
Dataflow Machine Architecture

ARTHUR H. VEEN

Center for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Dataflow machines are programmable computers of which the hardware is optimized for
fine-grain data-driven parallel computation. The principles and complications of data-
driven execution are explained, as well as the advantages and costs of fine-grain
parallelism. A general model for a dataflow machine is presented and the major design
options are discussed.

Most dataflow machines described in the literature are surveyed on the basis of this
model and ita associated technology. For general-purpose computing the most promising
dataflow machines are those that employ packet-switching communication and support
general recursion. Such a recursion mechanism requires an extremely fast mechanism to
map a sparsely occupied virtual space to a physical space of realistic size. No solution has
yet proved fully satisfactory.

A working prototype of one processing element is described in detail. On the basis of
experience with this prototype, some of the objections raised against the dataflow
approach are discussed. It appears that the overhead due to fine-grain parallelism can be
made acceptable by sophisticated compiling and employing special hardware for the
storage of data structures. Many computing-intensive programs show sufficient
parallelism. In fact, a major problem is to restrain parallelism when machine resources
tend to get overloaded. Another issue that requires further investigation is the
distribution of computation and data structures over the processing elements.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey;
C.1.2 [Processor Architectures]: Multiple Data Stream Architectures-multiple-
instruction-stream, multiple-data-stream processors (MIMD); C.1.3 [Processor
Architectures]: Other Architecture Styles-data-flow architectures; C.4 [Computer
Systems Organization]: Performance of Systems-design studies

General Terms: Design, Performance

Additional Key Words and Phrases: Data-driven architectures, dataflow machines, data
structure storage

INTRODUCTION maintain, and extend. Experimental data-
flow machines have now been around for

Early advocates of data-driven parallel more than a decade, but still there is no
computers had grand visions of plentiful consensus as to whether data-driven exe-
computing power provided by machines cution, besides being intuitively appealing,
that were based on simple architectural is also a viable means to make these visions
principles and that were easy to program, become reality.

Author’s current address: Computing Science Department, University of Amsterdam, P.O. Box 41882,1009 DB
Amsterdam, The Netherlands, or Arthur e MCVAX.cwl.NL.

Permission to copy without fee all or part ?f this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1987 ACM 0360-0300/86/1200-0365 $1.50

ACM Computing Surveys, Vol. 18, No. 4, December 1986

366 . Arthur H. Veen

CONTENTS

INTRODUCTION
1. DATAFLOW MACHINES VERSUS

OTHER PARALLEL COMPUTERS
2. DATAFLOW MACHINE LANGUAGE

2.1 Dataflow Programs
2.2 Dataflow Graphs
2.3 Conditional Constructs
2.4 Iterative Constructs and Reentrancy
2.5 Procedure Invocation

3. THE ARCHITECTURE
OF DATAFLOW MACHINES
3.1 A Processing Element
3.2 Dataflow Multiprocessors
3.3 Communication
3.4 Data Structures

4. A SURVEY OF DATAFLOW MACHINES
4.1 Direct Communication Machines
4.2 Static Packet Communication Machines
4.3 Machines with Code-Copying Facilities
4.4 Machines with both Tagged-Token

and Code-Copying Facilities
4.5 Tagged-Token Machines

5. THE MANCHESTER DATAFLOW
MACHINE
5.1 Overview
5.2 The Match Operation
5.3 Tag Space
5.4 Data Structures
5.5 State of the Project

6. FEASIBILITY OF DATAFLOW MACHINES
6.1 Waste of Processing Power
6.2 Waste of Storage Space

7. SUMMARY
ACKNOWLEDGMENTS
REFERENCES

The concept of data-driven computation
is as old as electronic computing. It is ironic
that the same von Neumann, who is some-
times blamed for having created a bottle-
neck that dataflow architecture tries to
remove, made an extensive study of neu-
ral nets, which have a data-driven nature.
Asynchronously operating in/out channels,
introduced in the 195Os, which communi-
cate according to a ready/acknowledge pro-
tocol, are among the first implementations
of data-driven execution. The development,
in the 196Os, of multiprogrammed operat-
ing systems provided the first experience
with the complexities of large-scale asyn-
chronous parallelism. After exposure to
these problems in the MULTICS project,

Dennis [1969] developed the model of
dataflow schemas, building on work by
Karp and Miller [1966] and Rodriquez
[1969]. These dataflow graphs, as they
were later called, evolved rapidly from a
method for designing and verifying operat-
ing systems to a base language for a new
architecture. The first designs for such
machines [Dennis and Misunas 1974;
Rumbaugh 19751 were made at Massachu-
setts Institute of Technology. The first
dataflow machine became operational in
July 1976 [Davis 19791.

The dataflow field has matured consid-
erably in the past decade. Realistic hard-
ware prototypes have become operational,
experience with compiling and large-scale
simulation has been gained, and the exe-
cution of large programs has been studied.
Early optimism has often been replaced by
an appreciation of the problems involved.
A keen understanding of these problems is,
however, still lacking. In the years ahead
the emphasis may shift from exploratory
research to evaluation and to a thorough
analysis of the problems deemed most cru-
cial. Many of these problems have counter-
parts in other parallel computers, certainly
in those based on fine-grain parallelism.

To facilitate such an analysis, we shall
attempt to summarize the work done so far.
A clear view of the common properties of
different dataflow machines is sometimes
obscured by trivial matters such as differ-
ences in terminology, choice of illustra-
tions, or emphasis. In order to reduce such
confusion, all designs are described as in-
stances of a general dataflow machine. All
necessary terminology is introduced when
this general model is presented; the reader
does not have to be familiar with dataflow
or general graph terminology. Some under-
standing of the problems encountered in
parallel architecture is, however, helpful.

There is no sharp definition of dataflow
machines in the sense of a widely accepted
set of criteria to distinguish dataflow ma-
chines from all other computers. For the
sake of this survey we consider dataflow
machines to be allprogrammable computers
of which the hardware is optimized for fine-
grain data-driven parallel computation.
Fine grain means that the processes that

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Dataflow Machine Architecture l 367

run in parallel are approximately of the size
of a conventional machine code instruction.
Data driven means that the activation of a
process is solely determined by the avail-
ability of its input data. This definition
excludes simulators as well as nonpro-
grammable machines, for instance, those
that implement the dataflow graph di-
rectly in hardware, an approach that is
popular for the construction of dedicated
asynchronous signal processors. We also
exclude data-driven computers that use
coarse-grain parallelism such as the MAUD
system [Lecouffe 19791, or medium-grain
parallelism [Hartimo et al. 1986; Preiss and
Hamacher 19851 and computers that are
not purely data driven [Treleaven et al.
1982a].

Comparisons of dataflow machines have
appeared elsewhere, but they were mostly
limited to a few machines [Dennis 1980;
Hazra 19821. Recently Srini [1986] pre-
sented a comparison of eight machines.
Excellent surveys with a wider scope, in-
cluding sequential and demand-driven
computers, can be found in Treleaven
et al. [1982b] and Vegdahl [19841.

This paper is only concerned with the
architecture of dataflow machines, that is,
the machine language and its implementa-
tion. To limit the size of the paper all issues
related to the equally important areas of
compiling and programming have been
omitted. Introductory material on dataflow
languages, which are commonly used to
program dataflow machines, can be found
in McGraw [1982] and Glauert [19841.
There is extensive literature on the closely
related group of functional languages [Dar-
lington et al. 19821; a recommended intro-
duction is Peyton-Jones [19841. Positive
experiences with programming in impera-
tive languages have also been reported
[Allan and Oldehoeft 1980; Veen 1985a].
Discussions on programming techniques
suitable for dataflow machines are just
beginning to appear [Dennis et al. 1984;
Gurd and Bohm 19871.

The first section of this paper places
dataflow machines in the context of other
parallel computers. In the next section we
introduce dataflow graphs, the machine
language of most dataflow machines. Read-

ers familiar with dataflow concepts can skip
these first two sections. In Section 3 we
describe the execution of a program on a
dataflow machine, and discuss different
types of machine organizations. Section 4
is a presentation of a comparative survey
of a wide variety of machine proposals and
is suitable as a starting point for a literature
study. Section 5 contains a detailed study
of one operational prototype, and in Sec-
tion 6 the feasibility of the dataflow concept
is discussed on the basis of this prototype.

1. DATAFLOW MACHINES VERSUS
OTHER PARALLEL COMPUTERS

The efficiency of a parallel computer is
influenced by several conflicting factors. A
major problem is contention for a shared
resource, usually shared memory or some
other communication channel. Contention
can often be reduced by careful coordina-
tion, allocation, and scheduling, but if this
is done at run time, it increases the over-
head due to parallelism, that is, processing
that would be unnecessary without paral-
lelism. If, during a significant part of a
computation, a major part of the processing
power is not engaged in useful computation,
we speak of underutilization. A useful meas-
ure of the quality of a parallel computer is
its effective utilization, that is, utilization
corrected for overhead. The best one can
hope for is that the effective utilization of
a parallel computer approaches that of a
well-designed sequential computer. An-
other desirable quality is scalability, that is,
the property that the performance of the
machine can always be improved by adding
more processing elements. We speak of lin-
ear speed-up if the effective utilization does
not drop when the machine is extended.

Flynn [1972] introduced the distinction
between parallel computers with a single
instruction stream (SIMD) and those with
multiple instruction streams (MIMD). The
characteristic feature of SIMD computers
is that they are synchronous at the machine
language level. In the programming of such
computers, the timing of concurrent com-
putations plays a prominent role. They
require skillful programming to bring
utilization to an acceptable level since

ACM Computing Surveys, Vol. 18, No. 4, December 1986

368 . Arthur H. Veen

Figure 1. Some of the design options for parallel computers. In SIMD
machines the parallel operations are synchronized at the machine language
level, and scheduling and allocation needs to be done by the programmer.
In MIMD machines the processes that run in parallel need to be synchro-
nized whenever they communicate with each other.

scheduling and allocation, that is, deciding
when and where a computation will be exe-
cuted, has to be done statically, either by
the programmer or by a sophisticated com-
piler. For certain kinds of applications
this is quite feasible. For instance, in low-
level signal processing massive numbers
of data have to be processed in exactly
the same way: The algorithms exhibit a
high degree of regular parallelism. Various
parallel computers have been successfully
employed for these kind of applications.

SIMD computers show a great variety in
both the power of individual processors and
the access paths between processors and
memory (see Figure 1). In associative pro-
cessors (e.g., STARAN) many primitive
processing elements are directly connected
to their own data; those processing ele-
ments that are active in a given cycle all
execute the same instruction. Contention
is thus minimized at the cost of low utili-
zation. Achieving a reasonable utilization
is also problematic for processor arrays
such as ILLIAC IV, DAP, PEPE, and the
Connection Machine. The most popular of
today’s supercomputers are pipelined vec-
tor processors, such as the CRAY-1s and
the CDC 205. These machines attain their
speed through a combination of fast tech-
nology and strong reliance on pipelining
geared toward floating-point vector arith-
metic. The performance of vector proces-

ACM Computing Surveys, Vol. 18, No. 4, December 1986

sors is highly dependent on the algorithms
used and especially on the access patterns
to data structures. The reason for this is
the large discrepancy between the perfor-
mance of the machine when it is doing what
it is designed to do, that is, processing
vectors of the right size, and when it is
doing something else.

In many areas that have great needs for
processing power, the behavior of algo-
rithms is irregular and highly dependent on
the input data, making it necessary to per-
form scheduling at run time. This calls for
asynchronous machines in which compu-
tations are free to follow their own instruc-
tion stream with little interference from
other computations. MIMD computers are
asynchronous at the level of the machine
language? As long as two concurrent com-
putations are independent, no assumptions
can be made about their relative timing.
Computations are seldom completely inde-
pendent, however, and at the points where
interaction occurs they need to be synchro-
nized by some special mechanism. This
synchronization overhead is the price to be
paid for the higher utilization allowed by
asynchronous operation.

There are different strategies to keep this
price to an acceptable level. One is to keep

i This does not imply that the organization of the
machine is also asynchronous.

Dataflow Machine Architecture l 369

coarse-grain to very-fine-grain machines.
There are close parallels between dataflow
machines and fine-grain reduction ma-
chines, but the relative merits of each type
remain unclear. Most of the crucial imple-
mentation problems are probably shared by
both types of machines, but in this paper
we do not investigate these parallels. See
Treleaven et al. [1982b] and Vegdahl [19841
for a comparative survey.

2. DATAFLOW MACHINE LANGUAGE

Although each dataflow machine has a dif-
ferent machine language, they are all based
on the same principles. These shared prin-
ciples are treated in this section. Because
we are concerned with a wide variety of
machines, we often have to be somewhat
imprecise. More specific information is pro-
vided in Section 5, which deals with one
particular machine. We start with a de-
scription of dataflow programs and the
ways in which they differ from conven-
tional programs. Dataflow programs are
usually presented in the form of a graph; a
short summary of the terminology of data-
flow graphs is given. In the rest of this
section we show how these graphs can be
used to specify a computation.

the communication between computations
to a minimum by dividing the task into
large processes that operate mainly on their
own private data. Although in such ma-
chines scheduling is done at run time, the
programmer has to be aware of segmenta-
tion, that is, the partitioning of program
and data into separate processes. Again the
difficulty of this task is highly dependent
on the regularity of the algorithm. Assist-
ance from the compiler is feasible, but
hardly any work in this area has been re-
ported [Hudak and Goldberg 19851. An-
other problem is that processes may have
to be suspended, leading to complications
such as process swapping and the possibil-
ity of deadlock. Examples of such coarse-
grain parallel computers are the HEP
[Smith 19781 and the CM* [Swan et al.
19771.

