18 742Fall2012

Parallel Computer Architecture
Lecture2Q Speculation+interconnects |

Prof. Onur Mutlu
Carnegie Mellon University
10/24/2012

New Review Assignments

A Due: Sunday, October 28, 11:59pm.

¢ Das et al., fAergia: Exploiting Packet Latency Slack in ORChip
Networkso0 | SCA 2010.

¢ Dennis and Misunas, fA Preliminary Architecture for a Basic Data
Flow Processoro ISCA 1974.

A Due: Tuesday, October 30, 11:59pm.

¢ Arvind and Nikhil, iExecuting a Program on the MIT Tagged-Token
Dataflow Architecture,0 IEEE TC 1990.

Due In the Future

Dataflow
Gurd et al., AThe Manchester prototype dataflow computer,0
CACM 1985.

Lee and Hurson, iDataflow Architectures and Multithreading,0
IEEE Computer 1994.

Restricted Dataflow

c Pattetal.,, "HPS, a new microarchitecture: rationale and
Introduction,0 MICRO 1985.

¢ Patt et al., iCritical issues regarding HPS, a high performance
microarchitecture,0 MICRO 1985.

Project Milestone | Presentations (I)

A When: October 26, in class

~

A Format: 9-min presentation per group, 2-min Q&A, 1-min

grace period

A What to present:

A

> >» > >» >» > >

The problem you are solving + your goal

Your solution ideas + strengths and weaknesses
Your methodology to test your ideas

Concrete mechanisms you have implemented so far
Concrete results you have so far

What will you do next?

What hypotheses you have for future?

How close were you to your target?

Project Milestone | Presentations (I)

A You can update your slides
A Send them to me and Han by 2:30pm on Oct 26, Friday

A Make a lot of progress and find breakthroughs

A Example milestone presentations:
¢ http://www.ece.cmu.edu/~ece742/2011spring/doku.php?id=p

roject
¢ http://www.ece.cmu.edu/~ece742/2011spring/lib/exel/fetch.p

hp?media=milestonel ausavarungnirun meza yoon.pptx
¢ http://www.ece.cmu.edu/~ece742/2011spring/lib/exel/fetch.p

hp?media=milestonel tumanov lin.pdf

http://www.ece.cmu.edu/~ece742/2011spring/doku.php?id=project
http://www.ece.cmu.edu/~ece742/2011spring/doku.php?id=project
http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=milestone1_ausavarungnirun_meza_yoon.pptx
http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=milestone1_ausavarungnirun_meza_yoon.pptx
http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=milestone1_tumanov_lin.pdf
http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=milestone1_tumanov_lin.pdf

Last Few Lectures

Speculation in Parallel Machines
Interconnection Networks

Guest Lecture: Adam From, ARM

Today

A Transactional Memory (brief)

A Interconnect wrap-up

Review: Speculation to Improve Parallel Progr

Goal: reduce the impact of serializing bottlenecks
¢ Improve performance
¢ Improve programming ease

Examples

¢

Herlihny and Moss, iiTransactional Memory: Architectural Support for
Lock-Free Data StructuresoISCA1993.

Rajwar and Goodman, nSpeculative Lock Elision:Enabling Highly
Concurrent Multithreaded Execution,0 MICRO?2001.

Martinez and Torrellas, ASpeculative Synchronization: Applying
Thread-Level Speculation to Explicitly Parallel Applicationso ASPLOS
2002.

Rajwar and Goodman, oTransactional lock-free execution of lock-
based programs,0 ASPLOS002.

Review: Speculative Lock Elision

Many programs use locks for synchronization

Many locks are not necessary
¢ Stores occur infrequently during execution
¢ Updates can occur to disjoint parts of the data structure

|dea:

¢ Speculatively assume lock is not necessary and execute critical
section without acquiring the lock

¢ Check for conflicts within the critical section
¢ Roll back if assumption is incorrect

Rajwar and Goodman, Speculative Lock Elision: Enabling
Highly Concurrent Multithreaded Execution, MICRO2001.

