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New Review Assignments 

Â Due: Sunday, October 28, 11:59pm. 

Ç Das et al., ñAergia: Exploiting Packet Latency Slack in On-Chip 
Networks,ò ISCA 2010. 

Ç Dennis and Misunas, ñA Preliminary Architecture for a Basic Data 
Flow Processor,ò ISCA 1974. 

 

Â Due: Tuesday, October 30, 11:59pm.  

Ç Arvind and Nikhil, ñExecuting a Program on the MIT Tagged-Token 
Dataflow Architecture,ò IEEE TC 1990. 
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Due in the Future 

Â Dataflow 

Â Gurd et al., ñThe Manchester prototype dataflow computer,ò 
CACM 1985. 

Â Lee and Hurson, ñDataflow Architectures and Multithreading,ò 
IEEE Computer 1994. 

 

ÂRestricted Dataflow 

Ç Patt et al., ñHPS, a new microarchitecture: rationale and 
introduction,ò MICRO 1985. 

Ç Patt et al., ñCritical issues regarding HPS, a high performance 
microarchitecture,ò MICRO 1985. 
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Project Milestone I Presentations (I) 

Â When: October 26, in class 

 

Â Format: 9-min presentation per group, 2 -min Q&A, 1-min 
grace period 

 

Â What to present:  

Â The problem you are solving + your goal  

Â Your solution ideas + strengths and weaknesses 

Â Your methodology to test your ideas  

Â Concrete mechanisms you have implemented so far  

Â Concrete results you have so far  

Â What will you do next?  

Â What hypotheses you have for future? 

Â How close were you to your target? 
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Project Milestone I Presentations (I) 

Â You can update your slides 

Â Send them to me and Han by 2:30pm on Oct 26, Friday 

 

Â Make a lot of progress and find breakthroughs 

 

Â Example milestone presentations: 

Ç http://www.ece.cmu.edu/~ece742/2011spring/doku.php?id=p
roject 

Ç http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.p
hp?media=milestone1_ausavarungnirun_meza_yoon.pptx 

Ç http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.p
hp?media=milestone1_tumanov_lin.pdf 
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Last Few Lectures 

Â Speculation in Parallel Machines 

 

Â Interconnection Networks 

 

Â Guest Lecture: Adam From, ARM 
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Today 

Â Transactional Memory (brief) 

 

Â Interconnect wrap -up 
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Review: Speculation to Improve Parallel Programs 

Â Goal: reduce the impact of serializing bottlenecks 

Ç Improve performance 

Ç Improve programming ease 

 

Â Examples 

Ç Herlihy and Moss, ñTransactional Memory: Architectural Support for 
Lock-Free Data Structures,ò ISCA 1993. 

Ç Rajwar and Goodman, ñSpeculative Lock Elision: Enabling Highly 
Concurrent Multithreaded Execution,ò MICRO 2001. 

Ç Martinez and Torrellas, ñSpeculative Synchronization: Applying 
Thread-Level Speculation to Explicitly Parallel Applications,ò ASPLOS 
2002. 

Ç Rajwar and Goodman, òTransactional lock-free execution of lock-
based programs,ò ASPLOS 2002. 
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Review: Speculative Lock Elision 

Â Many programs use locks for synchronization 

Â Many locks are not necessary 

Ç Stores occur infrequently during execution 

Ç Updates can occur to disjoint parts of the data structure  

 

Â Idea:  

Ç Speculatively assume lock is not necessary and execute critical 
section without acquiring the lock  

Ç Check for conflicts within the critical section  

Ç Roll back if assumption is incorrect 

 

Â Rajwar and Goodman, Speculative Lock Elision: Enabling 
Highly Concurrent Multithreaded Execution,  MICRO 2001. 

 9 



Review: Dynamically Unnecessary Synchronization 
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Transactional Memory 

 

 

 

 

 



Transactional Memory 

Â Idea: Programmer specifies code to be executed atomically 
as transactions. Hardware/software guarantees atomicity 
for transactions. 