A different strategy to minimize synchro-
nization overhead is to make communica-
tion quick and simple by providing
special hardware and coding the program
in a special format. Dataflow machines are
examples of such fine-grain parallel com-
puters. Because communication is quick,
the processes can be made very small, about
the size of a single instruction in a conven-
tional computer. This makes segmentation
trivial and improves scalability since the
program is effectively divided into many
processes and special hardware determines
which of them can execute concurrently.
The applications for which fine-grain par-
allel computers can be expected to be com-
petitive are those with great computing
demands that can be formulated with a
high average but quite irregular degree of
parallelism. However, Dennis et al. [1984]
have achieved high utilization (greater than
90 percent) for a regular problem that
ran at 20 percent utilization on vector
processors.

In dataflow machines scheduling is based
on availability of data; this is called data-
driven execution. In reduction machines
scheduling is based on the need for data;
this is known as demand-driven execution.
Demand-driven machines (also known as
reduction machines) are currently under
extensive study. Various parallel reduction
machines have been proposed ranging from

2.1 Dataflow Programs

In most dataflow machines the programs
are stored in an unconventional form called
a dataflow program. Although a dataflow
program does not differ much from a con-
trol flow program, it nevertheless calls for
a completely different machine organiza-
tion. Figure 2 serves to illustrate the differ-
ence. A control flow program contains two
kinds of references: those pointing to in-
structions and those pointing to data. The
first kind indicates control flow, and the
second kind organizes data flow. The co-
ordination of data and control flow creates
only minor problems in sequential process-
ing (e.g., reference to an uninitialized vari-
able), but becomes a major issue in parallel
processing. In particular, when the proces-
sors. work asynchronously, references to
shared memory must be carefully coordi-
nated. Dataflow machines use a different
coordination scheme called data-driven

ACM Computing Surveys, Vol. 18, No. 4, December 1986

370 l Arthur H. Veen

a:=x+y
b:=aXa
c:= 4-a

Memory

Figure 2. A comparison of control flow and dataflow programs. On the
left a control flow program for a computer with memory-to-memory
‘instructions. The arcs point to the locations of data that are to be used or
created. Control flow arcs are indicated with dashed arrows: usuallv most
of them are implicit. In the equivalent dataflow program on the right only
one memory is involved. Each instruction contains pointers to all instruc-
tions that consume its results.

execution: The arrival of a data item serves
as the signal that may enable the execution
of an instruction, obviating the need for
separate control flow arcs.

In dataflow machines each instruction is
considered to be a separate process. To
facilitate data-driven execution each in-
struction that produces a value contains
pointers to all its consumers. Since an in-
struction in such a dataflow program con-
tains only references to other instructions,
it can be viewed as a node in a graph; the
dataflow program in Figure 2 is therefore
often represented as in Figure 3 (see Sec-
tion 2.2). In this notation, referred to as a
dataflow graph, each node with its associ-
ated constants and its outgoing arcs corre-
sponds to one instruction.

Because the control flow arcs have been
eliminated, the problem of synchronizing
data and control flow has disappeared. This
is the main reason why dataflow programs
are well suited for parallel processing. In a
dataflow graph, the arcs between the in-
structions directly reflect the partial order-
ing imposed by their data dependencies;
instructions between which there is no path
can safely be executed concurrently.

2.2 Dataflow Graphs

The prevalent description of dataflow pro-
grams as graphs has led to a characteristic
and sometimes confusing terminology

ACM Computing Surveys, Vol. 18, No. 4, December 1986

stemming from Petri net and graph theory.
Instructions are known as nodes, and in-
stead of data items one talks of tokens. A
producing node is connected to a consum-
ing node by an arc, and the “point” where
an arc enters a node is called an input port.
The execution of an instruction is called
the firing of a node. This can only occur if
the node is enabled, which is determined by
the enabling rule. Usually a strict enabling
rule is specified, which states that a node
is enabled only when each input port con-
tains a token. In the examples in this
section all nodes are strict unless noted
otherwise. When a node fires, it removes
one token from each input port and places
at most one token on each of its output
arcs. In so-called queued architectures,
arcs behave like first-in-first-out (FIFO)
queues. In other machines each port acts
as a bag: The tokens present at a port can
be absorbed in any order.

Figure 3 serves to illustrate these no-
tions. It shows an acyclic graph comprising
three nodes, with a token present in each
of the two input ports of the PLUS node
(marked with the operator “+“). This node
is therefore enabled, and it will fire at some
unspecified time. Firing involves the re-
moval of the two input tokens, the compu-
tation of the result, and the production of
three identical tokens on the input ports of
the other two nodes. Both of these nodes
are then enabled, and they may fire in any

Dataflow Machine Architecture l 371

Figure3. The dataflow program of Figure 2 depicted as a graph.
The small circles indicate tokens. The symbol at the left input of the
subtraction node indicates a constant input. In the situation depicted
on the left the first node is enabled since a token is present on each
of its innut ports. The graph on the right depicts the situation after
the tiring of-that node. -

order or concurrently. Note that, on the
average, a node that produces more tokens
than it absorbs increases the level of con-
currency. All three nodes in this example
are functional; that is, the value of their
output tokens is fully determined by the
node descriptions and the values of their
input tokens.

2.3 Conditional Constructs

Conditional execution and repetition re-
quire nodes that implement controlled
branching. The conditional jump of a
control flow program is represented in a
dataflow graph by BRANCH nodes. The
most common form is the one depicted in
Figure 4.

A copy of the token absorbed from the
value port is placed on the true or on the
false output arc, depending on the value of
the control token. Variations of this node
with more than two alternative output arcs
or with more than one value port (com-
pound BRANCH) have also been proposed.
As we shall see shortly, the complement of
the BRANCH node is also needed. Such a
MERGE node does not have a strict ena-
bling rule; that is, not all input ports have
to contain a token before the node can fire.
In the deterministic variety the value of a
control token determines from which of the
two input ports a token is absorbed. A copy
of the absorbed token is sent to the output
arc. The nondeterministic MERGE node
(i.e., a MERGE node without control input)
is enabled as soon as one of its input ports
contains a token; when it fires, it simply

value
, true false

A
control

2%
true false

(a)

1
value

(b)

Figure4. BRANCH and MERGE nodes. (a) A
BRANCH node. (b) A nondeterministic MERGE
node.

copies the token that it receives to its suc-
cessors. Nonqueued architectures usually
do not have MERGE nodes, but allow two
arcs to end at the same port. The advantage
is that only a strict enabling rule has to be
supported.

Figure 5 shows an implementation of a
conditional construct. If one token enters
at each of the three arcs at the top of the
graph, the two BRANCH nodes will each
send a token to subgraph f or to subgraph
g. Only the activated subgraph will even-
tually send a token to the MERGE node.
It can easily be shown [Veen 19811 that
this graph preserves safety; that is, it is safe
provided that subgraphs f and g are safe. A
graph is safe if it can be shown that, when
presented with at most one token on each
input arc, no port will ever contain more
than one token. Safety ensures determinate
behavior even in the presence of nondeter-
ministic MERGE nodes.

If BRANCH and (nondeterministic)
MERGE nodes are used in an improper
manner, unsafe graphs can be constructed,
in which two tokens may end up at the
same port (see Figure 6).

ACM Computing Surveys, Vol. 18, No. 4, December 1986

372 . Arthur H. Veen

Figure 5. Conditional expression. The graph corre-
sponding to the expression z := if test then f(z, y)
else g(r, y) fi. If test succeeds, both BRANCH nodes
send a token to the left; otherwise, the tokens go to
the right. Note the use of nondeterministic MERGE
node.

A

1 B

A B

fff+

C D

(4 (b) (c)

Figure 6. Problems resulting from the improper use
of BRANCH and MERGE nodes. All nodes are strict,
except the MERGE nodes, and produce tokens on all
output arcs when they fire, except the BRANCH
nodes. (a) When a pair of tokens arrives at the input
ports of node A, the node is enabled, but its firing will
not enable node B, since the latter receives only one
token on one of its input ports. (b) When a token
enters the graph, node A fires and places a token on
each of the input ports of the MERGE node. This
node then sends two tokens to its output arc. (c) A
token will be left behind at an input port of either
node C or node D, depending on the value of the
control token of the BRANCH node.

2.4 Iterative Constructs and Reentrancy

Figure 7 illustrates problems that may arise
when the graph contains a cycle. The sim-
ple graph on the left will deadlock unless it
is possible to initialize the graph with a
token on the feedback arc. The node in the
graph on the right will never stop firing
once started. Although these are not real-

Figure 7. Problems with cyclic graphs. The graph on
the left will deadlock, the one on the right will never
finish.

new’ few

YX

Figure6. A loop construct according to the lock
method. An implementation of the expression while
f(x) do (x, y) := g(z, y) od, using the lock method to
protect the reentrant subgraphsfandg. The triangular
shaped node indicates a compound MERGE node,
which functions just like a pair of nondeterministic
MERGE nodes. On the left is a compound BRANCH
node, which copies its two value inputs either to its
left or to its right output arcs, depending on the value
of its third input token.

istic graphs, similar problems may arise in
any cyclic graph unless special precautions
are taken.

A correct way to implement a loop con-
struct is shown in Figure 8. Note the use of
a compound BRANCH node rather than a
series of simple BRANCH nodes as in Fig-
ure 5. The strict enabling rule of this node
ensures that it does not fire before subgraph
g has released both its output tokens. If we
assume that g is such that no tokens stay
behind when all its output tokens are pro-
duced, then tokens for the next iteration
can be safely sent into the same subgraph.
Subgraph g is an example of a reentrant
graph; its nodes can fire repeatedly. The
way reentrancy is handled is a key issue in
dataflow architecture. A dataflow graph is

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Dataflow Machine Architecture l 373

attractive as a machine language for a par-
allel machine since all nodes that are not
data dependent can fire concurrently. In
case of reentrancy, however, this maximum
concurrency can lead to nondeterminate
behavior unless special measures are taken,
as we show in the remainder of this section.

A graph in which reentrancy can lead to
nondeterminacy is illustrated in Figure 9,
where the cycles fox x and y lead through
separate MERGE and BRANCH nodes. In
the first iteration the first PLUS node cal-
culates the value for n and sends copies to
subgraph h and to one of the MERGE
nodes. Subgraph h may postpone the ab-
sorption of its input token. Meanwhile, the
nodes on the cycle for x may fire again, and
the PLUS node may send a second token
to subgraph h.

The use of the compound BRANCH node
in Figure 8 is therefore essential for its
safety. We call this method the lock
method. It is safe and simple, but not very
attractive for parallel machines: The level
of concurrency is low since the BRANCH
node acts as a lock that prevents the initi-
ation of a new iteration before the previous
one has been concluded.

An alternative approach is the acknowl-
edge method. This can be implemented
by adding extra acknowledge arcs from
consuming to producing node. These ack-
nowledge arcs ensure that no arc will ever
contain more than one token and the graph
is therefore safe. One arc provides space for
one token. In a manner too complicated to
show here, the proper addition of dummy
nodes and arcs can transform a reentrant
graph into an equivalent one, allowing
overlap of consecutive iterations in a pipe-
lined fashion. The acknowledge method
therefore allows more concurrency than the
lock method, but at the cost of at least
doubling the number of arcs and tokens.
Through proper analysis, however, a sub-
stantial part of these arcs can be eliminated
without impairing the safety of the graph
[Brock and Montz 1979; Montz 19801.

Both of these methods can also be imple-
mented at the architecture level by modify-
ing the enabling rule. In some machines
locking is implemented by specifying that
nodes in a reentrant subgraph can only be

x:= y:= 0
while x < 10
dox:=x+ 1

y : = y + h(x)
x Y od

Figure 9. An unsafe way to implement a loop. A new
token may arrive at the input of subgraph h before
the previous one is absorbed.

enabled a second time after all tokens of a
previous activation have left the subgraph
[Syre et al. 19771. The architectures of
other machines implement acknowledg-
ment by enabling a node only after all its
output arcs are empty [Dennis et al. 19831.

A higher level of concurrency is obtained
when each iteration is executed in a sepa-
rate instance (or copy) of the reentrant
subgraph. This code-copying method re-
quires a machine with facilities to create a
new instance of a subgraph and to direct
tokens to the appropriate instance. A po-
tentially more efficient way to implement
code copying is to share the node descrip-
tions between the different instances of a
graph without confusing tokens that belong
to separate instances. This is accomplished
by attaching a tag to each token that iden-
tifies the instance of the node that it is
directed to. These so-called tagged-token
architectures have an enabling rule that
states that a node is enabled if each input
arc contains a token with identical tags.
Safety in these machines means that no
port ever contains more than one token
with the same tag. A tag is sometimes re-
ferred to as a color or a label.

