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Dataflow machines are programmable computers of which the hardware is optimized for 
fine-grain data-driven parallel computation. The principles and complications of data- 
driven execution are explained, as well as the advantages and costs of fine-grain 
parallelism. A general model for a dataflow machine is presented and the major design 
options are discussed. 

Most dataflow machines described in the literature are surveyed on the basis of this 
model and ita associated technology. For general-purpose computing the most promising 
dataflow machines are those that employ packet-switching communication and support 
general recursion. Such a recursion mechanism requires an extremely fast mechanism to 
map a sparsely occupied virtual space to a physical space of realistic size. No solution has 
yet proved fully satisfactory. 

A working prototype of one processing element is described in detail. On the basis of 
experience with this prototype, some of the objections raised against the dataflow 
approach are discussed. It appears that the overhead due to fine-grain parallelism can be 
made acceptable by sophisticated compiling and employing special hardware for the 
storage of data structures. Many computing-intensive programs show sufficient 
parallelism. In fact, a major problem is to restrain parallelism when machine resources 
tend to get overloaded. Another issue that requires further investigation is the 
distribution of computation and data structures over the processing elements. 
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INTRODUCTION maintain, and extend. Experimental data- 
flow machines have now been around for 

Early advocates of data-driven parallel more than a decade, but still there is no 
computers had grand visions of plentiful consensus as to whether data-driven exe- 
computing power provided by machines cution, besides being intuitively appealing, 
that were based on simple architectural is also a viable means to make these visions 
principles and that were easy to program, become reality. 
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The concept of data-driven computation 
is as old as electronic computing. It is ironic 
that the same von Neumann, who is some- 
times blamed for having created a bottle- 
neck that dataflow architecture tries to 
remove, made an extensive study of neu- 
ral nets, which have a data-driven nature. 
Asynchronously operating in/out channels, 
introduced in the 195Os, which communi- 
cate according to a ready/acknowledge pro- 
tocol, are among the first implementations 
of data-driven execution. The development, 
in the 196Os, of multiprogrammed operat- 
ing systems provided the first experience 
with the complexities of large-scale asyn- 
chronous parallelism. After exposure to 
these problems in the MULTICS project, 

Dennis [1969] developed the model of 
dataflow schemas, building on work by 
Karp and Miller [1966] and Rodriquez 
[1969]. These dataflow graphs, as they 
were later called, evolved rapidly from a 
method for designing and verifying operat- 
ing systems to a base language for a new 
architecture. The first designs for such 
machines [Dennis and Misunas 1974; 
Rumbaugh 19751 were made at Massachu- 
setts Institute of Technology. The first 
dataflow machine became operational in 
July 1976 [Davis 19791. 

The dataflow field has matured consid- 
erably in the past decade. Realistic hard- 
ware prototypes have become operational, 
experience with compiling and large-scale 
simulation has been gained, and the exe- 
cution of large programs has been studied. 
Early optimism has often been replaced by 
an appreciation of the problems involved. 
A keen understanding of these problems is, 
however, still lacking. In the years ahead 
the emphasis may shift from exploratory 
research to evaluation and to a thorough 
analysis of the problems deemed most cru- 
cial. Many of these problems have counter- 
parts in other parallel computers, certainly 
in those based on fine-grain parallelism. 

To facilitate such an analysis, we shall 
attempt to summarize the work done so far. 
A clear view of the common properties of 
different dataflow machines is sometimes 
obscured by trivial matters such as differ- 
ences in terminology, choice of illustra- 
tions, or emphasis. In order to reduce such 
confusion, all designs are described as in- 
stances of a general dataflow machine. All 
necessary terminology is introduced when 
this general model is presented; the reader 
does not have to be familiar with dataflow 
or general graph terminology. Some under- 
standing of the problems encountered in 
parallel architecture is, however, helpful. 

There is no sharp definition of dataflow 
machines in the sense of a widely accepted 
set of criteria to distinguish dataflow ma- 
chines from all other computers. For the 
sake of this survey we consider dataflow 
machines to be allprogrammable computers 
of which the hardware is optimized for fine- 
grain data-driven parallel computation. 
Fine grain means that the processes that 
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run in parallel are approximately of the size 
of a conventional machine code instruction. 
Data driven means that the activation of a 
process is solely determined by the avail- 
ability of its input data. This definition 
excludes simulators as well as nonpro- 
grammable machines, for instance, those 
that implement the dataflow graph di- 
rectly in hardware, an approach that is 
popular for the construction of dedicated 
asynchronous signal processors. We also 
exclude data-driven computers that use 
coarse-grain parallelism such as the MAUD 
system [Lecouffe 19791, or medium-grain 
parallelism [Hartimo et al. 1986; Preiss and 
Hamacher 19851 and computers that are 
not purely data driven [Treleaven et al. 
1982a]. 

Comparisons of dataflow machines have 
appeared elsewhere, but they were mostly 
limited to a few machines [Dennis 1980; 
Hazra 19821. Recently Srini [1986] pre- 
sented a comparison of eight machines. 
Excellent surveys with a wider scope, in- 
cluding sequential and demand-driven 
computers, can be found in Treleaven 
et al. [ 1982b] and Vegdahl [ 19841. 

This paper is only concerned with the 
architecture of dataflow machines, that is, 
the machine language and its implementa- 
tion. To limit the size of the paper all issues 
related to the equally important areas of 
compiling and programming have been 
omitted. Introductory material on dataflow 
languages, which are commonly used to 
program dataflow machines, can be found 
in McGraw [1982] and Glauert [ 19841. 
There is extensive literature on the closely 
related group of functional languages [Dar- 
lington et al. 19821; a recommended intro- 
duction is Peyton-Jones [ 19841. Positive 
experiences with programming in impera- 
tive languages have also been reported 
[Allan and Oldehoeft 1980; Veen 1985a]. 
Discussions on programming techniques 
suitable for dataflow machines are just 
beginning to appear [Dennis et al. 1984; 
Gurd and Bohm 19871. 

The first section of this paper places 
dataflow machines in the context of other 
parallel computers. In the next section we 
introduce dataflow graphs, the machine 
language of most dataflow machines. Read- 

ers familiar with dataflow concepts can skip 
these first two sections. In Section 3 we 
describe the execution of a program on a 
dataflow machine, and discuss different 
types of machine organizations. Section 4 
is a presentation of a comparative survey 
of a wide variety of machine proposals and 
is suitable as a starting point for a literature 
study. Section 5 contains a detailed study 
of one operational prototype, and in Sec- 
tion 6 the feasibility of the dataflow concept 
is discussed on the basis of this prototype. 

1. DATAFLOW MACHINES VERSUS 
OTHER PARALLEL COMPUTERS 

The efficiency of a parallel computer is 
influenced by several conflicting factors. A 
major problem is contention for a shared 
resource, usually shared memory or some 
other communication channel. Contention 
can often be reduced by careful coordina- 
tion, allocation, and scheduling, but if this 
is done at run time, it increases the over- 
head due to parallelism, that is, processing 
that would be unnecessary without paral- 
lelism. If, during a significant part of a 
computation, a major part of the processing 
power is not engaged in useful computation, 
we speak of underutilization. A useful meas- 
ure of the quality of a parallel computer is 
its effective utilization, that is, utilization 
corrected for overhead. The best one can 
hope for is that the effective utilization of 
a parallel computer approaches that of a 
well-designed sequential computer. An- 
other desirable quality is scalability, that is, 
the property that the performance of the 
machine can always be improved by adding 
more processing elements. We speak of lin- 
ear speed-up if the effective utilization does 
not drop when the machine is extended. 

Flynn [1972] introduced the distinction 
between parallel computers with a single 
instruction stream (SIMD) and those with 
multiple instruction streams (MIMD). The 
characteristic feature of SIMD computers 
is that they are synchronous at the machine 
language level. In the programming of such 
computers, the timing of concurrent com- 
putations plays a prominent role. They 
require skillful programming to bring 
utilization to an acceptable level since 
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Figure 1. Some of the design options for parallel computers. In SIMD 
machines the parallel operations are synchronized at the machine language 
level, and scheduling and allocation needs to be done by the programmer. 
In MIMD machines the processes that run in parallel need to be synchro- 
nized whenever they communicate with each other. 

scheduling and allocation, that is, deciding 
when and where a computation will be exe- 
cuted, has to be done statically, either by 
the programmer or by a sophisticated com- 
piler. For certain kinds of applications 
this is quite feasible. For instance, in low- 
level signal processing massive numbers 
of data have to be processed in exactly 
the same way: The algorithms exhibit a 
high degree of regular parallelism. Various 
parallel computers have been successfully 
employed for these kind of applications. 

SIMD computers show a great variety in 
both the power of individual processors and 
the access paths between processors and 
memory (see Figure 1). In associative pro- 
cessors (e.g., STARAN) many primitive 
processing elements are directly connected 
to their own data; those processing ele- 
ments that are active in a given cycle all 
execute the same instruction. Contention 
is thus minimized at the cost of low utili- 
zation. Achieving a reasonable utilization 
is also problematic for processor arrays 
such as ILLIAC IV, DAP, PEPE, and the 
Connection Machine. The most popular of 
today’s supercomputers are pipelined vec- 
tor processors, such as the CRAY-1s and 
the CDC 205. These machines attain their 
speed through a combination of fast tech- 
nology and strong reliance on pipelining 
geared toward floating-point vector arith- 
metic. The performance of vector proces- 
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sors is highly dependent on the algorithms 
used and especially on the access patterns 
to data structures. The reason for this is 
the large discrepancy between the perfor- 
mance of the machine when it is doing what 
it is designed to do, that is, processing 
vectors of the right size, and when it is 
doing something else. 

In many areas that have great needs for 
processing power, the behavior of algo- 
rithms is irregular and highly dependent on 
the input data, making it necessary to per- 
form scheduling at run time. This calls for 
asynchronous machines in which compu- 
tations are free to follow their own instruc- 
tion stream with little interference from 
other computations. MIMD computers are 
asynchronous at the level of the machine 
language? As long as two concurrent com- 
putations are independent, no assumptions 
can be made about their relative timing. 
Computations are seldom completely inde- 
pendent, however, and at the points where 
interaction occurs they need to be synchro- 
nized by some special mechanism. This 
synchronization overhead is the price to be 
paid for the higher utilization allowed by 
asynchronous operation. 

There are different strategies to keep this 
price to an acceptable level. One is to keep 

i This does not imply that the organization of the 
machine is also asynchronous. 
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coarse-grain to very-fine-grain machines. 
There are close parallels between dataflow 
machines and fine-grain reduction ma- 
chines, but the relative merits of each type 
remain unclear. Most of the crucial imple- 
mentation problems are probably shared by 
both types of machines, but in this paper 
we do not investigate these parallels. See 
Treleaven et al. [ 1982b] and Vegdahl [ 19841 
for a comparative survey. 

