
MLP-Aware Runahead Threads in a Simultaneous
Multithreading Processor

Kenzo Van Craeynest, Stijn Eyerman, and Lieven Eeckhout

Department of Electronics and Information Systems (ELIS), Ghent University, Belgium
{kevcraey,seyerman,leeckhou}@elis.UGent.be

Abstract. Threads experiencing long-latency loads on a simultaneous multith-
reading (SMT) processor may clog shared processor resources without making
forward progress, thereby starving other threads and reducing overall system
throughput. An elegant solution to the long-latency load problem in SMT proces-
sors is to employ runahead execution. Runahead threads do not block commit on
a long-latency load but instead execute subsequent instructions in a speculative
execution mode to expose memory-level parallelism (MLP) through prefetching.
The key benefit of runahead SMT threads is twofold: (i) runahead threads do
not clog resources on a long-latency load, and (ii) runahead threads exploit far-
distance MLP.

This paper proposes MLP-aware runahead threads: runahead execution is only
initiated in case there is far-distance MLP to be exploited. By doing so, useless
runahead executions are eliminated, thereby reducing the number of speculatively
executed instructions (and thus energy consumption) while preserving the perfor-
mance of the runahead thread and potentially improving the performance of the
co-executing thread(s). Our experimental results show that MLP-aware runahead
threads reduce the number of speculatively executed instructions by 13.9% and
10.1% for two-program and four-program workloads, respectively, compared to
MLP-agnostic runahead threads while achieving comparable system throughput
and job turnaround time.

1 Introduction

Long-latency loads (last D-cache level misses and D-TLB misses) have a big perfor-
mance impact on simultaneous multithreading (SMT) processors [23]. In particular, in
an SMT processor with dynamically shared resources, a thread experiencing a long-
latency load will eventually stall while holding resources (reorder buffer entries, issue
queue slots, rename registers, etc.), thereby potentially starving the other thread(s) and
reducing overall system throughput.

Tullsen and Brown [21] recognized this problem and proposed to limit the amount of
resources allocated by threads that are stalled due to long-latency loads. In their flush
policy, fetch is stalled as soon as a long-latency load is detected and instructions are
flushed from the pipeline in order to free resources allocated by the long-latency thread.
The flush policy by Tullsen and Brown, however, does not preserve memory-level paral-
lelism (MLP) [3,8], but instead serializes independent long-latency loads. This may hurt
the performance of memory-intensive (or, more precisely, MLP-intensive) threads. Eyer-
man and Eeckhout [6] therefore proposed the MLP-aware flush policy which first predicts

A. Seznec et al. (Eds.): HiPEAC 2009, LNCS 5409, pp. 110–124, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

MLP-Aware Runahead Threads in a Simultaneous Multithreading Processor 111

the MLP distance for a long-latency load, i.e., it predicts the number of instructions one
needs to go down the dynamic instruction stream for exposing the available MLP. Subse-
quently, based on the predicted MLP distance, MLP-aware flush decides to (i) flush the
thread in case there is no MLP, or (ii) continue allocating resources for the long-latency
thread for as many instructions as predicted by the MLP predictor. The key idea is to flush
a thread only in case there is no MLP; in case there is MLP, MLP-aware flush allocates
as many resources as required to expose the available memory-level parallelism.

Ramirez et al. [17] proposed runahead threads in an SMT processor which avoid re-
source clogging on long-latency loads while exposing memory-level parallelism. The
idea of runahead execution [14] is to not block commit on a long-latency load, but to
speculatively execute instructions ahead in order to expose MLP through prefetching.
Runahead threads are particularly interesting in the context of an SMT processor be-
cause they solve two issues: (i) they do not clog resources on long-latency loads, and
(ii) they preserve MLP, and even allow for exploiting far-distance MLP (beyond the
scope of the reorder buffer).

A limitation of runahead threads in an SMT processor though is that they consume
execution resources (functional unit slots, issue queue slots, reorder buffer entries, etc.)
even if there is no MLP to be exploited, i.e., runahead execution does not contribute to
the performance of the runahead thread in case there is no MLP to be exploited, and
in addition, may hurt the performance of the co-executing thread(s) and thus overall
system performance. In this paper, we propose MLP-aware runahead threads. The key
idea of MLP-aware runahead threads is to enter runahead execution only in case there
is far-distance MLP to be exploited. In particular, the MLP distance predictor first pre-
dicts the MLP distance upon a long-latency load, and in case the MLP distance is large,
runahead execution is initiated. If not, i.e., in case the MLP distance is small, we fetch
stall the thread after having fetched as many instructions as predicted by the MLP dis-
tance predictor, or we (partially) flush the long-latency thread if more instructions have
been fetched than predicted by the MLP distance predictor.

MLP-aware runahead threads reduce the number of speculatively executed instruc-
tions significantly over MLP-agnostic runahead threads while not affecting overall SMT
performance. Our experimental results using the SPEC CPU2000 benchmarks on a
4-wide superscalar SMT processor configuration report that MLP-aware runahead
threads reduce the number of speculatively executed instructions by 13.9% and 10.1%
on average for two-program and four-program workloads, respectively, compared to
MLP-agnostic runahead threads, while yielding comparable system throughput and job
turnaround time. Binary MLP prediction (using the previously proposed MLP predic-
tor by Mutlu et al. [13]) along with an MLP-agnostic flush policy, further reduces the
number of speculatively executed instructions under runahead execution by 13% but
hurts system throughput (STP) by 11% and job turnaround time (ANTT) by 2.3% on
average.

This paper is organized as follows. We first revisit the MLP-aware flush policy
(Section 2) and runahead SMT threads (Section 3). Subsequently, we propose
MLP-aware runahead threads in Section 4. After detailing our experimental setup in
Section 5, we then present our evaluation in Section 6. Finally, we describe related
work (Section 7), and conclude (Section 8).

112 K.Van Craeynest, S. Eyerman, and L. Eeckhout

2 MLP-Aware Flush

The MLP-aware flush policy proposed in [6] consists of three mechanisms: (i) it iden-
tifies long-latency loads, (ii) it predicts the load’s MLP distance, and (iii) it stalls fetch
or flushes the long-latency thread based on the predicted MLP distance. The first step
is trivial (i.e., a load instruction is labeled as a long-latency load as soon as the load is
found out to be an off-chip memory access, e.g., an L3 miss or a D-TLB miss). We now
discuss the second and third steps in more detail.

