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Abstract 

Current integration trends embrace the prosperity of 
single-chip multi-core processors. Although multi-core 
processors deliver significantly improved system 
throughput, single-thread performance is not addressed. In 
this paper, we propose a new execution paradigm that 
utilizes multi-cores on a single chip collaboratively to 
achieve high performance for single-thread memory-
intensive workloads while maintaining the flexibility to 
support multithreaded applications. 

The proposed execution paradigm, dual-core execution,
consists of two superscalar cores (a front and back 
processor) coupled with a queue. The front processor 
fetches and preprocesses instruction streams and retires 
processed instructions into the queue for the back 
processor to consume. The front processor executes 
instructions as usual except for cache-missing loads, which 
produce an invalid value instead of blocking the pipeline. 
As a result, the front processor runs far ahead to warm up 
the data caches and fix branch mispredictions for the back 
processor. In-flight instructions are distributed in the front 
processor, the queue, and the back processor, forming a 
very large instruction window for single-thread out-of-
order execution. The proposed architecture incurs only 
minor hardware changes and does not require any large 
centralized structures such as large register files, issue 
queues, load/store queues, or reorder buffers. Experimental 
results show remarkable latency hiding capabilities of the 
proposed architecture, even outperforming more complex 
single-thread processors with much larger instruction 
windows than the front or back processor. 

1. Introduction 

With current integration trends, single-chip multi-core 
or chip multiprocessor (CMP) architectures are increasingly 
adopted to deliver high system throughput. As current CMP 
architectures only exploit explicit parallelism, however, 
single-thread performance is not enhanced and idle 
processor cores are resulting if a system lacks sufficient 
parallel tasks. In this paper, we propose a new execution 
paradigm to utilize multi-cores on a single chip 
collaboratively to improve the performance for single-
thread workloads while maintaining the flexibility to 
support multithreaded applications. 

One of the most significant obstacles to single-thread 
performance is the memory wall problem [39]: the 
widening speed gap between memory and processor cores 
considerably undermines the performance of current 
microprocessors even with carefully designed memory 
hierarchy and prefetching mechanisms. Out-of-order 
execution can successfully hide long latencies if there are 
enough independent instructions to process 
[1],[11],[18],[20]. With the projected memory access 
latency being as high as hundreds of processor clock 
cycles, an instruction window needs to be very large to 
keep track of a high number of in-flight instructions. 
Recently, there has been active research toward such a 
goal, including large issue queues [5], large register files 
[3],[41], scalable load/store queues [26],[31], approaches 
to eliminate the centralized reorder buffer (ROB) using 
checkpoint and recovery [1],[11],[12], and non-blocking 
continual flow pipelines [36]. The enlarged instruction 
window, on the other hand, often results in extra pipeline 
stages to accommodate the latency requirement to access 
those enlarged structures, which incur higher costs for 
branch mispredictions. 

This paper, however, takes a fundamentally different 
approach. Instead of scaling current superscalar designs, 
we propose a novel way to utilize multi-cores on a single 
chip collaboratively to construct a large, distributed 
instruction window while eliminating the necessity for 
any large centralized structures. Figure 1 presents a high-
level overview of the proposed scheme, named dual-core 
execution (DCE) as it is built upon two superscalar cores 
coupled with a queue. 

Figure 1.  A high-level overview of dual-core execution 
(DCE): in-order fetch, in-order retire, and out-of-
order processing. 

The first superscalar core in Figure 1, called the front 
processor, fetches an instruction stream in order and 
executes instructions in its normal manner except for 
those load instructions resulting in a long-latency cache 
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miss. An invalid value is used as the fetched data to avoid 
the cache-missing load blocking the pipeline, similar to the 
run-ahead execution mode in [13],[25]. When instructions 
retire (in order) from the front processor, they are inserted 
into the result queue and will not update the memory. The 
second superscalar core, called the back processor,
consumes the preprocessed instruction stream from the 
result queue and provides the precise program state (i.e., 
the architectural register file, program counter, and memory 
state) at its retirement stage. In DCE, the front processor 
benefits the back processor in two major ways: (1) a highly 
accurate and continuous instruction stream as the front 
processor resolves most branch mispredictions during its 
preprocessing, and (2) the warmed up data caches as the 
cache misses initiated by the front processor become 
prefetches for the back processor. The front processor runs 
far ahead of the back processor since it is not stalled by 
long-latency cache misses (i.e., a virtually ideal L2 cache) 
and the back processor also runs faster with the assists from 
the front processor. 

In a high-level view of DCE as shown in Figure 1, 
instructions are fetched and retired in-order, the same as 
any standard superscalar processor. The two processors and 
the result queue keep a large number of in-flight 
instructions, forming a very large distributed instruction 
window. Moreover, DCE provides an interesting non-
uniform way to handle branches. The branches that depend 
on short latency operations are resolved promptly at the 
front processor while only the branches depending on cache 
misses are deferred to the back processor. Early branch 
resolution is also proposed in out-of-order commit 
processors using checkpointing and early release of ROB 
entries [11],[12]. As DCE is built upon relatively simple 
cores, such non-uniform branch handling is more efficient 
compared to an upsized single-thread processor with a 
deeper pipeline. In addition, as DCE does not need any 
centralized rename-map-table checkpoints, the number of 
outstanding branches no longer limits the instruction 
window size. 

In large-window processors including those formed with 
checkpointing, aggressive memory disambiguation 
becomes critical as each misprediction affects a large 
number of in-flight instructions and potentially incurs high 
misprediction penalty. DCE, in contrast, has an appealing 
feature that it can compensate conservative disambiguation 
schemes to achieve similar performance to DCE with more 
aggressive ones (see Section 5.6). 