2. DATAFLOW MACHINE LANGUAGE 

Although each dataflow machine has a dif- 
ferent machine language, they are all based 
on the same principles. These shared prin- 
ciples are treated in this section. Because 
we are concerned with a wide variety of 
machines, we often have to be somewhat 
imprecise. More specific information is pro- 
vided in Section 5, which deals with one 
particular machine. We start with a de- 
scription of dataflow programs and the 
ways in which they differ from conven- 
tional programs. Dataflow programs are 
usually presented in the form of a graph; a 
short summary of the terminology of data- 
flow graphs is given. In the rest of this 
section we show how these graphs can be 
used to specify a computation. 

the communication between computations 
to a minimum by dividing the task into 
large processes that operate mainly on their 
own private data. Although in such ma- 
chines scheduling is done at run time, the 
programmer has to be aware of segmenta- 
tion, that is, the partitioning of program 
and data into separate processes. Again the 
difficulty of this task is highly dependent 
on the regularity of the algorithm. Assist- 
ance from the compiler is feasible, but 
hardly any work in this area has been re- 
ported [Hudak and Goldberg 19851. An- 
other problem is that processes may have 
to be suspended, leading to complications 
such as process swapping and the possibil- 
ity of deadlock. Examples of such coarse- 
grain parallel computers are the HEP 
[Smith 19781 and the CM* [Swan et al. 
19771. 

A different strategy to minimize synchro- 
nization overhead is to make communica- 
tion quick and simple by providing 
special hardware and coding the program 
in a special format. Dataflow machines are 
examples of such fine-grain parallel com- 
puters. Because communication is quick, 
the processes can be made very small, about 
the size of a single instruction in a conven- 
tional computer. This makes segmentation 
trivial and improves scalability since the 
program is effectively divided into many 
processes and special hardware determines 
which of them can execute concurrently. 
The applications for which fine-grain par- 
allel computers can be expected to be com- 
petitive are those with great computing 
demands that can be formulated with a 
high average but quite irregular degree of 
parallelism. However, Dennis et al. [1984] 
have achieved high utilization (greater than 
90 percent) for a regular problem that 
ran at 20 percent utilization on vector 
processors. 

In dataflow machines scheduling is based 
on availability of data; this is called data- 
driven execution. In reduction machines 
scheduling is based on the need for data; 
this is known as demand-driven execution. 
Demand-driven machines (also known as 
reduction machines) are currently under 
extensive study. Various parallel reduction 
machines have been proposed ranging from 

2.1 Dataflow Programs 

In most dataflow machines the programs 
are stored in an unconventional form called 
a dataflow program. Although a dataflow 
program does not differ much from a con- 
trol flow program, it nevertheless calls for 
a completely different machine organiza- 
tion. Figure 2 serves to illustrate the differ- 
ence. A control flow program contains two 
kinds of references: those pointing to in- 
structions and those pointing to data. The 
first kind indicates control flow, and the 
second kind organizes data flow. The co- 
ordination of data and control flow creates 
only minor problems in sequential process- 
ing (e.g., reference to an uninitialized vari- 
able), but becomes a major issue in parallel 
processing. In particular, when the proces- 
sors. work asynchronously, references to 
shared memory must be carefully coordi- 
nated. Dataflow machines use a different 
coordination scheme called data-driven 
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a:=x+y 
b:=aXa 
c:= 4-a 

Memory 

Figure 2. A comparison of control flow and dataflow programs. On the 
left a control flow program for a computer with memory-to-memory 
‘instructions. The arcs point to the locations of data that are to be used or 
created. Control flow arcs are indicated with dashed arrows: usuallv most 
of them are implicit. In the equivalent dataflow program on the right only 
one memory is involved. Each instruction contains pointers to all instruc- 
tions that consume its results. 

execution: The arrival of a data item serves 
as the signal that may enable the execution 
of an instruction, obviating the need for 
separate control flow arcs. 

In dataflow machines each instruction is 
considered to be a separate process. To 
facilitate data-driven execution each in- 
struction that produces a value contains 
pointers to all its consumers. Since an in- 
struction in such a dataflow program con- 
tains only references to other instructions, 
it can be viewed as a node in a graph; the 
dataflow program in Figure 2 is therefore 
often represented as in Figure 3 (see Sec- 
tion 2.2). In this notation, referred to as a 
dataflow graph, each node with its associ- 
ated constants and its outgoing arcs corre- 
sponds to one instruction. 

Because the control flow arcs have been 
eliminated, the problem of synchronizing 
data and control flow has disappeared. This 
is the main reason why dataflow programs 
are well suited for parallel processing. In a 
dataflow graph, the arcs between the in- 
structions directly reflect the partial order- 
ing imposed by their data dependencies; 
instructions between which there is no path 
can safely be executed concurrently. 

2.2 Dataflow Graphs 

The prevalent description of dataflow pro- 
grams as graphs has led to a characteristic 
and sometimes confusing terminology 
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stemming from Petri net and graph theory. 
Instructions are known as nodes, and in- 
stead of data items one talks of tokens. A 
producing node is connected to a consum- 
ing node by an arc, and the “point” where 
an arc enters a node is called an input port. 
The execution of an instruction is called 
the firing of a node. This can only occur if 
the node is enabled, which is determined by 
the enabling rule. Usually a strict enabling 
rule is specified, which states that a node 
is enabled only when each input port con- 
tains a token. In the examples in this 
section all nodes are strict unless noted 
otherwise. When a node fires, it removes 
one token from each input port and places 
at most one token on each of its output 
arcs. In so-called queued architectures, 
arcs behave like first-in-first-out (FIFO) 
queues. In other machines each port acts 
as a bag: The tokens present at a port can 
be absorbed in any order. 

Figure 3 serves to illustrate these no- 
tions. It shows an acyclic graph comprising 
three nodes, with a token present in each 
of the two input ports of the PLUS node 
(marked with the operator “+“). This node 
is therefore enabled, and it will fire at some 
unspecified time. Firing involves the re- 
moval of the two input tokens, the compu- 
tation of the result, and the production of 
three identical tokens on the input ports of 
the other two nodes. Both of these nodes 
are then enabled, and they may fire in any 
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Figure3. The dataflow program of Figure 2 depicted as a graph. 
The small circles indicate tokens. The symbol at the left input of the 
subtraction node indicates a constant input. In the situation depicted 
on the left the first node is enabled since a token is present on each 
of its innut ports. The graph on the right depicts the situation after 
the tiring of-that node. - 

order or concurrently. Note that, on the 
average, a node that produces more tokens 
than it absorbs increases the level of con- 
currency. All three nodes in this example 
are functional; that is, the value of their 
output tokens is fully determined by the 
node descriptions and the values of their 
input tokens. 

2.3 Conditional Constructs 

Conditional execution and repetition re- 
quire nodes that implement controlled 
branching. The conditional jump of a 
control flow program is represented in a 
dataflow graph by BRANCH nodes. The 
most common form is the one depicted in 
Figure 4. 

A copy of the token absorbed from the 
value port is placed on the true or on the 
false output arc, depending on the value of 
the control token. Variations of this node 
with more than two alternative output arcs 
or with more than one value port (com- 
pound BRANCH) have also been proposed. 
As we shall see shortly, the complement of 
the BRANCH node is also needed. Such a 
MERGE node does not have a strict ena- 
bling rule; that is, not all input ports have 
to contain a token before the node can fire. 
In the deterministic variety the value of a 
control token determines from which of the 
two input ports a token is absorbed. A copy 
of the absorbed token is sent to the output 
arc. The nondeterministic MERGE node 
(i.e., a MERGE node without control input) 
is enabled as soon as one of its input ports 
contains a token; when it fires, it simply 

value 
, true false 

A 
control 

2% 
true false 

(a) 

1 
value 

(b) 

Figure4. BRANCH and MERGE nodes. (a) A 
BRANCH node. (b) A nondeterministic MERGE 
node. 

copies the token that it receives to its suc- 
cessors. Nonqueued architectures usually 
do not have MERGE nodes, but allow two 
arcs to end at the same port. The advantage 
is that only a strict enabling rule has to be 
supported. 

Figure 5 shows an implementation of a 
conditional construct. If one token enters 
at each of the three arcs at the top of the 
graph, the two BRANCH nodes will each 
send a token to subgraph f or to subgraph 
g. Only the activated subgraph will even- 
tually send a token to the MERGE node. 
It can easily be shown [Veen 19811 that 
this graph preserves safety; that is, it is safe 
provided that subgraphs f and g are safe. A 
graph is safe if it can be shown that, when 
presented with at most one token on each 
input arc, no port will ever contain more 
than one token. Safety ensures determinate 
behavior even in the presence of nondeter- 
ministic MERGE nodes. 

If BRANCH and (nondeterministic) 
MERGE nodes are used in an improper 
manner, unsafe graphs can be constructed, 
in which two tokens may end up at the 
same port (see Figure 6). 
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Figure 5. Conditional expression. The graph corre- 
sponding to the expression z := if test then f(z, y) 
else g(r, y) fi. If test succeeds, both BRANCH nodes 
send a token to the left; otherwise, the tokens go to 
the right. Note the use of nondeterministic MERGE 
node. 

A 

1 B 

A B 

fff+ 

C D 

(4 (b) (c) 

Figure 6. Problems resulting from the improper use 
of BRANCH and MERGE nodes. All nodes are strict, 
except the MERGE nodes, and produce tokens on all 
output arcs when they fire, except the BRANCH 
nodes. (a) When a pair of tokens arrives at the input 
ports of node A, the node is enabled, but its firing will 
not enable node B, since the latter receives only one 
token on one of its input ports. (b) When a token 
enters the graph, node A fires and places a token on 
each of the input ports of the MERGE node. This 
node then sends two tokens to its output arc. (c) A 
token will be left behind at an input port of either 
node C or node D, depending on the value of the 
control token of the BRANCH node. 

2.4 Iterative Constructs and Reentrancy 

Figure 7 illustrates problems that may arise 
when the graph contains a cycle. The sim- 
ple graph on the left will deadlock unless it 
is possible to initialize the graph with a 
token on the feedback arc. The node in the 
graph on the right will never stop firing 
once started. Although these are not real- 

Figure 7. Problems with cyclic graphs. The graph on 
the left will deadlock, the one on the right will never 
finish. 

new’ few 

YX 

Figure6. A loop construct according to the lock 
method. An implementation of the expression while 
f(x) do (x, y) := g(z, y) od, using the lock method to 
protect the reentrant subgraphsfandg. The triangular 
shaped node indicates a compound MERGE node, 
which functions just like a pair of nondeterministic 
MERGE nodes. On the left is a compound BRANCH 
node, which copies its two value inputs either to its 
left or to its right output arcs, depending on the value 
of its third input token. 

istic graphs, similar problems may arise in 
any cyclic graph unless special precautions 
are taken. 