The tagged nature of the architecture

ACM Computing Surveys, Vol. 18, No. 4, December 1986

374 9 Arthur H. Veen

0

i, new

I h
tag area

;\ c + :

x := y := 0
whilex< 10
dox:=x+ 1

y : = y + h(x)
od

new new
X Y

Figure 10. An implementation of a loop using tagged
tokens. At the start-of the loop a new tag area is
allocated. Tokens belonging to consecutive iterations
receive consecutive tags within this area. The tag from
before the loop is restored on tokens that exit from
the loop.

shows up in the program in the form of
nodes that modify tags. Figure 10 shows
the implementation of the example in Fig-
ure 9 on a tagged-token architecture. The
proper execution of nested loops requires
that the tags used within a loop be distinct
from those in the surrounding expression.
A new area in the tag space is therefore
allocated at the start of the loop. An effi-
cient implementation of this allocation is
not easy, as we shall see in the next section.
Within the area tags are ordered; tokens
entering the loop receive the first tag, and
tokens for consecutive iterations receive
consecutively ordered tags within the allo-
cated area. On tokens that exit the loop,
the tag corresponding to the surrounding
expression is restored. This method can
lead to a high level of concurrency because
the cycle for x can safely send a whole series
of tokens with different tags into subgraph

A:

actual
parameter

1

area

A K oP

\ i result

Figure 11. Interface for a procedure call. On the left
a call of procedure P whose graph is on the right.
P has one parameter and one return value. The
actual parameter receives a new tag and is sent to
the input node of P and concurrently a token contain-
ing address A is sent to the output node. This
SEND-TO-DESTINATION node transmits the other
input token to a node of which the address is contained
in the first token. The effect is that, when the return
value of the procedure becomes available, the output
node sends the result to node A, which restores the
tag belonging to the calling expression.

h, with each token initiating a separate and
possibly concurrent execution of h.

Machines that handle reentrancy by the
lock or acknowledge method are called
static; those employing code copying or
tagged tokens are called dynamic. Static
machines are much simpler than dynamic
machines, but for most algorithms their
effective concurrency is lower. Algorithms
with a predominantly pipelining type of
parallelism, however, execute efficiently on
static machines with acknowledging.

2.5 Procedure Invocation

The invocation of a procedure introduces
similar problems with reentrancy, to which
the methods described above can also be
applied. In code-copying architectures a
copy of the called procedure is made. In
tagged-token architectures a new tag area
is allocated for each procedure call so that
each invocation executes in its own context.
Nested procedure calls, recursion, and co-
routines can therefore be implemented
without problems. The method is, how-

ACM Computing Surveys, Vol. 18, No. 4, December 1986

ever, wasteful of tag space, an important
resource, as we shall see below. A good
compiler may recognize tail recursion and
generate code as efficient as for loops.

An extra facility is required to direct the
output tokens of the procedure activation
back to the proper calling site. This is usu-
ally implemented as shown in Figure 11.
The procedure body receives a token that
contains a reference to a node at the calling
site. This token is then used by the output
nodes of the procedure body to direct the
return values to the proper places. These
output nodes are special nodes capable of
sending tokens to nodes to which they have
no static arc.

3. THE ARCHITECTURE
OF DATAFLOW MACHINES

In this section dataflow machines at the
level that directly supports the machine
language are described. First, the basic
execution mechanism of a processing
element and then the overall structure of a
dataflow multiprocessor is described.

3.1 A Processing Element

A typical dataflow machine consists of a
number of processing elements, which can
communicate with each other. Figure 12
shows a functional diagram of one process-
ing element.

The nodes of the dataflow program are
often stored in the form of a template con-
taining a description of the node and space
for input tokens. The node description con-
sists of the operand code (a shorthand for
the mapping from input values to output
values) and a list of destination addresses
(the outgoing arcs). We can think of the
movement of a token between two nodes as
the progress of a locus of activity. A node
that produces more tokens than it con-
sumes increases the number of concurrent
activities. Concurrent activities interact at
nodes that consume more than one token.
Coordination has to take place at these
nodes. In dataflow machines coordination
therefore amounts to the administration of
the enabling rule for those nodes that re-
quire more than one input. We call the unit

Dataflow Machine Architecture l 375

that manages the storage of the tokens the
enabling unit. It sequentially accepts a to-
ken and stores it in memory. If this causes
the node to which the token is addressed to
become enabled (i.e., each input port con-
tains a tcken), its input tokens are ex-
tracted from memory and, together with a
copy of the node, formed into a packet and
sent to the functional unit. Such an execut-
able packet consists of the values of the
input tokens, the operand code, and a list
of destinations. The functional unit com-
putes the output values and combines them
with the destination addresses into tokens.
Tokens are sent back to the enabling unit,
where they may enable other nodes. Since
the enabling and the functional stage work
concurrently, this is often referred to as the
circular pipeline.

Dividing a processing element into two
stages is just one of the possibilities. In
some machines the processing elements do
not have to be so powerful and they just
consist of a memory connected to a unit
that handles both token storage and the
execution of nodes. In other machines the
circular pipeline consists of more concur-
rent stages, as, for instance, in most ma-
chines that use tagged tokens to protect
reentrant code. Since, in such a machine,
nodes are shared between different in-
stances of a graph, the space in a template
to be reserved for storage of input tokens
may become arbitrarily large. This makes
it impractical to store tokens in the nodes
themselves. Token storage is therefore sep-
arated from node storage, and the enabling
unit is split into two stages: the matching
unit and the fetching unit, usually arranged
as shown in Figure 13.

For each token that the matching unit
accepts, it has to check whether the
addressed node is enabled. In most tagged-
token machines this is facilitated by limit-
ing the number of input arcs to two and
providing each token with an extra bit that
indicates whether the addressed node is
monadic or dyadic. Only for dyadic nodes
the matching unit has to check whether its
memory already contains a matching to-
ken, that is, a token with the same desti-
nation and tag. Conceptually, the matching
unit simply combines destination and tag

ACM Computing Surveys, Vol. 18, No. 4, December 1986

376 . Arthur H. Veen

.
I :

I
4
0

enabling I
unit

---A

T

Figure 12. Functional diagram of a processing element. The enabling unit
accepts tokens from the left and stores them at the addressed node. If this
node is enabled, an executable packet is sent to the functional unit where it
is processed. The output tokens, with the destination addresses, are sent back
to the enabling unit. Modules dedicated to buffering or communication have
been left out of this diagram.

matching
unit

fetching functional
unit

ry

unit

1 T

:..........................__.... ,.................:

Figure 13. Functional diagram of a processing element of a tagged-token
machine. The matching unit stores tokens in its memory and checks whether
an instance of the destination node is enabled. This requires a match of both
destination address and tag. Tokens are stored in the memory connected to
the matching unit. When all tokens for a particular instance of a node have
arrived, they are sent to the fetching unit, which combines them with a copy
of the node description into an executable packet to be passed on to the
functional unit.

into an address and checks whether the
location denoted by the address contains a
token. The set of locations addressed by
tag and destination forms a space that we
call the matching space. Managing this
space and representing it in a physical
memory is one of the key problems in
tagged-token dataflow architectures.

Although not apparent at first, the prob-
lem of matching space management is quite
similar to the problems encountered in
code-copying machines and in fact involves
problems that have plagued parallel archi-
tectures from the beginning. At the en-

trance to a loop, and during procedure
invocation, a unique tag area has to be
allocated. Guaranteeing uniqueness in a
parallel computer is problematic. The fun-
damental trade-off is between the bottle-
neck created by a centralized approach and
the communication overhead or inefficient
use of space offered by a distributed ap-
proach. Arvind and Gostelow [1977] pro-
posed an extremely distributed approach in
which the uniqueness of a new tag area can
be deduced from the existing tag. Since a
tag in this scheme effectively encodes the
calling stack of a procedure invocation, its

ACM Computing Surveys, Vol. 18, No. 4, December 1986

size grows linearly with calling depth. Usu-
ally a partly distributed solution is used,
amounting to statically distributing the
matching space over a set of managers, each
of which manages the allocated area locally.
An example is a centralized counter per
processing element, which, together with a
unique identification of the processing ele-
ment, provides a unique tag [Gurd et al.
19851. To prevent the local areas from be-
coming exhausted the matching space must
be large and, consequently, at any given
time sparsely occupied. Large, sparsely oc-
cupied spaces cause several problems. First,
addressing an item requires many bits. Sec-
ond, implementing the space involves a dif-
ficult trade-off between storage waste (e.g.,
a sparsely occupied array) and access time
overhead (e.g., a linked list). Hashing tech-
niques offer a compromise. Actual im-
plementations of the approaches just
described are few, but it appears that
this space or time overhead is a fundamen-
tal problem of the fine-grain approach and
that a purely fine-grain machine may not
be implemented efficiently. In Section 6
we see that the introduction of a manager
based on coarse-grain principles may alle-
viate this problem.

It is interesting to note that the trade-
offs for code-copying machines are virtually
identical. When a copy of a subgraph needs
to be created, a storage area has to be
allocated. A centralized allocator may be
space efficient, but may also create a bot-
tleneck. A virtual memory scheme with
space allocation can be used, but addresses
become large and an efficient mapping to
physical memory is needed. Paging tech-
niques that exploit locality in instruction
execution may be useful. A good memory
manager would avoid these problems, but
has the same drawbacks as described above.

3.2 Dataflow Multiprocessors

Figure 14 is a schematic view of the struc-
ture of a complete dataflow machine. Al-
though each description of a dataflow ma-
chine in the literature seemingly presents
a different picture, most designs conform
to one of the three structures illustrated.

Dataflow Machine Architecture l 377

In a one-leuel dataflow machine (e.g.,
Arvind and Kathail [1981]), there is only
pipeline concurrency within a processing
element. Instructions are executed in the
processing elements, and the resulting to-
kens are used in the same processing ele-
ment or communicated to other processing
elements. In some machines one or several
processing elements are replaced by struc-

ture units for the storage and low-level
manipulation of data structures.

The two structures illustrated in Figure
14b and c exploit the fact that the process-
ing of executable packets is independent
and can be done in any order or concur-
rently since they contain all the informa-
tion that the functional unit needs to fire
the node and to construct the output to-
kens. In a two-leuel machine (e.g., Gurd et
al. [1985]), each functional unit consists of
many functional elements, which process
executable packets concurrently. Schedul-
ing is trivial: An executable packet is allo-
cated to any idle functional element. By
adjusting the number of functional ele-
ments, the power of the functional unit can
be tuned to that of the rest of the process-
ing element. In a two-stage machine (e.g.,
Dennis and Misunas [1974]), the process-
ing elements are split into two stages, and
between the two stages there is an extra
communication medium that sends execut-
able packets to functional elements. This
two-stage structure is advantageous if the
functional stage is heterogeneous, for in-
stance, when some functional elements
have specialized capabilities.

3.3 Communication

Figure 14 is merely intended to indicate
that there is a way to communicate between
different processing elements without sug-
gesting any particular topology. In an ac-
tual machine the communication medium
can have the structure of a tree, a ring, a
binary n-cube, or an equidistant n x n
switch. An even more important difference
lies in the nature of the connections that
the communication medium provides. Just
as there are circuit switching and packet-
switching networks, a dataflow machine

ACM Computing Surveys, Vol. 18, No. 4, December 1986

378 l Arthur H. Veen

Figure 14. Overall structure of var-
ious dataflow multiprocessors. (a)
One-level dataflow machine. The
structure of each processing element
is as shown in Figure 12. Communi-
cation facilities deliver tokens that
are produced by a functional unit to
the enabling unit of the correct pro-
cessing element, as determined by the
destination address and the alloca-
tion policy. (b) Two-level dataflow
machine. Each functional unit con-
sists of several functional elements
(FE), which concurrently process
executable packets. (c) Two-stage
dataflow machine. Each enabling
unit (EU) can send executable pack-
ets to each functional unit (FU).

T
output

(a)

input

communication

c
output

can have a direct communication or a
packet communication architecture.

In direct communication machines adja-
cent nodes in the graph are allocated to the
same processing element or to processing
elements that have a direct connection with
each other. An important property of a
direct communication architecture is that
the communication medium delivers tokens
in the same order as they were received. If
the communication medium is equipped
with queues, unsafe graphs (dataflow
graphs in which arcs can contain more than
one token) can be executed without impair-
ing determinacy.