2.1 MLP Distance Prediction

Once a long-latency load is identified, the MLP distance predictor predicts the MLP
distance, or the number of instructions one needs to go down the dynamic instruction
stream in order to expose the maximum exploitable MLP for the given reorder buffer
size. The MLP distance predictor consists of a table indexed by the load PC, and each
entry in the table records the MLP distance for the corresponding load. There is one
MLP distance predictor per thread.

Updating the MLP distance predictor is done using a structure called the long-latency
shift register (LLSR), see Figure 1. The LLSR has as many entries as there are reorder
buffer entries divided by the number of threads (assuming a shared reorder buffer), and
there are as many LLSRs as there are threads. Upon committing an instruction from the
reorder buffer, the LLSR is shifted over one bit position from tail to head, and one bit
is inserted at the tail of the LLSR. A ‘1’ is inserted in case the committed instruction is
a long-latency load, and a ‘0’ is inserted otherwise. Along with inserting a ‘0’ or a ‘1’
we also keep track of the load PCs in the LLSR. In case a ‘1’ reaches the head of the
LLSR, we update the MLP distance predictor table. This is done by computing the MLP
distance which is the bit position of the last appearing ‘1’ in the LLSR when reading the
LLSR from head to tail. In the example given in Figure 1, the MLP distance equals 6.
The MLP distance predictor is updated by inserting the computed MLP distance in the
predictor table entry pointed to by the long-latency load PC. In other words, the MLP
distance predictor is a simple last value predictor, i.e., the most recently observed MLP
distance is stored in the predictor table.

processor

core

LLSR thread 0

LLSR thread 1

MLP distance

predictor thread 1

100000 11

MLP distance = 6

load PC

6

1 0 0000 11

Fig. 1. Updating the MLP distance predictor

MLP-Aware Runahead Threads in a Simultaneous Multithreading Processor 113

2.2 MLP-Aware Fetch Policy

The best performing MLP-aware fetch policy reported in [6] is the MLP-aware flush
policy and operates as follows. Say the predicted MLP distance equals m. Then, if more
than m instructions have been fetched since the long-latency load, say n instructions,
we flush the last n - m instructions fetched. If less than m instructions have been fetched
since the long-latency load, we continue fetching instructions until m instructions have
been fetched, and we then fetch stall the thread.

The flush mechanism requires checkpointing support by the microarchitecture. Com-
mercial processors such as the Alpha 21264 [11] effectively support checkpointing at
all instructions. If the microprocessor would only support checkpointing at branches
for example, the flush mechanism could flush the instructions past the first branch af-
ter the next m instructions. The MLP-aware flush policy resorts to the ICOUNT fetch
policy [22] in the absence of long-latency loads. The MLP-aware flush policy also
implements the ‘continue the oldest thread’ (COT) mechanism proposed by Cazorla
et al. [1]. COT means that in case all threads stall because of a long-latency load, the
thread that stalled first gets priority for allocating resources. The idea is that the thread
that stalled first is likely to be the first thread to get the data back from memory and
continue execution.

3 Runahead Threads

Runahead execution [4,14] avoids the processor from stalling when a long-latency load
hits the head of the reorder buffer. When a long-latency load that is still being serviced,
reaches the reorder buffer head, the processor takes a checkpoint (which includes the
architectural register state, the branch history register and the return address stack),
records the program counter of the blocking long-latency load, and initiates runahead
execution. The processor then continues to execute instructions in a speculative way
past the long-latency load: these instructions do not change the architectural state. Long-
latency loads executed during runahead send their requests to main memory but their
results are identified as invalid; and an instruction that uses an invalid argument also
produces an invalid result. Some of the instructions executed during runahead execu-
tion (those that are independent of the long-latency loads) may miss in the cache as
well. Their latencies then overlap with the long-latency load that initiated runahead
execution. And this is where the performance benefit of runahead comes from: it ex-
ploits memory-level parallelism (MLP) [3,8], i.e., independent memory accesses are
processed in parallel. When, eventually, the initial long-latency load returns from mem-
ory, the processor exits runahead execution, flushes the pipeline, restores the check-
point, and resumes normal execution starting with the load instruction that initiated
runahead execution. This normal execution will make faster progress because some of
the data has already been prefetched in the caches during runahead execution.

Whereas Mutlu et al. [14] proposed runahead execution for achieving high perfor-
mance on single-threaded superscalar processors, Ramirez et al. [17] integrate runahead
threads in an SMT processor. The reason for doing so is twofold. First, runahead threads
seek for exploiting MLP thereby improving per-thread performance. Second, runahead
threads do not stall on commit and thus do not clog resources in an SMT processor.

114 K.Van Craeynest, S. Eyerman, and L. Eeckhout

This appealing solution to the shared resource partitioning problem in SMT processors
yields substantial SMT performance improvements, especially for memory-intensive
workloads according to Ramirez et al. (and we confirm those results in our evaluation).
The runahead threads proposal by Ramirez et al., however, initiates runahead execu-
tion upon a long-latency load irrespective of whether there is MLP to be exploited. As
a result, in case there is no MLP, runahead execution will consume resources without
contributing to performance, i.e., the runahead execution is useless because it does not
exploit MLP. This is the problem being addressed in this paper and for which we pro-
pose MLP-aware threads as described in the next section.

4 MLP-Aware Runahead Threads

An MLP-aware fetch policy as well as runahead threads come with their own benefits
and limitations. The limitation of an MLP-aware fetch policy is that it cannot exploit
MLP over large distances, i.e., the exploitable MLP is limited to (a fraction of) the
reorder buffer size. Runahead threads on the other hand can exploit MLP at large dis-
tances, beyond the scope of the reorder buffer, which improves performance substan-
tially for memory-intensive workloads. However, if MLP-agnostic — as in the original
description of runahead execution by Mutlu et al. [14] as well as in the follow-on work
by Ramirez et al. [17] — runahead execution is initiated upon every in-service long-
latency load that hits the reorder buffer head irrespective of whether there is MLP to be
exploited. As a result, runahead threads may consume execution resources without any
performance benefit for the runahead thread. Moreover, runahead execution may even
hurt the performance of the co-executing thread(s). Another disadvantage of runahead
execution compared to the MLP-aware flush policy is that more instructions need to
be re-fetched and re-executed upon the return of the initiating long-latency load. In the
MLP-aware flush policy on the other hand, instructions reside in the reorder buffer and
issue queues and need not be re-fetched, and, in addition, the instructions that are inde-
pendent of the blocking long-latency load need not be re-executed, potentially saving
execution resources and energy consumption.

