
IBM ^

POWER4 System Microarchitecture

Technical White Paper

POWER4 introduces a new microprocessor organized in a
system structure that includes new technology to form systems.
POWER4 as used in this context refers to not only a chip, but
also the structure used to interconnect chips to form systems.
In this paper, we describe the processor microarchitecture as
well as the interconnection architecture employed to form
systems up to a 32-way symmetric multiprocessor.

Joel M. Tendler, Steve Dodson, Steve Fields,
Hung Le, Balaram Sinharoy

IBM Server Group

October 2001

1. Introduction

IBM has a long history of leveraging technology to build high performance, reliable systems.
Over the last several years, we have been increasingly applying this expertise to UNIX
servers. The IBM ^ pSeries 680 continued this heritage with industry leading
performance across a broad spectrum of industry standard benchmarks. The same
microprocessor is used in the IBM ^ iSeries 840. That system is also at the head of
the list in a number of industry standard benchmarks. The IBM RS/6000 SP system
incorporating the POWER3-II microprocessor is currently used in the world’s largest
supercomputer at the Lawrence Livermore National Laboratory.

Several years ago, we set out to design a new microprocessor that would insure we would
leverage IBM strengths across many different disciplines to deliver a server that would
redefine what was meant by the term server. POWER4 is the result. It was developed by
over 300 engineers in several IBM development laboratories.

With POWER4, the convergence of iSeries and pSeries microprocessors will reach a new
level. POWER4 was designed from the outset to satisfy the needs of both of these systems.
Additionally, projected technology improvements drove significant enhancements to system
structure. The resulting design leverages technology advances in circuit densities and
module packaging to achieve high levels of performance suitable for server types of
applications. We have publicly talked about POWER4 for over 2 years prior to its formal
announcement. We were confident we would achieve its objectives in terms of
performance, schedule, and content. And we have.

In this paper, we first describe what drove the design. We then take a closer look at the
components of the resultant systems from a microarchitecture perspective. We start by first
discussing the POWER4 chip. One of our major strengths is system expertise and the ability
to design multiple parts in a consistent and synergistic manner. In that light, POWER4
cannot be considered only a chip, but rather an architecture of how a set of chips are
designed together to realize a system. As such, POWER4 can be considered a technology in
its own right. In that light, we discuss how systems are built by interconnecting POWER4
chips to form up to 32-way symmetric multiprocessors (SMPs). The interconnect topology,
referred to as a Distributed Switch, is new to the industry. Finally, no system discussion
would be complete without some view of the reliability, availability and serviceability (RAS)
features and philosophy incorporated into POWER4 systems. The RAS design is pervasive
throughout the system and is as much a part of the design as is anything else.

power4 Page 2 of 33

2. Guiding Principles

POWER4 was intended from the outset to be a server. In designing POWER4, a set of
principles guided the Engineering team. These included:

w SMP optimization: The server must be designed for high throughput, multi-tasking
environments. The system must be optimized for SMP operation where a large number
of transistors could be used to improve total system performance. Servers of their very
nature process disparate information often with multiple processes active concurrently.

w Full system design approach: To optimize the system, we started with the full design
in mind up front. This marriage with the process technology, packaging, and
microarchitecture was designed to allow software to exploit them. The processor core
was designed to fit effectively in this environment. We designed the entire system, from
the processor, to memory and I/O bridge chips, together. A new high performance
processor needs a new subsystem to effectively feed it.

w Very high frequency design: To maintain a leadership position, we planned, from the
outset, to deliver best-of-breed operating frequencies. We revamped our chip design
with new transistor level tools and have transformed complex control logic into regular
data flow constructs. Additionally, we have designed the system to permit system
balance to be preserved as technology improvements become available allowing even
higher processor frequencies to be delivered.

w Leadership reliability, availability and serviceability: Servers have evolved to
continuous operation. Outages of any kind are not tolerated. We had already begun
designing into our systems RAS attributes previously only seen in mainframe systems.
With POWER4, we accepted the principle that one does not achieve high levels of
reliability by only choosing reliable parts and building error correction codes (ECC) into
major arrays, but an approach that eliminated outages and provided redundancy where
errors could not be eliminated was required. Where possible, if an error occurred, we
worked to transform hard machine stops (checkstops) into synchronous machine
interrupts to software to allow it to circumvent problems if it could.

w Designed to execute both commercial and technical applications supporting both
IBM ^ iSeries and pSeries systems with high performance: As we
balanced the system, we made sure the design can handle a varied and robust set of
workloads. This is especially important as the e-business world evolves and data
intensive demands on systems merge with commercial requirements. The need to satisfy
high performance computing requirements with its historical high bandwidth demands
and commercial requirements with its data sharing and SMP scaling requirements
dictated a single design to address both environments. This would also allow us to meet
the needs of what became IBM ^ pSeries and iSeries with a single design.

power4 Page 3 of 33

w Maintain binary compatibility for both 32-bit and 64-bit applications with prior
PowerPC and PowerPCAS systems: Several internal IBM task forces in the first half
of the 1990s had concluded that the PowerPC architecture did not have any technical
impediments to allow it to scale up to significantly higher frequencies with excellent
performance. With no technical reason to change, in order to keep our customers
software investment in tact, we accepted the absolute requirement of maintaining binary
compatibility for both 32-bit and 64-bit applications, from a hardware perspective.

power4 Page 4 of 33

3. POWER4 Chip

The components of the POWER4 chip are shown in Figure 1. The chip has two processors
on board. Included in what we are referring to as the processor are the various execution
units and the split first level instruction and data caches. The two processors share a unified
second level cache, also onboard the chip, through a Core Interface Unit (CIU) in Figure 1.
The CIU is a crossbar switch between the L2, implemented as three separate, autonomous
cache controllers, and the two processors. Each L2 cache controller can operate
concurrently and feed 32 bytes of data per cycle. The CUI connects each of the three L2
controllers to either the data cache or the instruction cache in either of the two processors.
Additionally, the CUI accepts stores from the processors across 8-byte wide buses and
sequences them to the L2 controllers. Each processor has associated with it a Noncacheable
(NC) Unit, the NC Unit in Figure 1, responsible for handling instruction serializing functions
and performing any noncacheable operations in the storage hierarchy. Logically, this is part
of the L2.