Review: Dynamically Unnecessary Synchroniz

i) 1.L0OCK({locks->error lock)
2.1f (local errcor > multi-2err multi)
3. multi->err multi = local err;

4 . UNLOCE { locks->arror lock)

b} Thread 1 Thread 2

LOCK({hash tbl.lock)
var = hash tbhl.lookup(X)
1f (lwvar)
hash tbl.add(X});
UNLOCK (hash tbl.lock)
LOCK{hash tbl.lock)
var = hash thbhl.lookup(Y}
i1f [iwvar)
hash tbhl-=add(Y):;
UNLOCK (hash tbl.lock)

Figure 1. Two examples of potential paralielism masked b_‘;:'.
dynamically unnecessary synchronization.

10

Transactional Memory

Transactional Memory

ldea: Programmer specifies code to be executed atomically
as transactions. Hardware/software guarantees atomicity
for transactions.

Motivated by difficulty of lock -based programming

Motivated by lack of concurrency (performance issues) in
blocking synchronization (or fpessimistic concurrencyo)

12

Locking Issues

Locks: objects only one thread can hold at a time
¢ Organization: lock for each shared structure
¢ Usage: (block) A acquire A accessA release

Correctness issues
¢ Under-locking A data races
¢ Acquires in different orders A deadlock

Performance issues

¢ Conservative serialization

¢ Overhead of acquiring

¢ Difficult to find right granularity
¢ Blocking

Locks vs. Transactions

Lock issues: How transactions help:

I Under-locking A data races + Simpler interface/reasoning

I Deadlock due to lock ordering + No ordering

I Blocking synchronization + Nonblocking (Abort on conflict)
I Conservative serialization + Serialization only on conflicts

Locks A pessimistic concurrency
Transactions A optimistic concurrency

14

Transactional Memory

Transactional Memory (TM) allows arbitrary multiple memory
locations to be updated atomically (all or none)

Basic Mechanisms:

¢ Isolation and conflict management: Track read/writes per
transaction, detect when a conflict occurs between transactions

¢ Version management Record new/old values (where?)

¢ Atomicity: Commit new values or abort back to old values A all
or none semantics of a transaction

Issues the same as other speculative parallelization schemes
¢ Logging/buffering
¢ Conflict detection
¢ Abort/rollback
G

Commit
15

Four Issues in Transactional Memory

How to deal with unavailable values: predict vs. wait
How to deal with speculative updates: logging/buffering
How to detect conflicts: lazy vs. eager

How and when to abort/rollback or commit

16

Many Variations of TM

Software
¢ High performance overhead, but no virtualization issues

Hardware

¢ What if buffering is not enough?

¢ Context switches, I/O within transactions?
¢ Need support for virtualization

Hybrid HW/SW
¢ Switch to SW to handle large transactions and buffer overflows

17

Initial TM ldeas

Load Linked Store Conditional Operations

¢
¢

Lock-free atomic update of a single cache line

Used to implement non-blocking synchronization
Alpha, MIPS, ARM, PowerPC

Load-linked returns current value of a location

A subsequent store-conditional to the same memory location
will store a new value only if no updates have occurred to the

location

Herliny and Moss ISCA 1993
¢ Instructions explicitly identify transactional loads and stores

¢ Used dedicated transaction cache
c Size of transactions limited to transaction cache

18

Herlihy and Moss, ISCA 1993

Our transactions are intended to replace short critical sec-
tions. For example, a lock-free data structure would typ-
ically be implemented in the following stylized way (see
Section 5 for specific examples). Instead of acquring a
lock, executing the critical section, and releasing the lock,
a process would:

1

"

use LT or LTX to read from a set of locations,

nse VALIDATE to check that the values read are consis-
tent,

. use ST to modify a set of locations, and

. use COMMIT to make the changes permanent. If either

the VALIDATE or the COMMIT fails, the process returns
to Step (1).

19

Current Implementations of TM/SLE

Sun ROCK

¢ Dice et al., nEarly Experience with a Commercial Hardware
Transactional Memory Implementation,0 ASPLOS 2009.

IBM Blue Gene

¢ Wang et al., nEvaluation of Blue Gene/Q Hardware Support for
Transactional Memorieso PACT 2012.

IBM System z: Two types of transactions
¢ Best effort transactions: Programmer responsible for aborts
¢ Guaranteed transactions are subject to many limitations

Intel Haswell

20

Some TM Research Issues

How to virtualize transactions (without much complexity)
¢ Ensure long transactions execute correctly
¢ In the presence of context switches, paging

Handling I/O within transactions
¢ No problem with locks

Semantics of nested transactions (more of a
language/programming research topic)

Does TM increase programmer productivity?
¢ Does the programmer need to optimize transactions?