A correct way to implement a loop con- 
struct is shown in Figure 8. Note the use of 
a compound BRANCH node rather than a 
series of simple BRANCH nodes as in Fig- 
ure 5. The strict enabling rule of this node 
ensures that it does not fire before subgraph 
g has released both its output tokens. If we 
assume that g is such that no tokens stay 
behind when all its output tokens are pro- 
duced, then tokens for the next iteration 
can be safely sent into the same subgraph. 
Subgraph g is an example of a reentrant 
graph; its nodes can fire repeatedly. The 
way reentrancy is handled is a key issue in 
dataflow architecture. A dataflow graph is 
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attractive as a machine language for a par- 
allel machine since all nodes that are not 
data dependent can fire concurrently. In 
case of reentrancy, however, this maximum 
concurrency can lead to nondeterminate 
behavior unless special measures are taken, 
as we show in the remainder of this section. 

A graph in which reentrancy can lead to 
nondeterminacy is illustrated in Figure 9, 
where the cycles fox x and y lead through 
separate MERGE and BRANCH nodes. In 
the first iteration the first PLUS node cal- 
culates the value for n and sends copies to 
subgraph h and to one of the MERGE 
nodes. Subgraph h may postpone the ab- 
sorption of its input token. Meanwhile, the 
nodes on the cycle for x may fire again, and 
the PLUS node may send a second token 
to subgraph h. 

The use of the compound BRANCH node 
in Figure 8 is therefore essential for its 
safety. We call this method the lock 
method. It is safe and simple, but not very 
attractive for parallel machines: The level 
of concurrency is low since the BRANCH 
node acts as a lock that prevents the initi- 
ation of a new iteration before the previous 
one has been concluded. 

An alternative approach is the acknowl- 
edge method. This can be implemented 
by adding extra acknowledge arcs from 
consuming to producing node. These ack- 
nowledge arcs ensure that no arc will ever 
contain more than one token and the graph 
is therefore safe. One arc provides space for 
one token. In a manner too complicated to 
show here, the proper addition of dummy 
nodes and arcs can transform a reentrant 
graph into an equivalent one, allowing 
overlap of consecutive iterations in a pipe- 
lined fashion. The acknowledge method 
therefore allows more concurrency than the 
lock method, but at the cost of at least 
doubling the number of arcs and tokens. 
Through proper analysis, however, a sub- 
stantial part of these arcs can be eliminated 
without impairing the safety of the graph 
[Brock and Montz 1979; Montz 19801. 

Both of these methods can also be imple- 
mented at the architecture level by modify- 
ing the enabling rule. In some machines 
locking is implemented by specifying that 
nodes in a reentrant subgraph can only be 

x:= y:= 0 
while x < 10 
dox:=x+ 1 

y : = y + h(x) 
x Y od 

Figure 9. An unsafe way to implement a loop. A new 
token may arrive at the input of subgraph h before 
the previous one is absorbed. 

enabled a second time after all tokens of a 
previous activation have left the subgraph 
[Syre et al. 19771. The architectures of 
other machines implement acknowledg- 
ment by enabling a node only after all its 
output arcs are empty [Dennis et al. 19831. 

A higher level of concurrency is obtained 
when each iteration is executed in a sepa- 
rate instance (or copy) of the reentrant 
subgraph. This code-copying method re- 
quires a machine with facilities to create a 
new instance of a subgraph and to direct 
tokens to the appropriate instance. A po- 
tentially more efficient way to implement 
code copying is to share the node descrip- 
tions between the different instances of a 
graph without confusing tokens that belong 
to separate instances. This is accomplished 
by attaching a tag to each token that iden- 
tifies the instance of the node that it is 
directed to. These so-called tagged-token 
architectures have an enabling rule that 
states that a node is enabled if each input 
arc contains a token with identical tags. 
Safety in these machines means that no 
port ever contains more than one token 
with the same tag. A tag is sometimes re- 
ferred to as a color or a label. 

The tagged nature of the architecture 
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i, new 

I h 
tag area 

;\ c + : 

x := y := 0 
whilex< 10 
dox:=x+ 1 

y : = y + h(x) 
od 

new new 
X Y 

Figure 10. An implementation of a loop using tagged 
tokens. At the start-of the loop a new tag area is 
allocated. Tokens belonging to consecutive iterations 
receive consecutive tags within this area. The tag from 
before the loop is restored on tokens that exit from 
the loop. 

shows up in the program in the form of 
nodes that modify tags. Figure 10 shows 
the implementation of the example in Fig- 
ure 9 on a tagged-token architecture. The 
proper execution of nested loops requires 
that the tags used within a loop be distinct 
from those in the surrounding expression. 
A new area in the tag space is therefore 
allocated at the start of the loop. An effi- 
cient implementation of this allocation is 
not easy, as we shall see in the next section. 
Within the area tags are ordered; tokens 
entering the loop receive the first tag, and 
tokens for consecutive iterations receive 
consecutively ordered tags within the allo- 
cated area. On tokens that exit the loop, 
the tag corresponding to the surrounding 
expression is restored. This method can 
lead to a high level of concurrency because 
the cycle for x can safely send a whole series 
of tokens with different tags into subgraph 

A: 

actual 
parameter 

1 

area 

A K oP 

\ i result 

Figure 11. Interface for a procedure call. On the left 
a call of procedure P whose graph is on the right. 
P has one parameter and one return value. The 
actual parameter receives a new tag and is sent to 
the input node of P and concurrently a token contain- 
ing address A is sent to the output node. This 
SEND-TO-DESTINATION node transmits the other 
input token to a node of which the address is contained 
in the first token. The effect is that, when the return 
value of the procedure becomes available, the output 
node sends the result to node A, which restores the 
tag belonging to the calling expression. 

h, with each token initiating a separate and 
possibly concurrent execution of h. 

Machines that handle reentrancy by the 
lock or acknowledge method are called 
static; those employing code copying or 
tagged tokens are called dynamic. Static 
machines are much simpler than dynamic 
machines, but for most algorithms their 
effective concurrency is lower. Algorithms 
with a predominantly pipelining type of 
parallelism, however, execute efficiently on 
static machines with acknowledging. 

2.5 Procedure Invocation 

The invocation of a procedure introduces 
similar problems with reentrancy, to which 
the methods described above can also be 
applied. In code-copying architectures a 
copy of the called procedure is made. In 
tagged-token architectures a new tag area 
is allocated for each procedure call so that 
each invocation executes in its own context. 
Nested procedure calls, recursion, and co- 
routines can therefore be implemented 
without problems. The method is, how- 
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ever, wasteful of tag space, an important 
resource, as we shall see below. A good 
compiler may recognize tail recursion and 
generate code as efficient as for loops. 

An extra facility is required to direct the 
output tokens of the procedure activation 
back to the proper calling site. This is usu- 
ally implemented as shown in Figure 11. 
The procedure body receives a token that 
contains a reference to a node at the calling 
site. This token is then used by the output 
nodes of the procedure body to direct the 
return values to the proper places. These 
output nodes are special nodes capable of 
sending tokens to nodes to which they have 
no static arc. 

3. THE ARCHITECTURE 
OF DATAFLOW MACHINES 

In this section dataflow machines at the 
level that directly supports the machine 
language are described. First, the basic 
execution mechanism of a processing 
element and then the overall structure of a 
dataflow multiprocessor is described. 

3.1 A Processing Element 

A typical dataflow machine consists of a 
number of processing elements, which can 
communicate with each other. Figure 12 
shows a functional diagram of one process- 
ing element. 

The nodes of the dataflow program are 
often stored in the form of a template con- 
taining a description of the node and space 
for input tokens. The node description con- 
sists of the operand code (a shorthand for 
the mapping from input values to output 
values) and a list of destination addresses 
(the outgoing arcs). We can think of the 
movement of a token between two nodes as 
the progress of a locus of activity. A node 
that produces more tokens than it con- 
sumes increases the number of concurrent 
activities. Concurrent activities interact at 
nodes that consume more than one token. 
Coordination has to take place at these 
nodes. In dataflow machines coordination 
therefore amounts to the administration of 
the enabling rule for those nodes that re- 
quire more than one input. We call the unit 
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that manages the storage of the tokens the 
enabling unit. It sequentially accepts a to- 
ken and stores it in memory. If this causes 
the node to which the token is addressed to 
become enabled (i.e., each input port con- 
tains a tcken), its input tokens are ex- 
tracted from memory and, together with a 
copy of the node, formed into a packet and 
sent to the functional unit. Such an execut- 
able packet consists of the values of the 
input tokens, the operand code, and a list 
of destinations. The functional unit com- 
putes the output values and combines them 
with the destination addresses into tokens. 
Tokens are sent back to the enabling unit, 
where they may enable other nodes. Since 
the enabling and the functional stage work 
concurrently, this is often referred to as the 
circular pipeline. 

Dividing a processing element into two 
stages is just one of the possibilities. In 
some machines the processing elements do 
not have to be so powerful and they just 
consist of a memory connected to a unit 
that handles both token storage and the 
execution of nodes. In other machines the 
circular pipeline consists of more concur- 
rent stages, as, for instance, in most ma- 
chines that use tagged tokens to protect 
reentrant code. Since, in such a machine, 
nodes are shared between different in- 
stances of a graph, the space in a template 
to be reserved for storage of input tokens 
may become arbitrarily large. This makes 
it impractical to store tokens in the nodes 
themselves. Token storage is therefore sep- 
arated from node storage, and the enabling 
unit is split into two stages: the matching 
unit and the fetching unit, usually arranged 
as shown in Figure 13. 

For each token that the matching unit 
accepts, it has to check whether the 
addressed node is enabled. In most tagged- 
token machines this is facilitated by limit- 
ing the number of input arcs to two and 
providing each token with an extra bit that 
indicates whether the addressed node is 
monadic or dyadic. Only for dyadic nodes 
the matching unit has to check whether its 
memory already contains a matching to- 
ken, that is, a token with the same desti- 
nation and tag. Conceptually, the matching 
unit simply combines destination and tag 
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Figure 12. Functional diagram of a processing element. The enabling unit 
accepts tokens from the left and stores them at the addressed node. If this 
node is enabled, an executable packet is sent to the functional unit where it 
is processed. The output tokens, with the destination addresses, are sent back 
to the enabling unit. Modules dedicated to buffering or communication have 
been left out of this diagram. 

matching 
unit 

fetching functional 
unit 

ry 

unit 

1 T 
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Figure 13. Functional diagram of a processing element of a tagged-token 
machine. The matching unit stores tokens in its memory and checks whether 
an instance of the destination node is enabled. This requires a match of both 
destination address and tag. Tokens are stored in the memory connected to 
the matching unit. When all tokens for a particular instance of a node have 
arrived, they are sent to the fetching unit, which combines them with a copy 
of the node description into an executable packet to be passed on to the 
functional unit. 

into an address and checks whether the 
location denoted by the address contains a 
token. The set of locations addressed by 
tag and destination forms a space that we 
call the matching space. Managing this 
space and representing it in a physical 
memory is one of the key problems in 
tagged-token dataflow architectures. 