The remainder of the paper is organized as follows. 
Section 2 addresses related work and highlights the 
differences between some related research and our work. 
The detailed design of DCE is described in Section 3. The 
simulation methodology is presented in Section 4 and the 
experimental results are discussed in Section 5. Section 6 
concludes the paper and discusses future work. 

2. Related Work 

Dual-core execution (DCE) is motivated mainly from 
two categories of research work: run-ahead execution and 
leader/follower architectures. 

2.1. DCE and run-ahead execution 

In run-ahead execution [13],[25], when an instruction 
window is blocked by a long latency cache miss, the state 
of the processor is checkpointed and the processor enters 
the ‘run-ahead’ mode by providing an invalid result for 
the blocking instruction and letting it graduate from the 
instruction window. In this way, the processor can 
continue to fetch, execute, and pseudo retire instructions 
(i.e., retire instructions without updating the architectural 
state). When the blocking instruction completes, the 
processor returns to the ‘normal’ mode by restoring the 
checkpointed state. The instructions executed in the ‘run-
ahead’ mode will be re-fetched and re-executed in the 
‘normal’ mode and such re-execution is expected to be 
much faster as the caches are warmed up by the execution 
in the ‘run-ahead’ mode. Since each transition from the 
‘run-ahead’ mode to the ‘normal’ mode involves pipeline 
squashing and re-fetching, it incurs similar performance 
cost to a branch misprediction. Although early return from 
the ‘run-ahead’ to ‘normal’ mode can hide such latency, it 
limits the distance of effective run-ahead execution [25]. 

The front processor in DCE processes instructions 
similar to the ‘run-ahead’ mode but it eliminates the 
checkpointing and mode transitions. Compared to run-
ahead execution [25], DCE is developed to overcome its 
two important limitations and provide the flexibility for 
multithreaded processing. The two limitations of run-
ahead execution are: (1) Speculative execution in the ‘run-
ahead’ mode always stops once the processor returns to 
the ‘normal’ mode even such speculative execution is on 
right paths and generates correct prefetch addresses. (2) 
For miss-dependent misses (e.g., cache misses due to the 
pointer-chasing code: p->next->next->…), each miss will 
cause the processor to enter the ‘run-ahead’ mode. If few 
instructions exist between such misses, the processor will 
pre-execute the same set of future instructions multiple 
times [23]. The first limitation affects the aggressiveness 
of run-ahead execution while the second one wastes the 
processor resources. DCE eliminates all these limitations 
seamlessly and achieves higher performance as discussed 
in Section 3 and Section 5.1. 

In continual flow pipelines (CFP) [36], load misses and 
their dependent instructions (called slice instructions) are 
drained out of the issue queue and register file by using 
invalid values as fetched data, similar to run-ahead 
execution. But, unlike run-ahead execution, the slice 
instructions are stored in a slice processing unit rather 
than being retired from the pipeline and the subsequent 
independent instructions continue their execution 
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speculatively. When the cache misses are repaired, the slice 
instructions will re-enter the execution pipeline and commit 
the speculative results. In this way, the work during run-
ahead execution is not discarded and there is no need to re-
fetch and re-execute those instructions. To maintain such 
speculative data, however, CFP requires coarse-grain 
retirement and a large centralized load/store queue (a 
hierarchical store queue is proposed to reduce its latency 
criticality [1],[36] and a new improvement is proposed in 
[16]). Compared to CFP, DCE eliminates such large 
centralized structures and builds upon much simpler 
processor cores (e.g., smaller register files). The fast branch 
resolution at the front processor (due to its simpler, 
shallower pipeline) reduces the cost of most branch 
mispredictions. Since DCE does not need any centralized 
rename-map-table checkpoints, it also eliminates the 
complexity for estimating branch prediction confidence and 
creating checkpoints only for low-confidence branches, as 
needed in CFP. Interestingly, a recent study [24] shows that 
the performance benefits of reusing the results in run-ahead 
execution are limited and may not justify the required 
complexity. Our results confirm such observations from a 
different perspective (see Section 5.3). 

It has been proposed to use value prediction to further 
improve the effectiveness of run-ahead execution 
[7],[8],[19],[42]. Similarly, DCE can also benefit from such 
optimizations and achieve higher performance.  

2.2. DCE and leader/follower architectures 

Running a program on two processors, one leading and 
the other following, finds its roots in decoupled 
architectures [34], which break a program into memory 
accesses and subsequent computations. In DCE, the front 
processor not only prefetches the data but also provides a 
highly accurate instruction stream by fixing branch 
mispredictions for the back processor. Moreover, all this is 
accomplished without the difficult task of partitioning the 
program. 

Slipstream processors [27],[37] are leader/follower 
architectures proposed to accelerate sequential programs 
similar to DCE and share a similar high-level architecture: 
two processors connected through a queue. However, DCE 
and slipstream processors achieve their performance 
improvements in quite different ways. In slipstream 
processors, the A-stream runs a shorter program based on 
the removal of ineffectual instructions while the R-stream 
uses the A-stream results as predictions to make faster 
progress. DCE, however, relies on the front processor to 
accurately prefetch data into caches. Conceptually, the R-
stream in slipstream processors acts as a fast follower due 
to the near oracle predictions from the A-stream while the 
A-stream is a relatively slower leader since long-latency 
cache-misses still block its pipeline unless they are detected 
ineffectual and removed from the A-stream. Therefore, it is 
not necessary for the R-stream to take advantage of 

prefetching from the A-stream to make even faster 
progress [29]. (In [27],[37], the A-stream and R-stream 
own separate program context and the A-stream has no
prefetching effect on the R-stream). In DCE, the front 
processor is a much faster leader as it operates on a 
virtually ‘ideal’ L2 cache while the back processor is a 
slower follower. A detailed performance comparison 
between slipstream processing and DCE is presented in 
Section 5.3. 