21

Interconnects lll: Review and Widp

Last Lectures

Interconnection Networks
Introduction & Terminology
Topology

Buffering and Flow control
Routing

Router design

Network performance metrics
On-chip vs. off-chip differences

O O 0 0O O 0 O

23

Some Questions

What are the possible ways of handling contention in a
router?

What is head-of-line blocking?
What is a non-minimal routing algorithm?

What is the difference between deterministic, oblivious, and
adaptive routing algorithms?

What routing algorithms need to worry about deadlock?
What routing algorithms need to worry about livelock?
How to handle deadlock?

How to handle livelock?

What is zero-load latency?

What is saturation throughput?

What is an application-aware packet scheduling algorithm?
24

Routing Mechanism

Arithmetic

¢ Simple arithmetic to determine route in regular topologies
¢ Dimension order routing in meshes/tori

Source Based

¢ Source specifies output port for each switch in route

+ Simple switches
no control state: strip output port off header

- Large header

Table Lookup Based

¢ Index into table for output port
+ Small header

- More complex switches

25

Routing Algorithm

Types

¢ Deterministic : always choose the same path

¢ Oblivious : do not consider network state (e.g., random)
¢ Adaptive : adapt to state of the network

How to adapt
¢ Local/global feedback
¢ Minimal or non-minimal paths

26

Deterministic Routing

All packets between the same (source, dest) pair take the
same path

Dimension-order routing

¢ E.g., XY routing (used in Cray T3D, and many on-chip
networks)

c First traverse dimension X, then traverse dimension Y

+ Simple

+ Deadlock freedom (no cycles in resource allocation)
- Could lead to high contention

- Does not exploit path diversity

27

Deadlock

A No forward progress
A Caused by circular dependencies on resources

A Each packet waits for a buffer occupied by another packet

downstream
]

= | | Os=
0 | 1 mi T
0
packet 4 packet 2 -
O T
o~ 0O
D packet 1

28

Handling Deadlock

Avoid cycles in routing

¢ Dimension order routing
Cannot build a circular dependency

¢ Restrict the turns each packet can take

Avoid deadlock by adding virtual channels

Detect and break deadlock
¢ Preemption of buffers

29

Turn Model to Avoid Deadlock

ldea
¢ Analyze directions in which packets can turn in the network

¢ Determine the cycles that such turns can form
¢ Prohibit just enough turns to break possible cycles

Glass and Ni, The Turn Model for Adaptive Routing, ISCA

1992. —— n
Fic. 2. The possible turns and simple cycles inoa two-dimen
’ t I sional mesh,
—

P o= -
| "] I
" L]
. . Fici. 3. The four turns allowed by the xy routing algorithm,
L - ———]

r— - ==y |_. j —— —l
A | .
' _ Fic. 4. Six wurns that complete the
e eyeles and allow deadlock,

] i "
1 L

30

Valian® Algorithm

An example of oblivious algorithm
Goal: Balance network load

ldea: Randomly choose an intermediate destination, route
to it first, then route from there to destination

c Between source-intermediate and intermediate -dest, can use
dimension order routing

+ Randomizes/balances network load
- Non minimal (packet latency can increase)

Optimizations:
¢ Do this on high load
¢ Restrict the intermediate node to be close (in the same quadrant)

31

Adaptive Routing

Minimal adaptive

¢ Router uses network state (e.g., downstream buffer
occupancy) to pick which productive output port to send a
packet to

¢ Productive output port: port that gets the packet closer to its
destination

+ Aware of local congestion
- Minimality restricts achievable link utilization (load balance)

Non-minimal (fully) adaptive

¢ Misroute packets to non-productive output ports based on
network state

+ Can achieve better network utilization and load balance
- Need to guarantee livelock freedom

32

More on Adaptive Routing

Can avoid faulty links/routers
ldea: Route around faults
+ Deterministic routing cannot handle faulty components

- Need to change the routing table to disable faulty routes
- Assuming the faulty link/router is detected

