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New Review Assignments 

 Due: Tuesday, October 9, 11:59pm. 

 

 Sohi et al., “Multiscalar Processors,” ISCA 1995. 

 

 Due: Thursday, October 11, 11:59pm. 

 

 Herlihy and Moss, “Transactional Memory: Architectural Support 
for Lock-Free Data Structures,” ISCA 1993. 

 

 Austin, “DIVA: A Reliable Substrate for Deep Submicron 
Microarchitecture Design,” MICRO 1999. 
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Last Lectures 

 Caching in Multi-Core 

 

 Cache and Memory Compression 

 

 Efficient Caching 
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Today 

 Wrap Up Multithreading 

 Other uses of multithreading 
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Other Uses of Multithreading 

 

 

 

 

 



Now that We Have MT Hardware …  

 … what else can we use it for? 

 

 Redundant execution to tolerate soft (and hard?) errors 

 

 Implicit parallelization: thread level speculation 

 Slipstream processors 

 Leader-follower architectures 

 

 Helper threading  

 Prefetching 

 Branch prediction 

 

 Exception handling 
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SMT for Transient Fault Detection 

 Transient faults: Faults that persist for a “short” duration 

 Also called “soft errors” 

 Caused by cosmic rays (e.g., neutrons) 

 Leads to transient changes in wires and state (e.g., 01) 

 

 Solution 

 no practical absorbent for cosmic rays 

 1 fault per 1000 computers per year (estimated fault rate) 

 Fault rate likely to increase in the feature 

 smaller feature size 

 reduced voltage 

 higher transistor count 

 reduced noise margin 
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Need for Low-Cost Transient Fault Tolerance 

 The rate of transient faults is expected to increase 
significantly  Processors will need some form of fault 

tolerance. 
 

 However, different applications have different reliability 
requirements (e.g. server-apps vs. games)  Users who do 

not require high reliability may not want to pay the 
overhead. 
 

 Fault tolerance mechanisms with low hardware cost are 
attractive because they allow the designs to be used for a 
wide variety of applications. 
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Traditional Mechanisms for Transient Fault Detection  

 Storage structures 

 Space redundancy via parity or ECC 

 Overhead of additional storage and operations can be high in 
time-critical paths 

 

 Logic structures 

 Space redundancy: replicate and compare 

 Time redundancy: re-execute and compare 

 

 Space redundancy has high hardware overhead.  

 Time redundancy has low hardware overhead but high 
performance overhead. 

 What additional benefit does space redundancy have?  

 9 



Lockstepping (Tandem, Compaq Himalaya) 

 

 

 

 

 

 

 

 

 

 

 Idea: Replicate the processor, compare the results of two 
processors before committing an instruction 
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Transient Fault Detection with SMT (SRT)   

 

 

 

 

 

 

 

 

 Idea: Replicate the threads, compare outputs before 
committing an instruction 

 Reinhardt and Mukherjee, “Transient Fault Detection  
via Simultaneous Multithreading,” ISCA 2000. 

 Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault Tolerance 
in Microprocessors,” FTCS 1999. 
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Sim. Redundant Threading vs. Lockstepping 
 SRT Advantages 

+ No need to replicate the processor 

+ Uses fine-grained idle FUs/cycles (due to dependencies, misses) 
to execute the same program redundantly on the same processor 

+ Lower hardware cost, better hardware utilization 

 

 Disadvantages 

- More contention between redundant threads  higher 

performance overhead (assuming unequal hardware) 

- Requires changes to processor core for result comparison, value 
communication   

- Must carefully fetch & schedule instructions from threads 

- Cannot easily detect hard (permanent) faults 
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Sphere of Replication 

 Logical boundary of redundant execution within a system 

 Need to replicate input data from outside of sphere of 
replication to send to redundant threads 

 Need to compare and validate output before sending it out 
of the sphere of replication 
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Sphere of Replication in SRT 
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Input Replication 