Master/Slave speculative parallelization (MSSP) 
[44],[45] extends slipstream processing with a compiler 
generated master thread (or the A-stream) and the 
parallelization of the R-stream. Speculative parallelization 
[35] can also be used in DCE to improve the back 
processing of DCE and is left as future research work. 

“Flea-Flicker” two pass pipelining [4] is proposed to 
handle the uncertain latency of load instructions in in-
order microarchitectures and it is closest to DCE in terms 
of integrating run-ahead execution and leader/follower 
architectures. In the Flea-Flicker design, two pipelines (A-
pipe and B-pipe) are introduced and coupled with a queue. 
The A-pipe executes all instructions without stalling. 
Instructions with one or more unready source operands 
skip the A-pipe and are stored in the coupling queue. The 
B-pipe executes instructions deferred in the A-pipe and 
incorporates the A-pipe results. Compared to this work, 
DCE is based on out-of-order execution, thereby having 
higher latency hiding. More importantly, flea-flicker tries 
to reuse the work of the A-pipe (i.e., not discarding the 
work in run-ahead execution, similar to CFP [36]), while 
in DCE the front processor preprocesses instructions and 
the back processor re-executes those instructions. Such re-
execution relieves the front processor of correctness
constraints, enabling it to run further ahead with much less 
complexity overhead (e.g., the centralized memory order 
bookkeeping and the coupling result store in flea-flicker 
or the large centralized store queue in CFP). The 
elimination of such centralized structures is the reason 
why DCE is a much more scalable and complexity-
effective design.  

Pre-execution/pre-computation using multithreaded 
architectures [2],[10],[22],[30],[38],[43] can be viewed as 
another type of leader/follower architecture. A pre-
execution thread is constructed using either hardware or 
the compiler and leads the main thread to provide timely 
prefetches. In a multithreaded architecture, however, pre-
execution threads and the main thread compete for a 
shared instruction window and a cache miss in any thread 
will block its execution and potentially affects other 
threads through resource competition. In future execution 
based on chip multiprocessors [15], an otherwise idle core 
pre-executes future loop iterations using value prediction 
to perform prefetching for the main thread. 

Coupling two (or more) relatively simple processors to 
form a large instruction window for out-of-order 
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processing was originated in multiscalar processors [35] 
and DCE provides a complexity-effective way to construct 
such a window while eliminating elaborate inter-thread (or 
inter-task) register/ memory communication. 

3. Dual-Core Execution 

3.1. Detailed architectural design 

In this section, we describe the design of dual-core 
execution based on MIPS R10000 [40] style superscalar 
microarchitectures, i.e., both the front and back processor is 
a MIPS R10000 processor. The basic pipeline of the MIPS 
R10000 style microarchitecture is shown in Figure 2. For 
memory operations, the execution stage is replaced with an 
address generation (AGEN) stage and two stages of 
memory access (MEM1 and MEM2). 

Figure 2. A MIPS R10000 style pipeline. 

The proposed design of DCE is shown in Figure 3. It 
contains a few key components and next we discuss how 
they operate and what hardware changes are necessary to 
support the intended operations. 
Front Superscalar Core

The front processor is modified so that long latency 
operations do not block its instruction window. Similar to 
run-ahead execution [25], an invalid (INV) bit is added to 
each physical register. When an INV bit is set, it indicates 
that the corresponding register value is invalid. For long 
latency operations such as cache-missing loads, an invalid 
value is used to substitute the data that are being fetched 

from memory by setting the INV bit of the destination 
register(s). Unlike run-ahead execution, which sets the 
INV bit when the cache-missing load reaches the head of 
the instruction window, the front processor sets the INV 
bit immediately after a load is detected to be a long 
latency miss so that its dependent instructions are 
awakened promptly. Executing instructions with an INV 
source register will propagate the INV bit except for 
branches and stores. If a branch instruction uses an INV 
register, its prediction will be used as the resolved branch 
target and the corresponding rename table checkpoint is 
reclaimed as if the prediction is correct. A store 
instruction becomes a nop if its address is invalid. If the 
value of a store instruction is invalid, the corresponding 
entry of the load/store queue (LSQ) will be marked as 
invalid (i.e., there is an INV bit for each LSQ entry) and 
the INV bit can be propagated via store-load forwarding 
using LSQ. Such INV forwarding is the only change to the 
LSQ in the front processor. In addition to the LSQ, an 
INV bit can also be forwarded using a run-ahead cache, as 
will be discussed later. 

Instructions retire in-order as usual in the front 
processor (i.e., its architectural register map table is 
updated and the physical register in the previous map is 
reclaimed) except store instructions and instructions 
raising exceptions. When a store instruction retires, it 
either behaves like a nop (if there is no run-ahead cache) 
or updates the run-ahead cache (if it exists) but it will not
write to the data caches or memory (only the back 
processor writes to the data caches). The retired 
instructions, at the same time, are sent to the result queue. 
The exception handling at the front processor is disabled 
since the precise state is maintained by the back processor. 

As the front processor does not actually commit store 
instructions to update the memory, the data is lost once a 
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store instruction retires since the corresponding LSQ entry 
is also de-allocated. As a result, subsequent load 
instructions in the front processor could fetch stale data 
from the data caches or memory. To solve such a problem, 
a small cache can be used as proposed for run-ahead 
execution [25]. Here, we use the same term ‘run-ahead 
cache’ and will investigate its performance impact in our 
experiments (see Section 5). The run-ahead cache is 
organized similar to that described in [25]. It holds both 
data and INV bits. When a store instruction with a valid 
address retires, it updates the run-ahead cache and sets the 
INV bit(s) (one for each byte) if the store value is invalid. 
If the size of the store data (e.g., a byte) is less than the 
block size of the run-ahead cache, the rest of the block is 
fetched from the data cache. When a block is replaced from 
the run-ahead cache, it is simply dropped and is never
written to the data caches. When a store with an INV 
address retires, it acts as a nop. When a load executes, the 
LSQ, run-ahead cache, and L1 data cache (D-cache) are 
queried. The priority order is the LSQ, run-ahead cache, 
and L1 D-cache based on the assumption that the data in 
the run-ahead cache are more up-to-date than the L1 D-
cache since the D-caches are only updated by the back 
processor. 
Result Queue