33

Real ORChip Network Designs

A Tilera Tile64 and Tilel00
A Larrabee
A Cell

34

On-Chip vs. OAChip Differences

Advantages of on -chip
Wires are free

¢ Can build highly connected networks with wide buses
Low latency

¢ Can cross entire network in few clock cycles

High Reliability

¢ Packets are not dropped and links rarely fail

Disadvantages of on -chip
Sharing resources with rest of components on chip
¢ Area
¢ Power
Limited buffering available
Not all topologies map well to 2D plane

Tilera Networks

AAd A A A\llll
LR 5385,
- Ty
- e e
a7 T o e O
n»‘——"qlt I»"—’ 1% UDN —»
HEI = I»IE] - |DN =
ot [- L — 45— STN —»=

¥¥ ¥y
- & MDN =
- = C ‘.J__L-- TDMN —=
3 S UDN —#=
= I»EE] e DN =
~t = 4% STN —=
W WW
T T
ZZZz2Z
SP8a5
YYYYY

Figure 3. A 3 X 3 array of tiles connected by networks. (MDN: memory dynamic network;
TDN: tile dynamic network; UDN: user dynamic network; IDN: I/O dynamic netwaork; STN:
static network.)

A
A

~

A

~

A

2D Mesh
Five networks

Four packet switched

¢ Dimension order routing,
wormhole flow control

¢ TDN: Cache request
packets

¢ MDN: Response packets
¢ IDN: I/O packets

¢ UDN: Core to core
messaging

One circuit switched

¢ STN: Low-latency, high-
bandwidth static network

¢ Streaming data

36

We did not cover the following slides in lecture
These are for your preparation for the next lectu

Research Topics In Interconnects

Plenty of topics in on-chip networks. Examples:

Energy/power efficient/proportional design
Reducing Complexity. Simplified router and protocol designs
Adaptivity: Ability to adapt to different access patterns

QoS and performance isolation
¢ Reducing and controlling interference, admission control

Co-design of NoCs with other shared resources
¢ End-to-end performance, QoS, power/energy optimization

Scalable topologiesto many cores
Fault tolerance
Request prioritization, prio

New technologies (optical, 3D)
38

Packet Scheduling

Which packet to choose for a given output port?
¢ Router needs to prioritize between competing flits
¢ Which input port?

¢ Which virtual channel?

¢ Which application s packet?

Common strategies

¢ Round robin across virtual channels

¢ Oldest packet first (or an approximation)

¢ Prioritize some virtual channels over others

Better policies in a multi-core environment
¢ Use application characteristics

39

ApplicationAware Packet Scheduling

Das et al., Application-Aware Prioritization Mechanisms for OnChip
Networks, MICRO 20009.

The Problem: Packet Scheduling

Appl Apg App NLApp N

ML A M H YN

L2% Memory
(= (e (=0

Network-on-Chip is acritical resource
sharedby multiple applications

The Problem: Packet Scheduling

PE PE PE PE
B |
R R R-—="TR ! Input Port with Buffers :
4~ |
PE PE | LPE]| PE : VC Identifier Control Logic l
9 i From Eagt P Routing Unit :
5 utl |
p—_R¥_9 9 " e i
PE PE| | \[PE PE ! SLvcaly A !
R R ‘\ :FromWes1 d K T A||SWittCh (SA) :
N I - | ocator
\‘\ % 5] '\-I:l_’-l e v i
PE PE PE PE) -
\ I VAP | +—»To East |
\ jFrom Nort I
R R R\ R I L —> ToWest !
\ i NP —>To North :
\ 1 AH___ P f—>To South!
\\\ :From Sout I r L 1o PE i
|
R Routers \\ : bV Crossbai(5 x 5) :
: \\ : From PH H—"N :
PE| Processing Element \ " P b I
(Core Banks, Memory Controllers etc) \"_ NP)

The Problem: Packet Scheduling

\ L
/ \

1
1 = 5
i From Easf :m Routing Unit
: NHVC2)
| M
1
EFTOITI Wes; 'I:]_’
: N
| TN
:From Nort ‘I:l_’
i S
1
' H__ PP
!:rom SOUtI ‘I:l_’
! 1
H
p I
H

L
\

[m————————
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
L

The Problem: Packet Scheduling

i ; o0
“)3
| < <
i | _
“ LS
“ =35
m012 mAA
1985 A |
1 1
s 'sre' eoe's _-“ | _I“m,nwm
m_.t 1 t_._h_. _m . | _.mAA
g 1 zmz=ze 1z 1 gp@l

by v = 2 BN B <
e 1T @IE 1 S Wiag
12 18 1s 18 1 & lig<
1 LL LL LL 1
e H L

(RQ

Routing Unit

o I
N I

A
From East
N
From Wes
F L{:)
rom Nort ‘I:l_’
o B
N

!