To combine the best of both worlds, we propose MLP-aware runahead threads in
this paper. We distinguish two approaches to MLP-aware runahead threads.

Runahead threads based on binary MLP prediction. The first approach is to employ bi-
nary MLP prediction. We therefore use the MLP predictor proposed by Mutlu et al. [13]
which was originally developed for limiting the number of useless runahead periods,
thereby reducing the number of speculatively executed instructions under runahead ex-
ecution in order to save energy. The idea of employing the MLP predictor is to enter
runahead mode only in case the MLP predictor predicts there is far-distance MLP to be
exploited.

The MLP predictor by Mutlu et al. is a load-PC indexed table with a two-bit sat-
urating counter per table entry. Runahead mode is entered only in case the counter is
in the ‘10’ or ‘11’ states. A long-latency load which has no counter associated with
it, allocates a counter and resets the counter (to the state ‘00’). Runahead execution
is not entered in the ‘00’ and ‘01’ states; instead, the counter is incremented. During

MLP-Aware Runahead Threads in a Simultaneous Multithreading Processor 115

runahead execution, the processor keeps track of the number of long-latency loads gen-
erated. (Mutlu et al. count the number of loads generated beyond the reorder buffer; in
the SMT context with a shared reorder buffer, this translates to the reorder buffer size
divided by the number of hardware threads.) When exiting runahead mode, if at least
one long-latency load was generated during runahead mode, the associated counter is
incremented; if not, the counter is decremented if in the ‘11’ state, and is reset if in the
‘10’ state.

Runahead threads based on MLP distance prediction. The second approach to MLP-
aware runahead threads is to predict the MLP distance rather than to rely on a binary
MLP prediction. We first predict the MLP distance upon a long-latency load. In case
the predicted MLP distance is smaller than half the reorder buffer size for a two-thread
SMT processor and one fourth the reorder buffer size for a four-thread SMT processor
(i.e., this is what the MLP-aware flush policy can exploit), we apply the MLP-aware
flush policy. In case the predicted MLP distance is larger than half (or one fourth) the
reorder buffer size, we enter runahead mode. In other words, if there is no MLP or if
there is exploitable MLP over a short distance only, we reside to the MLP-aware flush
policy; if there is large-distance MLP to be exploited, we initiate runahead execution.

5 Experimental Setup

5.1 Benchmarks and Simulator

We use the SPEC CPU2000 benchmarks in this paper with their reference inputs. These
benchmarks are compiled for the Alpha ISA using the Compaq C compiler (cc) ver-
sion V6.3-025 with the -O4 optimization option. For all of these benchmarks we se-
lect 200M instruction (early) simulation points using the SimPoint tool [15,18]. We
use a wide variety of randomly selected two-thread and four-thread workloads. The
two-thread and four-thread workloads are classified as ILP-intensive, MLP-intensive or
mixed ILP/MLP-intensive workloads.

We use the SMTSIM simulator v1.0 [20] in all of our experiments. The processor
model being simulated is the 4-wide superscalar out-of-order SMT processor shown in
Table 1. The default fetch policy is ICOUNT 2.4 [22] which allows up to four instruc-
tions from up to two threads to be fetched per cycle. We added a write buffer to the
simulator’s processor model: store operations leave the reorder buffer upon commit and
wait in the write buffer for writing to the memory subsystem; commit blocks in case the
write buffer is full and we want to commit a store.

5.2 Performance Metrics

We use two system-level performance metrics in our evaluation: system throughput
(STP) and average normalized turnaround time (ANTT) [7]. System throughput (STP)
is a system-oriented metric which measures the number of jobs completed per unit of
time, and is defined as:

STP =
n∑

i=1

CPIST
i

CPIMT
i

,

116 K.Van Craeynest, S. Eyerman, and L. Eeckhout

Table 1. The baseline SMT processor configuration

parameter value
fetch policy ICOUNT 2.4
pipeline depth 14 stages
(shared) reorder buffer size 128 entries
(shared) load/store queue 64 entries
instruction queues 64 entries in both IQ and FQ
rename registers 100 integer and 100 floating-point
processor width 4 instructions per cycle
functional units 4 int ALUs, 2 ld/st units and 2 FP units
branch misprediction penalty 11 cycles
branch predictor 2K-entry gshare
branch target buffer 256 entries, 4-way set associative
write buffer 8 entries
L1 instruction cache 64KB, 4-way, 64-byte lines
L1 data cache 64KB, 4-way, 64-byte lines
unified L2 cache 512KB, 8-way, 64-byte lines
unified L3 cache 4MB, 16-way, 64-byte lines
instruction/data TLB 128/512 entries, fully-assoc, 8KB pages
cache hierarchy latencies L2 (11), L3 (35), MEM (500)

with CPIST
i and CPIMT

i the cycles per instruction achieved for program i during
single-threaded and multi-threaded execution, respectively; there are n threads running
simultaneously. STP is a higher-is-better metric and equals the weighted speedup metric
proposed by Snavely and Tullsen [19].

Average normalized turnaround time (ANNT) is a user-oriented metric which quanti-
fies the average user-perceived slowdown due to multithreading. ANTT is computed as

ANTT =
1
n

n∑

i=1

CPIMT
i

CPIST
i

.

ANTT equals the reciprocal of the hmean metric proposed in [12], and is a lower-is-
better metric. Eyerman and Eeckhout [7] argue that both STP and ANTT should be
reported in order to gain insight into how a given multithreaded architecture affects
system-perceived and user-perceived performance, respectively.

When simulating a multi-program workload, simulation stops when 400 million in-
structions have been executed. At that point, program i will have executed xi million
instructions. The single-threaded CPIST

i used in the above formulas equals single-
threaded CPI after xi million instructions. When we report average STP and ANTT
numbers across a number of multi-program workloads, we use the harmonic and arith-
metic mean for computing the average STP and ANTT, respectively, following the rec-
ommendations on the use of averages by John [10].