Packet communication offers the greatest
opportunity for load distribution and par-
allelism in the communication unit since it
can be constructed from asynchronously
operating packet-switching modules, with
parallelism and redundancy in this critical
resource. Such a module can accept a token
and forward it to another module, depend-

ACM Computing Surveys, Vol. 18, No. 4, December 1986

communication

(b)

T
input output

ing on its destination address. In general,
such store-and-forward communication
units need safeguards to avoid deadlock:
Contention may block an essential path.
Some machines have redundant communi-
cation paths, and consequently the order of
packets is not necessarily maintained. On
these machines, the arcs of the graph do
not necessarily behave as FIFO queues, and
determinate execution can only be guaran-
teed for safe graphs. The best structure for
the communication unit and its limitations
in size and performance are a matter of
debate among dataflow architects. One ap-
proach is to have a large number of slow
and simple processing elements connected
to a high-bandwidth communication unit.
A one-level machine structure is usually
appropriate for this approach. Other archi-
tects claim that as soon as the machine
contains more than a few dozen processing
elements, insurmountable bottlenecks in
the communication unit are created. They

Dataflow Machine Architecture l 379

Another approach is to provide restric-
tive access primitives in the programming
language. This leads to the concept of
streams, which are structures that can only
be produced and consumed sequentially.
These may be processed more efficiently in
some machines and increase the effective
parallelism because elements of a stream
can be consumed before the stream is com-
pleted. This increase in parallelism can also
be achieved by treating the structures non-
strictly, that is, allowing access to elements
before the structure has been completely
created. Arvind and Thomas [1980] in-
vented this concept and coined the term
I-structures (for incomplete structures). It
requires special hardware to defer fetches
of elements that are not yet available.

Gaudiot [19861 gives an excellent com-
parison of some of the proposed solutions
to the structure-handling problem and con-
cludes that its complexity precludes a uni-
versal solution. He suggests two additional
approaches to avoid storing: defining me-
dium-grain structure operations or defining
tag manipulation instructions that exploit
the frequent interaction between array in-
dexing on the one hand and either iteration
or recursion on the other hand. Tag manip-
ulation has first been proposed by Bowen
[1981] and has since been used exten-
sively in Manchester (see, e.g., Bohm and
Sargeant [1985] or Veen [1985a]). Its use
is restricted to those algorithms in which
data structures are consumed completely.
With simulation studies on two of those
algorithms, Gaudiot and Wei [1986]
showed that tag manipulation gave a much
better performance than I-structures.

therefore concentrate on the construction
of powerful processing elements, which
usually involves a two-level design. These
architects tend to postpone the design of
the higher level until later, and sometimes
one processing element is presented as a
complete machine [Gurd and Watson
19801. The performance of one processing
element, however, is limited by the inherent
bottlenecks in the enabling section.

3.4 Data Structures

In a dataflow graph values flow from one
node to another and are, at least at that
level of abstraction, not stored in memory.
If a value is input to more than one node,
a copy is sent to each node. Conceptually,
data structures are treated in the same way
as other values. In a tagged-token machine
with limited token size a complete structure
can be sent to a node by packaging each
element as a separate token distinguished
by subsequent tags. A retrieve operation,
for instance, consumes a complete struc-
ture and an index and produces a copy of
the retrieved element. Directly implement-
ing this concept is known as structure
copying. Copying is appropriate for small
structures. Unfortunately, data structures
tend to be large, and implementing these
by the conceptually simple structure copy-
ing method would place an unacceptable
burden on the machine. Many machines
therefore have a facility to store structures.
In such machines an element can be re-
trieved by sending a request to the unit
where the structure has been stored.

The dataflow equivalent of a selective
update operation (changing one element of
a structure) is an operation that consumes
the old structure, the index, and the new
value and produces a completely new struc-
ture. This involves copying of structures
even when they are stored. There are sev-
eral ways to reduce excessive structure
copying. Structures that are not shared do
not have to be copied before an update. A
reference count mechanism can be used to
detect this, and is helpful for garbage col-
lection as well. For shared structures, copy-
ing can be further reduced by storing the
structure in the form of a tree and copying
only the updated node and its ancestors.

4. A SURVEY OF DATAFLOW MACHINES

Figure 15 and Table 1 illustrate our classi-
fication of dataflow machines. The choice
of properties used for the classification is
limited by the fact that many descriptions
(and some designs) are vague and incom-
plete. In Figure 15 dataflow machines are
categorized according to the nature of the
communication unit and the architecture
of the processing elements. The topology of
the communication unit is not used as a
criterion, since it does not really help to
characterize a dataflow machine and is

ACM Computing Surveys, Vol. 18, No. 4, December 1986

380 l Arthur H. Veen

Figure 15. A survey of dataflow machines, categorized according to their architecture
and implementation. The keys in the boxes refer to the machines that are summarized in
Table 1.

often left unspecified. In the rest of this
section all machines appearing in Figure 15
are described separately, using the common
terminology established in the previous two
sections. A few features of some designs are
summarized in Table 2 at the end of this
section.

4.1 Direct Communication Machines

The main drawback of direct communica-
tion machines is that for many graphs it is
difficult to find a good mapping onto the
network (allocation). It may be a fruitful
approach, however, for applications that
have predictable and regular communica-
tion patterns matching the machine’s to-
pology. The most important member of this
class is the oldest working dataflow ma-
chine, the DDMl [Davis 1977, 19791. The
processing elements of this machine are
arranged as a tree. Allocation is simplified
by preserving the hierarchical tree struc-
ture of the program. Any internal node of
the processing tree can allocate a part of
its program (a subtree) to any of its de-
scendants. Allocation is simple and distrib-
uted, but far from optimal with respect to
even load distribution over the processing

elements. The root of the tree forms a
bottleneck in the communication between
processing elements.

Another less elaborate example is pro-
vided by a machine developed in Warsaw,
in which the processing elements receive
the node descriptions in the form of micro-
programs [Marczynski and Milewski 19831.

In Japan an interesting dynamic direct
communication machine has been devel-
oped for large-scale scientific calculations,
such as solving partial differential equa-
tions [Takahashi and Amamiya 19831. The
processing elements are arranged on a two-
dimensional grid and use tags to distinguish
tokens belonging to different activations.
To avoid the necessity to allocate unique
tag areas dynamically, the input language
is somewhat restricted (no general recur-
sion) so that static allocation is possible. A
hardware simulator, consisting of 4 x 4
processing elements, each connected to
eight neighbors, has been used to study
small applications. It confirmed analytical
predictions that communication delay
does not seriously degrade performance,
provided that programs have enough
parallelism.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Dataflow Machine Architecture l 381

Table 1. A Summary of the Dataflow Machines That Are Described in the Text’

Key Machine Group
Start

project Operational

DDMl
Micro
DDPA

Data-Driven Machine #l Davis, Burroughs
Microprogrammed Marcxynski, Warsaw
Data-Driven Processor Array Takahashi, Tokyo

Static Packet Communication Machines

DDP

LAU
Form I

pPD7281
HDFM

Distributed Data Processor Cornish, Texas
Instruments

LAU System Prototype #0 Syre, Toulouse
Prototype Basic Dataflow Dennis, M.I.T.

Processor
Dataflow Image Processor Iwashita, NEC
Hughes Data Flow Multiprocessor Vedder, Hughes

Dynamic Packet Communication Machines

Rumb Dataflow multiprocessor
Form IV Dynamic dataflow processor
Multi Multiuser dataflow machine
Id Id Machine
Paged Paged memory dataflow machine
MDM Manchester Dataflow Machine

DDSP
DFM-1

EM-3
DDDP
PIM-D

SIGMA-l

Data-driven signal processor
List-processing oriented dataflow

machine
ETL Data-Driven Machine-3
Distributed data-driven processor
Parallel inference machine based

on dataflow
Dataflow computer for scientific

computations

Direct Communication Machines

Rumbaugh, M.I.T.
Misunas, M.I.T.
Burkowski, Winnipeg
Arvind, M.I.T.
Caluwaerts, Leuven
Gurd and Watson.

Manchester
Hogenauer, ESL
Amamiya, Tokyo

1974
1976

1974
1979
1976

1980
1980

-
1983

Yuba, ETL 1984
Kishi, Tokyo 1982
Ito, ICOT 1986

Hiraki, Ibaraki 1985

1972

1976

1975
1971

1982

1976
-

1983

1978

1980
1982

1984

-
-

1985
-

1981

a The dates are in most cases estimates and are merely meant as an indication of the relative chronology.
Machines without an operational date are paper designs only.

4.2 Static Packet Communication Machines

The first packet communication dataflow
machine that became operational is the
Distributed Data Processor [Cornish et al.
1979; Johnson et al. 19801, built at Texas
Instruments. The references suggest that
the DDP uses a locking method to protect
reentrant graphs. Although the compiler
may create additional copies of a procedure
to increase parallelism, this copying occurs
statically. It is a one-level machine with a
ring-structured communication unit, aug-
mented with a direct feedback link for to-
kens that stay within the same processing
element. A prototype comprising four pro-
cessing elements has been built.

Around the same time the LAU project
in Toulouse, France, designed another

static dataflow machine [Comte et al. 1980;
Syre 1980; Syre et al. 19771. LAU stands
for langage k assignation unique (single as-
signment language). The group concen-
trated on the construction of a powerful
processing element and left the higher level
structure more or less unspecified. In 1980
the LAU system prototype #0, a processing
element with 32 functional elements, was
completed. Most functional elements are
built around a conventional microproces-
sor. The machine is not programmed by
pure dataflow programs as described in Sec-
tion 2. The program and data memory are
separate, and programs are represented as
conventional control flow programs, in
which control flow arcs have been replaced
by additional pointers in data memory to
all consuming instructions. This requires a

ACM Computing Surveya, Vol. 18, No. 4, December 1986

382 . Arthur H. Veen

multiphase communication between func-
tional unit and token memory, and it also
complicates the communication with other
processing elements. Safety is guaranteed
by a hardware-supported locking mecha-
nism. As in the DDP, the programmer can
instruct the compiler to create copies of
reentrant subgraphs to increase parallel-
ism. The instruction set includes nodes that
manage all copies of a subgraph and choose
the copy to be used dynamically.

Dennis and his colleagues at the Massa-
chusetts Institute of Technology have been
in the vanguard of the dataflow field
[Dennis 19741 and produced the first de-
signs for dataflow machines. The earliest
design [Dennis and Misunas 19741 had a
two-stage structure, with each enabling
unit (called an instruction cell) dedicated
to one node and with heterogeneous func-
tional units. This design was later extended
into a series of machines differing in the
way they handled reentrancy and data
structures. They ranged from the elemen-
tary Form I processor, which was static and
could only handle elementary data, to the
full-fledged Form IV processor, which had
extensive structure facilities and could copy
subgraphs on demand (Forms II and III
have never been elaborated; Form IV is
described below). When it was discovered
that an unsafe graph might deadlock the
machine and acknowledge arcs had to be
introduced, it became clear that it was
wasteful to dedicate the processing power
needed in one instruction cell just to one
instruction. This hardware was therefore
shared between a group of nodes and called
a cell block. A prototype has been built
in which the different parts are emulated
by microprogrammable microprocessors
[Dennis et al. 1980, 19831. Since this single
unit can emulate both a cell block and a
functional unit, the prototype has the
single-stage structure of Figure 14a. The
prototype that is now operational con-
sists of eight processing elements and an
equidistant packet routing network built
from 2 X 2 routing elements.

NEC Electronics has developed the
pPD7281 Dataflow Image Processor that
may be used as a small processing element
in a dataflow machine [Iwashita et al.

19831. The chip contains memory for 64
instructions and 560 tokens. It has a seven-
stage circular pipeline; tokens communicat-
ing between instructions that are allocated
to the same processing element do not leave
the chip. The pipeline contains a mecha-
nism to dynamically regulate the level of
parallelism: When the chip is underutilized,
preference is given to tokens addressed to
instructions that increase parallelism (we
come back to this issue of throttling in
Section 6). A maximum of 14 processing
elements can be connected into an asyn-
chronous packet-switching ring. The ring
topology as well as the instruction set are
suitable for image processing. The peak
performance is reported to be 5 million
tokens per second [Jeffery 19851.

At Hughes Aircraft Company another
static dataflow architecture for signal pro-
cessing has been developed [Vedder and
Finn 19851. Its processing elements are ar-
ranged on a three-dimensional bussed cube
network; the distance between processing
elements is at most three. Much attention
has been given to static fault tolerance; a
faulty processing element can be isolated
rapidly. The program graph is statically
distributed over the processing elements.
Simulation studies showed that a good al-
location algorithm could give 30-80 percent
better performance than random alloca-
tion. Two VLSI chips have been designed
that, together with memory chips, con-
stitute a complete processing element.
The peak performance is expected to be
2-5 million instructions per second.

4.3 Machines with Code-Copying Facilities

The dataflow machines with potentially the
highest level of parallelism are the dynamic
dataflow machines; they employ either code
copying or tags to protect reentrant graphs.
It is characteristic for a code-copying ma-
chine that the physical address of a node
cannot always be determined statically.
The first detailed design of a dataflow ma-
chine was of this type [Rumbaugh 19751.
Allocation in this machine is per procedure:
All the nodes and intermediate results of
one procedure are stored in the memory of
one processing element. There is a fast

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Dataflow Machine Architecture l 383

connection from the output to the input
port of a processing element such that a
circular pipeline is created. Tokens stay
within this pipeline unless they are directed
to another procedure, in which case they
are routed to a special processing element
called the scheduler. This scheduler sends
a copy of the called procedure and its input
values to an idle processing element. If
there is no idle processing element, it waits
until a processing element becomes dor-
mant and then saves its state (i.e., all the
unprocessed tokens) and declares it idle.

