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Reminders

 Homework 0’s and Main Memory Scaling reviews

 Please send me and Yixin your 3 papers

 Your paper reviews are due September 4

 Hamming talk review due September 6

 Think about your projects

 Project handout will be online soon

 Proposal will be due ~September 30
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Exciting Reading & Project Topic Areas
• Rethinking Memory System Design for Data-Intensive Computing

• All aspects of DRAM, Flash Memory, Emerging Technologies

• Single-Level Stores: Merging Memory and Storage with Fast NVM

• GPUs as First-Class Computing Engines

• In-memory Computing: Enabling Near-Data Processing

• Predictable Systems: QoS Everywhere in the System

• Secure and Easy-to-Program/Manage Memories: DRAM, Flash, NVM

• Heterogeneous Systems: Architecting and Exploiting Asymmetry

• Efficient and Scalable Interconnects

• Genome Sequence Analysis & Assembly: Algorithms and 

Architectures
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Sample Past Projects from 740/742
 "ATLAS: A Scalable and High-Performance Scheduling Algorithm for 

Multiple Memory Controllers" , HPCA 2010 Best Paper Session.

 "Next Generation On-Chip Networks: What Kind of Congestion Control Do 
We Need?" , HotNets 2010.

 "Thread Cluster Memory Scheduling: Exploiting Differences in Memory 
Access Behavior" , MICRO 2010, IEEE Micro Top Picks 2011.

 "Reducing Memory Interference in Multicore Systems via Application-
Aware Memory Channel Partitioning”, MICRO 2011.

 "RAIDR: Retention-Aware Intelligent DRAM Refresh”, ISCA 2012.

 "On-Chip Networks from a Networking Perspective: Congestion and 
Scalability in Many-core Interconnects”, SIGCOMM 2012.

 "Row Buffer Locality Aware Caching Policies for Hybrid Memories”, ICCD 
2012 Best Paper Award.

 "HAT: Heterogeneous Adaptive Throttling for On-Chip Networks”, SBAC-
PAD 2012.

 "Asymmetry-Aware Execution Placement on Manycore Chips”, SFMA 2013.

 "Exploiting Compressed Block Size as an Indicator of Future Reuse”, 
SAFARI Technical Report 2013.
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http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/noc-congestion_hotnets10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowbuffer-aware-caching_iccd12.pdf
http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://users.ece.cmu.edu/~omutlu/pub/asymmetry-aware-multicore-scheduling_sfma13.pdf
http://users.ece.cmu.edu/~omutlu/pub/compression-aware-cache-management_cmu_safari_tr13.pdf


Next Week

 Want two presenters for next week (Tuesday and 
Thursday)

 Pick a set of papers to present so that we can have a 
discussion

 We will decide this at the end of this meeting

 Signup sheet for later weeks will be posted
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Rethinking Memory/Storage System Design 

Onur Mutlu

onur@cmu.edu

http://users.ece.cmu.edu/~omutlu/

mailto:onur@cmu.edu
http://users.ece.cmu.edu/~omutlu/


The Main Memory System

 Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

 Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits
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Processor

and caches
Main Memory Storage (SSD/HDD)



Memory System: A Shared Resource View
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State of the Main Memory System

 Recent technology, architecture, and application trends

 lead to new requirements

 exacerbate old requirements

 DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements

 Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging

 We need to rethink the main memory system

 to fix DRAM issues and enable emerging technologies 

 to satisfy all requirements
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Agenda

 Major Trends Affecting Main Memory

 The Memory Scaling Problem and Solution Directions

 New Memory Architectures

 Enabling Emerging Technologies: Hybrid Memory Systems

 How Can We Do Better?

 Summary
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Major Trends Affecting Main Memory (I)

 Need for main memory capacity, bandwidth, QoS increasing 

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending 
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Major Trends Affecting Main Memory (II)

 Need for main memory capacity, bandwidth, QoS increasing 

 Multi-core: increasing number of cores/agents

 Data-intensive applications: increasing demand/hunger for data

 Consolidation: cloud computing, GPUs, mobile, heterogeneity

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending 
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Example: The Memory Capacity Gap

 Memory capacity per core expected to drop by 30% every two years

 Trends worse for memory bandwidth per core!
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Core count doubling ~ every 2 years 

DRAM DIMM capacity doubling ~ every 3 years



Major Trends Affecting Main Memory (III)

 Need for main memory capacity, bandwidth, QoS increasing 

 Main memory energy/power is a key system design concern

 ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 

IEEE Computer 2003] 

 DRAM consumes power even when not used (periodic refresh)

 DRAM technology scaling is ending 
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Major Trends Affecting Main Memory (IV)

 Need for main memory capacity, bandwidth, QoS increasing 

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending 

 ITRS projects DRAM will not scale easily below X nm 

 Scaling has provided many benefits: 

 higher capacity (density), lower cost, lower energy
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Agenda

 Major Trends Affecting Main Memory

 The Memory Scaling Problem and Solution Directions

 New Memory Architectures

 Enabling Emerging Technologies: Hybrid Memory Systems

 How Can We Do Better?