Although not apparent at first, the prob- 
lem of matching space management is quite 
similar to the problems encountered in 
code-copying machines and in fact involves 
problems that have plagued parallel archi- 
tectures from the beginning. At the en- 

trance to a loop, and during procedure 
invocation, a unique tag area has to be 
allocated. Guaranteeing uniqueness in a 
parallel computer is problematic. The fun- 
damental trade-off is between the bottle- 
neck created by a centralized approach and 
the communication overhead or inefficient 
use of space offered by a distributed ap- 
proach. Arvind and Gostelow [1977] pro- 
posed an extremely distributed approach in 
which the uniqueness of a new tag area can 
be deduced from the existing tag. Since a 
tag in this scheme effectively encodes the 
calling stack of a procedure invocation, its 

ACM Computing Surveys, Vol. 18, No. 4, December 1986 



size grows linearly with calling depth. Usu- 
ally a partly distributed solution is used, 
amounting to statically distributing the 
matching space over a set of managers, each 
of which manages the allocated area locally. 
An example is a centralized counter per 
processing element, which, together with a 
unique identification of the processing ele- 
ment, provides a unique tag [Gurd et al. 
19851. To prevent the local areas from be- 
coming exhausted the matching space must 
be large and, consequently, at any given 
time sparsely occupied. Large, sparsely oc- 
cupied spaces cause several problems. First, 
addressing an item requires many bits. Sec- 
ond, implementing the space involves a dif- 
ficult trade-off between storage waste (e.g., 
a sparsely occupied array) and access time 
overhead (e.g., a linked list). Hashing tech- 
niques offer a compromise. Actual im- 
plementations of the approaches just 
described are few, but it appears that 
this space or time overhead is a fundamen- 
tal problem of the fine-grain approach and 
that a purely fine-grain machine may not 
be implemented efficiently. In Section 6 
we see that the introduction of a manager 
based on coarse-grain principles may alle- 
viate this problem. 

It is interesting to note that the trade- 
offs for code-copying machines are virtually 
identical. When a copy of a subgraph needs 
to be created, a storage area has to be 
allocated. A centralized allocator may be 
space efficient, but may also create a bot- 
tleneck. A virtual memory scheme with 
space allocation can be used, but addresses 
become large and an efficient mapping to 
physical memory is needed. Paging tech- 
niques that exploit locality in instruction 
execution may be useful. A good memory 
manager would avoid these problems, but 
has the same drawbacks as described above. 

3.2 Dataflow Multiprocessors 

Figure 14 is a schematic view of the struc- 
ture of a complete dataflow machine. Al- 
though each description of a dataflow ma- 
chine in the literature seemingly presents 
a different picture, most designs conform 
to one of the three structures illustrated. 
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In a one-leuel dataflow machine (e.g., 
Arvind and Kathail [1981]), there is only 
pipeline concurrency within a processing 
element. Instructions are executed in the 
processing elements, and the resulting to- 
kens are used in the same processing ele- 
ment or communicated to other processing 
elements. In some machines one or several 
processing elements are replaced by struc- 

ture units for the storage and low-level 
manipulation of data structures. 

The two structures illustrated in Figure 
14b and c exploit the fact that the process- 
ing of executable packets is independent 
and can be done in any order or concur- 
rently since they contain all the informa- 
tion that the functional unit needs to fire 
the node and to construct the output to- 
kens. In a two-leuel machine (e.g., Gurd et 
al. [1985]), each functional unit consists of 
many functional elements, which process 
executable packets concurrently. Schedul- 
ing is trivial: An executable packet is allo- 
cated to any idle functional element. By 
adjusting the number of functional ele- 
ments, the power of the functional unit can 
be tuned to that of the rest of the process- 
ing element. In a two-stage machine (e.g., 
Dennis and Misunas [1974]), the process- 
ing elements are split into two stages, and 
between the two stages there is an extra 
communication medium that sends execut- 
able packets to functional elements. This 
two-stage structure is advantageous if the 
functional stage is heterogeneous, for in- 
stance, when some functional elements 
have specialized capabilities. 

3.3 Communication 

Figure 14 is merely intended to indicate 
that there is a way to communicate between 
different processing elements without sug- 
gesting any particular topology. In an ac- 
tual machine the communication medium 
can have the structure of a tree, a ring, a 
binary n-cube, or an equidistant n x n 
switch. An even more important difference 
lies in the nature of the connections that 
the communication medium provides. Just 
as there are circuit switching and packet- 
switching networks, a dataflow machine 
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Figure 14. Overall structure of var- 
ious dataflow multiprocessors. (a) 
One-level dataflow machine. The 
structure of each processing element 
is as shown in Figure 12. Communi- 
cation facilities deliver tokens that 
are produced by a functional unit to 
the enabling unit of the correct pro- 
cessing element, as determined by the 
destination address and the alloca- 
tion policy. (b) Two-level dataflow 
machine. Each functional unit con- 
sists of several functional elements 
(FE), which concurrently process 
executable packets. (c) Two-stage 
dataflow machine. Each enabling 
unit (EU) can send executable pack- 
ets to each functional unit (FU). 

T 
output 

(a) 

input 

communication 

c 
output 

can have a direct communication or a 
packet communication architecture. 

In direct communication machines adja- 
cent nodes in the graph are allocated to the 
same processing element or to processing 
elements that have a direct connection with 
each other. An important property of a 
direct communication architecture is that 
the communication medium delivers tokens 
in the same order as they were received. If 
the communication medium is equipped 
with queues, unsafe graphs (dataflow 
graphs in which arcs can contain more than 
one token) can be executed without impair- 
ing determinacy. 

Packet communication offers the greatest 
opportunity for load distribution and par- 
allelism in the communication unit since it 
can be constructed from asynchronously 
operating packet-switching modules, with 
parallelism and redundancy in this critical 
resource. Such a module can accept a token 
and forward it to another module, depend- 
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ing on its destination address. In general, 
such store-and-forward communication 
units need safeguards to avoid deadlock: 
Contention may block an essential path. 
Some machines have redundant communi- 
cation paths, and consequently the order of 
packets is not necessarily maintained. On 
these machines, the arcs of the graph do 
not necessarily behave as FIFO queues, and 
determinate execution can only be guaran- 
teed for safe graphs. The best structure for 
the communication unit and its limitations 
in size and performance are a matter of 
debate among dataflow architects. One ap- 
proach is to have a large number of slow 
and simple processing elements connected 
to a high-bandwidth communication unit. 
A one-level machine structure is usually 
appropriate for this approach. Other archi- 
tects claim that as soon as the machine 
contains more than a few dozen processing 
elements, insurmountable bottlenecks in 
the communication unit are created. They 
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Another approach is to provide restric- 
tive access primitives in the programming 
language. This leads to the concept of 
streams, which are structures that can only 
be produced and consumed sequentially. 
These may be processed more efficiently in 
some machines and increase the effective 
parallelism because elements of a stream 
can be consumed before the stream is com- 
pleted. This increase in parallelism can also 
be achieved by treating the structures non- 
strictly, that is, allowing access to elements 
before the structure has been completely 
created. Arvind and Thomas [1980] in- 
vented this concept and coined the term 
I-structures (for incomplete structures). It 
requires special hardware to defer fetches 
of elements that are not yet available. 

Gaudiot [ 19861 gives an excellent com- 
parison of some of the proposed solutions 
to the structure-handling problem and con- 
cludes that its complexity precludes a uni- 
versal solution. He suggests two additional 
approaches to avoid storing: defining me- 
dium-grain structure operations or defining 
tag manipulation instructions that exploit 
the frequent interaction between array in- 
dexing on the one hand and either iteration 
or recursion on the other hand. Tag manip- 
ulation has first been proposed by Bowen 
[1981] and has since been used exten- 
sively in Manchester (see, e.g., Bohm and 
Sargeant [1985] or Veen [1985a]). Its use 
is restricted to those algorithms in which 
data structures are consumed completely. 
With simulation studies on two of those 
algorithms, Gaudiot and Wei [1986] 
showed that tag manipulation gave a much 
better performance than I-structures. 

therefore concentrate on the construction 
of powerful processing elements, which 
usually involves a two-level design. These 
architects tend to postpone the design of 
the higher level until later, and sometimes 
one processing element is presented as a 
complete machine [Gurd and Watson 
19801. The performance of one processing 
element, however, is limited by the inherent 
bottlenecks in the enabling section. 

3.4 Data Structures 

In a dataflow graph values flow from one 
node to another and are, at least at that 
level of abstraction, not stored in memory. 
If a value is input to more than one node, 
a copy is sent to each node. Conceptually, 
data structures are treated in the same way 
as other values. In a tagged-token machine 
with limited token size a complete structure 
can be sent to a node by packaging each 
element as a separate token distinguished 
by subsequent tags. A retrieve operation, 
for instance, consumes a complete struc- 
ture and an index and produces a copy of 
the retrieved element. Directly implement- 
ing this concept is known as structure 
copying. Copying is appropriate for small 
structures. Unfortunately, data structures 
tend to be large, and implementing these 
by the conceptually simple structure copy- 
ing method would place an unacceptable 
burden on the machine. Many machines 
therefore have a facility to store structures. 
In such machines an element can be re- 
trieved by sending a request to the unit 
where the structure has been stored. 

The dataflow equivalent of a selective 
update operation (changing one element of 
a structure) is an operation that consumes 
the old structure, the index, and the new 
value and produces a completely new struc- 
ture. This involves copying of structures 
even when they are stored. There are sev- 
eral ways to reduce excessive structure 
copying. Structures that are not shared do 
not have to be copied before an update. A 
reference count mechanism can be used to 
detect this, and is helpful for garbage col- 
lection as well. For shared structures, copy- 
ing can be further reduced by storing the 
structure in the form of a tree and copying 
only the updated node and its ancestors. 

4. A SURVEY OF DATAFLOW MACHINES 

Figure 15 and Table 1 illustrate our classi- 
fication of dataflow machines. The choice 
of properties used for the classification is 
limited by the fact that many descriptions 
(and some designs) are vague and incom- 
plete. In Figure 15 dataflow machines are 
categorized according to the nature of the 
communication unit and the architecture 
of the processing elements. The topology of 
the communication unit is not used as a 
criterion, since it does not really help to 
characterize a dataflow machine and is 
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Figure 15. A survey of dataflow machines, categorized according to their architecture 
and implementation. The keys in the boxes refer to the machines that are summarized in 
Table 1. 

often left unspecified. In the rest of this 
section all machines appearing in Figure 15 
are described separately, using the common 
terminology established in the previous two 
sections. A few features of some designs are 
summarized in Table 2 at the end of this 
section. 

