
Paper Discussion for 18-742

Kevin Hsieh

Sep 9, 2014

1

Paper to Discuss (1/3)

 Seshadri et al., "The Dirty-Block Index", ISCA 2014.

 Introducing a cache organization to achieve better performance and cost.

 Ausavarungnirun et al., "Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems", ISCA 2012.

 Introducing a memory controller which is simpler and works better in heterogeneous
system.

 Chang et al., "Improving DRAM Performance by Parallelizing Refreshes with
Accesses", HPCA 2014.

 Introducing a few parallelism schemes for refresh commands.

2

Background and Problem

 Traditionally, the metadata of the cache is organized according to cache block
(or cache line)

 Each cache block has a corresponding cache metadata, which maintains all the
attributes for this cache block (valid, dirty, tag address, etc.)

 It’s intuitive, simple, and scalable.

 However, there are shortcomings

 All metadata query is relatively expensive

 It makes some cache improvement difficult to implement

 DRAM-Aware Writeback [TR-HPS-2010-2]

 Bypassing Cache Lookups [HPCA 2003, PACT 2012]

3

Block-Oriented Metadata Organization (Vivek’s Slide)

4

Valid Bit

Dirty Bit
(Writeback cache)

Sharing Status
(Multi-cores)

Error Correction
(Reliability)

VBlock Address D Sh Repl ECC

Replacement Policy
(Set-associative cache)

DRAM-Aware Writeback (Vivek’s slide)

5

Last-Level

Cache

Memory

Controller

DRAM

Channel

Write Buffer

1. Buffer writes and flush them in a burst

2. Row buffer hits are faster and more efficient than row misses

Row

Buffer

Virtual Write Queue [ISCA 2010], DRAM-Aware Writeback [TR-HPS-2010-2]

DRAM-Aware Writeback (Vivek’s slide)

6

Dirty Block
Proactively write back

all other dirty blocks from
the same DRAM row

Last-Level

Cache

Significantly increases the DRAM write row hit rate

Get all dirty blocks of DRAM row ‘R’

Memory

Controller

RRRRR

Virtual Write Queue [ISCA 2010], DRAM-Aware Writeback [TR-HPS-2010-2]

Query to Tag Store for a DRAM row

7

Tag Index Offset

Address Row offset
A DRAM row can be
distributed into a lot of sets.

It is very inefficient if we
want to query all cache
blocks for a certain DRAM
row

Tag Store

The Dirty-Block Index

 Key Idea

 Decouple dirty bits from main tag store and indexed them by DRAM row. This
separated structure makes query for dirty bit (especially in terms of DRAM row) much
more efficient.

8

VBlock Address D Sh Repl ECC

DRAM Address V D D D D …... D

Tag Store

DBI

Benefit of DBI

 DRAM-aware writeback

 With DBI, a single query can know all the dirty block in a DRAM row

 No more tag store contention

 Bypassing cache lookups

 The idea was to bypass cache lookup if it’s very likely to miss. However it must not
bypass dirty cache block.

 With DBI, it can check the dirty status much faster to seamlessly enable this
optimization.

 Reducing ECC overhead

 The idea was only dirty block requires error correction, others only requires detection.

 With DBI, it’s much easier to track the error correction codes

9

Operation of DBI

10

Evaluated Mechanism

 Baseline (LRU, Least Recently Used)

 TA-DIP (Thread-aware dynamic insertion policy)

 DAWB (DRAM aware writeback)

 VWQ (Virtual write queue)

 CLB (cache lookup bypass)

 DBI

 No optimization

 +DAWB

 +CLB

 +AWB+DBI

11

System Configuration

12

Effect on Writes and Tag Lookups (Vivek’s slide)

13

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Memory Writes Write Row Hits Tag Lookups

N
o

rm
a

li
z
e

d
 t

o

B
a

s
e

li
n

e

Baseline DAWB DBI+Both

System Performance (Vivek’s slide)

14

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1-Core 2-Core 4-Core 8-Core

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

Baseline DAWB DBI+Both

13% 0%

23% 4%

35% 6%

28% 6%

Area and Power

15

Bit cost reduction of cache

Power increase in cache (not including memory)

DBI design consideration

 Major design considerations

 DBI size (number of total blocks tracked by DBI, α, in ratio of total cache blocks)

 DBI granularity (number of blocks tracked by a single DBI entry)

 DBI replacement policy

 5 policies evaluated, better policy gives better performance

16

Conclusion

 Dirty-Block Index is a new cache organization, which decouples dirty bit
information from main tag store. All dirty bits are indexed by DRAM row at a
separate, much smaller store.