5.3 Hardware Cost

The performance numbers reported in the evaluation section assume the following hard-
ware costs. For both the binary MLP predictor and the MLP distance predictor we

MLP-Aware Runahead Threads in a Simultaneous Multithreading Processor 117

assume a PC-indexed 2K-entry table. (We experimented with a number of predic-
tor configurations, including the tagged set-associative table organization proposed by
Mutlu et al. [13] and we found the untagged 2K-entry to slightly outperform the tagged
organization by Mutlu et al.) An entry in the binary MLP predictor is a 2-bit field fol-
lowing Mutlu et al. [13]. An entry in the MLP distance predictor is a 3-bit field; one bit
encodes whether long-distance MLP is to be predicted, and the other two bits encode
the MLP distance within the reorder buffer in buckets of 16 instructions. The hardware
cost for a run-length encoded LLSR equals 0.7Kbits in total: 32 (maximum number of
outstanding long-latency loads) times 22 bits (11 bits for keeping track of the load PC
index in the 2K-entry MLP distance predictor, plus 11 bits for the encoded run length —
maximum of 2048 instructions — since the prior long-latency load miss). In summary,
the total hardware cost for the binary MLP predictor equals 4Kbits; the total hardware
cost for the MLP distance predictor (predictor table plus LLSR) equals 6.7Kbits.

6 Evaluation

6.1 MLP Distance Predictor

Key to the success of MLP-aware runahead threads is the accuracy of the MLP distance
predictor. The primary concern is whether the predictor can accurately estimate far-
distance MLP in order to decide whether or not to go in runahead mode.

0%

20%

40%

60%

80%

100%

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

b
z
ip

2

c
ra

ft
y

e
o
n

e
q
u
a
k
e

fa
c
e
re

c

fm
a
3
d

g
a
lg

e
l

g
a
p

g
c
c

g
z
ip

lu
c
a
s

m
c
f

m
e
s
a

m
g
ri
d

p
a
rs

e
r

p
e
rl
b
m

k

s
ix

tr
a
c
k

s
w

im

tw
o
lf

v
o
rt

e
x

v
p
r

w
u
p
w

is
e

fr
a
c
ti
o
n

True positive True negative False positive False negative

Fig. 2. Quantifying the accuracy of the MLP distance predictor

Figure 2 shows the accuracy of the MLP distance predictor. A true positive denotes
correctly predicted long-distance MLP and a true negative denotes correctly predicted
short-distance or no MLP; the false positives and false negatives denote mispredictions.
The prediction accuracy equals 61% on average, and the majority of mispredictions
are false positives. In spite of this relatively low prediction accuracy, MLP-aware runa-
head threads are effective as will be demonstrated in the next few paragraphs. Improv-
ing MLP distance prediction will likely lead to improved effectiveness of MLP-aware
runahead threads, i.e., reducing the number of false positives will reduce the number of
speculatively executed instructions and will thus increase energy saving opportunities
— this is left for future work though.

118 K.Van Craeynest, S. Eyerman, and L. Eeckhout

6.2 Two-Program Workloads

We compare the following SMT fetch policies and architectures:

– ICOUNT [22] which strives at having an equal number of instructions from all
threads in the front-end pipeline and instruction queues. The following fetch poli-
cies extend upon the ICOUNT policy.

– The MLP-aware flush approach [6] predicts the MLP distance m for a long-latency
load, and fetch stalls or flushes the thread after m instructions since the long-latency
load.

– Runahead threads: threads go in runahead mode when the oldest instruction in the
reorder buffer is a long-latency load that is still being serviced [17].

– Binary MLP-aware runahead threads w/ ICOUNT: the binary MLP predictor by
Mutlu et al. [13] predicts whether there is far-distance MLP to be exploited, and a
thread only goes in runahead mode in case MLP is predicted. In case there is no
(predicted) MLP, we resort to ICOUNT.

– Binary MLP-aware runahead threads w/ flush: this is the same policy as the one
above, except that in case of no (predicted) MLP, we perform a flush. The trade-off
between this policy and the latter is that ICOUNT may exploit short-distance MLP
whereas flush does not, however, flush prevents resource clogging.

– MLP-distance-aware runahead threads: the MLP distance predictor by Eyerman
and Eeckhout [6] predicts the MLP distance. If there is far-distance MLP to be
exploited, the thread goes in runahead mode. If there is only short-distance MLP
to be exploited, the thread is fetch stalled and/or flushed according to the predicted
MLP distance.

Figures 3 and 4 compare these six fetch policies in terms of the STP and ANTT
performance metrics, respectively, for the two-program workloads. These results con-
firm the results presented in prior work by Ramirez et al. [17]: runahead threads im-
prove both system throughput and job turnaround time significantly over both ICOUNT
and MLP-aware flush: STP and ANTT improve by 70.1% and 43.8%, respectively,
compared to ICOUNT; and STP and ANTT improve by 44.3% and 26.8%, respec-
tively, compared to MLP-aware flush. These results also show that MLP-aware
runahead threads (rightmost bars) achieve comparable performance as MLP-agnostic
runahead threads. Moreover, MLP-aware runahead threads achieve a slight improve-
ment in both STP and ANTT for some workloads over MLP-agnostic runahead threads,
e.g., mesa-galgel achieves a 3.3% higher STP and a 3.2% smaller ANTT under MLP-
aware runahead threads compared to MLP-agnostic runahead threads. The reason for
this performance improvement is that preventing one thread from entering runahead
mode gives more resources to the co-executing thread thereby improving the perfor-
mance of the co-executing thread. For other workloads, on the other hand, MLP-aware
runahead threads result in slightly worse performance compared to MLP-agnostic runa-
head threads, e.g., the worst performance is observed for art-mgrid: 3% reduction in
STP and 0.3% increase in ANTT. These performance degradations are due to incorrect
MLP distance predictions.