 How to get the load data for redundant threads 
 pair loads from redundant threads and access the cache when 

both are ready: too slow – threads fully synchronized 

 allow both loads to probe cache separately: false alarms with 
I/O or multiprocessors 

 

 Load Value Queue (LVQ) 

 pre-designated leading & trailing threads 
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Output Comparison 

 <address, data> for stores from redundant threads 
 compare & validate at commit time 

 

 

 

 

 

 

 

 How to handle cached vs. uncacheable loads 

 Stores now need to live longer to wait for trailing thread 

 Need to ensure matching trailing store can commit 
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SRT Performance Optimizations 

 Many performance improvements possible by supplying results 
from the leading thread to the trailing thread: branch outcomes, 
instruction results, etc 

 Mukherjee et al., “Detailed Design and Evaluation of Redundant 
Multithreading Alternatives,” ISCA 2002. 
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Recommended Reading 
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 Mukherjee et al., “Detailed Design and Evaluation of Redundant 
Multithreading Alternatives,” ISCA 2002. 



Branch Outcome Queue 
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Line Prediction Queue 

 Line Prediction Queue 

 Alpha 21464 fetches chunks using line predictions 

 Chunk = contiguous block of 8 instructions 
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Handling of Permanent Faults via SRT 

 SRT uses time redundancy 

 Is this enough for detecting permanent faults? 

 Can SRT detect some permanent faults? How? 

 

 Can we incorporate explicit space redundancy into SRT? 

 

 Idea: Execute the same instruction on different resources in 
an SMT engine 

 Send instructions from different threads to different execution 
units (when possible) 
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SRT Evaluation 

 SPEC CPU95, 15M instrs/thread 

 Constrained by simulation environment 

  120M instrs for 4 redundant thread pairs 

 

 Eight-issue, four-context SMT CPU 

 Based on Alpha 21464  

 128-entry instruction queue 

 64-entry load and store queues 

 Default: statically partitioned among active threads 

 22-stage pipeline 

 64KB 2-way assoc. L1 caches 

 3 MB 8-way assoc L2 
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Performance Overhead of SRT 

 

 

 

 

 

 

 

 

 

 Performance degradation = 30% (and unavailable thread 
context) 

 Per-thread store queue improves performance by 4% 
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Chip Level Redundant Threading 

 SRT typically more efficient than splitting one processor 
into two half-size cores 

 What if you already have two cores? 

 

 Conceptually easy to run these in lock-step 

 Benefit: full physical redundancy 

 Costs: 

 Latency through centralized checker logic 

 Overheads (e.g., branch mispredictions) incurred twice 

 

 We can get both time redundancy and space redundancy if 
we have multiple SMT cores 

 SRT for CMPs 
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Chip Level Redundant Threading 
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Some Other Approaches to Transient Fault Tolerance 

 Austin, “DIVA: A Reliable Substrate for Deep Submicron 
Microarchitecture Design,” MICRO 1999. 

 

 Qureshi et al., “Microarchitecture-Based Introspection: A 
Technique for Transient-Fault Tolerance in 
Microprocessors,” DSN 2005. 
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DIVA 

 Idea: Have a “functional checker” unit that checks the 
correctness of the computation done in the “main 
processor” 

 

 Austin, “DIVA: A Reliable Substrate for Deep Submicron 
Microarchitecture Design,” MICRO 1999. 

 

 Benefit: Main processor can be prone to faults or 
sometimes incorrect (yet very fast) 

 

 How can checker keep up with the main processor? 

 Verification of different instructions can be performed in 
parallel (if an older one is incorrect all later instructions will be 
flushed anyway) 
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DIVA (Austin, MICRO 1999) 

 Two cores 
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DIVA Checker for One Instruction 
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A Self-Tuned System using DIVA 
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DIVA Discussion 

 Upsides? 

 

 Downsides? 
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Some Other Approaches to Transient Fault Tolerance 

 Austin, “DIVA: A Reliable Substrate for Deep Submicron 
Microarchitecture Design,” MICRO 1999. 