 By doing so, it’s much faster to

 Query all dirty bits for a DRAM row (makes AWB much easier)

 Query whether certain cache line is dirty (makes CLB much easier)

 Organize correction bits for dirty cache line (hybrid ECC)

 Evaluation results showed

 6% performance improvement over best previous mechanism

 8% overall cache area reduction (with ECC)

17

Open Discussion

 What are the major strengths?

 What are the major weakness?

 Any other ideas from this paper?

18

My 2 cents - Strength

 This paper proposed a novel cache organization which can improve both
performance and cost of cache at the same time.

 The analysis of design consideration was comprehensive and solid. The authors
not only mentioned most of major considerations, but also rigorously evaluated
the sensitivity of them (granularity, size, replacement policy)

19

My 2 cents - Weakness

 The DBI eviction induces some unnecessary write back traffics when handling
write request. The worst case is all DBI-associated cache lines have to be written
back.

 The evaluation was done on a system with L1/L2/L3 caches and specific 2-core,
4-core, 8-core workloads. Some analysis should be done to prove it works on
different memory hierarchy and different workload/core combinations.

 One of the major weakness of DBI is that its structure is limited to DRAM row
(though it can be adjusted by granularity). If the dirty lines are sparsely
distributed in different DRAM row, this structure will be inefficient and keep
thrashing DBI cache.

20

My 2 cents - Ideas

 Investigate the possibility of moving other bits out of tag store, such as cache
coherency bits or even ECC bits.

 Try if DRAM-oriented cache structure works better, not just dirty bits. We can
have smaller α and a vector to manage cache lines by DRAM row tag address.

 Evaluate the density of DRAM rows in cache for various workloads. Also evaluate
DBI with different memory hierarchies to show whether it can be applied to
different systems.

21

Paper to Discuss (2/3)

 Seshadri et al., "The Dirty-Block Index", ISCA 2014.

 Introducing a cache organization to achieve better performance and cost.

 Ausavarungnirun et al., "Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems", ISCA 2012.

 Introducing a memory controller which is simpler and works better in heterogeneous
system.

 Chang et al., "Improving DRAM Performance by Parallelizing Refreshes with
Accesses", HPCA 2014.

 Introducing a few parallelism schemes for refresh commands.

22

Background and Problem

 In multi-core CPU-GPU systems, the memory requests from GPUs can overwhelm
that from CPUs.

 The nature of GPU makes it be able to issue much more outstanding requests than
CPU

 GPU is much more (4x-20x) memory-intensive than CPU

 The memory controller with centralized request buffer will become very complex
and costly for such system.

 Unless it has a lot of buffer, it can’t see enough pending requests from CPUs as
buffers are overwhelmed by those from GPU

 But a lot of buffer can make the design very complicated

23

Prior Memory Scheduling Schemes

 FR-FCFS (First ready, First Come First Serve) [Rixner+, ISCA’00]

 Totally memory throughput driven

 Can lead to serious fairness problem

 PAR-BS (Parallelism-aware Batch Scheduling) [Mutlu and Moscibroda, MICRO’07]

 Batches request based on arrival time, oldest first.

 Minimize fairness issue

 ATLAS (Adaptive per-Thread Least- Attained-Service memory scheduling) [Kim+,
HPCA’10]

 Prioritize applications with least memory service. But high memory intensity
application can be slowed down significantly.