The Massachusetts Institute of Technol-
ogy Form IV dataflow processor is not one
machine, but refers to a whole family of
designs: There have been a number of
articles from the dataflow group at the
Massachusetts Institute of Technology,
each specifying part of a full-fledged data-
flow machine. They are all based on an
extension of the basic architecture origi-
nally described by Dennis and Misunas
[1974], but include special units to store
data structures in the form of a tree us-
ing hardware-supported reference counts.
There have been different proposals for the
handling of reentrancy. Misunas [19781
rejected locking and acknowledgment be-
cause it limits parallelism and proposed to
program the machine without iteration.
Procedure bodies would be stored just like
data structures, and presumably the invo-
cation of a procedure would result in the
storing of a copy of the procedure in the
cell blocks. Weng [1979] is more specific
about this mechanism. Miranker [1977]
suggests a sort of virtual memory for nodes.
Translation from virtual to physical ad-
dress is handled by a relocation box, which
manages both the physical and the virtual
space. A node is copied into physical mem-
ory when it receives its first token. A pro-
cedure call generates a unique suffix, which
identifies a particular activation. The relo-
cation mechanism ensures that all tokens
in that invocation receive the same suffix.
This is similar to the tagged-token method.
All nodes in a procedure are relocated, not
only those that get executed. Code copying
is needed because in all machines of this
family tokens and nodes are stored together
as templates.

A proposal that is surprisingly similar to
this is presented by Burkowski [1981]. He
produced a detailed hardware design for the
static Form I processor, including the ac-
knowledge scheme to protect reentrant
graphs, but added memory management fa-
cilities, so that the machine can safely be
shared between independent tasks. This
feature makes it into a dynamic machine,
since nodes can be allocated and removed
under program control. Although this
makes code copying at procedure invoca-
tion feasible, no reference to this can be
found in the description.

4.4 Machines with Both Tagged-Token
and Code-Copying Facilities

Arvind and Gostelow began their study of
dataflow languages and architectures at the
University of California, Irvine, a decade
ago [Arvind and Gostelow 19771. They de-
signed the language Id (Irvine Dataflow),
which introduced many interesting con-
cepts. Independently from similar work in
Manchester, they developed the concept of
tags (originally known as colors) and
showed that it helped to extract more of
the parallelism available in a dataflow
graph [Arvind and Gostelow 19771. Simu-
lation studies were also carried out
[Gostelow and Thomas _ 19801. All data
structures are implemented as I-structures.
This increases the effective parallelism of
a program and facilitates the asynchronous
activation of parts of a procedure (i.e., non-
strict procedure call). Arvind and his group,
now at the Massachusetts Institute of
Technology, constructed a large-scale
emulator comprising 32 LISP machines
[Arvind and Kathail 1981; Arvind et al.
19801. Each machine emulates one process-
ing element, and can communicate through
a packet-routing network consisting of spe-
cially designed switching elements. The
physical connections between these switch-
ing elements favor a binary n-cube topol-
ogy, but the network can be programmed
to emulate other topologies. Since the paths
between processing elements are unequal
in length, with the path from a processing
element back to itself the shortest, the al-
location of nodes and structures can have

ACM Computing Surveys, Vol. 18, No. 4, December 1986

384 l Arthur H. Veen

a great influence on the performance of the
machine. Since elaborate facilities are
needed to make this allocation as flexible
as possible, allocation of memory and tags
is under control of a software manager. An
advantage of the combined managing of
these two resources is that dynamic trade-
off is possible. The tag space (limited by
the maximum size of a tag) is kept small
and is used rather densely. When the tag
supply is exhausted, new copies of a
subgraph are allocated (code copying).

In Leuven, Belgium a machine has been
designed with an elaborate memory man-
agement scheme [Caluwaerts et al. 19821.
Each processing element has its own mem-
ory manager, but these managers can also
communicate with each other, so that the
total memory space is shared. A procedure
call results in the allocation of a fresh mem-
ory area for the tokens belonging to the
new invocation. A pointer to this area
serves as the tag. To facilitate an even load
distribution, the area is allocated in a
neighboring processing element. Therefore,
when a node is enabled, its description must
be fetched from another processing ele-
ment. Caches are used to create local cop-
ies. In fact, memory is paged and complete
pages are copied. An interesting feature of
the memory system is that it treats data
structures in the same way as programs,
just as in the Form IV processor, and they
can be converted into each other. This fa-
cilitates the implementation of higher order
functions.

4.5 Tagged-Token Machines

The first tagged-token dataflow machine
built was the Manchester Dataflow Ma-
chine [Gurd and Watson 1980; Watson and
Gurd 19821. This machine is treated in
detail in the next section. All machines
described in this section are derived from
this machine or from Arvind’s design.

The data-driven signal processor
(DDSP), designed at ESL Inc. [Hogenauer
et al. 19821, can accommodate a maximum
of 32 processing elements. It is optimized
for signal processing using a special allo-
cation algorithm combined with an un-

orthodox communication topology, which
appears to be a combination of a ring and
a tree. No hardware was ever built.

In Japan several tagged-token dataflow
.machines are in various stages of construc-
tion. The machine constructed at the Elec-
trical Communication Laboratory of NTT
is optimized for list processing [Amamiya
et al. 1982, 19861. It contains separate pro-
cessing and structure elements. Functional
units are integrated with the structure
elements as well, since many nodes are ex-
pected to operate on structures. The match-
ing unit contains one content addressable
memory for each function activation. The
references do not indicate how these are
allocated. Load balancing is realized by a
centralized unit that allocates a function
invocation to the processing element with
the lowest load level. The design is guided
by the primitive operations available in
pure LISP; all structures are lists. The
central structure operation c0n.s is imple-
mented lenienti A pointer token is gener-
ated before its arguments are available.
This provides the same advantages as other
nonstrict structures such as I-structures. A
prototype is in operation consisting of two
processing and two structure elements.

Nonstrict data structures are also
supported by the Electra Technical Data-
Driven Machine-3 (EM-3), another LISP-
based machine [Yamaguchi et al. 19831.
This nonstrict mechanism is extended to
increase the concurrency of a procedure
call. At the start of a procedure invocation
pseudoresults are sent to the consumers of
the results of the procedure call. Concur-
rent with the execution of the procedure
body, most nodes will process these pseu-
doresults just as if they were normal tokens.
When a node requires the actual value, its
execution is delayed until it becomes avail-
able. This mechanism seems to provide the
same computational capability as lazy eval-
uation. A hardware emulator comprising
eight processing elements has been con-
structed, reaching a speed of a few thousand
instructions per second. Bottlenecks are
now being analyzed [Toda et al. 1985].

’ See Keller et al. [19791 for the origin of this term.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Dataflow Machine Architecture l 385

Table 2. A Comparison of Some Interesting Features of the Most Important Dynamic Machine9

Feature 1 Form IV Id Paged MDM DFM-1 EM-3 DDDP PIM-D SIGMA-l

MS
TOP
Power
Data
Dyna
Allot

2s 1L 0 2L 0 1L 1L 2L 1L
E C ? E B E B B B
L M H H H M M H H
St NS St NS NS NS NS NS NS
C CT CT T T T T T T
H M H S H S H S H

’ The features are as follows:

MS Machine structure is one level (lL), two level (2L), two stage (259, or other (0).
TOP Topology of communication unit is equidistant (E), bus (B), or cube (C).
Power Computational power per processing element is high (H), medium (M), or low (L).
Data Hardware data structure support for streams (St) or general nonstrict data structures (NS).
Dyna Dynamic mechanism uses code copying (C) and/or tags (T).
Allot Allocation of data or activity is static (S), hardware supported (H), or by means of a software

manager (M).

The distributed data-driven processor
built at Systems Laboratory [Kishi et al.
19831 is distinguished by a centralized tag
manager. Although this manager may in-
troduce a bottleneck, it uses the tag space
rather densely and simplifies the restora-
tion of tags after a procedure invocation.
Token matching is by means of a hardware
hashing mechanism similar to the one de-
scribed in the next section. The machine
has a dedicated unit for nonstrict struc-
tures. A prototype comprising four process-
ing elements communicating through a
two-way ring has been constructed. The
study of simple hand-coded bench marks
revealed that simple allocation results in a
reasonable utilization, which can be mark-
edly improved by more sophisticated
allocation schemes.

The Institute for New Generation Com-
puter Architecture (ICOT) has stimulated
research on the parallel execution of logic
programs. One result is the design for a
parallel inference machine based on data-
flow, with primitives to support nondeter-
minate merging of streams. Such a feature,
or something equivalent, is required for the
efficient implementation of unification.
Streams are manipulated by separate struc-
ture memories implementing I-structures.
A distributed mechanism allocates a func-
tion invocation on the same processing ele-
ment, on a neighboring element, or on a
distant element, depending on the value of

a load factor, which is maintained by pe-
riodic exchange of information between
processing elements. A prototype has been
constructed consisting of four processing
elements and three structure memories
connected by a two-level bus [Ito et al.
1985, 19861.

A comparison of some features of
the most important machines is given in
Table 2.

5. THE MANCHESTER DATAFLOW
MACHINE

Around 1976 John Gurd and Ian Watson
started a research project on dataflow com-
puting at the University of Manchester.
They conceived a two-level machine such
as that shown in Figure 14b. Since they
believe that the construction of an asyn-
chronously operating packet communica-
tion network serving more than a few dozen
processing elements is not realistic at pres-
ent, the emphasis of their work has been
on constructing a powerful processing ele-
ment.

This section is a description of this com-
puter in terms of the model presented in
Section 3, based on Gurd and Watson
[1980], Kirkham [1981], Watson and Gurd
[19821, da Silva and Watson [19831, and
personal communication. Since Gurd et al.
[1985,1987] contain excellent overviews of
the machine, we concentrate on details not

ACM Computing Surveys, Vol. 18, No. 4, December 1986

386 . Arthur H. Veen
r---~
I I I ,
: :

I ,.........,.......
0

I

token matching
queue unit

I t

Fisure 16. Functional diamam of a urocessing element in the Manchester Dataflow
Machine.

covered there that will be needed for the
evaluation in the next section.

5.1 Overview

The group developed the tagged-token con-
cept to increase parallelism for reentrant
graphs independently from similar work
elsewhere [Arvind and Gostelow 19771. The
structure of their processing element (Fig-
ure 16) is similar to that shown in Figure
13. It is a pipeline of four units: token
queue, matching unit, fetching unit, and
functional unit. Each unit works internally
synchronous, but they communicate via
asynchronous protocols. More than 30
packets can be processed simultaneously in
the various stages of the pipeline. To max-
imize communication speed the data paths
are all parallel (up to 166 bits wide) trans-
mitting a complete packet at a time. Con-
sequently the sizes of packets, and thus of
tokens, are fixed.

The token queue is a simple FIFO buffer
currently accommodating 32K tokens. It
serves to smooth the irregular output rates
of two other units in the pipeline: the
matching unit and the functional unit.

The matching unit accepts tokens from
the token queue and sends complete sets of
input tokens to the fetching unit. Currently
it can store 1M tokens. Since in this ma-
chine the number of input arcs of a node is
limited to two, the destination node is
either monadic or dyadic. Each token car-
ries information to distinguish the two
cases. In the former case the token is simply
passed on to the fetching unit. For dyadic

nodes a match operation is performed, as
described below. A match operation may or
may not result in the production of an
output packet and this accounts for the
variable rate of this unit.

The fetching unit combines the set of
input tokens with the description of the
destination node into an executable packet.
The prototype currently accommodates
64K nodes. Each node may contain up to
two destination descriptions, each consist-
ing of an address and an indication whether
the destination node is monadic or dyadic.
A dyadic instruction may be made monadic
by replacing one of the destination descrip-
tions by a constant input token for one of
the two input ports.

The functional unit consists of a prepro-
cessor and a set of functional elements
connected via a distributor and an arbiter.
The preprocessor executes instructions
that require access to a counter memory.
Most counters are used to monitor perfor-
mance. One counter, called the activation
name counter, is used for the generation of
unique tag areas and can be manipulated
by the program proper. Although this is not
a functional operation, the instruction set
is such that this in itself cannot lead to
nonfunctional programs. The functional
elements are microprogrammed bit-slice
processors. The processing time per in-
struction varies from 3 to 30 microseconds,
with an average of 6 microseconds. This
variation, combined with the fact that an
instruction may produce zero, one, or two
tokens, accounts for the irregular rate of
the functional unit.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

output input

Figure 17. The Manchester Dataflow Machine with
two processing elements and one structure store.

Figure 17 illustrates the structure of a
multiprocessor with two processing ele-
ments and one structure store. In principle,
the machine can be expanded to an arbi-
trary size, but the communication structure
becomes impractical when much more than
100 processing elements are employed. The
communication unit consists of 2 X 2 rout-
ing elements, each of which may accept a
token from one of its input lines and send
it to one of its output lines. For n - 1
processing elements or structure stores
logzn layers of n/2 routing elements each
are needed. The communication unit is
equidistant: The distance between any pair
of processing elements is the same as that
between the output and input of one pro-
cessing element. The routing of tokens
is determined by the destination address
and/or the tag, depending on which
allocation strategy is chosen. Since the
communication unit has no locality prop-
erties that the allocation policy could take
advantage of, only an even load distribution
over the processing elements has to be
ensured. At present a pseudorandom dis-
tribution is envisioned, implemented by
hashing on both address and tag. Distrib-
uting structures over several structure
stores is another allocation problem that
still needs to be investigated.