Figures 3 and 4 also clearly illustrate the effectiveness of MLP distance prediction
versus binary MLP prediction. The MLP distance predictor is more effective than the

MLP-Aware Runahead Threads in a Simultaneous Multithreading Processor 119

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

v
o
r
te

x
,
p
a
rs

e
r

c
ra

ft
y
,
tw

o
lf

fa
c
e
re

c
,

c
ra

ft
y

v
p
r,

s
ix

tr
a
c
k

v
o
r
te

x
,
g
c
c

g
c
c
,

g
a
p

a
p
s
i,

m
e
s
a

m
c
f,

s
w

im
m

c
f,

g
a
lg

e
l

w
u
p
w

is
e
,

a
m

m
p

s
w

im
,

g
a
lg

e
l

lu
c
a
s
,
fm

a
3
d

m
e
s
a
,

g
a
lg

e
l

g
a
lg

e
l,

fm
a
3
d

a
p
p
lu

,
s
w

im
m

c
f,

e
q
u
a
k
e

a
p
p
lu

,
g
a
lg

e
l

s
w

im
,

m
e
s
a

s
w

im
,

p
e
rl

b
m

k
g
a
lg

e
l,

tw
o
lf

fm
a
3
d
,

tw
o
lf

a
p
s
i,

a
rt

g
z
ip

,
w

u
p
w

is
e

a
p
s
i,

tw
o
lf

m
g
ri

d
,

v
o
rt

e
x

s
w

im
,

tw
o
lf

s
w

im
,

e
o
n

s
w

im
,

fa
c
e
r
e
c

p
a
rs

e
r,

w
u
p
w

is
e

v
p
r,

m
c
f

e
q
u
a
k
e
,
p
e
rl
b
m

k
a
p
p
lu

,
v
o
rt

e
x

a
rt

,
m

g
ri
d

e
q
u
a
k
e
,
a
r
t

p
a
rs

e
r,

a
m

m
p

fa
c
e
re

c
,

m
c
f

a
v
g

S
T
P

ICOUNT MLP-aware FLUSH Runahead threads

Binary MLP-aware RaT w/ ICOUNT Binary MLP-aware RaT w/ flush MLP-aware runahead threads

Fig. 3. Comparing MLP-aware runahead threads against other fetch SMT policies in terms of STP
for two-program workloads: ILP-intensive workloads are shown on the left, MLP-intensive work-
loads are shown in the middle and mixed ILP/MLP-intensive workloads are shown on the right

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

v
o
r
te

x
,
p
a
rs

e
r

c
ra

ft
y
,
tw

o
lf

fa
c
e
re

c
,

c
ra

ft
y

v
p
r,

s
ix

tr
a
c
k

v
o
r
te

x
,
g
c
c

g
c
c
,

g
a
p

a
p
s
i,

m
e
s
a

m
c
f,

s
w

im
m

c
f,

g
a
lg

e
l

w
u
p
w

is
e
,

a
m

m
p

s
w

im
,

g
a
lg

e
l

lu
c
a
s
,
fm

a
3
d

m
e
s
a
,

g
a
lg

e
l

g
a
lg

e
l,

fm
a
3
d

a
p
p
lu

,
s
w

im
m

c
f,

e
q
u
a
k
e

a
p
p
lu

,
g
a
lg

e
l

s
w

im
,

m
e
s
a

s
w

im
,

p
e
rl

b
m

k
g
a
lg

e
l,

tw
o
lf

fm
a
3
d
,

tw
o
lf

a
p
s
i,

a
rt

g
z
ip

,
w

u
p
w

is
e

a
p
s
i,

tw
o
lf

m
g
ri

d
,

v
o
rt

e
x

s
w

im
,

tw
o
lf

s
w

im
,

e
o
n

s
w

im
,

fa
c
e
r
e
c

p
a
rs

e
r,

w
u
p
w

is
e

v
p
r,

m
c
f

e
q
u
a
k
e
,
p
e
rl
b
m

k
a
p
p
lu

,
v
o
rt

e
x

a
rt

,
m

g
ri
d

e
q
u
a
k
e
,
a
r
t

p
a
rs

e
r,

a
m

m
p

fa
c
e
re

c
,

m
c
f

a
v
g

A
N

T
T

ICOUNT MLP-aware FLUSH Runahead threads

Binary MLP-aware RaT w/ ICOUNT Binary MLP-aware RaT w/ flush MLP-aware runahead threads

Fig. 4. Comparing MLP-aware runahead threads against other fetch SMT policies in terms
of ANTT for two-program workloads: ILP-intensive workloads are shown on the left, MLP-
intensive workloads are shown in the middle and mixed ILP/MLP-intensive workloads are shown
on the right

binary MLP predictor proposed by Mutlu et al. [13]: i.e., STP improves by 11% on
average and ANTT improves by 2.3% compared to the binary MLP-aware policy with
flush; compared to the binary MLP-aware policy with ICOUNT, the MLP distance pre-
dictor improves STP by 11.5% and ANTT by 10%. The reason is twofold. First, the
LLSR employed by the MLP distance predictor continuously monitors the MLP dis-
tance for each long-latency load. The binary MLP predictor by Mutlu et al. only checks
for far-distance MLP through runahead execution; as runahead execution is not initiated