4.1 Direct Communication Machines 

The main drawback of direct communica- 
tion machines is that for many graphs it is 
difficult to find a good mapping onto the 
network (allocation). It may be a fruitful 
approach, however, for applications that 
have predictable and regular communica- 
tion patterns matching the machine’s to- 
pology. The most important member of this 
class is the oldest working dataflow ma- 
chine, the DDMl [Davis 1977, 19791. The 
processing elements of this machine are 
arranged as a tree. Allocation is simplified 
by preserving the hierarchical tree struc- 
ture of the program. Any internal node of 
the processing tree can allocate a part of 
its program (a subtree) to any of its de- 
scendants. Allocation is simple and distrib- 
uted, but far from optimal with respect to 
even load distribution over the processing 

elements. The root of the tree forms a 
bottleneck in the communication between 
processing elements. 

Another less elaborate example is pro- 
vided by a machine developed in Warsaw, 
in which the processing elements receive 
the node descriptions in the form of micro- 
programs [Marczynski and Milewski 19831. 

In Japan an interesting dynamic direct 
communication machine has been devel- 
oped for large-scale scientific calculations, 
such as solving partial differential equa- 
tions [Takahashi and Amamiya 19831. The 
processing elements are arranged on a two- 
dimensional grid and use tags to distinguish 
tokens belonging to different activations. 
To avoid the necessity to allocate unique 
tag areas dynamically, the input language 
is somewhat restricted (no general recur- 
sion) so that static allocation is possible. A 
hardware simulator, consisting of 4 x 4 
processing elements, each connected to 
eight neighbors, has been used to study 
small applications. It confirmed analytical 
predictions that communication delay 
does not seriously degrade performance, 
provided that programs have enough 
parallelism. 
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Table 1. A Summary of the Dataflow Machines That Are Described in the Text’ 

Key Machine Group 
Start 

project Operational 

DDMl 
Micro 
DDPA 

Data-Driven Machine #l Davis, Burroughs 
Microprogrammed Marcxynski, Warsaw 
Data-Driven Processor Array Takahashi, Tokyo 

Static Packet Communication Machines 

DDP 

LAU 
Form I 

pPD7281 
HDFM 

Distributed Data Processor Cornish, Texas 
Instruments 

LAU System Prototype #0 Syre, Toulouse 
Prototype Basic Dataflow Dennis, M.I.T. 

Processor 
Dataflow Image Processor Iwashita, NEC 
Hughes Data Flow Multiprocessor Vedder, Hughes 

Dynamic Packet Communication Machines 

Rumb Dataflow multiprocessor 
Form IV Dynamic dataflow processor 
Multi Multiuser dataflow machine 
Id Id Machine 
Paged Paged memory dataflow machine 
MDM Manchester Dataflow Machine 

DDSP 
DFM-1 

EM-3 
DDDP 
PIM-D 

SIGMA-l 

Data-driven signal processor 
List-processing oriented dataflow 

machine 
ETL Data-Driven Machine-3 
Distributed data-driven processor 
Parallel inference machine based 

on dataflow 
Dataflow computer for scientific 

computations 

Direct Communication Machines 

Rumbaugh, M.I.T. 
Misunas, M.I.T. 
Burkowski, Winnipeg 
Arvind, M.I.T. 
Caluwaerts, Leuven 
Gurd and Watson. 

Manchester 
Hogenauer, ESL 
Amamiya, Tokyo 

1974 
1976 

1974 
1979 
1976 

1980 
1980 

- 
1983 

Yuba, ETL 1984 
Kishi, Tokyo 1982 
Ito, ICOT 1986 

Hiraki, Ibaraki 1985 

1972 

1976 

1975 
1971 

1982 

1976 
- 

1983 

1978 

1980 
1982 

1984 

- 
- 

1985 
- 

1981 

a The dates are in most cases estimates and are merely meant as an indication of the relative chronology. 
Machines without an operational date are paper designs only. 

4.2 Static Packet Communication Machines 

The first packet communication dataflow 
machine that became operational is the 
Distributed Data Processor [Cornish et al. 
1979; Johnson et al. 19801, built at Texas 
Instruments. The references suggest that 
the DDP uses a locking method to protect 
reentrant graphs. Although the compiler 
may create additional copies of a procedure 
to increase parallelism, this copying occurs 
statically. It is a one-level machine with a 
ring-structured communication unit, aug- 
mented with a direct feedback link for to- 
kens that stay within the same processing 
element. A prototype comprising four pro- 
cessing elements has been built. 

Around the same time the LAU project 
in Toulouse, France, designed another 

static dataflow machine [Comte et al. 1980; 
Syre 1980; Syre et al. 19771. LAU stands 
for langage k assignation unique (single as- 
signment language). The group concen- 
trated on the construction of a powerful 
processing element and left the higher level 
structure more or less unspecified. In 1980 
the LAU system prototype #0, a processing 
element with 32 functional elements, was 
completed. Most functional elements are 
built around a conventional microproces- 
sor. The machine is not programmed by 
pure dataflow programs as described in Sec- 
tion 2. The program and data memory are 
separate, and programs are represented as 
conventional control flow programs, in 
which control flow arcs have been replaced 
by additional pointers in data memory to 
all consuming instructions. This requires a 
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multiphase communication between func- 
tional unit and token memory, and it also 
complicates the communication with other 
processing elements. Safety is guaranteed 
by a hardware-supported locking mecha- 
nism. As in the DDP, the programmer can 
instruct the compiler to create copies of 
reentrant subgraphs to increase parallel- 
ism. The instruction set includes nodes that 
manage all copies of a subgraph and choose 
the copy to be used dynamically. 

Dennis and his colleagues at the Massa- 
chusetts Institute of Technology have been 
in the vanguard of the dataflow field 
[Dennis 19741 and produced the first de- 
signs for dataflow machines. The earliest 
design [Dennis and Misunas 19741 had a 
two-stage structure, with each enabling 
unit (called an instruction cell) dedicated 
to one node and with heterogeneous func- 
tional units. This design was later extended 
into a series of machines differing in the 
way they handled reentrancy and data 
structures. They ranged from the elemen- 
tary Form I processor, which was static and 
could only handle elementary data, to the 
full-fledged Form IV processor, which had 
extensive structure facilities and could copy 
subgraphs on demand (Forms II and III 
have never been elaborated; Form IV is 
described below). When it was discovered 
that an unsafe graph might deadlock the 
machine and acknowledge arcs had to be 
introduced, it became clear that it was 
wasteful to dedicate the processing power 
needed in one instruction cell just to one 
instruction. This hardware was therefore 
shared between a group of nodes and called 
a cell block. A prototype has been built 
in which the different parts are emulated 
by microprogrammable microprocessors 
[Dennis et al. 1980, 19831. Since this single 
unit can emulate both a cell block and a 
functional unit, the prototype has the 
single-stage structure of Figure 14a. The 
prototype that is now operational con- 
sists of eight processing elements and an 
equidistant packet routing network built 
from 2 X 2 routing elements. 

NEC Electronics has developed the 
pPD7281 Dataflow Image Processor that 
may be used as a small processing element 
in a dataflow machine [Iwashita et al. 

19831. The chip contains memory for 64 
instructions and 560 tokens. It has a seven- 
stage circular pipeline; tokens communicat- 
ing between instructions that are allocated 
to the same processing element do not leave 
the chip. The pipeline contains a mecha- 
nism to dynamically regulate the level of 
parallelism: When the chip is underutilized, 
preference is given to tokens addressed to 
instructions that increase parallelism (we 
come back to this issue of throttling in 
Section 6). A maximum of 14 processing 
elements can be connected into an asyn- 
chronous packet-switching ring. The ring 
topology as well as the instruction set are 
suitable for image processing. The peak 
performance is reported to be 5 million 
tokens per second [Jeffery 19851. 

At Hughes Aircraft Company another 
static dataflow architecture for signal pro- 
cessing has been developed [Vedder and 
Finn 19851. Its processing elements are ar- 
ranged on a three-dimensional bussed cube 
network; the distance between processing 
elements is at most three. Much attention 
has been given to static fault tolerance; a 
faulty processing element can be isolated 
rapidly. The program graph is statically 
distributed over the processing elements. 
Simulation studies showed that a good al- 
location algorithm could give 30-80 percent 
better performance than random alloca- 
tion. Two VLSI chips have been designed 
that, together with memory chips, con- 
stitute a complete processing element. 
The peak performance is expected to be 
2-5 million instructions per second. 

4.3 Machines with Code-Copying Facilities 

The dataflow machines with potentially the 
highest level of parallelism are the dynamic 
dataflow machines; they employ either code 
copying or tags to protect reentrant graphs. 
It is characteristic for a code-copying ma- 
chine that the physical address of a node 
cannot always be determined statically. 
The first detailed design of a dataflow ma- 
chine was of this type [Rumbaugh 19751. 
Allocation in this machine is per procedure: 
All the nodes and intermediate results of 
one procedure are stored in the memory of 
one processing element. There is a fast 
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connection from the output to the input 
port of a processing element such that a 
circular pipeline is created. Tokens stay 
within this pipeline unless they are directed 
to another procedure, in which case they 
are routed to a special processing element 
called the scheduler. This scheduler sends 
a copy of the called procedure and its input 
values to an idle processing element. If 
there is no idle processing element, it waits 
until a processing element becomes dor- 
mant and then saves its state (i.e., all the 
unprocessed tokens) and declares it idle. 

The Massachusetts Institute of Technol- 
ogy Form IV dataflow processor is not one 
machine, but refers to a whole family of 
designs: There have been a number of 
articles from the dataflow group at the 
Massachusetts Institute of Technology, 
each specifying part of a full-fledged data- 
flow machine. They are all based on an 
extension of the basic architecture origi- 
nally described by Dennis and Misunas 
[1974], but include special units to store 
data structures in the form of a tree us- 
ing hardware-supported reference counts. 
There have been different proposals for the 
handling of reentrancy. Misunas [ 19781 
rejected locking and acknowledgment be- 
cause it limits parallelism and proposed to 
program the machine without iteration. 
Procedure bodies would be stored just like 
data structures, and presumably the invo- 
cation of a procedure would result in the 
storing of a copy of the procedure in the 
cell blocks. Weng [1979] is more specific 
about this mechanism. Miranker [1977] 
suggests a sort of virtual memory for nodes. 
Translation from virtual to physical ad- 
dress is handled by a relocation box, which 
manages both the physical and the virtual 
space. A node is copied into physical mem- 
ory when it receives its first token. A pro- 
cedure call generates a unique suffix, which 
identifies a particular activation. The relo- 
cation mechanism ensures that all tokens 
in that invocation receive the same suffix. 
This is similar to the tagged-token method. 
All nodes in a procedure are relocated, not 
only those that get executed. Code copying 
is needed because in all machines of this 
family tokens and nodes are stored together 
as templates. 

A proposal that is surprisingly similar to 
this is presented by Burkowski [1981]. He 
produced a detailed hardware design for the 
static Form I processor, including the ac- 
knowledge scheme to protect reentrant 
graphs, but added memory management fa- 
cilities, so that the machine can safely be 
shared between independent tasks. This 
feature makes it into a dynamic machine, 
since nodes can be allocated and removed 
under program control. Although this 
makes code copying at procedure invoca- 
tion feasible, no reference to this can be 
found in the description. 