Dataflow Machine Architecture

5.2 The Match Operation

l 387

When a token destined for a dyadic node
arrives at the matching unit, it performs a
match operation; that is, it searches its
memory for a token with the same desti-
nation and tag. In a dataflow machine
matching implements the synchronization
of and the communication between concur-
rent threads of execution. An efficient im-
plementation is crucial for the performance
of the whole machine. The unit can be
considered to implement a sparsely occu-
pied virtual memory with the pair (desti-
nation, tag) as memory address. The search
consists of retrieving the addressed mem-
ory cell. If it is empty, the match fails. If
the cell contains a token destined for the
other port, the two tokens are partners and
the match succeeds. They are combined
into a packet and sent to the fetching unit.

The virtual matching memory is occu-
pied so sparsely that it cannot be imple-
mented directly, but has to be mapped onto
a physical memory of realistic size. An as-
sociative memory could be used, but it was
determined that simulating this by means
of a hardware-hashing mechanism is more
cost effective. The 54-bit matching key
(18 bits for the destination and 36 bits
for the tag) is hashed to a 16-bit address to
access a memory of 64K cells. Each cell has
room for one token including destination
address, tag, and an extra bit to indicate an
empty cell. If the accessed cell is empty, the
match fails. If it contains a token, its ad-
dress, tag, and port are compared with
those of the incoming token leading to
either success or failure. If the match fails,
the incoming token has to be stored at the
same address. At present, 16 of these mem-
ory banks work in parallel, and so 16 tokens
that hash to the same address can be ac-
commodated simultaneously. When a to-
ken needs to be stored for which all 16 slots
are occupied, it is diverted to the overflow
unit. The matching unit uses an extra 64K
bit memory to indicate which hash keys
have overflowed and routes each failing
token hashed to an overflowed address to
the overflow unit to continue its search for
a partner. Other tokens can be processed
concurrently since the order in which

ACM Computing Surveys, Vol. 18, No. 4, December 1986

388 . Arthur H. Veen
r--------‘-------‘-‘--------------------------------,

0 bypass

: matched
1 tokens

:N N ::

iK K : i I

& x ’ 16 -:
L-------y----m----,

matchmg store

Figure 18. Matching unit. For each token destined for a dyadic node a hash key
is generated on the basis of destination address and tag. In the second stage of
the pipeline the 16 slots of the memory banks are accessed in parallel. If the
partner is present, the match succeeds. If the match fails, the token is stored
unless all slots are already occupied. In that case the token is diverted to the
overflow unit and an overflow bit is set. A token for which the match fails and
the corresponding overflow bit is on is always sent to the overflow unit.

matching occurs does not affect the com-
putation. The matching unit is shown in
Figure 18.

A hardware overflow unit is being con-
structed that maintains a linked list for
each overflowed address. For each token
that enters the overflow unit the appropri-
ate list is searched sequentially. At present,
this mechanism is simulated by the host
computer, which makes the processing of
overflowed tokens much slower than nor-
mal matching. A small fraction of over-
flowed addresses (less than 1 percent) may
therefore have a considerable effect on the
overall performance. When such level of
overflow is reached, 50 percent of the mem-
ory is occupied on the average [Veen
1985bJ. It is expected that the real overflow
unit will support 10 percent overflow with-
out seriously degrading the average match-
ing speed.

5.3 Tag Space

The tag is divided into the activation name,
used to separate tag areas, and the index,
used to distinguish elements of a data struc-
ture. Through clever encoding the sizes of

ACM Computing Surveys, Vol. 18, No. 4, December 19&X3

these fields are determined at run time
although the total tag size is fixed. The
fields are not distinguished outside the
functional unit, but there are separate in-
structions to manipulate the different
fields.

The activation name space is considered
to be an unordered set of unique names.
The GENERATE-ACTIVATION-NAME
instruction generates a new activation
name by causing the preprocessor to incre-
ment its activation name counter and pre-
fixing its value by the processing element
identifier. Consequently the activation
names are unique, but their supply is rather
limited. Since tokens of this type may not
be converted to any other type, the non-
functionality of this instruction is harm-
less. In contrast, the index may be set to
an integer and may be subject t6 arithmetic.
Such operations make an efficient imple-
mentation of loops possible.

5.4 Data Structures

A data structure can be sent over an arc
with each element as a separate token

distinguished by the index field of the tag.
The elements can be produced and accessed
in any order and concurrently. Retrieving
a single element in structure-copying mode
(acceptable for small structures) is accom-
plished by sending all tokens of a structure
to a node that transmits the token with the
proper index field and discards all other
tokens. Many algorithms exhibit a pipeline
type of parallelism, calling for implemen-
tation with streams, which are produced
and consumed in order. Streams are non-
strict; that is, elements can be read before
the complete stream is produced. With the
aid of special tag manipulation instructions
(see, e.g., Bowen [1981]) the interaction
between subsequent iterations and subse-
quent data structure elements can be made
quite efficient. Great efficiency improve-
ments have been made using scatter in-
structions, which produce a whole series of
tokens with consecutive values or tags
within a specified range [Bohm and
Sargeant 19851.

Copying large data structures is in gen-
eral unacceptable. Fixed-size structures can
be stored in the structure store [Sargeant
and Kirkham 19861. A CREATE-STRUC-
TURE instruction reserves a memory area
large enough to store the complete struc-
ture and returns a pointer. The WRITE-
ELEMENT instruction stores the value
part of a token without tag or destination.
The READ-ELEMENT instruction re-
turns the value of an element if it is avail-
able; otherwise, the read request is
appended to a list of pending requests,
which are fulfilled when the element is
written. This makes the storage of non-
strict structures possible. Garbage collec-
tion is by means of reference counts that
are maintained by explicit INCREMENT
and DECREMENT instructions. When
there are several structure stores, allocation
of a data structure is not easy. Small struc-
tures (e.g., less than 32 elements) can best
be allocated in one structure store and large
structures interleaved over all structure
stores. This requires a global structure
manager.

Before the structure store was installed,
the matching unit had special facilities to
store data structures. Compared with the
old scheme the structure store provides

Dataflow Machine Architecture l 389

three main advantages. Storing elements
without tags or destination is three times
more space efficient. It also saves instruc-
tions because no tags need to be manipu-
lated when a structure is accessed. The list
of pending requests makes efficient support
of nonstrict data structures possible.

5.5 State of the Project

The first prototype processing element,
which became operational in the fall of
1981, has been subjected to numerous per-
formance studies, and unsatisfactory parts
have been improved. For a set of bench-
mark programs a performance of l-2 mil-
lion instructions per second has been
reached [Gurd et al. 19851. Since the pro-
totype is implemented in medium-perform-
ance technology, an upgrading to around
10 million instructions per second for one
processing element seems feasible. An em-
ulator has been constructed to study the
behavior of the communication unit. The
emulator consists of 16 pairs of micropro-
cessors, each pair emulating one processing
element, connected via a synchronously op-
erating packet switching network [Foley
19851. In the summer of 1985, a structure
store with space for 500K elements has
been installed, and later expanded to 1M
elements [Kawakami and Gurd 19861. A
fast overflow unit is under construction,
which will have a basic speed comparable
to that of the matching unit.

6. FEASIBILITY OF DATAFLOW MACHINES

We saw in the previous section that a pro-
cessing element for a dataflow machine can
be constructed with a speed of close to 10
million instructions per second. Since da-
taflow machines are in principle extensible,
a machine consisting of more than 100
processing elements could conceivably
reach a speed in the range of 1 billion
instructions per second. It is too early to
tell whether this potential can indeed be
realized, much work needs to be done on
allocation schemes, and experience needs
be gained with data structure support and
networks that connect many processing
elements. But even if a machine with such
a performance could be constructed, .the

ACM Computing Surveys, Vol. 18, No. 4, December 1986

390 l Arthur H. Veen

question remains as to whether the amount
of hardware needed for such a machine
would not be better used by an alternative
architecture. In fact, most of the objections
raised against the dataflow approach are
concerned with factors that are believed to
reduce the effective utilization of a dataflow
machine to an unacceptably low level. A
well-argued case is made by Gajski et al.
[1982]. They claim that most programs do
not contain enough parallelism to utilize a
realistic dataflow machine except when
large arrays are processed in parallel. They
also claim that the handling of large data
structures involves considerable overhead
in the form of either excessive storage or
excessive processing requirements. With
several prototypes operational the validity
of such objections can now be judged on the
basis of actual experience. In this section
this question is addressed with respect to
the Manchester Dataflow Machine. Re-
lated discussions can be found in Shimada
et al. [1986] and Hiraki et al. [1986]. Here
we concentrate on underutilization and
overhead, treated together as resource
waste. Roughly speaking, wasted resources
are considered to be those that are
needed beyond those in a reasonably high-
performance sequential computer.

Most of the hardware of the Manchester
Dataflow Machine can be classified as
being used either for processing or for stor-
age. We shall only consider the functional
elements as processing hardware. Storage
consists of data and instruction memories
in the token queue, the matching unit, the
fetching unit, and the structure store. The
rest of the hardware we classify as being
used for communication. The total resource
waste in this machine can be estimated if
we know the relative sizes of the three
categories and the level of waste within
each category. As a rough measure of the
amount of hardware we use the number of
printed circuit boards, ignoring differences
in board and chip density.

A multiprocessor consists of a number of
processing elements connected with a com-
munication switch. The amount of hard-
ware in the switch per processing element
grows logarithmically with the size of the
machine. A machine containing a few dozen

processing elements would require per
processing element or structure store about
two printed circuit boards for the switch
alone. One processing element is currently
implemented with about 15 printed circuit
boards for processing, 22 for storage, and 9
for internal communication. The structure
store requires four printed circuit boards
for communication and two for storage.

If there are an equal number of process-
ing elements as there are structure stores,
about 45 percent of the hardware will be
devoted to storage, with the rest equally
divided between processing and communi-
cation. Half of the communication hard-
ware is needed for the asynchronous
communication between units within one
processing element. The same architecture
can easily be implemented synchronously.
Since in that case the communication hard-
ware is relatively small (15 percent), we
concentrate on the other two categories.

6.1 Waste of Processing Power

Processing power is wasted either because
a functional element is idle or because it is
performing overhead computation, that is,
computation that would not be needed in a
sequential implementation. We treat these
two factors in order.

6.1.1 Underutilization of Functional Elements

A functional element is idle because of a
poor hardware balance, lack of parallelism
in the program, or poor distribution over
the processing elements. Balancing the
hardware amounts to adjusting the number
of functional elements to the speed of the
matching unit and providing enough
buffering to smooth irregularities. This has
been done by analysis and by experiment
[Gurd and Watson 1983; Gurd et al. 19851,
and it has been concluded that the func-
tional unit should contain between 12 and
20 elements.

In such a configuration there are 30-40
stages in the pipeline that can concurrently
be active. The parallelism in a program
should thus be at least 30 per processing
element to avoid starvation of functional
elements and preferably more to accom-

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Dataflow Machine Architecture l 391

single-jump instruction in a control flow
computer. Another manifestation is the
tag manipulation instruction that is
needed for each data item entering a re-
entrant subgraph. Possibly the largest
source of overhead computation is in the
handling of large data structures.

For certain numerical programs an
indication of the amount of overhead
computation is provided by the floating-
point fraction, that is, the fraction of exe-
cuted instructions that perform floating
point operations? Studies of bench-mark
programs run on conventional supercom-
puters at Lawrence Livermore National
Laboratory showed that assembly language
programmers achieve a floating-point frac-
tion of 30 percent, whereas FORTRAN
compilers reach 15-20 percent [Gurd et al.
19851. Straightforward compilers for the
Manchester Dataflow Machine achieve a
floating-point fraction of 3 percent for large
programs. There is, however, much room
for optimization, and a good compiler can
reduce this overhead considerably. Recent
work on optimization in Manchester has
achieved floating-point fractions of 15 per-
cent for realistic programs [Bohm and
Sargeant 19851. Shimada et al. [1986] are
working in the same direction.

modate the smoothing buffers. Experi-
ments with simple programs run on one
processing element indicate that an average
parallelism of 50 is sufficient to keep above
this minimum. A reasonably sized multi-
processor would therefore need programs
with an average rate of parallelism close to
1000. Experience so far suggests that real-
istic programs can indeed achieve such
rates of parallelism, if the programmer
carefully avoids sequential constructs. Pro-
grams with a regular type of parallelism,
for which the average rate of parallelism is
close to the maximum rate, do not create
problems. Such programs, however, run
well or even better on static dataflow ma-
chines or on more conventional parallel
computers. Programs with irregular paral-
lelism often create excessive storage de-
mands. We come back to this below.