 

Â Motivated by difficulty of lock -based programming 

Â Motivated by lack of concurrency (performance issues) in 
blocking synchronization (or ñpessimistic concurrencyò) 
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Locking Issues 

Â Locks: objects only one thread can hold at a time  

Ç Organization: lock for each shared structure 

Ç Usage: (block) Ą acquire Ą access Ą release 

 

Â Correctness issues 

Ç Under-locking Ą data races 

Ç Acquires in different orders Ą deadlock 

 

Â Performance issues 

Ç Conservative serialization 

Ç Overhead of acquiring 

Ç Difficult to find right granularity  

Ç Blocking 
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Locks vs. Transactions 

 

 

 

 

 

 

 

 

Â Locks Ą pessimistic concurrency 

Â Transactions Ą optimistic concurrency 
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Lock issues: 

ï Under-locking Ą data races 

ï Deadlock due to lock ordering  

ï Blocking synchronization 

ï Conservative serialization 

 

How transactions help: 

+ Simpler interface/reasoning 

+ No ordering 

+ Nonblocking (Abort on conflict)  

+ Serialization only on conflicts 

 

 



Transactional Memory 
Â Transactional Memory (TM) allows arbitrary multiple memory 

locations to be updated atomically (all or none)  
 

Â Basic Mechanisms: 

Ç Isolation and conflict management: Track read/writes per 
transaction, detect when a conflict occurs between transactions 

Ç Version management: Record new/old values (where?) 

Ç Atomicity: Commit new values or abort back to old values Ą all 

or none semantics of a transaction 
 

Â Issues the same as other speculative parallelization schemes 

Ç Logging/buffering 

Ç Conflict detection 

Ç Abort/rollback 

Ç Commit 
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Four Issues in Transactional Memory 

Â How to deal with unavailable values: predict vs. wait  

 

Â How to deal with speculative updates: logging/buffering  

 

Â How to detect conflicts: lazy vs. eager 

 

Â How and when to abort/rollback or commit  
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Many Variations of TM 

Â Software 

Ç High performance overhead, but no virtualization issues 

 

Â Hardware 

Ç What if buffering is not enough?  

Ç Context switches, I/O within transactions? 

Ç Need support for virtualization 

 

Â Hybrid HW/SW 

Ç Switch to SW to handle large transactions and buffer overflows 
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Initial TM Ideas 

Â Load Linked Store Conditional Operations 

Ç Lock-free atomic update of a single cache line 

Ç Used to implement non-blocking synchronization 

Â Alpha, MIPS, ARM, PowerPC 

Ç Load-linked returns current value of a location  

Ç A subsequent store-conditional to the same memory location 
will store a new value only if no updates have occurred to the 
location 

 

Â Herlihy and Moss, ISCA 1993 

Ç Instructions explicitly identify transactional loads and stores  

Ç Used dedicated transaction cache  

Ç Size of transactions limited to transaction cache 
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Herlihy and Moss, ISCA 1993 
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Current Implementations of TM/SLE 

Â Sun ROCK 

Ç Dice et al., ñEarly Experience with a Commercial Hardware 
Transactional Memory Implementation,ò ASPLOS 2009. 

 

Â IBM Blue Gene 

Ç Wang et al., ñEvaluation of Blue Gene/Q Hardware Support for 
Transactional Memories,ò PACT 2012.  

 

Â IBM System z: Two types of transactions 

Ç Best effort transactions: Programmer responsible for aborts 

Ç Guaranteed transactions are subject to many limitations 

 

Â Intel Haswell 
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Some TM Research Issues 

Â How to virtualize transactions (without much complexity)  

Ç Ensure long transactions execute correctly 

Ç In the presence of context switches, paging  

 

Â Handling I/O within transactions  

Ç No problem with locks 

 

Â Semantics of nested transactions (more of a 
language/programming research topic) 

 

Â Does TM increase programmer productivity? 