4.4 Machines with Both Tagged-Token 
and Code-Copying Facilities 

Arvind and Gostelow began their study of 
dataflow languages and architectures at the 
University of California, Irvine, a decade 
ago [Arvind and Gostelow 19771. They de- 
signed the language Id (Irvine Dataflow), 
which introduced many interesting con- 
cepts. Independently from similar work in 
Manchester, they developed the concept of 
tags (originally known as colors) and 
showed that it helped to extract more of 
the parallelism available in a dataflow 
graph [Arvind and Gostelow 19771. Simu- 
lation studies were also carried out 
[Gostelow and Thomas _ 19801. All data 
structures are implemented as I-structures. 
This increases the effective parallelism of 
a program and facilitates the asynchronous 
activation of parts of a procedure (i.e., non- 
strict procedure call). Arvind and his group, 
now at the Massachusetts Institute of 
Technology, constructed a large-scale 
emulator comprising 32 LISP machines 
[Arvind and Kathail 1981; Arvind et al. 
19801. Each machine emulates one process- 
ing element, and can communicate through 
a packet-routing network consisting of spe- 
cially designed switching elements. The 
physical connections between these switch- 
ing elements favor a binary n-cube topol- 
ogy, but the network can be programmed 
to emulate other topologies. Since the paths 
between processing elements are unequal 
in length, with the path from a processing 
element back to itself the shortest, the al- 
location of nodes and structures can have 

ACM Computing Surveys, Vol. 18, No. 4, December 1986 



384 l Arthur H. Veen 

a great influence on the performance of the 
machine. Since elaborate facilities are 
needed to make this allocation as flexible 
as possible, allocation of memory and tags 
is under control of a software manager. An 
advantage of the combined managing of 
these two resources is that dynamic trade- 
off is possible. The tag space (limited by 
the maximum size of a tag) is kept small 
and is used rather densely. When the tag 
supply is exhausted, new copies of a 
subgraph are allocated (code copying). 

In Leuven, Belgium a machine has been 
designed with an elaborate memory man- 
agement scheme [Caluwaerts et al. 19821. 
Each processing element has its own mem- 
ory manager, but these managers can also 
communicate with each other, so that the 
total memory space is shared. A procedure 
call results in the allocation of a fresh mem- 
ory area for the tokens belonging to the 
new invocation. A pointer to this area 
serves as the tag. To facilitate an even load 
distribution, the area is allocated in a 
neighboring processing element. Therefore, 
when a node is enabled, its description must 
be fetched from another processing ele- 
ment. Caches are used to create local cop- 
ies. In fact, memory is paged and complete 
pages are copied. An interesting feature of 
the memory system is that it treats data 
structures in the same way as programs, 
just as in the Form IV processor, and they 
can be converted into each other. This fa- 
cilitates the implementation of higher order 
functions. 

4.5 Tagged-Token Machines 

The first tagged-token dataflow machine 
built was the Manchester Dataflow Ma- 
chine [Gurd and Watson 1980; Watson and 
Gurd 19821. This machine is treated in 
detail in the next section. All machines 
described in this section are derived from 
this machine or from Arvind’s design. 

The data-driven signal processor 
(DDSP), designed at ESL Inc. [Hogenauer 
et al. 19821, can accommodate a maximum 
of 32 processing elements. It is optimized 
for signal processing using a special allo- 
cation algorithm combined with an un- 

orthodox communication topology, which 
appears to be a combination of a ring and 
a tree. No hardware was ever built. 

In Japan several tagged-token dataflow 
.machines are in various stages of construc- 
tion. The machine constructed at the Elec- 
trical Communication Laboratory of NTT 
is optimized for list processing [Amamiya 
et al. 1982, 19861. It contains separate pro- 
cessing and structure elements. Functional 
units are integrated with the structure 
elements as well, since many nodes are ex- 
pected to operate on structures. The match- 
ing unit contains one content addressable 
memory for each function activation. The 
references do not indicate how these are 
allocated. Load balancing is realized by a 
centralized unit that allocates a function 
invocation to the processing element with 
the lowest load level. The design is guided 
by the primitive operations available in 
pure LISP; all structures are lists. The 
central structure operation c0n.s is imple- 
mented lenienti A pointer token is gener- 
ated before its arguments are available. 
This provides the same advantages as other 
nonstrict structures such as I-structures. A 
prototype is in operation consisting of two 
processing and two structure elements. 

Nonstrict data structures are also 
supported by the Electra Technical Data- 
Driven Machine-3 (EM-3), another LISP- 
based machine [Yamaguchi et al. 19831. 
This nonstrict mechanism is extended to 
increase the concurrency of a procedure 
call. At the start of a procedure invocation 
pseudoresults are sent to the consumers of 
the results of the procedure call. Concur- 
rent with the execution of the procedure 
body, most nodes will process these pseu- 
doresults just as if they were normal tokens. 
When a node requires the actual value, its 
execution is delayed until it becomes avail- 
able. This mechanism seems to provide the 
same computational capability as lazy eval- 
uation. A hardware emulator comprising 
eight processing elements has been con- 
structed, reaching a speed of a few thousand 
instructions per second. Bottlenecks are 
now being analyzed [Toda et al. 1985]. 

’ See Keller et al. [ 19791 for the origin of this term. 
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Table 2. A Comparison of Some Interesting Features of the Most Important Dynamic Machine9 

Feature 1 Form IV Id Paged MDM DFM-1 EM-3 DDDP PIM-D SIGMA-l 

MS 
TOP 
Power 
Data 
Dyna 
Allot 

2s 1L 0 2L 0 1L 1L 2L 1L 
E C ? E B E B B B 
L M H H H M M H H 
St NS St NS NS NS NS NS NS 
C CT CT T T T T T T 
H M H S H S H S H 

’ The features are as follows: 

MS Machine structure is one level (lL), two level (2L), two stage (259, or other (0). 
TOP Topology of communication unit is equidistant (E), bus (B), or cube (C). 
Power Computational power per processing element is high (H), medium (M), or low (L). 
Data Hardware data structure support for streams (St) or general nonstrict data structures (NS). 
Dyna Dynamic mechanism uses code copying (C) and/or tags (T). 
Allot Allocation of data or activity is static (S), hardware supported (H), or by means of a software 

manager (M). 

The distributed data-driven processor 
built at Systems Laboratory [Kishi et al. 
19831 is distinguished by a centralized tag 
manager. Although this manager may in- 
troduce a bottleneck, it uses the tag space 
rather densely and simplifies the restora- 
tion of tags after a procedure invocation. 
Token matching is by means of a hardware 
hashing mechanism similar to the one de- 
scribed in the next section. The machine 
has a dedicated unit for nonstrict struc- 
tures. A prototype comprising four process- 
ing elements communicating through a 
two-way ring has been constructed. The 
study of simple hand-coded bench marks 
revealed that simple allocation results in a 
reasonable utilization, which can be mark- 
edly improved by more sophisticated 
allocation schemes. 

The Institute for New Generation Com- 
puter Architecture (ICOT) has stimulated 
research on the parallel execution of logic 
programs. One result is the design for a 
parallel inference machine based on data- 
flow, with primitives to support nondeter- 
minate merging of streams. Such a feature, 
or something equivalent, is required for the 
efficient implementation of unification. 
Streams are manipulated by separate struc- 
ture memories implementing I-structures. 
A distributed mechanism allocates a func- 
tion invocation on the same processing ele- 
ment, on a neighboring element, or on a 
distant element, depending on the value of 

a load factor, which is maintained by pe- 
riodic exchange of information between 
processing elements. A prototype has been 
constructed consisting of four processing 
elements and three structure memories 
connected by a two-level bus [Ito et al. 
1985, 19861. 

A comparison of some features of 
the most important machines is given in 
Table 2. 

5. THE MANCHESTER DATAFLOW 
MACHINE 

Around 1976 John Gurd and Ian Watson 
started a research project on dataflow com- 
puting at the University of Manchester. 
They conceived a two-level machine such 
as that shown in Figure 14b. Since they 
believe that the construction of an asyn- 
chronously operating packet communica- 
tion network serving more than a few dozen 
processing elements is not realistic at pres- 
ent, the emphasis of their work has been 
on constructing a powerful processing ele- 
ment. 

This section is a description of this com- 
puter in terms of the model presented in 
Section 3, based on Gurd and Watson 
[1980], Kirkham [1981], Watson and Gurd 
[ 19821, da Silva and Watson [ 19831, and 
personal communication. Since Gurd et al. 
[1985,1987] contain excellent overviews of 
the machine, we concentrate on details not 
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Fisure 16. Functional diamam of a urocessing element in the Manchester Dataflow 
Machine. 

covered there that will be needed for the 
evaluation in the next section. 

5.1 Overview 

The group developed the tagged-token con- 
cept to increase parallelism for reentrant 
graphs independently from similar work 
elsewhere [Arvind and Gostelow 19771. The 
structure of their processing element (Fig- 
ure 16) is similar to that shown in Figure 
13. It is a pipeline of four units: token 
queue, matching unit, fetching unit, and 
functional unit. Each unit works internally 
synchronous, but they communicate via 
asynchronous protocols. More than 30 
packets can be processed simultaneously in 
the various stages of the pipeline. To max- 
imize communication speed the data paths 
are all parallel (up to 166 bits wide) trans- 
mitting a complete packet at a time. Con- 
sequently the sizes of packets, and thus of 
tokens, are fixed. 

The token queue is a simple FIFO buffer 
currently accommodating 32K tokens. It 
serves to smooth the irregular output rates 
of two other units in the pipeline: the 
matching unit and the functional unit. 

The matching unit accepts tokens from 
the token queue and sends complete sets of 
input tokens to the fetching unit. Currently 
it can store 1M tokens. Since in this ma- 
chine the number of input arcs of a node is 
limited to two, the destination node is 
either monadic or dyadic. Each token car- 
ries information to distinguish the two 
cases. In the former case the token is simply 
passed on to the fetching unit. For dyadic 

nodes a match operation is performed, as 
described below. A match operation may or 
may not result in the production of an 
output packet and this accounts for the 
variable rate of this unit. 

The fetching unit combines the set of 
input tokens with the description of the 
destination node into an executable packet. 
The prototype currently accommodates 
64K nodes. Each node may contain up to 
two destination descriptions, each consist- 
ing of an address and an indication whether 
the destination node is monadic or dyadic. 
A dyadic instruction may be made monadic 
by replacing one of the destination descrip- 
tions by a constant input token for one of 
the two input ports. 

The functional unit consists of a prepro- 
cessor and a set of functional elements 
connected via a distributor and an arbiter. 
The preprocessor executes instructions 
that require access to a counter memory. 
Most counters are used to monitor perfor- 
mance. One counter, called the activation 
name counter, is used for the generation of 
unique tag areas and can be manipulated 
by the program proper. Although this is not 
a functional operation, the instruction set 
is such that this in itself cannot lead to 
nonfunctional programs. The functional 
elements are microprogrammed bit-slice 
processors. The processing time per in- 
struction varies from 3 to 30 microseconds, 
with an average of 6 microseconds. This 
variation, combined with the fact that an 
instruction may produce zero, one, or two 
tokens, accounts for the irregular rate of 
the functional unit. 
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Figure 17. The Manchester Dataflow Machine with 
two processing elements and one structure store. 