120 K.Van Craeynest, S. Eyerman, and L. Eeckhout

0

1

2

3

4

5

6

v
o
r
te

x
,p

a
rs

e
r,

c
ra

ft
y
,t

w
o
lf

fa
c
e
re

c
,c

ra
ft

y
,v

p
r,

s
ix

tr
a
c
k

s
w

im
,p

e
rl

b
m

k
,v

o
rt

e
x
,g

c
c

g
a
lg

e
l,
tw

o
lf
,g

c
c
,g

a
p

fm
a
3
d
,t

w
o
lf
,v

o
rt

e
x
,p

a
rs

e
r

a
p
s
i,
a
rt

,c
ra

ft
y
,t

w
o
lf

g
z
ip

,w
u
p
w

,f
a
c
e
,c

r
a
ft

y
a
p
s
i,
tw

o
lf
,v

p
r,

s
ix

tr
a
c
k

m
g
ri

d
,v

o
rt

e
x
,s

w
im

,t
w

o
lf

s
w

im
,e

o
n
,p

e
r
lb

m
k
,m

e
s
a

p
a
rs

e
r,

w
u
p
w

is
e
,v

p
r,

m
c
f

e
q
u
a
k
e
,p

e
rl
b
m

k
,a

p
p
lu

,v
o
rt

e
x

a
rt

,m
g
ri
d
,a

p
p
lu

,g
a
lg

e
l

p
a
rs

e
r,

a
m

m
p
,f
a
c
e
re

c
,m

c
f

s
w

im
,p

e
rl

b
m

k
,g

a
lg

e
l,
tw

o
lf

fm
a
3
d
,t

w
o
lf
,a

p
s
i,
a
rt

g
z
ip

,w
u
p
w

is
e
,a

p
s
i,
tw

o
lf

e
q
u
a
k
e
,a

rt
,p

a
rs

e
r,

a
m

m
p

a
p
s
i,
m

e
s
a
,s

w
im

,e
o
n

m
c
f,

s
w

im
,p

e
rl
b
m

k
,m

e
s
a

m
c
f,

g
a
lg

e
l,
v
o
rt

e
x
,g

c
c

w
u
p
w

is
e
,a

m
m

p
,v

p
r,

m
c
f

s
w

im
,g

a
lg

e
l,
p
a
r
s
e
r,

w
u
p
w

is
e

lu
c
a
s
,f
m

a
3
d
,e

q
u
a
k
e
,p

e
rl

m
e
s
a
,g

a
lg

e
l,
a
p
p
lu

,v
o
rt

e
x

g
a
lg

e
l,
fm

a
3
d
,a

rt
,m

g
ri
d

a
p
p
lu

,s
w

im
,m

c
f,
e
q
u
a
k
e

a
p
p
lu

,g
a
lg

e
l,
s
w

im
,m

e
s
a

a
p
s
i,
m

e
s
a
,m

c
f,

s
w

im

m
c
f,

g
a
lg

e
l,
w

u
p
w

is
e
,a

m
m

p

a
v
g

S
T
P

ICOUNT MLP-aware flush Runahead threads MLP-aware runahead threads

Fig. 5. Comparing MLP-aware runahead threads against other fetch SMT policies in terms of
STP for four-program workloads

0

1

2

3

4

5

6

v
o
r
te

x
,p

a
rs

e
r,

c
ra

ft
y
,t

w
o
lf

fa
c
e
re

c
,c

ra
ft

y
,v

p
r,

s
ix

tr
a
c
k

s
w

im
,p

e
rl

b
m

k
,v

o
rt

e
x
,g

c
c

g
a
lg

e
l,
tw

o
lf
,g

c
c
,g

a
p

fm
a
3
d
,t

w
o
lf
,v

o
rt

e
x
,p

a
rs

e
r

a
p
s
i,
a
rt

,c
ra

ft
y
,t

w
o
lf

g
z
ip

,w
u
p
w

,f
a
c
e
,c

r
a
ft

y
a
p
s
i,
tw

o
lf
,v

p
r,

s
ix

tr
a
c
k

m
g
ri

d
,v

o
rt

e
x
,s

w
im

,t
w

o
lf

s
w

im
,e

o
n
,p

e
r
lb

m
k
,m

e
s
a

p
a
rs

e
r,

w
u
p
w

is
e
,v

p
r,

m
c
f

e
q
u
a
k
e
,p

e
rl
b
m

k
,a

p
p
lu

,v
o
rt

e
x

a
rt

,m
g
ri
d
,a

p
p
lu

,g
a
lg

e
l

p
a
rs

e
r,

a
m

m
p
,f
a
c
e
re

c
,m

c
f

s
w

im
,p

e
rl

b
m

k
,g

a
lg

e
l,
tw

o
lf

fm
a
3
d
,t

w
o
lf
,a

p
s
i,
a
rt

g
z
ip

,w
u
p
w

is
e
,a

p
s
i,
tw

o
lf

e
q
u
a
k
e
,a

rt
,p

a
rs

e
r,

a
m

m
p

a
p
s
i,
m

e
s
a
,s

w
im

,e
o
n

m
c
f,

s
w

im
,p

e
rl
b
m

k
,m

e
s
a

m
c
f,

g
a
lg

e
l,
v
o
rt

e
x
,g

c
c

w
u
p
w

is
e
,a

m
m

p
,v

p
r,

m
c
f

s
w

im
,g

a
lg

e
l,
p
a
r
s
e
r,

w
u
p
w

is
e

lu
c
a
s
,f
m

a
3
d
,e

q
u
a
k
e
,p

e
rl

m
e
s
a
,g

a
lg

e
l,
a
p
p
lu

,v
o
rt

e
x

g
a
lg

e
l,
fm

a
3
d
,a

rt
,m

g
ri
d

a
p
p
lu

,s
w

im
,m

c
f,
e
q
u
a
k
e

a
p
p
lu

,g
a
lg

e
l,
s
w

im
,m

e
s
a

a
p
s
i,
m

e
s
a
,m

c
f,

s
w

im

m
c
f,

g
a
lg

e
l,
w

u
p
w

is
e
,a

m
m

p

a
v
g

A
N

T
T

ICOUNT MLP-aware flush Runahead threads MLP-aware runahead threads

Fig. 6. Comparing MLP-aware runahead threads against other fetch SMT policies in terms of
ANTT for four-program workloads

for each long-latency load, it provides partial MLP information only. Second, the MLP
distance predictor releases resources allocated by the long-latency thread as soon as
the short-distance MLP (within half the reorder buffer) has been exploited. The binary
MLP-aware policy on the other hand clogs resources (through the ICOUNT mecha-
nism) or does not exploit short-distance MLP (through the flush policy).

6.3 Four-Program Workloads

Figures 5 and 6 show STP and ANTT, respectively, for the four-program workloads.
The overall conclusion is similar as for two-program workloads: MLP-aware runa-
head threads achieve similar performance as MLP-agnostic runahead threads. The