Distributing the work load over the pro-
cessing elements is in general a complicated
allocation problem that needs to take the
locality of instruction and data access into
account. In the Manchester machine the
problem is simplified since all communica-
tion paths are of equal length, so that there
is no physical locality that the allocator
needs to exploit. Simple experiments with
both the simulator and the micro-based
emulator suggest that a pseudorandom dis-
tribution based on similar hashing tech-
niques as those used in the matching store
will provide an even distribution of the
processing load [Barahona and Gurd 1985;
Foley 19851. Only simple programs have
been simulated, however, and structure al-
location has been ignored.
with more realistic programs
to substantiate these claims.

6.7.2 Overhead Computation

Experiments
are necessary

Even if the functional elements are suffi-
ciently utilized, processing power can still
be wasted if many instructions are in fact
overhead. One source of this type of over-
head mentioned by Gajski et al. [1982] is
the distributed nature of flow control. A
manifestation of this problem is the sepa-
rate BRANCH instructions that need to be
executed for each data item that enters a
conditional expression compared to the

6.2 Waste of Storage Space

An even distribution of the work over a
multiprocessor is greatly simplified if each
instruction is available on each processing
element. Because of all the copies of the
program, most instruction storage would be
wasted. This waste is, however, insignifi-
cant compared with the waste in data
storage.

The processing element that is currently
operating contains an enormous amount of
memory, practically all of it situated in the
matching unit and the structure store. The
total hardware cost of the machine is dom-
inated by the cost of this 20-Mbyte high-
speed data memory.

The structure store needs 5 Mbyte
of memory because most programs with

3 The Manchester Dataflow group calls the inverse of
this figure the MIPS/MFLOPS ratio.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

392 l Arthur H. Veen

sufficient parallelism operate on large data
structures, and sometimes several copies of
these need to be maintained concurrently.
It seems possible that with compiling tech-
niques that analyze access patterns to
structures this duplication could be reduced
substantially without impairing parallel-
ism. Experience with compiling for vector
processors may be helpful in this.

The X-Mbyte of memory in the match-
ing unit is barely sufficient to run realistic
programs. One reason for this is that its
effective utilization is less than 20 percent
[Veen 1985b]. This results from a combi-
nation of two factors:

l Each token carries a destination and a
tag in addition to its data. Two-thirds of
each cell is thus dedicated to overhead.

l The occupancy needs to be limited to less
than 50 percent to avoid serious perform-
ance degradation due to overflow.

When the hardware overflow unit is in-
stalled, the effective utilization may rise to
25 percent.

The second reason for the size of the
matching unit is that programs with suffi-
cient irregular parallelism occasionally
flood the matching unit with intermediate
results. It has become clear that a mecha-
nism is needed to limit parallelism if
resources tend to get overloaded. Such a
dynamic mechanism has been called a
throttle. In the NEC dataflow chip (see
Section 4.2) we saw a fine-grain throttle:
Tokens are classified in different cate-
gories, depending on the effect they are
expected to have on the level of parallelism,
and the token queue favors a particular
token category, depending on the machine
load. A suggestion for such a mechanism
also appears in Veen [1980]. An effective
classification would need assistance from
the compiler.

Currently a coarse-grain throttle is under
investigation in Manchester that manages
procedure and loop bodies by controlling
the generation of activation names. The
execution of a GENERATE-ACTIVA-
TION-NAME instruction can be seen as
the initiation of a new process. The throttle
would allow only a limited number of pro-

cesses to be active concurrently and may
suspend a process until a previous one has
terminated. In order to avoid deadlock the
throttle has to maintain an explicit repre-
sentation of the dependencies between
processes. The mechanism seems complex
but feasible, and simulation experiments
have been very promising.

A consequence of this type of throttling
is that the matching space can be much
smaller because activation names can be
reused. The matching space is treated as a
critical resource managed by the throttle,
and its consumption is reduced by enforc-
ing locality. With assistance from the com-
piler, the index field of the tag can also be
reduced. A tag of half its current size ap-
pears sufficient. There is also some redun-
dancy in the matching space addressing
that can be removed. A combination of
these improvements affects the utilization
of the matching unit in two ways: The
overhead per cell may be reduced to 30
percent and, because of greater locality, a
more efficient hashing function can be
used. In this way a utilization of 40 percent
can be achieved [Veen 1985b].

7. SUMMARY

The concept of dataflow architecture is
some 15 years old, and the first dataflow
machine became operational more than a
decade ago. In the last five years consider-
able progress has been made. Several de-
signs have been emulated in hardware or
have reached the prototype stage. They all
have a communication mechanism based
on packet switching, and most of them
support general recursion. Recursion mech-
anisms are based on tagged tokens, some-
times combined with code copying.
Whether such a combination is advanta-
geous is not yet clear. The handling of data
structures is an area of active investigation.
The dataflow model calls for separate cop-
ies of each value to be sent from the pro-
ducer to each consumer. It is clear that
such copying is not feasible when large data
structures are involved and that data struc-
tures have to be stored. Since this storage
is visible in the dataflow graph, it consti-
tutes a deviation from the pure functional

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Dataflow Machine Architecture l 393

approach. There are signs that a deviation
is also necessary from the fine-grain ap-
proach. Mechanisms have been proposed
and implemented that schedule on coarse-
or medium-grain levels such as procedure
bodies. Scheduling occurs in a load balancer
and in a throttle, that is, a mechanism to
limit parallelism when resources tend to get
overloaded.

An objection frequently raised against
the dataflow approach is that its fine gran-
ularity leads to an excessive consumption
of resources. Experience with the Man-
chester Dataflow Machine, the most ad-
vanced prototype to date, shows that the
major waste of resources occurs in data
storage. The memory needed to store struc-
tures can probably be reduced by compiling
techniques. More serious is the consump-
tion of matching unit memory. An effective
throttle could alleviate this problem. Be-
sides its primary goal, reducing the number
of tokens that have to be stored concur-
rently, it has two additional effects: The
size of the tag can be reduced and the
matching space is used more densely, which
makes a more efficient representation
possible.

The second area of concern is the waste
of processing power due to underutilization
of functional elements. One source of this
may be an insufficient level of parallelism
in the program. It has been shown that
with careful programming and sophisti-
cated compilers a high level of parallelism
can be sustained even for realistic pro-
grams. It remains to be seen whether the
required reprogramming effort stays within
reasonable bounds for a wide range of large
programs. Underutilization may also occur
if processing or communication load is not
evenly balanced. Simple experiments with
load balancing have shown promising re-
sults, but conclusive experiments await
the construction of multiprocessors of
sufficient power.

It has been assumed in the past that fine
granularity would require a great propor-
tion of overhead instructions, which would
also waste processing power. It has been
shown recently that sophisticated com-
pilers can reduce this overhead to an
acceptable level.

The crucial questions are concerned with
handling of data structures, load balancing,
and control of parallelism. They all require
study of the execution of large programs
for which simulation or analysis is difficult.
Prototypes of sufficient power that are, or
soon will be, available together with their
supporting software provide excellent test
beds for further research in these areas.

ACKNOWLEDGMENTS

Wim Bohm, John Gurd, Jan Heering, Paul Klint,
Martin Rem, and Marleen Sint read earlier versions
of this paper. I have benefited greatly from their
comments. The work was supported by the Centre for
Mathematics and Computer Science and the Dutch
Parallel Reduction Machine project.

REFERENCES

ALLAN, S. J., AND OLDEHOEFT, A. E. 1980. A flow
analysis procedure for the translation of high-
level lanuuaees to a data flow language. IEEE
Trans. &m&t. C-29,9 (Sept.) 826-1831‘:

AMAMIYA, M., HASEGAWA, R., NAKAMURA, 0.. AND
MIKAMI, H. 1982. A list-processing-oriented
data flow machine architecture. In Proceedings of
th.e AFZPS National Comwter Conference 82.
AFIPS Press, Reston, Va., pp. 143-151.

AMAMIYA, M., TAKESLJE, M., HASECAWA, R., AND
MIKAMI, H. 1986. Implementation and evalua-
tion of a list-processing-oriented data flow
machine. In Proceedings of the 13th Ann&
Symposium on Computer Architecture (Tokyo,
June 2-5). ACM, New York, pp. 10-19.

ARVIND AND GOSTELOW, K. P. 1977. A computer
capable of exchanging processors for time. In
Information Processiw 77. B. Gilchrist. Ed.
North-Holland, New Y&k, pp. 849-853. ’

ARVIND AND KATHAIL, V. 1981. A multiple processor
dataflow machine that supports generalized
procedures. In Proceedings of the 8th Annual
Symposium on Computer Architecture (Minne-
apolis, Minn., May 12-14). ACM, New York,
pp. 291-302.

ARVIND AND THOMAS, R. E. 1980. I-Structures: An
efficient data type for functional languages. Tech.
Memo. 210, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cam-
bridge, Mass.

ARVIND, KATHAIL, V., AND PINGALI, K. 1980. A
dataflow architecture with tagged tokens. Tech.
Memo. 174, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cam-
bridge, Mass.

BARAHO~A, P., AND GURD, J. R. 1985. Simulated
performance of the Manchester multi-ring data-
flow machine. In Parallel Computing 85. North-
Holland, Amsterdam, pp. 419-424.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

394 l Arthur H. Veen

BOHM, A. P. W., AND SARGEANT, J. 1985. Efficient
dataflow code generation. In Parallel Computing
85. North-Holland, Amsterdam, pp. 339-344.

BOWEN, D. L. 1981. Implementation of date struc-
tures on a data flow computer. Ph.D. dissertation,
Dept. of Computer Science, Victoria Univ. of
Manchester, Manchester, England.

BROCK, J. D., AND MONTZ, L. B. 1979. Translation
and optimization of data flow programs. CSG
Memo. 181, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cam-
bridge, Mass.

BURKOWSKI, F. J. 1981. A multi-user date flow
architecture. In Proceedings of the 8th Annual
Symposium on Computer Architecture (Minne-
apolis, Minn., May 12-14). ACM, New York,
pp. 327-340.

CALUWAERTS, L. J., DEBACKER, J., AND PEPER-
STRAETE, J.A. 1982. Implementing code
reentrancy in functional programs on a dataflow
computer system with a -paged memory. In The
International Workshop on High-Level Lanauage
Computer Architecture (Fort-Lauderdale,-Fla.,
Dec. l-3).

COMTE, D., HIFDI, N., AND SYRE, J. C. 1980. The
data driven LAU multiprocessor system: Results
and perspectives. In Proceedings of the IFIP Con-
gress 80 (Tokyo and Melbourne, Australia,
Oct. 6-17), S. Lavington, Ed. North-Holland,
Amsterdam, pp. 175-180.

CORNISH, M., ET AL. 1979. The TI data flow archi-
tectures: The power of concurrency for avionics.
In Proceedings of the 3rd Conference on Digital
Avionics Systems (Fort Worth, Tex., Nov.).
IEEE, New York, pp. 19-25.

DARLINGTON, J., HENDERSON, P., AND TURNER, D.
A. 1982. Fun&anal Programmine and its Appli-
cations. Cambridge Univ&sity P&s, Cambridge,
England.

DA SILVA, J. G. D., AND WATSON, I. 1983. Pseudo-
associative atore with hardware hashing. IEEE
Proceedings, Pt. E 130,1, 19-24.

DAVIS, A. L. 1977. Architecture of DDMl: A recur-
sively structured data driven machine. Tech.
%D.. &Dt. of ComDUbX fkieDO% Univ. of Utah.
Sak ‘Lake City, I&h.

DAVIS, A. L. 1979. A data flow evaluation system
based on the concept of recursive locality. In
Proceedings of the National Computing Confer-
ence. AFIPS Press, Reston, Va., pp. 1079-1086.

DENNIS, J. B. 1969. Programming generality, paral-
lelism and computer architecture. Information
Processing 68 (Amsterdam). North-Holland,
Amsterdam, pp. 484-492.

DENNIS, J. B. 1974. First version of a data flow
procedure language. In Lecture Notes in Computer
Science, vol. 19, G. Goos and J. Hartmanis, Eds.
Springer, New York, pp. 362-376.

DENNIS, J. B. 1980. Data flow supercomputers. Com-
puter 13, 4 (Nov.), 46-56.

DENNIS, J. B., AND MISUNAS, R. P. 1974. A prelim-
inary architecture for a basic data flow processor.

In Proceedings of the 2nd Annual Symposium
on Computer Architecture (Houston, Tex., Jan.
20-22). Comput. Archit. News 3,4, 126-132.

DENNIS, J. B., BOUGHTON, G. A., AND LEUNG, C. K.
C. 1980. Building blocks for data flow proto-
types. In Proceedings of the 7th Annual Sympo-
sium on Computer Architecture (La Baule,
France, May 6-8). ACM, New York, pp. l-8.

DENNIS, J. B., LIM, W. Y. P., AND ACKERMAN, W. B.
1983. The MIT data flow enaineerina model. In
Proceedings of the IFIP 9th W&d Computer Con-
gress (Paris, Sept. 19-23), R. E. A. Mason, Ed.
North-Holland, New York, pp. 553-560.

DENNIS, J. B., GAO, G. R., AND TODD, K. W.
1984. Modeling the weather with a data flow
supercomputer. IEEE Trans. Comput. C-33, 7
(July), 592-603.