The result queue is a first-in first-out structure, which 
keeps the retired instruction stream (both binary 
instructions and their PCs) from the front processor, 
thereby providing a continuous and highly accurate 
instruction stream to the back processor, substituting its I-
cache. In this paper, we choose to keep instructions in their 
original format in the queue. Although keeping the 
decoded/renamed version can bypass some of the front-end 
processing of the back processor, the purpose of this paper 
is to introduce DCE and to evaluate its performance in such 
a design that incurs minimum hardware changes. 

The instructions in the result queue are not associated 
with any centralized resource, unlike in-flight instructions 
in a conventional superscalar design, which reserve their 
allocated resources such as physical registers, load/store 
queue entry, rename table checkpoints, etc. Therefore, the 
result queue provides a much more scalable, complexity-
effective way to achieve a very large instruction window. 
Back Superscalar Core

A multiplexer (MUX) is added in front of the fetch unit 
of the back processor and its control signal (mp) directs 
whether instructions to be fetched from the result queue 
(single-thread mode) or from the back processor’s 
instruction cache (multithread mode). In this way, DCE has 
the flexibility to serve both single-thread and multithreaded 
workloads. 

In the single-thread mode, since the result queue 
provides the retired instruction stream from the front 
processor, the branch predictor at the back processor is not 
used and the branch targets computed at the front processor 

simply become the corresponding predictions. Once the 
instructions are fetched, the back processor processes 
them in its normal way except for mispredicted branches, 
as shown in Figure 3. When a branch misprediction is 
detected at the end of the execution stage, all the 
instructions in the back processor are squashed and the 
fetch unit is halted. At the same time, the front processor 
is notified to squash all its instructions and the result 
queue is emptied as well. As the front processor has lost 
the register states to recover from, the back processor’s 
architectural state is used to synchronize the front 
processor. To do so, the program counter (PC) of the back 
processor is copied to the front processor, the back 
processor’s architectural register values are copied over to 
the front processor’s physical register file, the renaming 
table of the front processor is reset, and the run-ahead 
cache in the front processor is invalidated (i.e., set to be 
empty).  Note that there is no need to synchronize 
memory states at the front processor as only the back 
processor writes to D-caches and all the front processor 
needs to do is to invalidate its run-ahead cache. 

As instructions retire in-order and un-speculatively in 
the back processor, it provides the precise state for 
exception handling. Store instructions update data caches 
at the retire stage and there is no change to the LSQ. 
Memory Hierarchy

In Figure 3, the back processor and the front processor 
use separate L1 data caches and a shared unified L2 
cache. The L1 D-cache misses at one processor are used 
as prefetch requests for the L1 D-cache in the other 
processor. The stores in the back processor update both L1 
D-caches at the retirement stage. The dirty blocks 
replaced from the front processor’s L1 D-cache are simply 
dropped (in the single thread mode). The separate L1 D-
caches (and the run-ahead cache) need not to be coherent 
(i.e., no added complexity to maintain such coherence) as 
there is no correctness requirement for the front processor. 
Collaboration among the Front Processor, the Result 
Queue, and the Back Processor

In DCE, a program is fetched and preprocessed 
aggressively by the front processor: the long latency 
operations (i.e., cache misses) are initiated but not 
completed; and independent branch mispredictions are 
resolved. The result queue buffers the in-order, accurate 
instruction stream retired from the front processor. The 
back processor fetches instructions from the result queue 
and executes them in its normal way. Those long latency 
cache misses initiated long ago at the front processor 
become prefetches for the back processor. When the back 
processor is stalled due to another long latency operation, 
the front processor continues its preprocessing until the 
result queue is eventually full. At this time, long latency 
operations in the front processor will operate in their 
normal way instead of producing an invalid value. When 
the back processor detects that the front processor deviates 
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from the right path due to a branch misprediction 
/misresolution, the front processor is rewound to the same 
execution state as the back processor. 

The policy of determining whether a long latency 
operation should use an invalid value affects the 
aggressiveness of the front processor. The default policy 
used in our design has two criteria: an L2 cache miss plus 
the result queue not being full. In the multithreaded mode, 
such invalidation is disabled at the front processor and 
stores update the D-caches normally when they retire. The 
back processor fetches instructions from its I-cache instead 
of the result queue, writes only to its own caches, and stops 
interfering with the front processor via branch 
misprediction handling. 
Transition between Single- and Multi-thread Modes

DCE forms a very large instruction window to hide 
memory access latencies. For computation-intensive 
workloads, however, DCE is less efficient as not many 
cache misses can be invalidated at the front processor and 
the multi-thread mode should be used. Fortunately, a 
simple L2 miss counter can easily determine the memory 
intensiveness of a workload and set the single-/multi-thread 
mode accordingly. Other techniques proposed in [23] can 
also help to determine whether the single- or multi-thread 
mode should be used.  

The transition from the single- to multi-thread mode is 
similar to branch misprediction recovery: the architectural 
state at the back processor is copied to the front processor, 
the invalidation is disabled at the front processor, and the 
back processor starts executing a new thread by fetching 
the instructions from its own I-cache. To transit from the 
multi- to single-thread mode, the architectural state at the 
front processor is copied to the back processor, the 
invalidation is enabled at the front processor, and the back 
processor starts fetching from the result queue.  
Using the Result Queue as a Value Predictor

As discussed in Section 2, the front processor in DCE is 
a faster leader due to its virtually ideal L2 data cache. To 
speed up the back processor, the result queue can be used to 
carry the execution results from the front processor and 
provide them as value predictions [21] to the back 
processor. At the back processor, those value predictions 
are verified at the execution stage and mispredictions 
initiate the same recovery process as branch mispredictions. 
As will be seen in Section 5.3, such execution-based value 
prediction achieves nearly oracle prediction accuracy and 
introduces some performance improvements but is not an 
essential part of the DCE design. 