Ç Does the programmer need to optimize transactions? 
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Interconnects III: Review and Wrap-Up 

 

 

 

 

 



Last Lectures 

Â Interconnection Networks 

Ç Introduction & Terminology  

Ç Topology 

Ç Buffering and Flow control 

Ç Routing 

Ç Router design 

Ç Network performance metrics 

Ç On-chip vs. off-chip differences 
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Some Questions 

Â What are the possible ways of handling contention in a 
router? 

Â What is head-of-line blocking? 

Â What is a non-minimal routing algorithm?  

Â What is the difference between deterministic, oblivious, and 
adaptive routing algorithms? 

Â What routing algorithms need to worry about deadlock?  

Â What routing algorithms need to worry about livelock?  

Â How to handle deadlock?  

Â How to handle livelock? 

Â What is zero-load latency? 

Â What is saturation throughput? 

Â What is an application-aware packet scheduling algorithm? 
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Routing Mechanism 

Â Arithmetic 

Ç Simple arithmetic to determine route in regular topologies  

Ç Dimension order routing in meshes/tori  

 

Â Source Based 
Ç Source specifies output port for each switch in route  

+ Simple switches  

Â no control state: strip output port off header  

- Large header 

 

Â Table Lookup Based 
Ç Index into table for output port  

+ Small header 

- More complex switches 
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Routing Algorithm 

Â Types 

Ç Deterministic : always choose the same path 

Ç Oblivious : do not consider network state (e.g., random)  

Ç Adaptive : adapt to state of the network  

 

Â How to adapt 

Ç Local/global feedback 

Ç Minimal or non-minimal paths 

 

26 



Deterministic Routing 

Â All packets between the same (source, dest) pair take the 
same path 

 

Â Dimension-order routing  

Ç E.g., XY routing (used in Cray T3D, and many on-chip 
networks) 

Ç First traverse dimension X, then traverse dimension Y 

 

+ Simple 

+ Deadlock freedom (no cycles in resource allocation) 

- Could lead to high contention 

- Does not exploit path diversity  
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Deadlock 

Â No forward progress 

Â Caused by circular dependencies on resources 

Â Each packet waits for a buffer occupied by another packet 
downstream 
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Handling Deadlock 

Â Avoid cycles in routing 

Ç Dimension order routing 

Â Cannot build a circular dependency 

Ç Restrict the turns  each packet can take 

 

 

Â Avoid deadlock by adding virtual channels 

 

 

Â Detect and break deadlock 

Ç Preemption of buffers 
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Turn Model to Avoid Deadlock 

Â Idea 

Ç Analyze directions in which packets can turn in the network  

Ç Determine the cycles that such turns can form 

Ç Prohibit just enough turns to break possible cycles 

Â Glass and Ni, The Turn Model for Adaptive Routing,  ISCA 
1992. 
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Valiantõs Algorithm 

Â An example of oblivious algorithm 

Â Goal: Balance network load  

Â Idea: Randomly choose an intermediate destination, route 
to it first, then route from there to destination  

Ç Between source-intermediate and intermediate-dest, can use 
dimension order routing 

 

+ Randomizes/balances network load 

- Non minimal (packet latency can increase) 

 

Â Optimizations: 

Ç Do this on high load 

Ç Restrict the intermediate node to be close (in the same quadrant)  
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Adaptive Routing 

Â Minimal adaptive 

Ç Router uses network state (e.g., downstream buffer 
occupancy) to pick which productive  output port to send a 
packet to 

Ç Productive output port: port that gets the packet closer to its 
destination 

+ Aware of local congestion 

- Minimality restricts achievable link utilization (load balance) 

 

Â Non-minimal (fully) adaptive  

Ç Misroute  packets to non-productive output ports based on 
network state 

+ Can achieve better network utilization and load balance  

- Need to guarantee livelock freedom 
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More on Adaptive Routing 

