FRFCFS

TCM Pros and Cons

Â Upsides:

Ç Provides both high fairness and high performance

Â Downsides:

Ç Scalability to large buffer sizes?

Ç Effectiveness in a heterogeneous system?

25

Staged Memory Scheduling

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu,

"Staged Memory Scheduling: Achieving High Performance
and Scalability in Heterogeneous Systems ò

39th International Symposium on Computer Architecture (ISCA),
Portland, OR, June 2012.

SMS ISCA 2012 Talk

http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/rachata_isca12_talk.pptx

Memory Control in CPU-GPU Systems

Â Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

Â Problem: Existing monolithic application-aware memory

scheduler designs are hard to scale to large request buffer sizes

Â Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:

1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications

3) DRAM command scheduler: issues requests to DRAM

Â Compared to state-of-the-art memory schedulers:

Ç SMS is significantly simpler and more scalable

Ç SMS provides higher performance and fairness

 27 Ausavarungnirun et al., ñStaged Memory Scheduling,ò ISCA 2012.

file://localhost/Users/omutlu/Documents/presentations/CMU/Samsung%20Memory%20June%2021%202012/Previous%20Presentations/rachata_isca12_talk.pptx

Key Idea: Decouple Tasks into Stages

Â Idea: Decouple the functional tasks of the memory controller

Ç Partition tasks across several simpler HW structures (stages)

1) Maximize row buffer hits

Ç Stage 1: Batch formation

Ç Within each application, groups requests to the same row into
batches

2) Manage contention between applications

Ç Stage 2: Batch scheduler

Ç Schedules batches from different applications

3) Satisfy DRAM timing constraints

Ç Stage 3: DRAM command scheduler

Ç Issues requests from the already-scheduled order to each bank

28

SMS: Staged Memory Scheduling

29

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req

Req

Req

Req

Req

Req Req

Req Req Req

Req Req Req

Req Req

Req Req

Req Req Req

Req

Req Req

Req

Req

Req

Req

Req Req

Req Req Req

Req Req Req Req Req Req

Req

Req

Req Req

Batch Scheduler

Stage 1

Stage 2

Stage 3

Req

M
o

n
o

lit
h

ic
 S

c
h

e
d

u
le

r

Batch
Formation

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Stage 1

Stage 2

SMS: Staged Memory Scheduling

30

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req Req Batch Scheduler

Batch
Formation

Stage 3

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Current Batch
Scheduling

Policy

SJF

Current Batch
Scheduling

Policy

RR

Batch Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

SMS: Staged Memory Scheduling

31

Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch
Formation

Stage 3:
DRAM
Command
Scheduler

GPU

Stage 2:

SMS Complexity

Â Compared to a row hit first scheduler, SMS consumes*

Ç 66% less area

Ç 46% less static power

Â Reduction comes from:

Ç Monolithic scheduler Ą stages of simpler schedulers

Ç Each stage has a simpler scheduler (considers fewer
properties at a time to make the scheduling decision)

Ç Each stage has simpler buffers (FIFO instead of out-of-order)

Ç Each stage has a portion of the total buffer size (buffering is
distributed across stages)

32 * Based on a Verilog model using 180nm library

SMS Performance

33

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

GPUweight

Previous Best
Best Previous
Scheduler

ATLAS TCM FR-FCFS

Â At every GPU weight, SMS outperforms the best previous
scheduling algorithm for that weight

SMS Performance

34

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

GPUweight

Previous Best

SMSSMS

Best Previous
Scheduler

Memory QoS in a Parallel Application

Â Threads in a multithreaded application are inter -dependent

Â Some threads can be on the critical path of execution due
to synchronization; some threads are not

Â How do we schedule requests of inter-dependent threads
to maximize multithreaded application performance?