FLYNN, M. J., 1972. Some computer organizations
and their effectiveness. IEEE Trans. Comput.
C-21,9 (Sept.), 948-960.

FOLEY, J. 1985. A hardware simulator for a multi-
ring dataflow machine. Ph.D. dissertation, Dept.
of Computer Science, Victoria Univ. of Man-
chester, Manchester, England.

GAJSKI, D. D., PADUA, D. A., KUCK, D. J., AND KUHN,
R. H. 1982. A second opinion on data flow
machines and languages. Computer 25, 2 (Feb.),
58-69.

GAUDIOT, J. L. 1986. Structure handling in data-
flow systems. IEEE Trans. Comput. C-35, 6
(June), 489-502.

GAUDIOT, J. L., AND WEI, Y. H. 1986. Token IV-
labeling in a tagged data-flow architecture. In
Proceedings of the 1986 International Conference
on Parallel Processing (St. Charles, Aug. 19-22).
IEEE, New York, pp. 592-599.

GLAUERT, J. R. W. 1984. High level dataflow pro-
mammine. In Distributed Computing, F. B.
Chambers, D. A. Duce and G. P. Jones, Eds.
Academic Press, Orlando, Fla., pp. 43-53.

GOSTELOW, K. P., AND THOMAS, R. E. 1980.
Performance of a simulated dataflow computer.
IEEE Trans. Comput. C-29,10 (Oct.), 905-919.

GURD, J., AND BBHM, A. P.W. 1987. Implicit parallel
processing: SISAL on the manchester dataflow
computer. In Proceedinps of the IBM-Europe Zn-
stitute on Parallel Professing (Oberlech, Aug.),
G. Amalsi. R. W. Hocknev. and G. Paul. Eds.
North-Holland, Amsterdam.’

GURD, J., AND WATSON, I. 1980. A data driven sys-
tem for high speed parallel computing. Comput.
Design 9,6 and 7 (June), 91-100 and 97-106.

GURD, J., AND WATSON, I. 1983. Preliminary
evahmtion of a prototype dataflow computer.
In Proceedings of the 9th IFIP World Computer
Congress (Paris, Sept. 19-23), R. Mason, Ed.
North-Holland, Amsterdam, pp. 545-551.

GURD, J. R., KIRKHAM, C. C., AND WATSON, I.
1985. The Manchester prototype datatlow com-
puter. Commun. ACM 28,l (Jan.), 34-52.

GURD, J., KIRKHAM, C. C., AND B~HM, A. P. W.
1987. The Manchester dataflow computing sys-

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Datafbw Machine Architecture l 395

tern. In Experimental Parallel Computing Archi-
tecture, J. Dongarra, Ed. North-Holland, Amster-
dam, pp. 177-219.

processing system. In Proceedings of the National
Computer Conference (New York, June 4-7).
AFIPS Press, Reston, Va., pp. 613-622.

HARTIMO, I., KVONLOF, K., SIMULA, O., AND SK~T~A,
J. 1986. DFSP: A data flow sianal nrocessor.
ZEEE Trans. Comput. C-35,1 (June), 23-33.

HAZFU, A. 1982. A description method and a classi-
fication scheme for data flow architectures. In
Proceedings of the 3rd International Conference
on Distributed Computing Systems (Oct.). IEEE,
New York, pp. 645-651.

HIRAKI, K., NISHIDA, K., SEKIGUCHI, S., AND
SHIMADA, T. 1986. Maintenance architecture
and its LSI implementation of a dataflow com-
puter with a large number of nrocessors. In
Proceedings of the Znternatia& Conference
on Parallel Processina. IEEE. New York.
pp. 584-591.

HOGENAUER, E. B., NEWBOLD, R. F., AND INN, Y. J.
1982. DDSP-A data flow computer for signal
processing. In Proceedings of the Znternati&al
Conference on Parallel Processine. IEEE. New
York, pp. 126-133.

HUDAK, P., AND GOLDBERG, B. 1985. Distributed
execution of functional programs using serial
combinators. IEEE Trans. Comput. C-34, 10
(Oct.), 881-891.

ITO, N., KISHI, M., KUNO, E., AND ROKUSAWA, K.
1985. The dataflow-based narallel inference ma-
chine to support two basic languages in KL-1. In
ZFZP TC-10 Workina Conference on Fifth Gener-
ation Computer Architecture (Manchester,
England, July 15-18). J. V. Woods, Ed.
Elsevier, New York, pp. 123-145.

ITO, N., SATO, M., KUNO, E., AND ROKUSAWA, K.
1986. The architecture and preliminary evalua-
tion results of the experimental parallel inference
machine PIM-D. In Proceedings of the 13th
Annual Symposium on Computer Architecture
(Tokyo, June 2-5). ACM, New York, pp.
149-156.

IWASHITA, M., TEMMA, T., MATSUMOTO, K., AND
KUROKAWA, H. 1983. Modular dataflow image
processor. In Spring 83 COMPCON. IEEE, New
York, pp. 464-467.

JEFFERY, T. 1985. The pPD7281 Processor. Byte
(Nov.) 237-246.

JOHNSON, D., ET AL. 1980. Automatic partitioning
of programs in multiprocessor systems. In Pro-
ceedings of the Spring 80 COMPCON. IEEE, New
York.

KARP, R. M., AND MILLER, R. E. 1966. Properties
of a model for parallel computations: Determi-
nacy, termination, queueing. SIAM J. Appl.
Math. 14,6 (Nov.), 1390-1411.

KAWAKAMI, K., AND CURD, J. R. 1986. A scalable
dataflow structure stare. In Proceedings of the
13th Annual Symposium on Computer Architec-
ture (Tokvo. June 2-5). ACM. New York.
pp. 243-256.

KELLER, R. M., LINDSTROM, G., AND PATIL, S.
1979. A loosely-coupled applicative multi-

KIRKHAM, C. C. 1981. Basic programming manual
of the Manchester prototype dataflow system,
2nd ed. Dataflow Research Group, Manchester
Univ., Manchester, England.

KISHI, M., YASUHARA, H., AND KAWAMURA, Y.
1983. DDDP: A distributed data driven proces-
sor. In Proceedings of the 10th Annual Symposium
on Computer Architecture (Stockholm, June
13-17). IEEE, New York, pp. 236-242.

LECOUFFE, M. P. 1979. MAUD: A dynamic single-
assignment system. Comput. Digital Tech. 2, 2
(Apr.), 75-79.

MARCZY~SKI, R. W., AND MILEWSKI, J. 1983. A data
driven system based on a microprogrammed pro-
cessor module. In Proceedings of the 20th Annual
Symposium on Computer Architecture (Stockholm,
June 13-17). IEEE, New York, pp. 98-106.

MCGRAW, J. R. 1982. The VAL language: Descrip-
tion and analysis. Trans. Program. Lang. Syst. 4,
1 (Jan.), 44-82.

MIRANKER, G. S. 1977. Implementation of proce-
dures on a class of data flow processors. In Pra-
ceedings of the 1977 Znternatianal Conference on
Parallel Processing (Detroit, Mich., Aug. 23-26),
J. L. Baer, Ed. IEEE, New York, pp. 77-86.

MISUNAS, D. P. 1978. A computer architecture for
data flow computation. Tech. Memo. 100, Labo-
ratory for Computer Science, Massachusetts In-
stitute of Technology, Cambridge, Mass.

MONTZ, L. B. 1980. Safety and optimization trans-
formations for data flow programs. Tech. Rep.
240, Laboratory for Computer Science, Massa-
chusetts Institute of Technology, Cambridge,
Mass.

PEYTON-JONES, S. L. 1984. Directions in functional
programming research. In Distributed Computing
Systems Programme, D. A. Duce, Ed. Peter
Peregrinus, London, pp. 220-249.

PREISS, B. R., AND HAMACHER, V. C. 1985. Dataflow
on a queue machine. In Proceedings of the 12th
Annual Symposium on Computer Architecture
(Boston, Mass., June 17-19). IEEE. New York.
pp. 342-351.

RODRIGUEZ, J. E. 1969. A graph model for parallel
comoutation. Tech. Ren. 64. Proiect MAC. Mas-
sachusetts Institute of Technology, Cambridge,
Mass.

RUMBAUGH, J. 1975. A data flow multiprocessor. In
Proceedings of the 1975 Sagamore Computer Con-
ference on Pam&l Processing (Sagamore, N.Y.),
pp. 220-223.

SARGEANT, J., AND KIRKHAM, C. C. 1986. Stored
data structures on the Manchester dataflow
machine. In Proceedings of the 13th Annual
Symposium on Computer Architecture (Tokyo,
June 2-5). ACM, New York, pp. 235-242.

SHIMADA, T., HIRAKI, K., NISHIDA, K., AND SEKIGU-
CHI, S. 1986. Evaluation of a prototype data
flow processor of the SIGMA-l for scientific com-

ACM Computing Surveys, Vol. 18, No. 4, December 19%

396 . Arthur H. Veen

putations. In Proceedings of the 13th Annual
Symposium on Computer Architecture (Tokyo,
June 2-5). ACM, New York, pp. 226-234.

SMITH, B. J. 1978. A pipelined shared resource
MIMD computer. In Proceedings of the 1978 Zn-
ternational Conference on Parallel Processing.
IEEE, New York.

SRINI, V. P. 1986. An architectural comparison
of dataflow systems. Computer 19, 9 (Mar.),
68-88.

SWAN, R. J., FULLER, S. H., AND SIEWIOREK, D. P.
1977. Cm*-A modular, multi-microprocessor.
In Proceedings of the National Computer Confer-
ence (Dallas, Tex., June 13-16). AFIPS Press,
Arlington, Va., pp. 637-644.

SYRE, J. C. 1980. Etude et realisation dun systeme
multiprocesseur MIMD en assignation unique.
These. Univ. Paul Sabartier de Toulouse. Tou-
louse, ‘France.

SYRE, J. C., COMTE, D., AND NIFDI, N.
1977. Pipelining, parallelism and asynchronism
in the LAU system. In Proceedings of the 1977
International Conference on Parallel Processing
(Detroit, Mich.. Aug. 23-26). J. L. Baer. Ed.
IEEE, New York, pp: 87-92. ”

TAKAHASHI, N., AND AMAMIYA, M. 1983. A data flow

processor array system: Design and analysis. In
Proceedings of the 10th Annual Symposium on
Computer Architecture (Stockholm, June 13-17).
IEEE, New York, pp. 243-250.

TODA, K., YAMAGUCHI, Y., UCHIBORI, Y., AND YUBA,
T. 1985. Preliminary measurements of the ETL
Lisp-Based data-driven machine. In ZFZP X-10
Working Conference on Fifth Generation Com-

puter Architecture (Manchester, England, July
15-18). J. V. Woods, Ed. Elsevier, New York.
pp. 235-253.

TRELEAVEN, P. C., HOPKINS, R. P., AND RAUTEN-
BACH. P. W. 1982a. Combinine data flow and
control flow computing. Cornput: J. 25, 2 (Feb.),
207-217.

TRELEAVEN, P. C., BROWNBRIDGE, D. R., AND HOP-
KINS, R. P. 198213. Data-driven and demand-
driven computer architecture. Comput. Suru. 14,
1 (Mar.), 93-143.

VEDDER, R., AND FINN, D. 1985. The Hughes data
flow multiprocessor: Architecture for efficient
signal and data processing. In Proceedings of the
12th Annual Symposium on Computer Architec-
ture (Boston, Mass., June 17-19). IEEE, New
York, pp. 324-332.

VEEN, A. H. 1980. Data flow computers. In Colla-
quium Hogere Programmeertalen en Computer-
architectuur-Syllabus 45, P. Klint, Ed. Centre for
Mathematics and Computer Science, Amster-
dam, pp. 99-132 (in Dutch).

VEEN, A. H. 1981. A formal model for data flow
programs with token coloring. Tech. Rep. IW 179,
Centre for Mathematics and Computer Science,
Amsterdam.

VEEN, A. H. 1985a. The misconstrued semicolon-
Reconciling imperative languages and dataflow
machines. Tract 26, Centre for Mathematics and
Computer Science, Amsterdam.

VEEN, A. H. 1985b. Locality in the matching store.
Internal report. Dept. of Computer Science, Vic-
toria Univ. of Manchester, Manchester, England.

VEGDAHL, S. R. 1984. A survey of proposed archi-
tectures for the execution of functional languages.
IEEE Trans. Comput. C-33,12 (Dec.), 1050-1071.

WATSON, I., AND GURD, J. 1982. A practical data
flow computer. Computer 15,2 (Feb.) 51-57.

WENG, K. S. 1979. An abstract implementation for
a generalized data flow language. Tech. Rep. 228,
Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, Mass.

YAMAGUCHI, Y., TODA, K., AND YUBA, T. 1983. A
performance evaluation of a LISP-based data-
driven machine (EM-3). In Proceedings of the
10th Annual Symposium on Computer Architec-
ture (Stockholm, June 13-17). IEEE, New York,
pp. 363-369.

Received November 1985; final revision accepted March 1987.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