 Summary
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The DRAM Scaling Problem

 DRAM stores charge in a capacitor (charge-based memory)

 Capacitor must be large enough for reliable sensing

 Access transistor should be large enough for low leakage and high 
retention time

 Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

 DRAM capacity, cost, and energy/power hard to scale

17



Row of Cells
Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row
Aggressor Row

Repeatedly opening and closing a row 
induces disturbance errors in adjacent rows 
in most real DRAM chips [Kim+ ISCA 2014]

OpenedClosed
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An Example of  The Scaling Problem



Most DRAM Modules Are at Risk

86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C company

Up to

1.0×107

errors 

Up to

2.7×106

errors 

Up to

3.3×105

errors 
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Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014.



DRAM Modulex86 CPU
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loop:

mov (X), %eax
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clflush (X)  

clflush (Y)
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jmp loop
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Observed Errors in Real Systems

•In a more controlled environment, we can induce 
as many as ten million disturbance errors

•Disturbance errors are a serious reliability issue

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M/sec

24Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014.



The DRAM Scaling Problem
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Solutions to the DRAM Scaling Problem

 Two potential solutions

 Tolerate DRAM (by taking a fresh look at it)

 Enable emerging memory technologies to eliminate/minimize 
DRAM

 Do both

 Hybrid memory systems
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Solution 1: Tolerate DRAM

 Overcome DRAM shortcomings with

 System-DRAM co-design

 Novel DRAM architectures, interface, functions

 Better waste management (efficient utilization)

 Key issues to tackle

 Reduce energy

 Enable reliability at low cost

 Improve bandwidth and latency

 Reduce waste

 Enable computation close to data
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Solution 1: Tolerate DRAM
 Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

 Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

 Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

 Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.

 Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.

 Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.

 Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.

 Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative 
Experimental Study,” SIGMETRICS 2014.

 Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.

 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance 
Errors,” ISCA 2014.

Avoid DRAM:

 Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and 
Thrashing,” PACT 2012.

 Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 
2012.

 Seshadri+, “The Dirty-Block Index,” ISCA 2014.
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Solution 2: Emerging Memory Technologies
 Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile)

 Example: Phase Change Memory

 Expected to scale to 9nm (2022 [ITRS])

 Expected to be denser than DRAM: can store multiple bits/cell

 But, emerging technologies have shortcomings as well

 Can they be enabled to replace/augment/surpass DRAM?

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM Alternative,”
ISCA 2009, CACM 2010, Top Picks 2010.

 Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid Memories,” IEEE 
Comp. Arch. Letters 2012.

 Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.

 Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013. 

 Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and 
Memory,” WEED 2013.
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Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies



An Orthogonal Issue: Memory Interference

Main 
Memory

31

Core Core

Core Core

Cores’ interfere with each other when accessing shared main memory



 Problem: Memory interference between cores is uncontrolled

 unfairness, starvation, low performance

 uncontrollable, unpredictable, vulnerable system

 Solution: QoS-Aware Memory Systems

Hardware designed to provide a configurable fairness substrate 

 Application-aware memory scheduling, partitioning, throttling

Software designed to configure the resources to satisfy different 
QoS goals

 QoS-aware memory controllers and interconnects can 
provide predictable performance and higher efficiency

An Orthogonal Issue: Memory Interference



Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12][Subramanian+, HPCA’13]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 

ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] [Nychis+ SIGCOMM’12]

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 QoS-aware thread scheduling to cores [Das+ HPCA’13]
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 Memory Channel Partitioning

 Idea: System software maps badly-interfering applications’ pages 
to different channels [Muralidhara+, MICRO’11]

 Separate data of low/high intensity and low/high row-locality applications

 Especially effective in reducing interference of threads with “medium” and 
“heavy” memory intensity 

 11% higher performance over existing systems (200 workloads)

A Mechanism to Reduce Memory Interference
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More on Memory Channel Partitioning

 Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut 
Kandemir, and Thomas Moscibroda, 
"Reducing Memory Interference in Multicore Systems via 
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on Microarchitecture
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx


Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12][Subramanian+, HPCA’13]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 

ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] [Nychis+ SIGCOMM’12]

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 QoS-aware thread scheduling to cores [Das+ HPCA’13]
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In class meeting on September 3, 

we discussed until here. 
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QoS-Aware Memory Scheduling