Figure 17 illustrates the structure of a 
multiprocessor with two processing ele- 
ments and one structure store. In principle, 
the machine can be expanded to an arbi- 
trary size, but the communication structure 
becomes impractical when much more than 
100 processing elements are employed. The 
communication unit consists of 2 X 2 rout- 
ing elements, each of which may accept a 
token from one of its input lines and send 
it to one of its output lines. For n - 1 
processing elements or structure stores 
logzn layers of n/2 routing elements each 
are needed. The communication unit is 
equidistant: The distance between any pair 
of processing elements is the same as that 
between the output and input of one pro- 
cessing element. The routing of tokens 
is determined by the destination address 
and/or the tag, depending on which 
allocation strategy is chosen. Since the 
communication unit has no locality prop- 
erties that the allocation policy could take 
advantage of, only an even load distribution 
over the processing elements has to be 
ensured. At present a pseudorandom dis- 
tribution is envisioned, implemented by 
hashing on both address and tag. Distrib- 
uting structures over several structure 
stores is another allocation problem that 
still needs to be investigated. 

Dataflow Machine Architecture 

5.2 The Match Operation 

l 387 

When a token destined for a dyadic node 
arrives at the matching unit, it performs a 
match operation; that is, it searches its 
memory for a token with the same desti- 
nation and tag. In a dataflow machine 
matching implements the synchronization 
of and the communication between concur- 
rent threads of execution. An efficient im- 
plementation is crucial for the performance 
of the whole machine. The unit can be 
considered to implement a sparsely occu- 
pied virtual memory with the pair (desti- 
nation, tag) as memory address. The search 
consists of retrieving the addressed mem- 
ory cell. If it is empty, the match fails. If 
the cell contains a token destined for the 
other port, the two tokens are partners and 
the match succeeds. They are combined 
into a packet and sent to the fetching unit. 

The virtual matching memory is occu- 
pied so sparsely that it cannot be imple- 
mented directly, but has to be mapped onto 
a physical memory of realistic size. An as- 
sociative memory could be used, but it was 
determined that simulating this by means 
of a hardware-hashing mechanism is more 
cost effective. The 54-bit matching key 
(18 bits for the destination and 36 bits 
for the tag) is hashed to a 16-bit address to 
access a memory of 64K cells. Each cell has 
room for one token including destination 
address, tag, and an extra bit to indicate an 
empty cell. If the accessed cell is empty, the 
match fails. If it contains a token, its ad- 
dress, tag, and port are compared with 
those of the incoming token leading to 
either success or failure. If the match fails, 
the incoming token has to be stored at the 
same address. At present, 16 of these mem- 
ory banks work in parallel, and so 16 tokens 
that hash to the same address can be ac- 
commodated simultaneously. When a to- 
ken needs to be stored for which all 16 slots 
are occupied, it is diverted to the overflow 
unit. The matching unit uses an extra 64K 
bit memory to indicate which hash keys 
have overflowed and routes each failing 
token hashed to an overflowed address to 
the overflow unit to continue its search for 
a partner. Other tokens can be processed 
concurrently since the order in which 
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Figure 18. Matching unit. For each token destined for a dyadic node a hash key 
is generated on the basis of destination address and tag. In the second stage of 
the pipeline the 16 slots of the memory banks are accessed in parallel. If the 
partner is present, the match succeeds. If the match fails, the token is stored 
unless all slots are already occupied. In that case the token is diverted to the 
overflow unit and an overflow bit is set. A token for which the match fails and 
the corresponding overflow bit is on is always sent to the overflow unit. 

matching occurs does not affect the com- 
putation. The matching unit is shown in 
Figure 18. 

A hardware overflow unit is being con- 
structed that maintains a linked list for 
each overflowed address. For each token 
that enters the overflow unit the appropri- 
ate list is searched sequentially. At present, 
this mechanism is simulated by the host 
computer, which makes the processing of 
overflowed tokens much slower than nor- 
mal matching. A small fraction of over- 
flowed addresses (less than 1 percent) may 
therefore have a considerable effect on the 
overall performance. When such level of 
overflow is reached, 50 percent of the mem- 
ory is occupied on the average [Veen 
1985bJ. It is expected that the real overflow 
unit will support 10 percent overflow with- 
out seriously degrading the average match- 
ing speed. 

5.3 Tag Space 

The tag is divided into the activation name, 
used to separate tag areas, and the index, 
used to distinguish elements of a data struc- 
ture. Through clever encoding the sizes of 
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these fields are determined at run time 
although the total tag size is fixed. The 
fields are not distinguished outside the 
functional unit, but there are separate in- 
structions to manipulate the different 
fields. 

The activation name space is considered 
to be an unordered set of unique names. 
The GENERATE-ACTIVATION-NAME 
instruction generates a new activation 
name by causing the preprocessor to incre- 
ment its activation name counter and pre- 
fixing its value by the processing element 
identifier. Consequently the activation 
names are unique, but their supply is rather 
limited. Since tokens of this type may not 
be converted to any other type, the non- 
functionality of this instruction is harm- 
less. In contrast, the index may be set to 
an integer and may be subject t6 arithmetic. 
Such operations make an efficient imple- 
mentation of loops possible. 

5.4 Data Structures 

A data structure can be sent over an arc 
with each element as a separate token 



distinguished by the index field of the tag. 
The elements can be produced and accessed 
in any order and concurrently. Retrieving 
a single element in structure-copying mode 
(acceptable for small structures) is accom- 
plished by sending all tokens of a structure 
to a node that transmits the token with the 
proper index field and discards all other 
tokens. Many algorithms exhibit a pipeline 
type of parallelism, calling for implemen- 
tation with streams, which are produced 
and consumed in order. Streams are non- 
strict; that is, elements can be read before 
the complete stream is produced. With the 
aid of special tag manipulation instructions 
(see, e.g., Bowen [1981]) the interaction 
between subsequent iterations and subse- 
quent data structure elements can be made 
quite efficient. Great efficiency improve- 
ments have been made using scatter in- 
structions, which produce a whole series of 
tokens with consecutive values or tags 
within a specified range [Bohm and 
Sargeant 19851. 

Copying large data structures is in gen- 
eral unacceptable. Fixed-size structures can 
be stored in the structure store [Sargeant 
and Kirkham 19861. A CREATE-STRUC- 
TURE instruction reserves a memory area 
large enough to store the complete struc- 
ture and returns a pointer. The WRITE- 
ELEMENT instruction stores the value 
part of a token without tag or destination. 
The READ-ELEMENT instruction re- 
turns the value of an element if it is avail- 
able; otherwise, the read request is 
appended to a list of pending requests, 
which are fulfilled when the element is 
written. This makes the storage of non- 
strict structures possible. Garbage collec- 
tion is by means of reference counts that 
are maintained by explicit INCREMENT 
and DECREMENT instructions. When 
there are several structure stores, allocation 
of a data structure is not easy. Small struc- 
tures (e.g., less than 32 elements) can best 
be allocated in one structure store and large 
structures interleaved over all structure 
stores. This requires a global structure 
manager. 

Before the structure store was installed, 
the matching unit had special facilities to 
store data structures. Compared with the 
old scheme the structure store provides 
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three main advantages. Storing elements 
without tags or destination is three times 
more space efficient. It also saves instruc- 
tions because no tags need to be manipu- 
lated when a structure is accessed. The list 
of pending requests makes efficient support 
of nonstrict data structures possible. 

5.5 State of the Project 

The first prototype processing element, 
which became operational in the fall of 
1981, has been subjected to numerous per- 
formance studies, and unsatisfactory parts 
have been improved. For a set of bench- 
mark programs a performance of l-2 mil- 
lion instructions per second has been 
reached [Gurd et al. 19851. Since the pro- 
totype is implemented in medium-perform- 
ance technology, an upgrading to around 
10 million instructions per second for one 
processing element seems feasible. An em- 
ulator has been constructed to study the 
behavior of the communication unit. The 
emulator consists of 16 pairs of micropro- 
cessors, each pair emulating one processing 
element, connected via a synchronously op- 
erating packet switching network [Foley 
19851. In the summer of 1985, a structure 
store with space for 500K elements has 
been installed, and later expanded to 1M 
elements [Kawakami and Gurd 19861. A 
fast overflow unit is under construction, 
which will have a basic speed comparable 
to that of the matching unit. 

6. FEASIBILITY OF DATAFLOW MACHINES 

We saw in the previous section that a pro- 
cessing element for a dataflow machine can 
be constructed with a speed of close to 10 
million instructions per second. Since da- 
taflow machines are in principle extensible, 
a machine consisting of more than 100 
processing elements could conceivably 
reach a speed in the range of 1 billion 
instructions per second. It is too early to 
tell whether this potential can indeed be 
realized, much work needs to be done on 
allocation schemes, and experience needs 
be gained with data structure support and 
networks that connect many processing 
elements. But even if a machine with such 
a performance could be constructed, .the 
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question remains as to whether the amount 
of hardware needed for such a machine 
would not be better used by an alternative 
architecture. In fact, most of the objections 
raised against the dataflow approach are 
concerned with factors that are believed to 
reduce the effective utilization of a dataflow 
machine to an unacceptably low level. A 
well-argued case is made by Gajski et al. 
[1982]. They claim that most programs do 
not contain enough parallelism to utilize a 
realistic dataflow machine except when 
large arrays are processed in parallel. They 
also claim that the handling of large data 
structures involves considerable overhead 
in the form of either excessive storage or 
excessive processing requirements. With 
several prototypes operational the validity 
of such objections can now be judged on the 
basis of actual experience. In this section 
this question is addressed with respect to 
the Manchester Dataflow Machine. Re- 
lated discussions can be found in Shimada 
et al. [1986] and Hiraki et al. [1986]. Here 
we concentrate on underutilization and 
overhead, treated together as resource 
waste. Roughly speaking, wasted resources 
are considered to be those that are 
needed beyond those in a reasonably high- 
performance sequential computer. 

Most of the hardware of the Manchester 
Dataflow Machine can be classified as 
being used either for processing or for stor- 
age. We shall only consider the functional 
elements as processing hardware. Storage 
consists of data and instruction memories 
in the token queue, the matching unit, the 
fetching unit, and the structure store. The 
rest of the hardware we classify as being 
used for communication. The total resource 
waste in this machine can be estimated if 
we know the relative sizes of the three 
categories and the level of waste within 
each category. As a rough measure of the 
amount of hardware we use the number of 
printed circuit boards, ignoring differences 
in board and chip density. 