MLP-Aware Runahead Threads in a Simultaneous Multithreading Processor 121

0%

20%

40%

60%

80%

100%

120%

v
o
r
te

x
,
p
a
rs

e
r

c
ra

ft
y
,
tw

o
lf

fa
c
e
re

c
,

c
ra

ft
y

v
p
r,

s
ix

tr
a
c
k

v
o
r
te

x
,
g
c
c

g
c
c
,

g
a
p

a
p
s
i,

m
e
s
a

m
c
f,

s
w

im
m

c
f,

g
a
lg

e
l

w
u
p
w

is
e
,

a
m

m
p

s
w

im
,

g
a
lg

e
l

lu
c
a
s
,
fm

a
3
d

m
e
s
a
,

g
a
lg

e
l

g
a
lg

e
l,

fm
a
3
d

a
p
p
lu

,
s
w

im
m

c
f,

e
q
u
a
k
e

a
p
p
lu

,
g
a
lg

e
l

s
w

im
,

m
e
s
a

s
w

im
,

p
e
rl

b
m

k
g
a
lg

e
l,

tw
o
lf

fm
a
3
d
,

tw
o
lf

a
p
s
i,

a
rt

g
z
ip

,
w

u
p
w

is
e

a
p
s
i,

tw
o
lf

m
g
ri

d
,

v
o
rt

e
x

s
w

im
,

tw
o
lf

s
w

im
,

e
o
n

s
w

im
,

fa
c
e
r
e
c

p
a
rs

e
r,

w
u
p
w

is
e

v
p
r,

m
c
f

e
q
u
a
k
e
,
p
e
rl
b
m

k
a
p
p
lu

,
v
o
rt

e
x

a
rt

,
m

g
ri
d

e
q
u
a
k
e
,
a
r
t

p
a
rs

e
r,

a
m

m
p

fa
c
e
re

c
,

m
c
f

a
v
g

n
o
rm

a
li
z
e
d

s
p
e
c
u
la

ti
v
e

in
s
tr

u
c
ti
o
n

e
x
e
c
u
ti
o
n

c
o
u
n
t

Binary MLP-aware RaT w/ ICOUNT Binary MLP-aware RaT w/ flush MLP-aware runahead threads

Fig. 7. Normalized speculative instruction count compared to MLP-agnostic runahead threads for
the two-program workloads

performance improvements are slightly higher though for the four-program workloads
than for the two-program workloads because the co-executing programs compete more
for the shared resources on a four-threaded SMT processor than on a two-threaded SMT
processor. Making the runahead threads MLP-aware provides more shared resources for
the co-executing programs which improves both single-program performance as well
as overall system performance.

6.4 Reduction in Speculatively Executed Instructions

As mentioned before, the main motivation for making runahead MLP-aware is to re-
duce the number of useless runahead executions, and thereby reduce the number of
speculatively executed instructions under runahead execution in order to reduce energy
consumption. Figure 7 quantifies the normalized number of speculatively executed in-
structions compared to MLP-agnostic runahead threads. MLP-aware runahead threads
reduce the number of speculatively executed instructions by 13.9% on average; this is
due to eliminating useless runahead execution periods. (We obtain similar results for
the four-program workloads with an average 10.1% reduction in the number of specu-
latively executed instructions; these results are not shown here because of space con-
straints.) Binary MLP-aware runahead threads with ICOUNT and flush achieve higher
reductions in the number of speculatively executed instructions (23.7% and 27%, re-
spectively), however, this comes at the cost of reduced performance (by 11% to 11.5%
in STP and 2.3% to 10% in ANTT) as previously shown.

7 Related Work

There are two ways of partitioning the resources in an SMT processor. One approach is
static partitioning [16] as done in the Intel Pentium 4 [9], in which each thread gets an
equal share of the resources. Static partitioning solves the long-latency load problem:
a long-latency thread cannot clog resources, however, it does not provide flexibility: a
resource that is not being used by one thread cannot be used by the other thread(s).

122 K.Van Craeynest, S. Eyerman, and L. Eeckhout

The second approach, called dynamic partitioning, on the other hand provides flexi-
bility by allowing multiple threads to share resources, however, preventing long-latency
threads from clogging resources is a challenge. In dynamic partitioning, the fetch policy
typically determines what thread to fetch instructions from in each cycle and by con-
sequence, the fetch policy also implicitly manages the shared resources. Several fetch
policies have been proposed in the recent literature. ICOUNT [22] prioritizes threads
with fewer instructions in the pipeline. The limitation of ICOUNT is that in case of a
long-latency load, ICOUNT may continue allocating resources for the blocking long-
latency thread; by consequence, these resources will be hold by the blocking thread and
will prevent the other thread(s) from allocating these resources. In response to this prob-
lem, Tullsen and Brown [21] proposed two schemes for handling long-latency loads,
namely (i) fetch stall the long-latency thread, and (ii) flush instructions fetched passed
the long-latency load in order to deallocate resources. Cazorla et al. [1] improved upon
the work done by Tullsen and Brown by predicting long-latency loads along with the
‘continue the oldest thread (COT)’ mechanism that prioritizes the oldest thread in case
all threads wait for a long-latency load. Eyerman and Eeckhout [6] made the flush pol-
icy MLP-aware in order to preserve the available MLP upon a flush or fetch stall on a
long-latency thread.

An alternative approach is to drive the fetch policy through explicit resource parti-
tioning. For example, Cazorla et al. [2] propose DCRA which monitors the dynamic
usage of resources by each thread and strives at giving a higher share of the available
resources to memory-intensive threads. The input to their scheme consists of various
usage counters for the number of instructions in the instruction queues, the number of
allocated physical registers and the number of L1 data cache misses. Using these coun-
ters, DCRA dynamically determines the amount of resources required by each thread
and prevents threads from using more resources than they are entitled to. However,
DCRA drives the resource partitioning mechanism using imprecise MLP information
and allocates a fixed amount of additional resources for memory-intensive workloads
irrespective of the amount of MLP.

El-Moursy and Albonesi [5] propose to give fewer resources to threads that experi-
ence many data cache misses in order to minimize issue queue occupancies for saving
energy. They propose two schemes for doing so, namely data miss gating (DG) and
predictive data miss gating (PDG). DG drives the fetching based on the number of ob-
served L1 data cache misses, i.e., by counting the number of L1 data cache misses in
the execute stage of the pipeline. When the number of L1 data cache misses exceeds
a given threshold, the thread is fetch gated. PDG strives at overcoming the delay be-
tween observing the L1 data cache miss and the actual fetch gating in the DG scheme
by predicting L1 data cache misses in the front-end pipeline stages.

8 Conclusion

Runahead threads solve the long-latency load problem in an SMT processor elegantly
by exposing (far-distance) memory-level parallelism while not clogging shared proces-
sor resources. A limitation though of existing runahead SMT execution proposals is that
runahead execution is initiated upon a long-latency load irrespective of whether there is

MLP-Aware Runahead Threads in a Simultaneous Multithreading Processor 123

far-distance MLP to be exploited. A useless runahead execution, i.e., one along which
there is no exploitable MLP, thus wastes execution resources and energy.