 TCM (Thread Cluster Memory Scheduling) [Kim+, MICRO’10]

 Cluster threads into high or low memory-intensity buckets and apply different
approaches

24

 GPU occupies a significant portion of the request buffers

 Limits the MC’s visibility of the CPU applications’ differing memory behavior can

lead to a poor scheduling decision

Introducing the GPU into the System (Rachata’s slide)

25

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

Req Req

GPU

Req Req Req Req Req ReqReq

Req ReqReqReq Req Req Req

Req ReqReq Req ReqReq Req

Req

Req

The performance of memory schedulers in CPU-GPU systems

 Results showed it’s highly dependent on buffer size

26

 A large buffer requires more complicated logic to:

 Analyze memory requests (e.g., determine row buffer hits)

 Analyze application characteristics

 Assign and enforce priorities

 This leads to high complexity, high power, large die area

Problems with Large Monolithic Buffer (Rachata’s slide)

27

Memory Scheduler

Req

Req

Req

Req

Req

Req Req

Req Req Req

Req

Req

Req

Req Req

Req Req

Req Req Req

Req

Req Req

Req

Req

Req

Req

Req

ReqReq

Req

Req

Req

Req

ReqReq ReqReq

Req Req

Req Req

More Complex Memory Scheduler

Key Idea: Staged Memory Scheduler

 Decouple the memory controller’s three major tasks into three significantly
simpler structures

 Stage 1: Group requests by locality

 The requests to the same row from the same source are grouped as a batch

 No out-of-order batch

 Stage 2: Prioritize inter-application requests

 Schedule batches based on SJF (shortest job first) or RR (round-robin)

 The probability of applying SJF is based on a configurable parameter p

 Always pick from the head of FIFO from each source

 Stage 3: Schedule low-level DRAM commands

 Issue batches to DRAM, no reorder

28

SMS: Staged Memory Scheduling (Rachata’s slide)

29

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req

Req

Req

Req

Req

Req Req

Req Req Req

ReqReqReq

Req Req

Req Req

Req Req Req

Req

Req Req

Req

Req

Req

Req

Req Req

Req Req Req

ReqReqReqReq Req Req

Req

Req

Req Req

Batch Scheduler

Stage 1

Stage 2

Stage 3

Req

M
o
n
o
lit

h
ic

 S
ch

e
d
u
le

r

Batch
Formation

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Core 1 Core 2 Core 3 Core 4

Stage 1: Batch Formation Example (Rachata’s slide)

30

Row A Row BRow B
Row C

Row DRow DRow E
Row F

Row E

Batch Boundary

To Stage 2 (Batch Scheduling)

Row A

Time window
expires

Next request goes to a different rowStage 1

Batch
Formation

Stage 2: SJF vs RR

 Aside from simplicity, SMS provided another major advantage: Configurable
probability p for SJF

 SJF (Shortest Job First)

 Good for low memory intensive applications (mostly from CPUs)

 The price is overall system bandwidth

 RR (Round Robin)

 Good for high memory intensive applications (mostly from GPUs)

 The price is the fairness of low memory intensive applications

 Make it as a configurable parameter provides flexibility. The system can adjust p
to reach best tradeoff between GPU performance and CPU fairness.

31

Current Batch
Scheduling Policy

SJF

Current Batch
Scheduling Policy

RR

Batch Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Putting Everything Together (Rachata’s slide)

32

Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch
Formation

Stage 3: DRAM
Command
Scheduler

GPU

Stage 2:

Evaluation

 Power and Area (in 110nm, compared to FR-FCFS)

 66% less area

 46% less static power

 Performance Metrics

 GPU Weight means how important GPU performance is for a system

 If it’s important, SMS can use smaller p value to reach best overall performance

33

Results – CPU Speedup

 SMS0.9 worked very well for low memory intensity applications, but not so well
for high ones.

 SMS0 performed inversely.

34

Results – GPU frame rate

 SMS0.9 was the worst in terms of GPU frame rate.

 But SMS0 gave a comparable GPU frame rate with FR-FCFS.

35

Results – Combined CPU and GPU speed up

 If sticking with a constant p, SMS may be good at some GPU weight but very
bad at the others

 If choosing p wisely, SMS can reach best combined CPU+GPU speedup

36

Conclusion

 Prior memory scheduling scheme can’t handle CPU-GPU systems effectively
because the memory intensity from GPU is much higher.

 The proposed SMS (Stage Memory Scheduling) decouples the memory scheduler
into 3 stages

 Batch formation, batch scheduling, DRAM command scheduling

 Evaluation result

 66% less area

 46% less static power

 Flexible parameter p to reach optimal tradeoff between fairness and system
throughput (or best combined CPU+GPU performance, according to system goal)

37

Open Discussion

 What are the major strengths?