 How to schedule requests to provide

 High system performance

 High fairness to applications

 Configurability to system software 

 Memory controller needs to be aware of threads

38

Memory 
Controller

Core Core

Core Core

Memory

Resolves memory contention 
by scheduling requests



QoS-Aware Memory Scheduling: Evolution

 Stall-time fair memory scheduling [Mutlu+ MICRO’07]

 Idea: Estimate and balance thread slowdowns

 Takeaway: Proportional thread progress improves performance, 
especially when threads are “heavy” (memory intensive)

 Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09]

 Idea: Rank threads and service in rank order (to preserve bank 
parallelism); batch requests to prevent starvation

 ATLAS memory scheduler [Kim+ HPCA’10]
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Within-Thread Bank Parallelism
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Parallelism-Aware Batch Scheduling [ISCA’08]

 Principle 1: Schedule requests from a 
thread back to back

 Preserves each thread’s bank parallelism

 But, this can cause starvation…

 Principle 2: Group a fixed number of oldest 
requests from each thread into a “batch”

 Service the batch before all other requests

 Form a new batch when the current batch is done

 Eliminates starvation, provides fairness
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QoS-Aware Memory Scheduling: Evolution

 Stall-time fair memory scheduling [Mutlu+ MICRO’07]

 Idea: Estimate and balance thread slowdowns

 Takeaway: Proportional thread progress improves performance, 
especially when threads are “heavy” (memory intensive)

 Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09]

 Idea: Rank threads and service in rank order (to preserve bank 
parallelism); batch requests to prevent starvation

 Takeaway: Preserving within-thread bank-parallelism improves 
performance; request batching improves fairness

 ATLAS memory scheduler [Kim+ HPCA’10]

 Idea: Prioritize threads that have attained the least service from the 
memory scheduler 

 Takeaway: Prioritizing “light” threads improves performance
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Take turns accessing memory

Throughput vs. Fairness

43

Fairness biased approach

thread C

thread B

thread A

less memory 
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation  unfairness

thread C thread Bthread A

Does not starve

not prioritized 
reduced throughput

Single policy for all threads is insufficient



Achieving the Best of Both Worlds
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thread

thread
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thread

thread
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thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive 
being prioritized over each other 
• Shuffle thread ranking

Memory-intensive threads have 
different vulnerability to interference
• Shuffle asymmetrically

For Fairness

thread

thread

thread
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Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster
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TCM: Throughput and Fairness
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Better system throughput
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24 cores, 4 memory controllers, 96 workloads 

TCM, a heterogeneous scheduling policy,
provides best fairness and system throughput



TCM: Fairness-Throughput Tradeoff

47

When configuration parameter is varied…

Adjusting  
ClusterThreshold

TCM allows robust fairness-throughput tradeoff 

STFM
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ATLAS
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Better system throughput
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Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12][Subramanian+, HPCA’13] [Kim+, RTAS’14]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 

ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] [Nychis+ SIGCOMM’12]

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 QoS-aware thread scheduling to cores [Das+ HPCA’13]
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Predictable Performance in Complex Systems

 Heterogeneous agents: CPUs, GPUs, and HWAs 

 Main memory interference between CPUs, GPUs, HWAs

49

CPU CPU CPU CPU

Shared Cache

GPU

HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance? 



Strong Memory Service Guarantees

 Goal: Satisfy performance/SLA requirements in the 
presence of shared main memory, prefetchers, 
heterogeneous agents, and hybrid memory/storage

 Approach: 

 Develop techniques/models to accurately estimate the 
performance of an application/agent in the presence of 
resource sharing

 Develop mechanisms (hardware and software) to enable the 
resource partitioning/prioritization needed to achieve the 
required performance levels for all applications

 All the while providing high system performance 

 Example work: Subramanian et al., “MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems,” HPCA 2013.
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Readings on Memory QoS (I)

 Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX 
Security 2007.

 Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling,”
MICRO 2007.

 Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 
2008, IEEE Micro 2009.

 Kim et al., “ATLAS: A Scalable and High-Performance Scheduling 
Algorithm for Multiple Memory Controllers,” HPCA 2010.

 Kim et al., “Thread Cluster Memory Scheduling,” MICRO 2010, IEEE 
Micro 2011.

 Muralidhara et al., “Memory Channel Partitioning,” MICRO 2011.

 Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012.

 Subramanian et al., “MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems,” HPCA 2013.

 Das et al., “Application-to-Core Mapping Policies to Reduce Memory 
System Interference in Multi-Core Systems,” HPCA 2013.
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Readings on Memory QoS (II)

 Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS 2010, ACM 
TOCS 2012.

 Lee et al., “Prefetch-Aware DRAM Controllers,” MICRO 2008, IEEE TC 
2011.

 Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011.