This paper proposed MLP-aware runahead threads to reduce the number of useless
runahead periods. In case the MLP distance predictor predicts there is far-distance MLP
to be exploited, the long-latency thread enters runahead execution. If not, the long-
latency thread is flushed or fetch stalled per the predicted MLP distance. By doing so,
runahead execution consumes resources only in case of long-distance MLP; if not, the
MLP-aware flush policy frees allocated resources while exposing short-distance MLP, if
available. Our experimental results report an average reduction of 13.9% in the number
of speculatively executed instructions compared to MLP-agnostic runahead threads for
two-program workloads while incurring no performance degradation; for four-program
workloads, we report a 10.1% reduction in the number of speculatively executed in-
structions. Previously proposed binary MLP prediction achieves greater reductions in
the number of speculatively executed instructions (by 23.7% to 27% on average) com-
pared to MLP-agnostic runahead threads, however, it incurs an average 11% to 11.5%
reduction in system throughput and an average 2.3% to 10% reduction in average job
turnaround time.

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments. Stijn
Eyerman and Lieven Eeckhout are postdoctoral fellows with the Fund for Scientific
Research in Flanders (Belgium) (FWO-Vlaanderen). Additional support is provided by
the FWO projects G.0160.02 and G.0255.08.

References

1. Cazorla, F.J., Fernandez, E., Ramirez, A., Valero, M.: Optimizing long-latency-load-aware
fetch policies for SMT processors. International Journal of High Performance Computing
and Networking (IJHPCN) 2(1), 45–54 (2004)

2. Cazorla, F.J., Ramirez, A., Valero, M., Fernandez, E.: Dynamically controlled resource allo-
cation in SMT processors. In: MICRO, pp. 171–182 (December 2004)

3. Chou, Y., Fahs, B., Abraham, S.: Microarchitecture optimizations for exploiting memory-
level parallelism. In: ISCA, pp. 76–87 (June 2004)

4. Dundas, J., Mudge, T.: Improving data cache performance by pre-executing instructions un-
der a cache miss. In: ICS, pp. 68–75 (July 1997)

5. El-Moursy, A., Albonesi, D.H.: Front-end policies for improved issue efficiency in SMT
processors. In: HPCA, pp. 31–40 (February 2003)

6. Eyerman, S., Eeckhout, L.: A memory-level parallelism aware fetch policy for SMT proces-
sors. In: HPCA, pp. 240–249 (February 2007)

7. Eyerman, S., Eeckhout, L.: System-level performance metrics for multi-program workloads.
IEEE Micro. 28(3), 42–53 (2008)

8. Glew, A.: MLP yes! ILP no! In: ASPLOS Wild and Crazy Idea Session (October 1998)
9. Hinton, G., Sager, D., Upton, M., Boggs, D., Carmean, D., Kyker, A., Roussel, P.: The mi-

croarchitecture of the Pentium 4 processor. Intel. Technology Journal Q1 (2001)
10. John, L.K.: Aggregating performance metrics over a benchmark suite. In: John, L.K., Eeck-

hout, L. (eds.) Performance Evaluation and Benchmarking, pp. 47–58. CRC Press, Boca
Raton (2006)

124 K.Van Craeynest, S. Eyerman, and L. Eeckhout

11. Kessler, R.E., McLellan, E.J., Webb, D.A.: The Alpha 21264 microprocessor architecture.
In: ICCD, pp. 90–95 (October 1998)

12. Luo, K., Gummaraju, J., Franklin, M.: Balancing throughput and fairness in SMT processors.
In: ISPASS, pp. 164–171 (November 2001)

13. Mutlu, O., Kim, H., Patt, Y.N.: Techniques for efficient processing in runahead execution
engines. In: ISCA, pp. 370–381 (June 2005)

14. Mutlu, O., Stark, J., Wilkerson, C., Patt, Y.N.: Runahead execution: An alternative to very
large instruction windows for out-of-order processors. In: HPCA, pp. 129–140 (February
2003)

15. Perelman, E., Hamerly, G., Calder, B.: Picking statistically valid and early simulation points.
In: Malyshkin, V.E. (ed.) PaCT 2003. LNCS, vol. 2763, pp. 244–256. Springer, Heidelberg
(2003)

16. Raasch, S.E., Reinhardt, S.K.: The impact of resource partitioning on SMT processors. In:
Malyshkin, V.E. (ed.) PaCT 2003. LNCS, vol. 2763, pp. 15–26. Springer, Heidelberg (2003)

17. Ramirez, T., Pajuelo, A., Santana, O.J., Valero, M.: Runahead threads to improve SMT per-
formance. In: HPCA, pp. 149–158 (February 2008)

18. Sherwood, T., Perelman, E., Hamerly, G., Calder, B.: Automatically characterizing large
scale program behavior. In: ASPLOS, pp. 45–57 (October 2002)

19. Snavely, A., Tullsen, D.M.: Symbiotic jobscheduling for simultaneous multithreading
processor. In: ASPLOS, pp. 234–244 (November 2000)

20. Tullsen, D.: Simulation and modeling of a simultaneous multithreading processor. In: Pro-
ceedings of the 22nd Annual Computer Measurement Group Conference (December 1996)

21. Tullsen, D.M., Brown, J.A.: Handling long-latency loads in a simultaneous multithreading
processor. In: MICRO, pp. 318–327 (December 2001)

22. Tullsen, D.M., Eggers, S.J., Emer, J.S., Levy, H.M., Lo, J.L., Stamm, R.L.: Exploiting choice:
Instruction fetch and issue on an implementable simultaneous multithreading processor. In:
ISCA, pp. 191–202 (May 1996)

23. Tullsen, D.M., Eggers, S.J., Levy, H.M.: Simultaneous multithreading: Maximizing on-chip
parallelism. In: ISCA, pp. 392–403 (June 1995)

	MLP-Aware Runahead Threads in a Simultaneous Multithreading Processor
	Introduction
	MLP-Aware Flush
	MLP Distance Prediction
	MLP-Aware Fetch Policy

	Runahead Threads
	MLP-Aware Runahead Threads
	Experimental Setup
	Benchmarks and Simulator
	Performance Metrics
	Hardware Cost

	Evaluation
	MLP Distance Predictor
	Two-Program Workloads
	Four-Program Workloads
	Reduction in Speculatively Executed Instructions

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