Â Can avoid faulty links/routers 

 

Â Idea: Route around faults 

 

+ Deterministic routing cannot handle faulty components  

- Need to change the routing table to disable faulty routes  

  - Assuming the faulty link/router is detected  
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Real On-Chip Network Designs 

Â Tilera Tile64 and Tile100 

Â Larrabee 

Â Cell 
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On-Chip vs. Off-Chip Differences 

Advantages of on -chip  

Â Wires are free  

Ç Can build highly connected networks with wide buses 

Â Low latency  

Ç Can cross entire network in few clock cycles 

Â High Reliability  

Ç Packets are not dropped and links rarely fail  

 

Disadvantages of on -chip  

Â Sharing resources with rest of components on chip  

Ç Area 

Ç Power 

Â Limited buffering available  

Â Not all topologies map well to 2D plane  
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Tilera Networks 

Â 2D Mesh 

Â Five networks 

Â Four packet switched 
Ç Dimension order routing, 

wormhole flow control  

Ç TDN: Cache request 
packets 

Ç MDN: Response packets 

Ç IDN: I/O packets  

Ç UDN: Core to core 
messaging 

 

Â One circuit switched 
Ç STN: Low-latency, high-

bandwidth static network  

Ç Streaming data 
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We did not cover the following slides in lecture. 

These are for your preparation for the next lecture.  



Research Topics in Interconnects 

Â Plenty of topics in on-chip networks. Examples: 
 

Â Energy/power efficient/proportional design  

Â Reducing Complexity: Simplified router and protocol designs 

Â Adaptivity: Ability to adapt to different access patterns  

Â QoS and performance isolation 

Ç Reducing and controlling interference, admission control 

Â Co-design of NoCs with other shared resources 

Ç End-to-end performance, QoS, power/energy optimization 

Â Scalable topologies to many cores 

Â Fault tolerance 

Â Request prioritization, priority inversion, coherence, é 

Â New technologies (optical, 3D) 
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Packet Scheduling 

Â Which packet to choose for a given output port?  

Ç Router needs to prioritize between competing flits  

Ç Which input port? 

Ç Which virtual channel? 

Ç Which application s packet? 

 

Â Common strategies 

Ç Round robin across virtual channels 

Ç Oldest packet first (or an approximation)  

Ç Prioritize some virtual channels over others 

 

Â Better policies in a multi-core environment 

Ç Use application characteristics 
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Application-Aware Packet Scheduling 

 

 

 

 

 

Das et al., Application-Aware Prioritization Mechanisms for On-Chip 
Networks,  MICRO 2009. 



The Problem: Packet Scheduling 
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The Problem: Packet Scheduling 

ÁExisting scheduling policies  

ÁRound Robin 

ÁAge 

ÁProblem 1: Local to a router 

ÁLead to contradictory decision making between routers: packets 

from one application may be prioritized at one router, to be 

delayed at next.  

ÁProblem 2: Application oblivious 

ÁTreat all applications packets equally 

ÁBut applications are heterogeneous 

ÁSolution : Application-aware global scheduling policies. 

 

 

 



Motivation: Stall Time Criticality 

ÁApplications are not homogenous 

 

ÁApplications have different criticality with respect to the 

network 

ÁSome applications are network latency sensitive  

ÁSome applications are network latency tolerant 

 

ÁApplications Stall Time Criticality (STC) can be measured by 
its average network stall time per packet (i.e. NST/packet) 

ÁNetwork Stall Time (NST) is number of cycles the processor 

stalls waiting for network transactions to complete 

 



Motivation: Stall Time Criticality 

ÁWhy applications have different network stall time criticality 

(STC)?  