3.2. Comparison to a single processor with very 
large centralized instruction windows 

In DCE, all components including the front processor, 
result queue, and back processor keep some in-flight 
instructions. As discussed in Section 3.1, the result queue is 
latency tolerant and easily extended to a large size. In this 

way, DCE forms a very large instruction window using 
two relatively simple superscalar cores and a simple queue 
structure. 

Compared to a single superscalar processor with a very 
large centralized instruction window, DCE has higher 
scalability, much less complexity and potentially higher 
clock speed (or the same clock speed with shallower 
pipelines). Also, its non-uniform branch resolution fits 
naturally with branches depending on variable latency 
operations: the mispredictions depending on short-latency 
operations are resolved more promptly at the front 
processor (due to its simpler, shallower pipeline) while 
only mispredictions dependent on long-latency cache-
misses are fixed at the back processor. In addition, since 
the front and back processors reclaim the rename map 
table checkpoints in their usual way when branches are 
resolved, there is no increased pressure on those 
checkpoints, as a large centralized instruction window 
would normally induce [1]. Therefore, the number of 
outstanding branches is no longer a limit for the 
instruction window. 

On the other hand, a single superscalar processor with 
a very large centralized instruction window has an 
advantage in ILP processing since any instruction in the 
window can be issued and executed once its source 
operands become available (although storing those 
speculative results is a source of the complexity, e.g., 
large LSQs). In DCE, instructions are only processed 
when they are in the back processor as the execution 
results in the front processor are dropped when they retire. 
In other words, in the instruction window formed with 
DCE, only the instructions at the ‘head’ portion can be 
issued and executed, thereby limiting ILP exploitation. 

4. Simulation Methodology 

Our simulation environment is based upon the 
SimpleScalar [6] toolset but our execution-driven timing 
simulator is completely rebuilt to model the MIPS R10000 
pipeline shown in Figure 2. The functional correctness of 
our simulator is ensured by asserting that the source and 
destination values of each retired instruction match with 
those from the functional simulator and wrong-path events 
are also faithfully simulated. The cache module (including 
the run-ahead cache) in our simulator models both data 
and tag stores. The front and back processors have the 
same configurations (but a shared L2 cache), shown in 
Table 1. The correctness assertions are disabled in the 
front processor model but enforced in the back processor 
model. The default result queue has 1024 entries (the 
performance impact of the queue size is examined in 
Section 5.5) and the default run-ahead cache is configured 
as 4kB, 4-way associative with a block size of 8 bytes.  A 
latency of 16 cycles is assumed for copying the 
architectural register values from the back processor to the 
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front processor (updating 4 registers per cycle for 64 
architectural registers) when branch mispredictions are 
resolved at the back processor (a more pessimistic case 
with a 64-cycle latency is also modeled in Section 5.1). 
Each processor has a stride-based stream buffer hardware 
prefetcher [14],[33], which has 8 4-entry stream buffers 
with a PC-based 2-way 512-entry stride prediction table. 
To ensure that the performance gains are from latency 
hiding rather than from conservative memory 
disambiguation, oracle disambiguation is modeled, 
meaning that loads will only stall when there is a prior store 
with the same address (i.e., perfect memory dependence 
prediction). In Section 5.6, we examine the impact of 
different memory disambiguation schemes and highlight an 
interesting feature of DCE to compensate conservative 
disambiguation schemes. The default DCE does not use the 
result queue to provide value predictions to the back 
processor. The performance impact of such value 
predictions is addressed in Section 5.3. 

As DCE is proposed to mainly tolerate long memory-
access latencies, we focus on memory-intensive 
benchmarks from the SPEC2000 benchmark suite [17] and 
our selection criterion is that an ideal L2 cache introduces 
at least 40% speedup. In addition, two computation-
intensive benchmarks, gap and bzip2, are also included to 
illustrate interesting aspects of DCE and other competitive 
approaches. The reference inputs are used and single 
simulation points are chosen by running the Simpoint 
toolset [32] with our Simplescalar binaries. For those 
benchmarks with prohibitively long fast forward phases, we 
chose to skip the first 700M instructions and simulate the 
next 300M instructions.  

The execution time of DCE is measured as the time 
between when the front processor starts fetching the first 
instruction and the back processor retires the last 
instruction. In our experiments, we also modeled run-ahead 
execution [13],[25] and slipstream processors [27],[37] to 
compare with DCE. Run-ahead execution is implemented 
according to [25] but with the processor model described in 
Table 1 and a 4 kB run-ahead cache. Oracle memory 
disambiguation is also modeled for both run-ahead 
execution and slipstreaming processors. For fair 
comparison with slipstream processors, we use the same 
memory hierarchy as in DCE to reflect the recent 
development of hardware-based memory duplication in 
slipstream processing [28]. The stores in A-stream are 
committed into the run-ahead cache rather than its L1 D-
cache, simplifying the IR-misprediction recovery 
controller. Other slipstream parameters are based on those 
used in [27], including a 220-entry g-share indexed IR-
predictor, a 256-instruction R-DFG, a 1024-entry delay 
buffer, and a 16-cycle IR-misprediction recovery latency. 
The fetch bypass is not implemented, i.e., the ineffectual 
instructions will still be fetched but will bypass the 
execution pipeline as presented in [37]. In this way, both 

slipstream and DCE have similar execution behavior: the 
front processor (or A-stream) fetches the complete 
program but only executes a subset of the program, while 
the back processor (or R-stream) re-executes the whole 
program. Note that slipstream and DCE have different 
ways to execute a subset of the program: the ineffectual 
instructions will bypass the processing pipeline 
completely in the slipstream paradigm while in DCE long-
latency operations and their dependents still go through 
the pipeline carrying invalid values. 
Table 1. Configuration of the front and back 
processors. 