 Ebrahimi et al., “Prefetch-Aware Shared Resource Management for 
Multi-Core Systems,” ISCA 2011.
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Some Current Directions

 New memory/storage + compute architectures
 Rethinking DRAM and flash memory

 Processing close to data; accelerating bulk operations

 Ensuring memory/storage reliability and robustness

 Enabling emerging NVM technologies 
 Hybrid memory systems with automatic data management

 Coordinated management of memory and storage with NVM

 System-level memory/storage QoS
 QoS-aware controller and system design

 Coordinated memory + storage QoS
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Agenda

 Major Trends Affecting Main Memory

 The Memory Scaling Problem and Solution Directions

 New Memory Architectures

 Enabling Emerging Technologies: Hybrid Memory Systems

 How Can We Do Better?

 Summary
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Tolerating DRAM: Example Techniques

 Retention-Aware DRAM Refresh: Reducing Refresh Impact

 Refresh Access Parallelization: Reducing Refresh Impact

 Tiered-Latency DRAM: Reducing DRAM Latency

 RowClone: Accelerating Page Copy and Initialization 

 Subarray-Level Parallelism: Reducing Bank Conflict Impact

 Base-Delta-Immediate Compression and Linearly 
Compressed Pages: Efficient Cache & Memory Compression
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DRAM Refresh

 DRAM capacitor charge leaks over time

 The memory controller needs to refresh each row 
periodically to restore charge

 Activate each row every N ms

 Typical N = 64 ms

 Downsides of refresh

-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM capacity scaling 
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Refresh Overhead: Performance
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8%

46%



Refresh Overhead: Energy
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15%

47%



Retention Time Profile of DRAM
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RAIDR: Eliminating Unnecessary Refreshes

 Observation: Most DRAM rows can be refreshed much less often 
without losing data [Kim+, EDL’09][Liu+ ISCA’13]

 Key idea: Refresh rows containing weak cells 

more frequently, other rows less frequently

1. Profiling: Profile retention time of all rows

2. Binning: Store rows into bins by retention time in memory controller

Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)

3. Refreshing: Memory controller refreshes rows in different bins at 
different rates

 Results: 8-core, 32GB, SPEC, TPC-C, TPC-H

74.6% refresh reduction @ 1.25KB storage

~16%/20% DRAM dynamic/idle power reduction

~9% performance improvement 

Benefits increase with DRAM capacity
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Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



Going Forward (for DRAM and Flash)

 How to find out and expose weak memory cells/rows
 Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices: 

Implications for Retention Time Profiling Mechanisms”, ISCA 2013.

 Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A 
Comparative Experimental Study,” SIGMETRICS 2014.

 Low-cost system-level tolerance of memory errors
 Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center 

Cost,” DSN 2014.

 Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,”
Intel Technology Journal 2013.

 Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,”
SIGMETRICS 2014.

 Tolerating cell-to-cell interference at the system level 
 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 

DRAM Disturbance Errors,” ISCA 2014.

 Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, 
and Mitigation,” ICCD 2013.

61



Experimental Infrastructure (DRAM)
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Liu+, “An Experimental Study of Data 
Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time 
Profiling Mechanisms”, ISCA 2013.

Khan+, “The Efficacy of Error Mitigation 
Techniques for DRAM Retention Failures: A 
Comparative Experimental Study,”
SIGMETRICS 2014.



Experimental Infrastructure (DRAM)

63Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs



Experimental Infrastructure (Flash)
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USB Jack

Virtex-II Pro

(USB controller)

Virtex-V FPGA

(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

3x-nm

NAND Flash

[Cai+, DATE 2012, ICCD 2012, DATE 2013, 
ITJ 2013, ICCD 2013, SIGMETRICS 2014]



Another Talk: NAND Flash Scaling Challenges

 Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, 
Characterization, and Analysis,” DATE 2012.

 Cai+, “Flash Correct-and-Refresh: Retention-Aware Error 
Management for Increased Flash Memory Lifetime,” ICCD 2012.

 Cai+, “Threshold Voltage Distribution in MLC NAND Flash 
Memory: Characterization, Analysis and Modeling,” DATE 2013.

 Cai+, “Error Analysis and Retention-Aware Error Management for 
NAND Flash Memory,” Intel Tech Journal 2013.

 Cai+, “Program Interference in MLC NAND Flash Memory: 
Characterization, Modeling, and Mitigation,” ICCD 2013.

 Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND 
Flash Memories,” SIGMETRICS 2014.
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Error Management in MLC NAND Flash

 Problem: MLC NAND flash memory reliability/endurance is a key 
challenge for satisfying future storage systems’ requirements

 Our Goals: (1) Build reliable error models for NAND flash 
memory via experimental characterization, (2) Develop efficient 
techniques to improve reliability and endurance

 This talk provides a “flash” summary of our recent results 
published in the past 3 years:

 Experimental error and threshold voltage characterization [DATE’12&13]

 Retention-aware error management [ICCD’12]

 Program interference analysis and read reference V prediction [ICCD’13]

 Neighbor-assisted error correction [SIGMETRICS’14]

66



Tolerating DRAM: Example Techniques

 Retention-Aware DRAM Refresh: Reducing Refresh Impact

 Refresh Access Parallelization: Reducing Refresh Impact

 Tiered-Latency DRAM: Reducing DRAM Latency

 RowClone: Accelerating Page Copy and Initialization 

 Subarray-Level Parallelism: Reducing Bank Conflict Impact

 Base-Delta-Immediate Compression and Linearly 
Compressed Pages: Efficient Cache & Memory Compression
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DRAM Latency-Capacity Trend
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workloads
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DRAM Latency = Subarray Latency + I/O Latency

What Causes the Long Latency?
DRAM Chip

channel

cell array

I/O

DRAM Chip

channel
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Why is the Subarray So Slow?
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Trade-Off: Area (Die Size) vs. Latency

Faster

Smaller

Short BitlineLong Bitline

Trade-Off: Area vs. Latency
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Trade-Off: Area (Die Size) vs. Latency
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Short Bitline

Low Latency 

Approximating the Best of Both Worlds

Long Bitline

Small Area 

Long Bitline

Low Latency 

Short BitlineOur Proposal

Small Area 

Short Bitline  Fast
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Isolation
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Approximating the Best of Both Worlds

Low Latency 

Our Proposal

Small Area 
Long Bitline
Small Area 

Long Bitline

High Latency

Short Bitline

Low Latency 

Short Bitline

Large Area

Tiered-Latency DRAM

Low Latency

Small area 
using long 

bitline



75

Tiered-Latency DRAM

Near Segment

Far Segment

Isolation Transistor

• Divide a bitline into two segments with an 
isolation transistor

Sense Amplifier

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
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Trade-Off: Area (Die-Area) vs. Latency
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Leveraging Tiered-Latency DRAM

• TL-DRAM is a substrate that can be leveraged by 
the hardware and/or software

• Many potential uses
1. Use near segment as hardware-managed inclusive

cache to far segment

2. Use near segment as hardware-managed exclusive
cache to far segment

3. Profile-based page mapping by operating system

4. Simply replace DRAM with TL-DRAM 
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Tolerating DRAM: Example Techniques

 Retention-Aware DRAM Refresh: Reducing Refresh Impact

 Refresh Access Parallelization: Reducing Refresh Impact

 Tiered-Latency DRAM: Reducing DRAM Latency

 RowClone: Accelerating Page Copy and Initialization 

 Subarray-Level Parallelism: Reducing Bank Conflict Impact

 Base-Delta-Immediate Compression and Linearly 
Compressed Pages: Efficient Cache & Memory Compression
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Today’s Memory: Bulk Data Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

811046ns, 3.6uJ



Future: RowClone (In-Memory Copy)

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

821046ns, 3.6uJ90ns, 0.04uJ



DRAM Subarray Operation (load one byte)

Row Buffer (4 Kbits)

Data Bus

8 bits

DRAM array

4 Kbits

Step 1: Activate row

Transfer 

row

Step 2: Read  

Transfer byte 

onto bus



RowClone: In-DRAM Row Copy

Row Buffer (4 Kbits)

Data Bus

8 bits

DRAM array

4 Kbits

Step 1: Activate row A

Transfer 

row

Step 2: Activate row B

Transfer

row
0.01% area cost



RowClone: Latency and Energy Savings
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Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” MICRO 2013.



End-to-End System Design
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DRAM (RowClone)

Microarchitecture

ISA

Operating System

Application
How does the software 
communicate occurrences 
of bulk copy/initialization 
to hardware?

How to maximize latency 
and energy savings?

How to ensure cache 
coherence?

How to handle data reuse?



RowClone: Overall Performance
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RowClone: Multi-Core Performance
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Goal: Ultra-Efficient Processing By Data

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller

Specialized
compute-capability

in memory

Memoryimaging
core

Memory Bus

Goal: Memory similar to a “conventional” accelerator



Enabling Ultra-Efficient Search

▪ What is the right partitioning of computation 

capability?

▪ What is the right low-cost memory substrate?

▪ What memory technologies are the best 

enablers?

▪ How do we rethink/ease (visual) search 

Cache

Process
or
Core

Interconnect

Memory

Databa
se  

Query vector

Results



Tolerating DRAM: Example Techniques

 Retention-Aware DRAM Refresh: Reducing Refresh Impact

 Refresh Access Parallelization: Reducing Refresh Impact

 Tiered-Latency DRAM: Reducing DRAM Latency

 RowClone: Accelerating Page Copy and Initialization 

 Subarray-Level Parallelism: Reducing Bank Conflict Impact

 Base-Delta-Immediate Compression and Linearly 
Compressed Pages: Efficient Cache & Memory Compression
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More Efficient Cache Utilization

 Compressing redundant data
 Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons, Michael A. Kozuch, and Todd C. 