ÁMemory Level Parallelism (MLP)  

ÁLower MLP  leads to higher STC 

 

ÁShortest Job First Principle (SJF)  

ÁLower network load leads to higher STC  

 

ÁAverage Memory Access Time 

ÁHigher memory access time leads to higher STC 

 



 

 

 

 

 

 

 

 

ÁObservation 1: Packet Latency != Network Stall Time 
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ÁObservation 1: Packet Latency != Network Stall Time 

ÁObservation 2: A low MLP applications  packets have higher 

criticality than a high MLP applications 
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STC Principle 2 {Shortest-Job-First} 

4X network slow down 

1.2X network slow down 

1.3X network slow down 

1.6X network slow down 

Overall system throughput{weighted speedup} increases by 34% 

Running ALONE 

Baseline (RR) Scheduling 

SJF  Scheduling 

Light Application Heavy Application 

Compute 



Solution: Application-Aware Policies 

Á Idea 

ÁIdentify stall time critical applications (i.e. network 

sensitive applications) and prioritize their packets in 

each router. 

 

ÁKey components of scheduling policy: 

ÁApplication Ranking 

ÁPacket Batching 

 

ÁPropose low-hardware complexity solution 



Component 1 : Ranking 

ÁRanking distinguishes applications based on Stall Time 

Criticality (STC) 

ÁPeriodically  rank applications based on Stall Time Criticality 

(STC). 

ÁExplored many heuristics for quantifying STC (Details & 

analysis in paper) 

ÁHeuristic based on outermost private cache Misses Per 

Instruction (L1-MPI) is the most effective 

ÁLow L1-MPI => high STC => higher rank 

ÁWhy Misses Per Instruction (L1-MPI)? 

ÁEasy to Compute (low complexity) 

ÁStable Metric (unaffected by interference in network) 



Component 1 : How to Rank? 
ÁExecution time is divided into fixed ranking intervals 

ÁRanking interval is 350,000 cycles  

ÁAt the end of an interval, each core calculates their L1-MPI and  

sends it to the Central Decision Logic (CDL) 

ÁCDL is located in the central node of mesh 

ÁCDL forms a ranking order and sends back its rank to each core 

ÁTwo control packets per core every ranking interval 

ÁRanking order is a partial order  

 

ÁRank formation is not on the critical path 

ÁRanking interval is significantly longer than rank computation time 

ÁCores use older rank values until new ranking is available 



Component 2: Batching 

ÁProblem: Starvation 

ÁPrioritizing a higher ranked application can lead to starvation of 

lower ranked application 

ÁSolution: Packet Batching 

ÁNetwork packets are grouped into finite sized batches  

ÁPackets of older batches are prioritized over younger 

batches 

ÁAlternative batching policies explored in paper 

ÁTime-Based Batching 

ÁNew batches are formed in a periodic, synchronous manner 

across all nodes in the network, every T cycles  

 

 



Putting it all together 

ÁBefore injecting a packet into the network, it is tagged by  

ÁBatch ID (3 bits) 

ÁRank ID (3 bits) 

ÁThree tier priority structure at routers 

ÁOldest batch first (prevent starvation) 

ÁHighest rank first   (maximize performance) 

ÁLocal Round-Robin        (final tie breaker) 

ÁSimple hardware support: priority arbiters 

ÁGlobal coordinated scheduling 

ÁRanking order and batching order are same across all routers 

 



STC Scheduling Example 
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STC Scheduling Example 
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STC Scheduling Example 
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STC Scheduling Example 
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STC Scheduling Example 
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Qualitative Comparison 
ÁRound Robin & Age 

ÁLocal and application oblivious 

ÁAge is biased towards heavy applications 
Áheavy applications flood the network 

Áhigher likelihood of an older packet being from heavy application 

ÁGlobally Synchronized Frames (GSF) [Lee et al., ISCA 
2008] 

ÁProvides bandwidth fairness at the expense of system 
performance 

ÁPenalizes heavy and bursty applications  
ÁEach application gets equal and fixed quota of flits (credits) in each batch. 

