
18-742 Fall 2012

Parallel Computer Architecture

Lecture 13: Multithreading III

Prof. Onur Mutlu

Carnegie Mellon University

10/5/2012

New Review Assignments

 Due: Tuesday, October 9, 11:59pm.

 Sohi et al., “Multiscalar Processors,” ISCA 1995.

 Due: Thursday, October 11, 11:59pm.

 Herlihy and Moss, “Transactional Memory: Architectural Support
for Lock-Free Data Structures,” ISCA 1993.

 Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” MICRO 1999.

2

Last Lectures

 Caching in Multi-Core

 Cache and Memory Compression

 Efficient Caching

3

Today

 Wrap Up Multithreading

 Other uses of multithreading

4

Other Uses of Multithreading

Now that We Have MT Hardware …

 … what else can we use it for?

 Redundant execution to tolerate soft (and hard?) errors

 Implicit parallelization: thread level speculation

 Slipstream processors

 Leader-follower architectures

 Helper threading

 Prefetching

 Branch prediction

 Exception handling
6

SMT for Transient Fault Detection

 Transient faults: Faults that persist for a “short” duration

 Also called “soft errors”

 Caused by cosmic rays (e.g., neutrons)

 Leads to transient changes in wires and state (e.g., 01)

 Solution

 no practical absorbent for cosmic rays

 1 fault per 1000 computers per year (estimated fault rate)

 Fault rate likely to increase in the feature

 smaller feature size

 reduced voltage

 higher transistor count

 reduced noise margin

 7

Need for Low-Cost Transient Fault Tolerance

 The rate of transient faults is expected to increase
significantly  Processors will need some form of fault

tolerance.

 However, different applications have different reliability
requirements (e.g. server-apps vs. games)  Users who do

not require high reliability may not want to pay the
overhead.

 Fault tolerance mechanisms with low hardware cost are
attractive because they allow the designs to be used for a
wide variety of applications.

8

Traditional Mechanisms for Transient Fault Detection

 Storage structures

 Space redundancy via parity or ECC

 Overhead of additional storage and operations can be high in
time-critical paths

 Logic structures

 Space redundancy: replicate and compare

 Time redundancy: re-execute and compare

 Space redundancy has high hardware overhead.

 Time redundancy has low hardware overhead but high
performance overhead.

 What additional benefit does space redundancy have?

 9

Lockstepping (Tandem, Compaq Himalaya)

 Idea: Replicate the processor, compare the results of two
processors before committing an instruction

10

R1  (R2)

Input

Replication

Output

Comparison

Memory covered by ECC

RAID array covered by parity

Servernet covered by CRC

R1  (R2)

microprocessor microprocessor

Transient Fault Detection with SMT (SRT)

 Idea: Replicate the threads, compare outputs before
committing an instruction

 Reinhardt and Mukherjee, “Transient Fault Detection
via Simultaneous Multithreading,” ISCA 2000.

 Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault Tolerance
in Microprocessors,” FTCS 1999.

11

R1  (R2)

Input

Replication

Output

Comparison

Memory covered by ECC

RAID array covered by parity

Servernet covered by CRC

R1  (R2)

THREAD THREAD

Sim. Redundant Threading vs. Lockstepping
 SRT Advantages

+ No need to replicate the processor

+ Uses fine-grained idle FUs/cycles (due to dependencies, misses)
to execute the same program redundantly on the same processor

+ Lower hardware cost, better hardware utilization

 Disadvantages

- More contention between redundant threads  higher

performance overhead (assuming unequal hardware)

- Requires changes to processor core for result comparison, value
communication

- Must carefully fetch & schedule instructions from threads

- Cannot easily detect hard (permanent) faults

12

Sphere of Replication

 Logical boundary of redundant execution within a system

 Need to replicate input data from outside of sphere of
replication to send to redundant threads

 Need to compare and validate output before sending it out
of the sphere of replication

13

Rest of System

Sphere of Replication

Output

Compariso

n

Input

Replication

Execution

Copy 1

Execution

Copy 2

Sphere of Replication in SRT

14

Fetch PC

Instruction

 Cache

Decode Register
Rename

Fp
Regs

Int .
Regs

Fp
Units

Ld /St
Units

Int .
Units

Thread 0

Thread 1

R1  (R2)

R1  (R2)
R3 = R1 + R7

R8 = R7 * 2

RUU

Input Replication

 How to get the load data for redundant threads
 pair loads from redundant threads and access the cache when

both are ready: too slow – threads fully synchronized

 allow both loads to probe cache separately: false alarms with
I/O or multiprocessors

 Load Value Queue (LVQ)

 pre-designated leading & trailing threads

15

add

load R1(R2)

sub
add

load R1  (R2)

sub

probe cache

LVQ

Output Comparison

 <address, data> for stores from redundant threads
 compare & validate at commit time

 How to handle cached vs. uncacheable loads

 Stores now need to live longer to wait for trailing thread

 Need to ensure matching trailing store can commit

16

Store: ...

Store: R1  (R2)
Store: ...

Store: R1  (R2)
Store: ...
Store: ...

Store: ... Store

Queue

Output

Comparison To Data Cache

SRT Performance Optimizations

 Many performance improvements possible by supplying results
from the leading thread to the trailing thread: branch outcomes,
instruction results, etc

 Mukherjee et al., “Detailed Design and Evaluation of Redundant
Multithreading Alternatives,” ISCA 2002.

17

Recommended Reading

18

 Mukherjee et al., “Detailed Design and Evaluation of Redundant
Multithreading Alternatives,” ISCA 2002.