Mowry,
"Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches"
Proceedings of the 21st ACM International Conference on Parallel Architectures and Compilation 
Techniques (PACT), Minneapolis, MN, September 2012. Slides (pptx)

 Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur Mutlu, Michael A. Kozuch, Phillip B. 
Gibbons, and Todd C. Mowry,
"Linearly Compressed Pages: A Low-Complexity, Low-Latency Main Memory Compression 
Framework"
Proceedings of the 46th International Symposium on Microarchitecture (MICRO), Davis, CA, December 
2013. Slides (pptx) (pdf) Lightning Session Slides (pptx) (pdf)

 Reducing pollution and thrashing
 Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry,

"The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and 
Thrashing"
Proceedings of the 21st ACM International Conference on Parallel Architectures and Compilation 
Techniques (PACT), Minneapolis, MN, September 2012. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/bdi-compression_pact12.pdf
http://www.pactconf.org
http://users.ece.cmu.edu/~omutlu/pub/pekhimenko_pact12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_micro13.pdf
http://www.microarch.org/micro46/
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http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_pekhimenko_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/eaf-cache_pact12.pdf
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http://users.ece.cmu.edu/~omutlu/pub/seshadri_pact12_talk.pptx


Key Data Patterns in Real Applications
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0x00000000 0x00000000 0x00000000 0x00000000 …

0x000000FF 0x000000FF 0x000000FF 0x000000FF …

0x00000000 0x0000000B 0x00000003 0x00000004 …

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 …

Zero Values: initialization,  sparse matrices, NULL pointers

Repeated Values: common initial values, adjacent pixels

Narrow Values: small values stored in a big data type

Other Patterns: pointers to the same memory region

Low Dynamic Range:

Differences between values are significantly 
smaller than the values themselves



32-byte Uncompressed Cache Line

Key Idea: Base+Delta (B+Δ) Encoding
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0xC04039C0 0xC04039C8 0xC04039D0 … 0xC04039F8

4 bytes

0xC04039C0

Base

0x00

1 byte

0x08

1 byte

0x10

1 byte

… 0x38
12-byte 
Compressed Cache Line

20 bytes saved
 Fast Decompression: 

vector addition

 Simple Hardware: 
arithmetic and comparison

 Effective: good compression ratio



Can We Do Better?

 Uncompressible cache line (with a single base): 

 Key idea: 
Use more bases, e.g., two instead of one

 Pro: 
 More cache lines can be compressed

 Cons:
 Unclear how to find these bases efficiently
 Higher overhead (due to additional bases)
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0x00000000 0x09A40178 0x0000000B 0x09A4A838 …



How to Find Two Bases Efficiently?

1. First base - first element in the cache line

2. Second base - implicit base of 0

Advantages over 2 arbitrary bases:

 Better compression ratio

 Simpler compression logic
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 Base+Delta part

 Immediate part

Base-Delta-Immediate (BΔI) Compression



Agenda

 Major Trends Affecting Main Memory

 The Memory Scaling Problem and Solution Directions

 New Memory Architectures

 Enabling Emerging Technologies: Hybrid Memory Systems

 How Can We Do Better?

 Summary
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Solution 2: Emerging Memory Technologies

 Some emerging resistive memory technologies seem more 
scalable than DRAM (and they are non-volatile)

 Example: Phase Change Memory

 Data stored by changing phase of material 

 Data read by detecting material’s resistance

 Expected to scale to 9nm (2022 [ITRS])

 Prototyped at 20nm (Raoux+, IBM JRD 2008)

 Expected to be denser than DRAM: can store multiple bits/cell

 But, emerging technologies have (many) shortcomings

 Can they be enabled to replace/augment/surpass DRAM?
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Charge vs. Resistive Memories

 Charge Memory (e.g., DRAM, Flash)

 Write data by capturing charge Q

 Read data by detecting voltage V

 Resistive Memory (e.g., PCM, STT-MRAM, memristors)

 Write data by pulsing current dQ/dt

 Read data by detecting resistance R 
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Limits of Charge Memory

 Difficult charge placement and control

 Flash: floating gate charge

 DRAM: capacitor charge, transistor leakage

 Reliable sensing becomes difficult as charge storage unit 
size reduces

100



Promising Resistive Memory Technologies

 PCM

 Inject current to change material phase

 Resistance determined by phase

 STT-MRAM

 Inject current to change magnet polarity

 Resistance determined by polarity

 Memristors/RRAM/ReRAM

 Inject current to change atomic structure

 Resistance determined by atom distance
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Phase Change Memory: Pros and Cons

 Pros over DRAM

 Better technology scaling (capacity and cost)

 Non volatility

 Low idle power (no refresh)

 Cons

 Higher latencies: ~4-15x DRAM (especially write)

 Higher active energy: ~2-50x DRAM (especially write)

 Lower endurance (a cell dies after ~108 writes)

 Reliability issues (resistance drift)

 Challenges in enabling PCM as DRAM replacement/helper:

 Mitigate PCM shortcomings

 Find the right way to place PCM in the system
102



PCM-based Main Memory (I)

 How should PCM-based (main) memory be organized?

 Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]: 

 How to partition/migrate data between PCM and DRAM
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PCM-based Main Memory (II)

 How should PCM-based (main) memory be organized?

 Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]: 

 How to redesign entire hierarchy (and cores) to overcome 
PCM shortcomings
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An Initial Study: Replace DRAM with PCM

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 
Memory as a Scalable DRAM Alternative,” ISCA 2009.

 Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)

 Derived “average” PCM parameters for F=90nm
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Results: Naïve Replacement of DRAM with PCM

 Replace DRAM with PCM in a 4-core, 4MB L2 system

 PCM organized the same as DRAM: row buffers, banks, peripherals

 1.6x delay, 2.2x energy, 500-hour average lifetime

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 
Scalable DRAM Alternative,” ISCA 2009.
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Architecting PCM to Mitigate Shortcomings

 Idea 1: Use multiple narrow row buffers in each PCM chip

 Reduces array reads/writes  better endurance, latency, energy

 Idea 2: Write into array at

cache block or word 

granularity

 Reduces unnecessary wear

108

DRAM PCM



Results: Architected PCM as Main Memory 

 1.2x delay, 1.0x energy, 5.6-year average lifetime

 Scaling improves energy, endurance, density

 Caveat 1: Worst-case lifetime is much shorter (no guarantees)

 Caveat 2: Intensive applications see large performance and energy hits

 Caveat 3: Optimistic PCM parameters?
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Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies



One Option: DRAM as a Cache for PCM

 PCM is main memory; DRAM caches memory rows/blocks

 Benefits: Reduced latency on DRAM cache hit; write filtering

 Memory controller hardware manages the DRAM cache

 Benefit: Eliminates system software overhead

 Three issues:

 What data should be placed in DRAM versus kept in PCM?

 What is the granularity of data movement?

 How to design a huge (DRAM) cache at low cost?

 Two solutions:

 Locality-aware data placement [Yoon+ , ICCD 2012]

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]
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DRAM vs. PCM: An Observation

 Row buffers are the same in DRAM and PCM

 Row buffer hit latency same in DRAM and PCM

 Row buffer miss latency small in DRAM, large in PCM

 Accessing the row buffer in PCM is fast

 What incurs high latency is the PCM array access  avoid this

112

CPU
DRA
MCtrl

PCM 
Ctrl

Ban
k

Ban
k

Ban
k

Ban
k

Row buffer
DRAM Cache PCM Main Memory

N ns row hit
Fast row miss

N ns row hit
Slow row miss



Row-Locality-Aware Data Placement

 Idea: Cache in DRAM only those rows that

 Frequently cause row buffer conflicts  because row-conflict latency 

is smaller in DRAM

 Are reused many times  to reduce cache pollution and bandwidth 

waste

 Simplified rule of thumb:

 Streaming accesses: Better to place in PCM 

 Other accesses (with some reuse): Better to place in DRAM

 Yoon et al., “Row Buffer Locality-Aware Data Placement in Hybrid 
Memories,” ICCD 2012 Best Paper Award.
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Row-Locality-Aware Data Placement: Results
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31% better performance than all PCM, 
within 29% of all DRAM performance

31%

29%



Aside: STT-MRAM as Main Memory

 Magnetic Tunnel Junction (MTJ)

 Reference layer: Fixed

 Free layer: Parallel or anti-parallel

 Cell

 Access transistor, bit/sense lines

 Read and Write

 Read: Apply a small voltage across 
bitline and senseline; read the current. 

 Write: Push large current through MTJ.  
Direction of current determines new 
orientation of the free layer.

 Kultursay et al., “Evaluating STT-RAM as an 
Energy-Efficient Main Memory Alternative,” ISPASS 
2013.

Reference Layer

Free Layer

Barrier

Reference Layer

Free Layer

Barrier

Logical 0

Logical 1

Word Line

Bit Line

Access
Transistor

MTJ

Sense Line



Aside: STT-MRAM: Pros and Cons

 Pros over DRAM

 Better technology scaling

 Non volatility

 Low idle power (no refresh)

 Cons

 Higher write latency

 Higher write energy

 Reliability?