 What are the major weakness?

 Any other ideas from this paper?

38

My 2 cents - Strength

 Presented an important challenge to memory controller scheduling with very
good data analysis.

 The discussion of SMS rationale was pretty thorough. It’s the key to make the
mechanism much simpler than previous schedulers.

 The experimental evaluation was pretty solid. It included a lot of metrics and
also evaluated on the sensitivity of parameters of SMS.

 The proposed scheduler was simpler and more flexible than state-of-art ones.
The rigorous evaluation also showed that SMS had better potential to fulfill
different needs

39

My 2 cents - Weakness

 The tunable parameter p provided a flexibility to fulfill different needs (either
fairness or performance). However that can be a problem as an incorrect
parameter can cause severe performance or fairness degradation.

 This memory scheduler was very simple but gave up some important
optimization opportunity. For example, it gave up cross-source row buffer
locality. It didn’t try to prevent row conflict either.

 The workload used unrelated workloads between CPU and GPU for evaluation,
which may not represent the system performance goal very well.

40

My 2 cents - Ideas

 Research on inter-dependent, state-of-art benchmark for CPU-GPU multicore
system. Use it to validate state-of-art memory controllers and maybe come out a
more efficient scheduling mechanism.

 Research other mechanism which can do better tradeoff between performance
and fairness by considering more optimization opportunities. It shouldn’t limit to
CPU-GPU only and should take more system configurations into account.

41

Paper to Discuss (3/3)

 Seshadri et al., "The Dirty-Block Index", ISCA 2014.

 Introducing a cache organization to achieve better performance and cost.

 Ausavarungnirun et al., "Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems", ISCA 2012.

 Introducing a memory controller which is simpler and works better in heterogeneous
system.

 Chang et al., "Improving DRAM Performance by Parallelizing Refreshes with
Accesses", HPCA 2014.

 Introducing a few parallelism schemes for refresh commands.

42

Background – DRAM Refresh

 DRAM stores data in capacitors, which leaks charge over time

 So all DRAM cells need to be refreshed for a certain period of time
(tREFI)

 Because all cells need to be refreshed, the time to do refresh
(tRFC) depends on the capacity of DRAM cells

43

tRefPeriod (tREFI): Remains constant

tRefLatency (tRFC): Varies based on DRAM chip density (e.g., 350ns)

Timeline

Read/Write: roughly 50ns

*From Kevin’s slide

Refresh Overhead: Performance

44

Refresh Problem

 During refresh, DRAM is not accessible

 All bank refresh (REFab): all banks can’t be accessed

 Per bank refresh (REFpb): the refreshing bank can’t be accessed

 As DRAM capacity grows, the refresh overhead will take too much time and makes
performance unacceptable

 Even with per bank refresh, it still takes too much time

 Besides, the total time spent on REFpb is more than REFab

 tRFCpb*banknum > tRFCab

 That is because all bank refresh are done on multiple banks simultaneously.

45

Idea one - DARP

 DARP - Dynamic Access Refresh Parallelization

 Currently, the order of per bank refresh is round-robin and controlled by DRAM chip.

 The key idea of DARP is to let memory controller fully control which bank to refresh

 Out-of-Order Per-Bank Refresh

 Memory controller can do optimal scheduling based on the command queue

 It can schedule the refresh to the banks with least pending commands (within timing
constraint)

 Write-refresh Parallelism

 Most memory controller will have burst write mode to save read-write turnaround
overhead

 Memory controller can schedule more refresh during burst write mode, as write
latency generally won’t be at critical path of system performance.