m SOUtI ‘I:l_’
om P

The Problem: Packet Scheduling

WhICh packet to choose? 1 \/

|

——— 1 - O S . . 1

i i I VCO I

1 A VCO - - ! ! .. !

iFrom East 'm ROL;\gr}g il i i From East \\//C(S: 12 i

i N % | A— :

| AN | | |

I I From West e !

iFromWest P i : 1 O E
. , -

: I o v | Conceptual: T I) S |

EFrom Nort}] L M i ‘ i From North__ D E

: L | g View | 1 1] S l

: PV — | : O :

From ougt 1 | > | I . I

! From South i

|

1

1

1

1

1

1

1

1

1

1

1

@ App_ Appz_ App M App
= AppiB App @ App/i Apps

The Problem: Packet Scheduling

Existing scheduling policies
A Round Robin

A Age

Probleni: Locato a router

A Lead to contradictory decision making between routers: |

from one application may be prioritized at one router, to t
delayed at next.

Problen2: Application oblivious
ATreat all applicatjons packets equally
A But applications are heterogeneous

SolutionApplicaticiaware global scheduling policies.

Motivation: Stall Time Criticality

Applications anet homogenous

Applications have diffecentalitywith respect to the
network

A Some applications are network latency sensitive

A Some applications are network latency tolerant

ApplicatiorsStall Time Criticality (S't@n be measured b
Its average network stall time per packeé®t T/packet)

A Network Stall Time (N$Imumber of cycles the processor
stalls waiting for network transactions to complete

Motivation: Stall Time Criticality

A Whyapplications have different network stall time critic
(STC)?
A Memory Level Parallelism (MLP)
Lower MLP leads to higher STC

AShorteslob First Principle (SJF)
Lower network load leads to higher STC

A Average Memory Access Time
Higher memory access time leads to higher STC

STC Principld {MLP}

~ Compute I I I
11 STALL of Red Packete
" _F'_—’ Application with high MLP
| LATENCY |]
- _LATENCYI
LATENCY

A Observatioh Packet Latency != Network Stall Time

STC Principle 1 {MLP}

111
11 'STALL of Red Packet &
',|_rq_‘.’_—’ Application with high MLP
. yarency @ N
“b_atencyl
. LATENCY '
1 | I Application with low MLP
O [[

v, o, " -

i LATENCY =I i LATENCY :I i LATENCY ’I

A Observatioh Packet Latency != Network Stall Time

A Observatiozi A low MLP applicatisnpackets have highe
criticality than a high MLP application

STC Principl {ShortestJobFirst}

Running ALONE
3 Compute L SXTET YRR
Baseline (RR) Scheduling
- AL EEREEEE S,
4X network slow down 1.3X network slow down

SJF Scheduling
| £ ZEZEEIEE R RN

1.2X network slow down 1.6X network slow down

Overall system throughput{weighted speedup} increases by 34%

Solution: ApplicatiorAware Policies

A ldea

Aldentify stall time critical applications (i.e. networ|
sensitive applications) and prioritize their packet
each router.

A Key components of scheduling policy:
AApplication Ranking
APacket Batching

A Propose lowardware complexity solution

Componentl : Ranking

Ranking distinguishes applications based on Stall Tim.
Criticality (STC)

Periodicallyankapplications based on Stall Time Critica
(STC)

Explored mamguristicor quantifying STC (Detalls &

analysis In paper)

A Heuristic based@riermost private cagheses Per
Instruction (LAP1)is the most effective

A Low LEMPI => high STC => higher rank

Why Misses Per InstructiorMBI)?
A Easy to Compute (low complexity)
A Stable Metric (unaffected by interference in network)

Componentl : How to Rank?