 Another level of freedom

 Can trade off non-volatility for lower write latency/energy (by 
reducing the size of the MTJ)
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Architected STT-MRAM as Main Memory

 4-core, 4GB main memory, multiprogrammed workloads

 ~6% performance loss, ~60% energy savings vs. DRAM
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Principles (So Far)

 Better cooperation between devices and the system

 Expose more information about devices to upper layers

 More flexible interfaces

 Better-than-worst-case design

 Do not optimize for the worst case

 Worst case should not determine the common case

 Heterogeneity in design (specialization, asymmetry)

 Enables a more efficient design (No one size fits all) 
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Other Opportunities with Emerging Technologies

 Merging of memory and storage

 e.g., a single interface to manage all data

 New applications

 e.g., ultra-fast checkpoint and restore

 More robust system design

 e.g., reducing data loss

 Processing tightly-coupled with memory

 e.g., enabling efficient search and filtering
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Coordinated Memory and Storage with NVM (I)

 The traditional two-level storage model is a bottleneck with NVM
 Volatile data in memory  a load/store interface

 Persistent data in storage  a file system interface

 Problem: Operating system (OS) and file system (FS) code to locate, translate, 
buffer data become performance and energy bottlenecks with fast NVM stores
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Coordinated Memory and Storage with NVM (II)

 Goal: Unify memory and storage management in a single unit to 
eliminate wasted work to locate, transfer, and translate data

 Improves both energy and performance

 Simplifies programming model as well
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The Persistent Memory Manager (PMM)

 Exposes a load/store interface to access persistent data

 Applications can directly access persistent memory  no conversion, 

translation, location overhead for persistent data 

 Manages data placement, location, persistence, security

 To get the best of multiple forms of storage

 Manages metadata storage and retrieval

 This can lead to overheads that need to be managed

 Exposes hooks and interfaces for system software

 To enable better data placement and management decisions

 Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.
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The Persistent Memory Manager (PMM)
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Performance Benefits of a Single-Level Store
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Results for PostMark
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~24X



Energy Benefits of a Single-Level Store
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Transparent Hybrid Non-Volatile Memory

 Problem: How do you provide consistency and prevent 
data corruption in NVM upon a system crash?

 Goal: Provide efficient programmer-transparent 
consistency in hybrid NVM
 Efficiency: use hybrid DRAM/NVM for high performance

 DRAM is not (only) a transparent cache 

 Transparency: no library APIs or explicit interfaces to access 

NVM; just loads and stores

 Makes life easier for the programmer

 Easier to support legacy code and hypervisors 

 Challenges to Solve

 How to guarantee consistency

 How to maximize performance
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THNVM: Solution Overview
 Idea 1: Transparent checkpointing

 Need to overlap checkpointing and execution

 Idea 2: Differentiated consistency schemes for DRAM and 
NVM

 Writeback: buffer sequential writes in DRAM

 Address Remapping: handle random writes in NVM

 Idea 3: Dynamic migration of data for performance

 High write-locality data placed in DRAM
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Summary: Memory/Storage Scaling

 Memory scaling problems are a critical bottleneck for system 
performance, efficiency, and usability

 New memory/storage + compute architectures
 Rethinking DRAM; processing close to data; accelerating bulk operations

 Enabling emerging NVM technologies 
 Hybrid memory systems with automatic data management

 Coordinated management of memory and storage with NVM

 System-level memory/storage QoS

 Three principles are essential for scaling

 Software/hardware/device cooperation

 Better-than-worst-case design

 Heterogeneity (specialization, asymmetry)
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Related Videos and Course Materials

 Computer Architecture Lecture Videos on Youtube

 https://www.youtube.com/playlist?list=PL5PHm2jkkXmidJOd59R
Eog9jDnPDTG6IJ

 Computer Architecture Course Materials

 http://www.ece.cmu.edu/~ece447/s13/doku.php?id=schedule

 Advanced Computer Architecture Course Materials

 http://www.ece.cmu.edu/~ece740/f13/doku.php?id=schedule

 Advanced Computer Architecture Lecture Videos on Youtube

 https://www.youtube.com/playlist?list=PL5PHm2jkkXmgDN1PLw
OY_tGtUlynnyV6D
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Referenced Papers

 All are available at

http://users.ece.cmu.edu/~omutlu/projects.htm

http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en

133

http://users.ece.cmu.edu/~omutlu/projects.htm
http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en


Rethinking Memory/Storage System Design 

Onur Mutlu

onur@cmu.edu

http://users.ece.cmu.edu/~omutlu/

mailto:onur@cmu.edu
http://users.ece.cmu.edu/~omutlu/


Aside: 

Self-Optimizing Memory Controllers

Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 
"Self Optimizing Memory Controllers: A Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on Computer Architecture (ISCA), 

pages 39-50, Beijing, China, June 2008. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/ipek_isca08_talk.pptx