ÁHeavy application quickly run out of credits after injecting into all active 
batches & stall till oldest batch completes and frees up fresh credits. 

ÁUnderutilization of network resources 
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ÁSTC provides 9.1% improvement in weighted speedup over 

the best existing policy{averaged across 96 workloads} 

ÁDetailed case studies in the paper 



Slack-Driven Packet Scheduling 

 

 

 

 

 

Das et al., ñAergia: Exploiting Packet Latency Slack in On-Chip Networks,ò 

ISCA 2010. 



Packet Scheduling in NoC 

ÁExisting scheduling policies   

ÁRound robin   

ÁAge 

 

ÁProblem 

ÁTreat all packets equally 

ÁApplication-oblivious 

 

ÁPackets have different criticality  

ÁPacket is critical if latency of a packet affects applicationõs 

performance 

ÁDifferent criticality due to memory level parallelism (MLP) 

All packets are not the sameé!!! 



Latency (   ) 

MLP Principle 

Stall Compute 

Latency (   ) 

Latency (   ) 

Stall (   )  = 0    

Packet Latency != Network Stall Time 

Different Packets have different criticality due to MLP 

Criticality (   )  >    Criticality (   )  >    Criticality (   )    



Outline 

 

ÁIntroduction 

ÁPacket Scheduling  

ÁMemory Level Parallelism 

ÁAeӢrgia  

ÁConcept of Slack 

ÁEstimating Slack 

ÁEvaluation 

ÁConclusion 



What is AeӢrgia? 
 

 

 

 

 

 

 

 

 

ÁAeӢrgia is the spirit of laziness in Greek mythology 

ÁSome packets can afford to slack! 



Outline 
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ÁEvaluation 

ÁConclusion 



Slack of Packets 
 

ÁWhat is slack of a packet? 

ÁSlack of a packet is number of cycles it can be delayed in a 
router without reducing applicationõs performance 

ÁLocal network slack 

 

ÁSource of slack: Memory-Level Parallelism (MLP) 

ÁLatency of an applicationõs packet hidden from application due 
to overlap with latency of pending cache miss requests 

 

ÁPrioritize packets with lower slack 

 

 

 

 

 



Concept of Slack  
Instruction  
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Compute 
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Execution Time 
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Prioritizing using Slack  

Core A 

Core B 

Packet Latency Slack 

13 hops 0   hops 

3  hops 10 hops 

10 hops 0 hops 

4  hops  6 hops 

Causes 

Causes Load Miss  

Load Miss  

Prioritize   

Load Miss  

Load Miss  Causes 

Causes 

Interference at 3 hops 

Slack(   )   >  Slack (   )  



Slack in Applications 
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Diversity in Slack 
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Diversity in Slack 
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Slack varies between packets of  different  applications 

Slack varies between packets of  a single application 



Outline 

 

ÁIntroduction 

ÁPacket Scheduling  

ÁMemory Level Parallelism 

ÁAeӢrgia  

ÁConcept of Slack 

ÁEstimating Slack 

ÁEvaluation 

ÁConclusion 



Estimating Slack Priority 

Slack (P) = Max (Latencies of Põs Predecessors) ð Latency of P 
 

 Predecessors(P) are the packets of outstanding cache miss 

requests when P is issued 
 

ÁPacket latencies not known when issued 

 

ÁPredicting latency of any packet Q 

ÁHigher latency if Q corresponds to an L2 miss 

ÁHigher latency if Q has to travel farther number of hops 

 



ÁSlack of P = Maximum Predecessor Latency ð Latency of P 

 

ÁSlack(P) =  

 

PredL2: Set if any predecessor packet is servicing L2 miss 

 

MyL2:  Set if  P is NOT servicing an L2 miss 

 

HopEstimate: Max (# of hops of Predecessors) ð hops of P 

 

Estimating Slack Priority 

PredL2 

(2 bits) 

MyL2 

(1 bit) 

HopEstimate 

(2 bits) 