Execution time is divided into fissetking intervals
A Ranking intervaBBQ000cycles

At the end of an interval, each core calculatesMAeand
sends it to tlhgentral Decision LA@®©L)

A CDL is located in the central node of mesh
CDL forms a ranking order and sends back its rank to eacl
A Two control packets per core every ranking interval

Ranking order isg@artiabrder

Rank formationiiston thecritical path

A Ranking interval is significantly longer than rank computation time
A Cores use older rank values until new ranking is available

Component 2: Batching

ProblemStarvation

A Prioritizing a higher ranked application can lead totarve
lower ranked application

SolutionPacket Batching

A Network packets are grouped into finite sized batches

A Packets of older batches are prioritized over younger
batches

Alternative batching policies explored in paper

TimeBased Batching

A New batches are formed in a periodic, synchronous man
across all nodes in the network, every T cycles

Putting It all together

Before injecting a packet into the network, it is tagged
A Batch |I[B bits)

A Rank I3 bits)

Three tier priority structure at routers

A Oldest batch first (prevent starvation)

A Highest rank first (maximize performance)

A Local Round-Robin (final tie breaker)

Simple hardware support: priority arbiters

Global coordinatecheduling
A Ranking order and batching order are same across all ro

STC Scheduling Example

Batch 2

Batching interval lengthcycles
Batchl

________________________ Ranking order = > B > @

Injection Cycles
S80 88

-—— -

o NN ED Em - - ——
N

AN . N N N NS NN NN NN NS NN NS B NN R S

Corel Core2 Core3
Packet Injection Order at Processor

Injection Cycles

STC Scheduling Example

A ‘o Router
e T s [\
Batch 2 : i
. T | B 4 ;
----------------- 5|
- . 13
|| o
. Batchl = i=--memmmmmmmmm o (%
""""""""""" 6 2
@ s B
B 2 2 =mmmmmmmmmeeooes
. Batch 0 i .
R | 1
Applications e emmm e e e -

STC Scheduling Example

I______________I_Rjg_g}_e_r_ : Round Robin Time
A S /‘\ = :8es
' Bl ’
————————————————— E
= =
|| o
_________________ O
U) 1
i 1 i
| B | STALL CYCLES Avg
T | RR] 8 ﬁ 8.3
e\ o
| 2 i ge
LR STC

STC Scheduling Example

Router

NSRRI ES et : Round Robin Time
T B [\ - SN - aus
. . L i Age Time
"""""""" @ | | B s {SH{a{e e
3 *g
1 ERe
________________ &)
N
6 2 ;
B STALL CYCLES Avg
e i RR | 8 8.3
e\
i 5 i ge 4 7.0
i :_'_:_'_:_'_:_'_:_'_:_'_:__'_:_'___________E STC

Ranking order > B >]
STC Scheduling Example

Router

SRR ottt : Round Robin Time
T N /\ . a0 sans
.. g | Age Time
----------------- 3| EE e @ SRR
R £
————————————————— U)
6 2
B8 STALLCYCLES
T — U . | RR 8
; 2 Age | 4
i_:_-_:_'_:_‘_:_‘_:_‘_:_'_:_'_Z_'.....------E STC 1

Qualitative Comparison

Round Robin & Age
A Local and application oblivious

A Age is biased towards heavy applications
heavy applications flood the network
higher likelihood of an older packet being from heavy application

Globally Synchronized Frames (GSfeke et al., ISCA

2008

A Providebandwidth fairnedthe expensespftem
performance

A Penalizes heavy and bursty applications
Each application gets equal and fixed quota of flits (credits) in eac

Heavy application quickly run out of credits after injecting into all :
batches & stall till oldest batch completes and frees up fresh cred

Underutilization of network resources

System Performance

A STC provides 9.1% improvement in weighted speedur
the best existing policy{averaged across 96 workloads

A Detailed case studies in the paper

m LocalRR mLocalAge

m LocalRR mLocalAge = GSE L STC

m GSF mSTC

=
N

=
o

o0
|

O
oo
(@))
|

o
o
D
|

o
AN
Network Unfairness

O

N
N

|

Normalized System Speedup

o

o

o
|

SlackDriven Packet Scheduling

Das et al., fAergia: Exploiting Packet Latency Slack in On-Chip Networks,0
ISCA 2010.