Branch Outcome Queue

19

Line Prediction Queue

 Line Prediction Queue

 Alpha 21464 fetches chunks using line predictions

 Chunk = contiguous block of 8 instructions

20

Handling of Permanent Faults via SRT

 SRT uses time redundancy

 Is this enough for detecting permanent faults?

 Can SRT detect some permanent faults? How?

 Can we incorporate explicit space redundancy into SRT?

 Idea: Execute the same instruction on different resources in
an SMT engine

 Send instructions from different threads to different execution
units (when possible)

21

SRT Evaluation

 SPEC CPU95, 15M instrs/thread

 Constrained by simulation environment

  120M instrs for 4 redundant thread pairs

 Eight-issue, four-context SMT CPU

 Based on Alpha 21464

 128-entry instruction queue

 64-entry load and store queues

 Default: statically partitioned among active threads

 22-stage pipeline

 64KB 2-way assoc. L1 caches

 3 MB 8-way assoc L2

22

Performance Overhead of SRT

 Performance degradation = 30% (and unavailable thread
context)

 Per-thread store queue improves performance by 4%

 23

Chip Level Redundant Threading

 SRT typically more efficient than splitting one processor
into two half-size cores

 What if you already have two cores?

 Conceptually easy to run these in lock-step

 Benefit: full physical redundancy

 Costs:

 Latency through centralized checker logic

 Overheads (e.g., branch mispredictions) incurred twice

 We can get both time redundancy and space redundancy if
we have multiple SMT cores

 SRT for CMPs

24

Chip Level Redundant Threading

25

Some Other Approaches to Transient Fault Tolerance

 Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” MICRO 1999.

 Qureshi et al., “Microarchitecture-Based Introspection: A
Technique for Transient-Fault Tolerance in
Microprocessors,” DSN 2005.

26

DIVA

 Idea: Have a “functional checker” unit that checks the
correctness of the computation done in the “main
processor”

 Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” MICRO 1999.

 Benefit: Main processor can be prone to faults or
sometimes incorrect (yet very fast)

 How can checker keep up with the main processor?

 Verification of different instructions can be performed in
parallel (if an older one is incorrect all later instructions will be
flushed anyway)

27

DIVA (Austin, MICRO 1999)

 Two cores

28

DIVA Checker for One Instruction

29

A Self-Tuned System using DIVA

30

DIVA Discussion

 Upsides?

 Downsides?

31

Some Other Approaches to Transient Fault Tolerance

 Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” MICRO 1999.

 Qureshi et al., “Microarchitecture-Based Introspection: A
Technique for Transient-Fault Tolerance in
Microprocessors,” DSN 2005.

32

Microarchitecture Based Introspection

 Idea: Use cache miss stall cycles to redundantly execute
the program instructions

 Qureshi et al., “Microarchitecture-Based Introspection: A
Technique for Transient-Fault Tolerance in
Microprocessors,” DSN 2005.

 Benefit: Redundant execution does not have high
performance overhead (when there are stall cycles)

 Downside: What if there are no/few stall cycles?

33

Introspection

34

MBI (Qureshi+, DSN 2005)

35

MBI Microarchitecture

36

Performance Impact of MBI

37

Food for Thought

 Do you need to check that the result of every instruction is
correct?

 Do you need to check that the result of any instruction is
correct?

 What do you really need to check for to ensure correct
operation?

 Soft errors?

 Hard errors?

38

Other Uses of Multithreading

MT for Exception Handling

 Exceptions cause overhead (especially if handled in software)

 Some exceptions are recoverable from (TLB miss, unaligned
access, emulated instructions)

 Pipe flushes due to exceptions reduce thread performance

40

MT for Exception Handling

 Cost of software TLB miss handling

 Zilles et al., “The use of multithreading for exception
handling,” MICRO 1999.

41

MT for Exception Handling

 Observation:

 The same application instructions are executed in the same
order INDEPENDENT of the exception handler’s execution

 The data dependences between the thread and exception
handler are minimal

 Idea: Execute the exception handler in a separate thread
context; ensure appearance of sequential execution

42

MT for Exception Handling

 Better than pure software, not as good as pure hardware
handling

43

Why These Uses?

 What benefit of multithreading hardware enables them?

 Ability to communicate/synchronize with very low latency
between threads

 Enabled by proximity of threads in hardware

 Multi-core has higher latency to achieve this

44

Helper Threading for Prefetching

 Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

 Only need to distill pieces that lead to cache misses

 Speculative thread: Pre-executed program piece can be
considered a “thread”

 Speculative thread can be executed

 On a separate processor/core

 On a separate hardware thread context

 On the same thread context in idle cycles (during cache misses)

45

Helper Threading for Prefetching

 How to construct the speculative thread:

 Software based pruning and “spawn” instructions

 Hardware based pruning and “spawn” instructions

 Use the original program (no construction), but

 Execute it faster without stalling and correctness constraints

 Speculative thread

 Needs to discover misses before the main program

 Avoid waiting/stalling and/or compute less

 To get ahead, uses

 Branch prediction, value prediction, only address generation
computation

46

Generalized Thread-Based Pre-Execution

 Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

 Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

 Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.

47

Thread-Based Pre-Execution Issues

 Where to execute the precomputation thread?

1. Separate core (least contention with main thread)

2. Separate thread context on the same core (more contention)

3. Same core, same context

 When the main thread is stalled

 When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load

 How far ahead?

 Too early: prefetch might not be needed

 Too late: prefetch might not be timely

2. When the main thread is stalled

 When to terminate the precomputation thread?

1. With pre-inserted CANCEL instructions

2. Based on effectiveness/contention feedback

 48