Â Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non -limiter threads
to reduce memory interference among them [Ebrahimi+, MICROô11]

Â Hardware/software cooperative limiter thread estimation:

Â Thread executing the most contended critical section

Â Thread that is falling behind the most in a parallel for loop

 35 Ebrahimi et al., ñParallel Application Memory Scheduling,ò MICRO 2011.

file://localhost/Users/omutlu/Documents/presentations/CMU/Samsung%20Memory%20June%2021%202012/Previous%20Presentations/ebrahimi_micro2011_talk.pptx

Designing QoS-Aware Memory Systems: Approaches

Â Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

Ç QoS-aware memory controllers [Mutlu+ MICROô07] [Moscibroda+, Usenix Securityô07]

[Mutlu+ ISCAô08, Top Picksô09] [Kim+ HPCAô10] [Kim+ MICROô10, Top Picksô11] [Ebrahimi+ ISCAô11,
MICROô11] [Ausavarungnirun+, ISCAô12]

Ç QoS-aware interconnects [Das+ MICROô09, ISCAô10, Top Picks ô11] [Grot+ MICROô09,

ISCAô11, Top Picks ô12]

Ç QoS-aware caches

Â Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping

Ç Source throttling to control access to memory system [Ebrahimi+ ASPLOSô10,

ISCAô11, TOCSô12] [Ebrahimi+ MICROô09] [Nychis+ HotNetsô10]

Ç QoS-aware data mapping to memory controllers [Muralidhara+ MICROô11]

Ç QoS-aware thread scheduling to cores

 36

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

Self-Optimizing Memory Controllers

Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning Approach"

Proceedings of the 35th International Symposium on Computer Architecture (ISCA),

Beijing, China, June 2008.

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Why are DRAM Controllers Difficult to Design?

Â Need to obey DRAM timing constraints for correctness

Ç There are many (50+) timing constraints in DRAM

Ç tWTR: Minimum number of cycles to wait before issuing a
read command after a write command is issued

Ç tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

Ç é

Â Need to keep track of many resources to prevent conflicts

Ç Channels, banks, ranks, data bus, address bus, row buffers

Â Need to handle DRAM refresh

Â Need to optimize for performance (in the presence of constraints)

Ç Reordering is not simple

Ç Predicting the future?

39

Why are DRAM Controllers Difficult to Design?

Â From Lee et al., DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems, HPS Technical Report,
April 2010.

40

Self-Optimizing DRAM Controllers

Â Problem: DRAM controllers difficult to design Ą It is difficult for

human designers to design a policy that can adapt itself very well
to different workloads and different system conditions

Â Idea: Design a memory controller that adapts its scheduling
policy decisions to workload behavior and system conditions
using machine learning.

Â Observation: Reinforcement learning maps nicely to memory
control.

Â Design: Memory controller is a reinforcement learning agent that
dynamically and continuously learns and employs the best
scheduling policy.

41

Self-Optimizing DRAM Controllers

Â Engin Ipek, Onur Mutlu, José F. Martínez, and Rich
Caruana,
"Self Optimizing Memory Controllers: A
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on
Computer Architecture (ISCA), pages 39-50, Beijing,
China, June 2008.

42

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/

Self-Optimizing DRAM Controllers

Â Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

43

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Performance Results

44

DRAM-Aware Cache Design:

An Example of Resource Coordination

 Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"DRAM-Aware Last-Level Cache Writeback: Reducing Write-Caused Interference in Memory Systems"

HPS Technical Report, TR-HPS-2010-002, April 2010.

http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf

DRAM-Aware LLC Writeback

Â Problem 1: Writebacks to DRAM interfere with reads and
cause additional performance penalty
Ç Write-to-read turnaround time in DRAM bus

Ç Write-recovery latency in DRAM bank

Ç Change of row buffer Ą reduced row-buffer locality for read requests

Â Problem 2: Writebacks that occur once in a while have low
row buffer locality

Â Idea: When evicting a dirty cache block to a row,
proactively search the cache for other dirty blocks to the
same row Ą evict them Ą write to DRAM in a batch
Ç Improves row buffer locality

Ç Reduces write-to-read switching penalties on DRAM bus

Ç Improves performance on both single-core and multi-core systems
46