Packet Scheduling in NoC

Existing scheduling policies
A Round robin
A Age

Problem

A Treat all packets equa[Al'l packets a} \,(t
A Applicatiomblivious Q

Packets hawéerent criticality

A Packet is critical if latency of a packet affects &pplication
performance

A Different criticality due to memory level parallelism (MLP

MLP Principle

iy s R

stall" (>

(f

L(:aten'cy)
 Latencdl)
La{encﬂ)

Packet Latency != Network Stall Time

Different Packets have different criticality due to MLP

Criticality (1) > Criticality () > Criticality ()

Outline

A Introduction
A Packet Scheduling
A Memory Level Parallelism

A A Hia
A Concept of Slack
A Estimating Slack
A Evaluation

A Conclusion

What isA &fjia?

A A Hjia is the spirit of laziness in Greek mythology
A Some packets can affariddé

Outline

A Introduction
A Packet Scheduling
A Memory Level Parallelism

A A Hyia
A Concept of Slack
A Estimating Slack
A Evaluation

A Conclusion

Slack of Packets

What is slack of a packet?

A Slack of a packet is number of cycles it can be delayed i
router without reducing applicatperformance

A Local network slack

Source of slack: Memaryel Parallelism (MLP)

A Latency of an applicé@ipacket hidden from application du
to overlapvith latency of pending cache miss requests

Prioritize packets witverslack

Concept of Slack

Instruction . .
Window Execution Time
Latency)
Latencyll)

Load Miss Cause

BRGNS covsg D0 S Compuef

N returns earlier than necessary

Slack (1 Latency (1)dLatency (§) = 2® 6 = 20 hops

Network-on-Chip

Packet(l) can be delayed for available slack cycles
without reducing performance!

Prioritizing using Slack

Core A Packet Latency Slack
Load Miss = Cause: A 13hops | 0 hop
Eoadivisss Caused Y Y Y Y i 3 hops 10 hop:

Core B
| I I I I I I
N N N N < Interference ahops
Load Miss Cause: | | | | | | |
Load Miss Cause¢ — — — — — — — Slack(@§) > Slack{()

Prioritize

Slack in Applications

100 -

©
o
1

80 - 50% of packets h&&ér slack cycles

70 -
60 -
50 -
—a—(Gems
40
30 -
20 -

10 _—/—;" 10% of packets hav#slack cycles

0 I T T T T T T II T T 1
0 50 100 150 200 250 300 350 400 450 500

Slack in cycles

Percentage of all Packets (%)

Slack in Applications

100 ~

(o]
o
1

680 of packets have zero slack cycles

o]
o
1

—a—Gems

13
1

w Iy an (o2}
o o o o
1 1 1 1

Percentage of all Pac|<ets (%)

art

[
o
1

o

0 50 100 150 200 250 300 350 400 450 500
Slack in cycles

Diversity in Slack

100 ~ —_

, —=—(Gems
—e—0mnet
< —t—{DCW
EQ/ p
) =>emcf
H -
% =¥=bzip2
@®© —o—Sjbb
(al
— —+=sap
m .
5 —sphinx
(e} —_—
% deal
e ——Dbarnes
8 —e—Qastar
o .
[l ——calculix
10 == art

=#=libquantum

(I) 5IO 160 1é0 2(I)0 ZéO 3(I)0 31'30 4(I)0 450 560—°—sjeng
Slack in cycles ——h264ref

Diversity in Slack

100 w

—s—(Gems
/"’M nmnot

[Slack variedbetweenpackets of different applications

I
Rt
i
Q

[SIa ck variedbetweenpackets of asingle application

(&) —w==astal
T 20
8_) = calculix
10 art
=#=libquantum
O T T T T T T T T T T 1

0 50 100 150 200 250 300 350 400 450 5oo—°—sjeng
Slack in cycles ——h264ref

Outline

A Introduction
A Packet Scheduling
A Memory Level Parallelism

A A Hyia
A Concept of Slack
A Estimating Slack
A Evaluation

A Conclusion

Estimating Slack Priority
Slack (B Max (Latencies @& Predecessartptency of P

Predecessorsary th@ackets of outstanding cache miss
requests when P is issued

Packet latencies not known when issued
Predicting latency of any packet Q

A Higher latency if Q corresponds fonaisd.
A Higher latency if Q has to travel farther number of hops

Estimating Slack Priority

A Slack of P

= Maximum Predecessor

Haiatercy ofl P

) . PredL2 MylL2 HopEstimate
A Slack(P) =TSN who b

Predl2: Set If any predecessor packet is sezviuss] L

. Setif P is NOT servicin@amds

HopEstimate Max (# of hops of Predecessors) hops of P