A multiprocessor consists of a number of 
processing elements connected with a com- 
munication switch. The amount of hard- 
ware in the switch per processing element 
grows logarithmically with the size of the 
machine. A machine containing a few dozen 

processing elements would require per 
processing element or structure store about 
two printed circuit boards for the switch 
alone. One processing element is currently 
implemented with about 15 printed circuit 
boards for processing, 22 for storage, and 9 
for internal communication. The structure 
store requires four printed circuit boards 
for communication and two for storage. 

If there are an equal number of process- 
ing elements as there are structure stores, 
about 45 percent of the hardware will be 
devoted to storage, with the rest equally 
divided between processing and communi- 
cation. Half of the communication hard- 
ware is needed for the asynchronous 
communication between units within one 
processing element. The same architecture 
can easily be implemented synchronously. 
Since in that case the communication hard- 
ware is relatively small (15 percent), we 
concentrate on the other two categories. 

6.1 Waste of Processing Power 

Processing power is wasted either because 
a functional element is idle or because it is 
performing overhead computation, that is, 
computation that would not be needed in a 
sequential implementation. We treat these 
two factors in order. 

6.1.1 Underutilization of Functional Elements 

A functional element is idle because of a 
poor hardware balance, lack of parallelism 
in the program, or poor distribution over 
the processing elements. Balancing the 
hardware amounts to adjusting the number 
of functional elements to the speed of the 
matching unit and providing enough 
buffering to smooth irregularities. This has 
been done by analysis and by experiment 
[Gurd and Watson 1983; Gurd et al. 19851, 
and it has been concluded that the func- 
tional unit should contain between 12 and 
20 elements. 

In such a configuration there are 30-40 
stages in the pipeline that can concurrently 
be active. The parallelism in a program 
should thus be at least 30 per processing 
element to avoid starvation of functional 
elements and preferably more to accom- 
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single-jump instruction in a control flow 
computer. Another manifestation is the 
tag manipulation instruction that is 
needed for each data item entering a re- 
entrant subgraph. Possibly the largest 
source of overhead computation is in the 
handling of large data structures. 

For certain numerical programs an 
indication of the amount of overhead 
computation is provided by the floating- 
point fraction, that is, the fraction of exe- 
cuted instructions that perform floating 
point operations? Studies of bench-mark 
programs run on conventional supercom- 
puters at Lawrence Livermore National 
Laboratory showed that assembly language 
programmers achieve a floating-point frac- 
tion of 30 percent, whereas FORTRAN 
compilers reach 15-20 percent [Gurd et al. 
19851. Straightforward compilers for the 
Manchester Dataflow Machine achieve a 
floating-point fraction of 3 percent for large 
programs. There is, however, much room 
for optimization, and a good compiler can 
reduce this overhead considerably. Recent 
work on optimization in Manchester has 
achieved floating-point fractions of 15 per- 
cent for realistic programs [Bohm and 
Sargeant 19851. Shimada et al. [1986] are 
working in the same direction. 

modate the smoothing buffers. Experi- 
ments with simple programs run on one 
processing element indicate that an average 
parallelism of 50 is sufficient to keep above 
this minimum. A reasonably sized multi- 
processor would therefore need programs 
with an average rate of parallelism close to 
1000. Experience so far suggests that real- 
istic programs can indeed achieve such 
rates of parallelism, if the programmer 
carefully avoids sequential constructs. Pro- 
grams with a regular type of parallelism, 
for which the average rate of parallelism is 
close to the maximum rate, do not create 
problems. Such programs, however, run 
well or even better on static dataflow ma- 
chines or on more conventional parallel 
computers. Programs with irregular paral- 
lelism often create excessive storage de- 
mands. We come back to this below. 

Distributing the work load over the pro- 
cessing elements is in general a complicated 
allocation problem that needs to take the 
locality of instruction and data access into 
account. In the Manchester machine the 
problem is simplified since all communica- 
tion paths are of equal length, so that there 
is no physical locality that the allocator 
needs to exploit. Simple experiments with 
both the simulator and the micro-based 
emulator suggest that a pseudorandom dis- 
tribution based on similar hashing tech- 
niques as those used in the matching store 
will provide an even distribution of the 
processing load [Barahona and Gurd 1985; 
Foley 19851. Only simple programs have 
been simulated, however, and structure al- 
location has been ignored. 
with more realistic programs 
to substantiate these claims. 

6.7.2 Overhead Computation 

Experiments 
are necessary 

Even if the functional elements are suffi- 
ciently utilized, processing power can still 
be wasted if many instructions are in fact 
overhead. One source of this type of over- 
head mentioned by Gajski et al. [1982] is 
the distributed nature of flow control. A 
manifestation of this problem is the sepa- 
rate BRANCH instructions that need to be 
executed for each data item that enters a 
conditional expression compared to the 

6.2 Waste of Storage Space 

An even distribution of the work over a 
multiprocessor is greatly simplified if each 
instruction is available on each processing 
element. Because of all the copies of the 
program, most instruction storage would be 
wasted. This waste is, however, insignifi- 
cant compared with the waste in data 
storage. 

The processing element that is currently 
operating contains an enormous amount of 
memory, practically all of it situated in the 
matching unit and the structure store. The 
total hardware cost of the machine is dom- 
inated by the cost of this 20-Mbyte high- 
speed data memory. 

The structure store needs 5 Mbyte 
of memory because most programs with 

3 The Manchester Dataflow group calls the inverse of 
this figure the MIPS/MFLOPS ratio. 
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sufficient parallelism operate on large data 
structures, and sometimes several copies of 
these need to be maintained concurrently. 
It seems possible that with compiling tech- 
niques that analyze access patterns to 
structures this duplication could be reduced 
substantially without impairing parallel- 
ism. Experience with compiling for vector 
processors may be helpful in this. 

The X-Mbyte of memory in the match- 
ing unit is barely sufficient to run realistic 
programs. One reason for this is that its 
effective utilization is less than 20 percent 
[Veen 1985b]. This results from a combi- 
nation of two factors: 

l Each token carries a destination and a 
tag in addition to its data. Two-thirds of 
each cell is thus dedicated to overhead. 

l The occupancy needs to be limited to less 
than 50 percent to avoid serious perform- 
ance degradation due to overflow. 

When the hardware overflow unit is in- 
stalled, the effective utilization may rise to 
25 percent. 

The second reason for the size of the 
matching unit is that programs with suffi- 
cient irregular parallelism occasionally 
flood the matching unit with intermediate 
results. It has become clear that a mecha- 
nism is needed to limit parallelism if 
resources tend to get overloaded. Such a 
dynamic mechanism has been called a 
throttle. In the NEC dataflow chip (see 
Section 4.2) we saw a fine-grain throttle: 
Tokens are classified in different cate- 
gories, depending on the effect they are 
expected to have on the level of parallelism, 
and the token queue favors a particular 
token category, depending on the machine 
load. A suggestion for such a mechanism 
also appears in Veen [1980]. An effective 
classification would need assistance from 
the compiler. 

Currently a coarse-grain throttle is under 
investigation in Manchester that manages 
procedure and loop bodies by controlling 
the generation of activation names. The 
execution of a GENERATE-ACTIVA- 
TION-NAME instruction can be seen as 
the initiation of a new process. The throttle 
would allow only a limited number of pro- 

cesses to be active concurrently and may 
suspend a process until a previous one has 
terminated. In order to avoid deadlock the 
throttle has to maintain an explicit repre- 
sentation of the dependencies between 
processes. The mechanism seems complex 
but feasible, and simulation experiments 
have been very promising. 

A consequence of this type of throttling 
is that the matching space can be much 
smaller because activation names can be 
reused. The matching space is treated as a 
critical resource managed by the throttle, 
and its consumption is reduced by enforc- 
ing locality. With assistance from the com- 
piler, the index field of the tag can also be 
reduced. A tag of half its current size ap- 
pears sufficient. There is also some redun- 
dancy in the matching space addressing 
that can be removed. A combination of 
these improvements affects the utilization 
of the matching unit in two ways: The 
overhead per cell may be reduced to 30 
percent and, because of greater locality, a 
more efficient hashing function can be 
used. In this way a utilization of 40 percent 
can be achieved [Veen 1985b]. 

7. SUMMARY 

The concept of dataflow architecture is 
some 15 years old, and the first dataflow 
machine became operational more than a 
decade ago. In the last five years consider- 
able progress has been made. Several de- 
signs have been emulated in hardware or 
have reached the prototype stage. They all 
have a communication mechanism based 
on packet switching, and most of them 
support general recursion. Recursion mech- 
anisms are based on tagged tokens, some- 
times combined with code copying. 
Whether such a combination is advanta- 
geous is not yet clear. The handling of data 
structures is an area of active investigation. 
The dataflow model calls for separate cop- 
ies of each value to be sent from the pro- 
ducer to each consumer. It is clear that 
such copying is not feasible when large data 
structures are involved and that data struc- 
tures have to be stored. Since this storage 
is visible in the dataflow graph, it consti- 
tutes a deviation from the pure functional 
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approach. There are signs that a deviation 
is also necessary from the fine-grain ap- 
proach. Mechanisms have been proposed 
and implemented that schedule on coarse- 
or medium-grain levels such as procedure 
bodies. Scheduling occurs in a load balancer 
and in a throttle, that is, a mechanism to 
limit parallelism when resources tend to get 
overloaded. 

An objection frequently raised against 
the dataflow approach is that its fine gran- 
ularity leads to an excessive consumption 
of resources. Experience with the Man- 
chester Dataflow Machine, the most ad- 
vanced prototype to date, shows that the 
major waste of resources occurs in data 
storage. The memory needed to store struc- 
tures can probably be reduced by compiling 
techniques. More serious is the consump- 
tion of matching unit memory. An effective 
throttle could alleviate this problem. Be- 
sides its primary goal, reducing the number 
of tokens that have to be stored concur- 
rently, it has two additional effects: The 
size of the tag can be reduced and the 
matching space is used more densely, which 
makes a more efficient representation 
possible. 

The second area of concern is the waste 
of processing power due to underutilization 
of functional elements. One source of this 
may be an insufficient level of parallelism 
in the program. It has been shown that 
with careful programming and sophisti- 
cated compilers a high level of parallelism 
can be sustained even for realistic pro- 
grams. It remains to be seen whether the 
required reprogramming effort stays within 
reasonable bounds for a wide range of large 
programs. Underutilization may also occur 
if processing or communication load is not 
evenly balanced. Simple experiments with 
load balancing have shown promising re- 
sults, but conclusive experiments await 
the construction of multiprocessors of 
sufficient power. 

It has been assumed in the past that fine 
granularity would require a great propor- 
tion of overhead instructions, which would 
also waste processing power. It has been 
shown recently that sophisticated com- 
pilers can reduce this overhead to an 
acceptable level. 

The crucial questions are concerned with 
handling of data structures, load balancing, 
and control of parallelism. They all require 
study of the execution of large programs 
for which simulation or analysis is difficult. 
Prototypes of sufficient power that are, or 
soon will be, available together with their 
supporting software provide excellent test 
beds for further research in these areas. 
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