Pipeline 3-cycle fetch stage, 3-cycle dispatch stage, 1-
cycle issue stage, 1-cycle register access stage, 1-
cycle retire stage. Minimum branch misprediction 
penalty = 9 cycles  

Instruction 
Cache 

Size=32 kB; Assoc.=2-way; Replacement = 
LRU; Line size=16 instructions; Miss penalty=10
cycles. 

Data Cache Size=32 kB; Assoc.=2-way; Replacement=LRU; 
Line size = 64 bytes; Miss penalty=10 cycles. 

Unified L2 
Cache 

Size=1024kB; Assoc.=8-way; Replacement = 
LRU; Line size=128 bytes; Miss penalty=220
cycles. 

Branch 
Predictor 

64k-entry G-share; 32k-entry BTB 

Superscalar 
Core 

Reorder buffer: 128 entries; Dispatch/issue/retire 
bandwidth: 4-way superscalar; 4 fully-symmetric 
function units; Data cache ports: 4. Issue queue: 
64 entries. LSQ: 64 entries. Rename map table 
checkpoints: 32 

Execution 
Latencies 

Address generation: 1 cycle; Memory access: 2
cycles (hit in data cache); Integer ALU ops = 1 
cycle; Complex ops = MIPS R10000 latencies 

Memory 
Disambiguation 

Perfect memory disambiguation 

Hardware 
prefetcher 

Stride-based stream buffer prefetch 

5. Experimental Results 

5.1. Latency hiding using DCE 

In this section, we evaluate the latency hiding effects of 
DCE and compare it with run-ahead execution. Figure 4 
shows the normalized execution time of a single baseline 
processor (labeled ‘base’), DCE with and without a run-
ahead cache (labeled ‘DCE’ and ‘DCE wo rc’), DCE with 
a 64-cycle latency for copying the architectural registers 
from the back to front processor (labeled ‘DCE_64’), and 
a single baseline processor with run-ahead execution 
(labeled ‘RA’). Each cycle is categorized as a pipeline 
stall with a full reorder buffer (ROB) due to cache-misses, 
a stall with a full ROB due to other factors such as long 
latency floating-point operations, a stall with an empty 
ROB, a cycle in un-stalled execution, or an execution 
cycle in the run-ahead mode (labeled ‘RA mode’). In 
DCE, such cycle time distribution is collected from the 
back processor. 
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Several important observations can be made from Figure 
4. First, for computation-intensive benchmarks, both DCE 
and run-ahead execution have limited performance 
improvement. Run-ahead execution achieves a 4.2% 
speedup for the benchmark bzip2 but incurs a 2.2% 
performance loss for the benchmark gap. In DCE, the run-
ahead cache is crucial to avoid the negative effects and it 
achieves speedups of 6.7% and 6.3% for those two 
benchmarks respectively. Since computation-intensive 
benchmarks have few L2 misses, the front processor fails to 
run much ahead as it relies on invalidating cache-missing 
loads to make faster progress. Moreover, without a run-
ahead cache, the front processor could load stale values 
after earlier store instructions are dropped. This affects 
performance when such stale values are used to determine 
branch outcomes (see Section 5.2) or to compute new load 
addresses. Here, we note that both DCE and run-ahead 
execution are not designed for computation-intensive 
workloads and a simple L2 miss counter is able to tell 
whether the dual cores should be used in the single-thread 
or multithread mode (or to allow run-ahead execution). 

Secondly, for the workloads with higher memory 
demands, DCE significantly reduces the pipeline stalls due 
to cache misses, resulting in remarkable speedups, up to 
232% (swim) and 41.3% on average (28.7% without the 
run-ahead cache). Such pipeline-stall reduction also leads 
to the reduction of both un-stalled execution time (e.g., art)
and the stall cycles due to other factors (e.g., swim). The 
reason is that turning a cache miss into a hit not only 
reduces the chances to stall the pipeline but also enables 
more computation to be overlapped. 

Thirdly, we confirm that run-ahead execution is also 
effective in hiding memory latencies for memory-intensive 
benchmarks. With run-ahead execution, the stalls due to 
cache misses are negligible since the processor enters the 
‘run-ahead’ mode and continues its un-blocked execution. 
Compared to run-ahead execution, DCE achieves 
significantly higher speedups on average (41.3% vs. 

13.2%). The key reason is that the front processor 
continues running ahead when the cache misses are 
repaired while the run-ahead execution processor has to 
stop the pre-execution and return to the normal mode. 
Moreover, DCE eliminates the mode transition penalties 
completely as discussed in Section 2.1. 

Fourthly, DCE is tolerant on the increased 
communication latency between the front and back 
processors. When the latency for copying the architectural 
register file increasing from 16 to 64 cycles, stall cycles 
with an empty ROB are increased due to higher branch 
misprediction penalties at the back processor (e.g., twolf
and vpr). However, as the front processor effectively 
resolves branch mispredictions for most benchmarks, the 
performance impact is limited and the average 
performance improvement is 36.2% over the baseline 
processor.  

5.2. Non-uniform branch handling in DCE 

In this section, we examine the impact of the non-
uniform branch resolution in DCE. Figure 5 shows the 
branch misprediction rates of a single baseline processor, 
the front and back processor in DCE with and without a 
run-ahead cache. 