46

Bank 1

Bank 0

Our mechanism: DARP

1) Out-of-Order Per-Bank Refresh (Kevin’s slide)

47

Refresh

Read

TimelineBank 1

Bank 0 Refresh Read

Refresh Read

Baseline: Round robin

Refresh

Read

Saved cycles

Delayed by refresh

Saved cycles

R
e
a
d

Request queue (Bank 0) Request queue (Bank 1)

R
e
a
d

Reduces refresh penalty on demand requests by
refreshing idle banks first in a flexible order

2) Write-Refresh Parallelization (Kevin’s slide)

 Proactively schedules refreshes when banks are serving write batches

48

TimelineBank 1

Bank 0

Turnaround

Refresh

Read

Read

Baseline

Delayed by refresh

Write Write Write

Write-refresh parallelization

TimelineBank 1

Bank 0

Read

Turnaround

Read

Write Write Write

Refresh

1. Postpone refresh
Refresh

2. Refresh during writesSaved cycles

Avoids stalling latency-critical read requests by
refreshing with non-latency-critical writes

Idea two - SARP

 SARP – Subarray Access Refresh Parallelization

 Each subarray has its own row buffer.

 With some modification, we can parallelize refresh and access of different subarrays
in the same bank

49

Our Second Approach: SARP (Kevin’s slide)

 Subarray Access-Refresh Parallelization (SARP):

 Parallelizes refreshes and accesses within a bank

50

Very modest DRAM modifications: 0.71%
die area overhead

Bank 7

Bank 1
Bank 0

…

Subarray

Bank I/O

TimelineSubarray 1

Subarray 0

Bank 1

DataRefresh

Refresh

Read

Read

Evaluation

 Evaluated schemes

 REFab : All bank refresh (baseline)

 REFpb : Per-bank refresh

 Elastic : Try to schedule refresh when memory idle

 DARP : The first idea, out-of-order per-bank refresh

 SARPpb : The second idea, subarray level parallism and works on REFpb

 DSARP : The combination of DARP and SARP

 No REF : Ideal case, no refresh required

51

Results (1/3)

 When memory capacity grows to 32Gb, the benefit of DARP is decreasing

 That is because the refresh time is too long and no way to hide it any more

 But with SARP, the performance gain is increasing with memory capacity

 That is because SARP parallelize access and refresh to subarray level.

52

Results (2/3)

 REFpb can’t improve too much when memory capacity grows

 Surprisingly, DSARP can be almost as good as ideal no-refresh memory

53

Results (3/3)

54

Conclusion

 To mitigate the deteriorating DRAM refresh overhead, this paper proposed two
mechanisms to parallelize refresh with access

 DARP enables memory controller to fully control the order and timing of per-bank
refresh

 SARP enables memory controller to issue access and refresh to different subarrays in
the same bank

 The performance improvement is significant and consistent, and close to ideal no-
refresh memory

 7.9% for 8Gb DRAM

 20.2% for 32Gb DRAM

 With only 0.71% DRAM die area cost

55

Open Discussion

 What are the major strengths?

 What are the major weakness?

 Any other ideas from this paper?

56

My 2 cents - Strength

 The statement of the refresh problem was very clear with a good background
introduction. The explanation of all-bank refresh and per-bank refresh gave
enough details to understand the optimizations.

 The proposed mechanism tackled the refresh problem with several novel ideas
on DRAM architecture modification. The idea of parallelizing and fined-grained
control on refreshes provided promising direction to mitigate refresh overhead.

 The evaluation mechanisms and results were solid. The best among them is the
comparison to ideal non-refresh case, which showed how good DARP and SARP
are. The sensitivity analysis on workloads, core count, timing, and DRAM
architecture was comprehensive, too.

57

My 2 cents - Weakness

 SARP can make the scheduling of refresh very complicated. This paper didn’t
discuss how complicated it can be or how to do it efficiently.

 This paper didn’t discuss in detail about the scheduling policy of REFab and REFpb.
Elastic refresh should be applied to REFpb, too. By considering this, the
performance improvement may not be that significant

 The energy data didn’t include memory controller, where significant complexity
was added by DARP and SARP. The algorithm of out-of-order per-bank refresh
may cost too much energy, as it has to make a complex decision on every cycle

58

My 2 cents - Ideas

 As an extensive work, the energy of memory controller could be a concern. If it
is, it will be interesting to find a better algorithm to exploit DARP/SARP with
competitive power consumption.

 Or better refresh scheduling to achieve better performance.

 Another idea is to research more aggressive parallelism.

 Is it possible to parallel REFpb with another REFpb?

 Is it possible to optimize the DRAM timing with more understand on its
limitation?

59