 

 Qureshi et al., “Microarchitecture-Based Introspection: A 
Technique for Transient-Fault Tolerance in 
Microprocessors,” DSN 2005. 
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Microarchitecture Based Introspection 

 Idea: Use cache miss stall cycles to redundantly execute 
the program instructions 

 

 Qureshi et al., “Microarchitecture-Based Introspection: A 
Technique for Transient-Fault Tolerance in 
Microprocessors,” DSN 2005. 

 

 Benefit: Redundant execution does not have high 
performance overhead (when there are stall cycles) 

 

 Downside: What if there are no/few stall cycles? 
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Introspection 
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MBI (Qureshi+, DSN 2005) 
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MBI Microarchitecture 
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Performance Impact of MBI 
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Food for Thought 

 Do you need to check that the result of every instruction is 
correct? 

 

 Do you need to check that the result of any instruction is 
correct? 

 

 What do you really need to check for to ensure correct 
operation? 

 Soft errors? 

 Hard errors? 

38 



Other Uses of Multithreading 

 

 

 

 

 



MT for Exception Handling 

 Exceptions cause overhead (especially if handled in software) 

 Some exceptions are recoverable from (TLB miss, unaligned 
access, emulated instructions) 

 Pipe flushes due to exceptions reduce thread performance 
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MT for Exception Handling 

 Cost of software TLB miss handling 

 Zilles et al., “The use of multithreading for exception 
handling,” MICRO 1999. 
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MT for Exception Handling 

 Observation:  

 The same application instructions are executed in the same 
order INDEPENDENT of the exception handler’s execution 

 The data dependences between the thread and exception 
handler are minimal 

 

 Idea: Execute the exception handler in a separate thread 
context; ensure appearance of sequential execution 
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MT for Exception Handling 

 Better than pure software, not as good as pure hardware 
handling 
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Why These Uses? 

 What benefit of multithreading hardware enables them? 

 

 Ability to communicate/synchronize with very low latency 
between threads  

 Enabled by proximity of threads in hardware 

 Multi-core has higher latency to achieve this 
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Helper Threading for Prefetching 

 Idea: Pre-execute a piece of the (pruned) program solely 
for prefetching data  

 Only need to distill pieces that lead to cache misses 

 

 Speculative thread: Pre-executed program piece can be 
considered a “thread” 

 

 Speculative thread can be executed  

 On a separate processor/core 

 On a separate hardware thread context 

 On the same thread context in idle cycles (during cache misses) 
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Helper Threading for Prefetching 

 How to construct the speculative thread: 

 Software based pruning and “spawn” instructions 

 Hardware based pruning and “spawn” instructions 

 Use the original program (no construction), but  

 Execute it faster without stalling and correctness constraints 

 

 Speculative thread 

 Needs to discover misses before the main program 

 Avoid waiting/stalling and/or compute less 

 To get ahead, uses 

 Branch prediction, value prediction, only address generation 
computation 
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Generalized Thread-Based Pre-Execution 

 Dubois and Song, “Assisted 
Execution,” USC Tech 
Report 1998. 

 

 Chappell et al., 
“Simultaneous Subordinate 
Microthreading (SSMT),” 
ISCA 1999. 

 

 Zilles and Sohi, “Execution-
based Prediction Using 
Speculative Slices”, ISCA 
2001. 
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Thread-Based Pre-Execution Issues 

 Where to execute the precomputation thread? 

1. Separate core (least contention with main thread) 

2. Separate thread context on the same core (more contention) 

3. Same core, same context  

 When the main thread is stalled 

 When to spawn the precomputation thread? 

1. Insert spawn instructions well before the “problem” load 

 How far ahead?  

 Too early: prefetch might not be needed 

 Too late: prefetch might not be timely 

2. When the main thread is stalled 

 When to terminate the precomputation thread? 

1. With pre-inserted CANCEL instructions 

2. Based on effectiveness/contention feedback 
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