With the large instruction window formed with DCE, 
the programs run along speculative paths more 
aggressively, resulting in more branch mispredictions than 
the single baseline processor. Among those branch 
mispredictions, most (92% on average with the run-ahead 
cache and 88% without) are resolved promptly at the front 
processor, implying that most mispredictions are 
independent on cache-missing loads. The mispredictions 
that indeed depend on cache misses are resolved at the 
back processor, incurring additional penalties since the 
architectural state needs to be copied from the back to the 
front processor. Fortunately, the number of such 
mispredictions is very small as shown in Figure 5, 0.65 
(1.32 if without the run-ahead cache) mispredictions per 
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1000 retired instructions on average, and their performance 
impact is therefore limited. The run-ahead cache at the 
front processor helps to resolve branch predictions more 
accurately at the front processor and is the main reason why 
DCE has much fewer empty-ROB stall-cycles compared to 
DCE without the run-ahead cache (e.g., gap and bzip2), as 
shown in Figure 4. 
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5.3. DCE vs. slipstream processing 

As discussed in Section 2.2, DCE and slipstream 
processors share similar leader/follower architectures 
although they achieve the performance gains in quite 
different ways. Figure 6 shows the execution time of DCE 
and slipstream processors normalized to the execution time 
of the single baseline processor. The slipstreaming results 
are labeled ‘SS’ and the fractions of instruction removal are 
included for each benchmark. Due to the leader/follower 
characteristics, execution time is broken down based on the 
utilization of the result queue (or the delay buffer in 
slipstreaming processing) rather than pipeline utilization. If 
the result queue is full (labeled ‘full’), it means that the 
leader retires instructions at a faster rate than the follower 
can consume. If the result queue is empty (labeled 
‘empty’), it shows that the follower runs faster than the 
leader, leaving the leader to be the bottleneck. If the result 
queue is neither full nor empty (labeled ‘other’), the leader 
and follower run at similar speeds. In Figure 6, we also 
include the execution results of DCE with value prediction 
support, in which the result queue is used to carry the 
execution results from the front processor as value 
predictions to the back processor. Such value prediction is 
used in slipstream processors but not in the default DCE. 

From Figure 6, we see that there is a significant amount 
of ineffectual dynamic instructions in each benchmark, 
confirming the insight from [37]. Removing them, 
however, does not necessarily lead to a much faster A-
stream processing rate. As shown in Figure 6, the delay 
buffer is empty for a large portion of the execution time. 

The main reason is that given the ever increasing memory 
access latency, pipeline stalls due to cache misses 
dominate the execution time. Unless those cache-missing 
loads are removed, the A-stream can not run much faster. 
Taking the benchmark mcf as an example, over 32% of its 
dynamic instructions (including some cache-missing 
loads) are removed from the A-stream. But there are still 
many cache misses blocking the A-stream as we failed to 
detect them as ineffectual. One common case is that 
cache-missing loads lead to a store value, which will be 
referenced or overwritten after thousands of instructions. 
Since detecting whether such a store is ineffectual is 
beyond the capabilities of a 256-instruction R-DFG, those 
loads cannot be removed. 
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Figure 6. Normalized execution time of DCE, DCE 
with value prediction (DCE vp), and slipstreaming 
processors (SS). 

In DCE, on the other hand, the front processor is a 
much faster leader and the result queue stays full more 
often for those benchmarks with higher L2 misses (e.g., 
mcf and art). For the benchmarks with relatively fewer L2 
misses, both the L1 misses (but L2 hits) at the front 
processor (e.g., gcc) and branch mispredictions detected at 
the back processor (e.g., twolf) contribute to the execution 
time with an empty result queue. Compared to slipstream 
processors, DCE achieves much higher performance 
improvement with less hardware complexity (i.e., no need 
for IR-detectors or IR-predictors). 

Another interesting observation from this experiment is 
that the value predictions based on the execution results 
from the leader processor achieve near oracle prediction 
accuracy (over 99.9%) in both slipstream processors and 
DCE with value prediction (‘DCE vp’). The misprediction 
penalties therefore are not the performance bottleneck and 
even higher recovery latencies can be tolerated. The 
performance benefit of such value prediction in DCE, 
however, is quite limited since the bottleneck of the back 
processor is those cache-misses that were not prefetched 
in-time by the front processor and their dependent 
instructions. The front processor can not provide 
predictions for those instructions as they were turned 
invalid. A similar observation is made in [24] to explain 
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why reusing the results during run-ahead execution has 
limited benefits. 

5.4. DCE vs. single processors with very large 
centralized instruction windows 

In this experiment, we examine a single superscalar 
processor with different instruction window sizes, 256 and 
512, and we also scale the issue queue and LSQ sizes 
accordingly (half of the ROB size). The issue width 
remains at 4 and the execution time shown in Figure 7 is 
normalized to the baseline 4/128 processor. From Figure 7, 
it can be seen that DCE using two 4/128 processors 
(labeled ‘DCE 4/128’) achieves significant speedups (up to 
141% and 13% on average) over a single 4/256 processor 
(labeled ‘base 4/256’). For the computation-intensive 
benchmarks bzip2 and gap, limited performance 
improvement is observed from both DCE and large 
centralized window processors since cache misses are not 
their performance bottleneck. For the benchmarks parser,
twolf, and vpr, DCE improves their performance but not as 
much as a single processor with a double-sized window. 
The main reason is that a superscalar with a very large 
instruction window not only provides latency hiding but 
also better ILP, as discussed in Section 3.2. 

Another interesting observation from this experiment is 
that DCE can also benefit the superscalar processors with 
large windows to achieve even better results. As shown in 
Figure 7, DCE using two 4/256 processors (labeled ‘DCE 
4/256’) performs much better than a single 4/256 processor 
(up to 148% speedup and 23% on average) and for the 
benchmarks including bzip2, gap, gcc, ammp, equake, and 
swim, it performs better than a single 4/512 processor 
(labeled ‘base 4/512’). 
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Figure 7. Performance comparison between DCE and 
single processors with large instruction windows. 

5.5. Run ahead, how far should it go? 

In DCE, the result queue size determines how far ahead 
the front processor can run when the back processor is 
stalled. As discussed in Section 3.1, the result queue is 
latency tolerant and can be easily scaled to keep a higher 

number of instructions to allow the front processor 
running further ahead. In this experiment, we examine the 
performance impact of different run-ahead distances. Both 
the front and back processors use a baseline 4/128 
processor and the execution time shown in Figure 8 is 
normalized to a single baseline 4/128 processor. 

From Figure 8, it can be seen that the best run-ahead 
distance of the front processor is benchmark dependent 
while longer queues result in higher speedups on average 
(from 32% with a 256-entry queue to 43% with a 4096-
entry queue) since they enable the front processor to pre-
execute more aggressively. For most integer benchmarks, 
including bzip2, gap, mcf, parser, twolf, and vpr, a result 
queue of 256 or 512 entries reaps most of the performance 
improvement. The benchmarks gcc, ammp, art, equake,
and swim, on the other hand, exhibit stronger scalability 
with longer run-ahead distances. One main reason why a 
longer run-ahead distance does not help is cache pollution 
resulting from incorrect or untimely prefetches from the 
front processor. Another benchmark-dependent factor is 
the number of independent cache misses in the scope of a 
run-ahead distance. 
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Figure 8. Normalized execution time of DCE with 
different result queue sizes. 

5.6. Impact of memory disambiguation on DCE 

In the previous experiments, we model oracle memory 
disambiguation to isolate the impact of latency hiding. To 
analyze the performance impact of different memory 
disambiguation schemes on DCE, we model pessimistic 
disambiguation, which delays the issue of load 
instructions until all prior store addresses are available, in 
this experiment. Pessimistic and oracle disambiguation 
represent two extremes in the spectrum of disambiguation 
schemes (i.e., no prediction and perfect prediction of 
memory dependence). An aggressive memory dependence 
prediction scheme, e.g., store-set based prediction [9], 
combined with selective reissuing is expected to achieve 
the performance close to oracle prediction since DCE does 
not incur additional penalties for memory order violations. 
For the violations detected at the front processor, the back 
processor is not affected since it processes the retired 
instruction stream from the front processor. For the 
violations detected at the back processor, it selectively re-
executes the affected instructions and does not need to 
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disturb the result queue or the front processor. In the next 
experiment, however, we will show that aggressive 
memory dependence prediction is not essential for DCE. 
Furthermore, DCE can also compensate conservative 
disambiguation schemes to achieve similar performance to 
DCE with more aggressive ones. 
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Figure 9. Normalized execution time of a baseline 
processor and DCE with different memory 
disambiguation schemes. 

Figure 9 shows the execution time of a baseline 
processor and DCE with both pessimistic and oracle 
memory disambiguation. The default configuration shown 
in Table 1 is used for the baseline processor, the front 
processor, and the back processor in DCE. Two important 
observations can be made from Figure 9. First, better 
memory disambiguation benefits both the baseline 
processor and DCE. The benchmark, bzip2, for example, 
observes a 5.6% speedup for the baseline processor and a 
2.0% speedup for DCE when pessimistic disambiguation is 
replaced with oracle disambiguation. Secondly, DCE 
achieves much higher speedups over the baseline processor 
with pessimistic disambiguation than with oracle 
disambiguation, showing that DCE is capable of 
compensating conservative memory disambiguation 
schemes. The reason is that with pessimistic 
disambiguation, the store instructions, whose addresses are 
dependent on a cache-missing load, will block the issue of 
later loads in the baseline processor. In DCE with the same 
pessimistic disambiguation, the same stores will not block 
the later loads in the front processor since the misses are 
converted into ‘hits’ with invalid values and the stores 
become nops with invalid addresses. In the back processor, 
the misses become hits due to the prefetches initiated at the 
front processor. So, the addresses of those stores are 
computed faster, allowing subsequent loads to be issued 
more promptly in the back processor. 

6. Conclusions 

In this paper, we propose a novel way to utilize multi-
cores on a single chip to form a very large instruction 
window for single-thread applications. The proposed 
execution paradigm, DCE, is built upon two small CMP 
cores, a front and a back processor, coupled with a result 

queue. The front processor acts as a fast preprocessor of 
instruction streams. It fetches and executes instructions in 
its normal way except for cache-missing loads, which 
produce an invalid value instead of blocking the pipeline. 
Since it is not stalled by cache misses, the front processor 
runs far ahead to warm up data caches and fix branch 
mispredictions for the back processor. The result queue 
buffers retired instructions from the front processor and 
feeds them into the back processor. With the assists from 
the front processor, the back processor also makes faster 
progress and provides the precise program state. The 
proposed design incurs only minor hardware changes and 
achieves remarkable latency hiding for single-thread 
memory-intensive workloads and maintains the flexibility 
to support multithreaded applications. With a queue of 
1024 entries, DCE outperforms a single-thread core by 
41% (up to 232%) on average and achieves better 
performance than run-ahead execution on every 
benchmark we studied (24% on average). 

In DCE, re-execution is used to eliminate hardware 
complexities needed for very large centralized instruction 
windows. Such re-execution, however, incurs extra power 
consumption. Currently, we are investigating two 
promising ways to improve the power efficiency of DCE 
by eliminating redundant re-execution. At the front 
processor, instructions that do not lead to cache misses or 
branch mispredictions can be bypassed directly to the 
result queue. The back processor, on the other hand, can 
reuse the front execution results more intelligently. The 
key is that for a sequence of instructions forming a data 
dependence chain, the back processor only needs to re-
execute the instructions producing the live-in values rather 
than every instruction in the chain. 
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