Figure 1: POWER4 Chip Logical View

power4 Page 5 of 33

Processor Core 1

IFetch Store Loads

Processor Core 1

IFetch Store Loads

CIU Switch

L2
Cache

L2
Cache

L2
CacheCore1

NC
Unit

Core2
NC
Unit

Trace &
Debug

BIST Engines

Perf Monitor

SP
Controller

POR
Sequencer

Error Detect
And Logging

Fabric Controller

L3
Directory

GX Controller L3 Controller
Mem Controller

32B
32B

32B
32B

32B
32B

32B
8B

32B
8B

32B
8B

8B

8B
8B

8B

8B

8B

8B

16B

16B

16B

8B

16B

16B

16B

16B

16B

4B

4B

32B
8B 32B

32B
8B

JTAG

L3/Mem Bus
(3:1)

MCM-MCM
(2:1)

MCM-MCM
(2:1)

GX Bus
(n:1)

Chip-Chip
Fabric
(2:1)

Chip-Chip
Fabric
(2:1)

32B

Processor Core 1

IFetch Store Loads

Processor Core 1

IFetch Store Loads

CIU Switch

L2
Cache

L2
Cache

L2
CacheCore1

NC
Unit

Core2
NC
Unit

Trace &
Debug

BIST Engines

Perf Monitor

SP
Controller

POR
Sequencer

Error Detect
And Logging

Fabric Controller

L3
Directory

GX Controller L3 Controller
Mem Controller

32B
32B

32B
32B

32B
32B

32B
8B

32B
8B

32B
8B

8B

8B
8B

8B

8B

8B

8B

16B

16B

16B

8B

16B

16B

16B

16B

16B

4B

4B

32B
8B 32B

32B
8B

JTAG

L3/Mem Bus
(3:1)

MCM-MCM
(2:1)

MCM-MCM
(2:1)

GX Bus
(n:1)

Chip-Chip
Fabric
(2:1)

Chip-Chip
Fabric
(2:1)

32B

Processor Core 1

IFetch Store Loads

Processor Core 1

IFetch Store Loads

CIU Switch

L2
Cache

L2
Cache

L2
CacheCore1

NC
Unit

Core2
NC
Unit

L2
Cache

L2
Cache

L2
Cache

L2
Cache

L2
Cache

L2
CacheCore1

NC
Unit

Core2
NC
Unit

Core1
NC
Unit

Core2
NC
Unit

Trace &
Debug

BIST Engines

Perf Monitor

SP
Controller

POR
Sequencer

Error Detect
And Logging

Trace &
Debug

BIST Engines

Perf Monitor

Trace &
Debug

BIST Engines

Perf Monitor

SP
Controller

POR
Sequencer

Error Detect
And Logging

SP
Controller

POR
Sequencer

Error Detect
And Logging

Fabric Controller

L3
Directory

GX Controller L3 Controller
Mem Controller

32B
32B

32B
32B

32B
32B

32B
8B

32B32B
8B

32B
8B

32B32B
8B

32B
8B

32B32B
8B

8B

8B
8B

8B

8B

8B

8B

16B

16B

16B

8B

16B

16B

16B

16B

16B

4B

4B

32B
8B 32B

32B
8B

JTAG

L3/Mem Bus
(3:1)

L3/Mem Bus
(3:1)

MCM-MCM
(2:1)

MCM-MCM
(2:1)

MCM-MCM
(2:1)

MCM-MCM
(2:1)

GX Bus
(n:1)

GX Bus
(n:1)

Chip-Chip
Fabric
(2:1)

Chip-Chip
Fabric
(2:1)

32B

The directory for a third level cache, L3, and logically its controller are also located on the
POWER4 chip. The actual L3 is on a separate chip. A separate functional unit, referred to
as the Fabric Controller, is responsible for controlling data flow between the L2 and L3
controller for the chip and for POWER4 communication. The GX controller is responsible
for controlling the flow of information in and out of the system. Typically, this would be the
interface to an I/O drawer attached to the system. But, with the POWER4 architecture, this
is also where we would natively attach an interface to a switch for clustering multiple
POWER4 nodes together.

Also included on the chip are functions we logically call Pervasive function. These include
trace and debug facilities used for First Failure Data Capture, Builtin Self Test (BIST)
facilities, Performance Monitoring Unit, an interface to the Service Processor (SP) used to
control the overall system, Power On Reset (POR) Sequencing logic, and Error Detection
and Logging circuitry.

Four POWER4 chips can be packaged on a single module to form an 8-way SMP. Four
such modules can be interconnected to form a 32-way SMP. To accomplish this, each chip
has five primary interfaces. To communicate to other POWER4 chips on the same module,
there are logically four 16-byte buses. Physically, these four buses are implemented with six
buses, three on and three off, as shown in Figure 1. To communicate to POWER4 chips on
other modules, there are two 8-byte buses, one on and one off. Each chip has its own
interface to the off chip L3 across two 16-byte wide buses, one on and one off, operating at
one third processor frequency. To communicate with I/O devices and other compute nodes,
two 4-byte wide GX buses, one on and one off, operating at one third processor frequency,
are used. Finally, each chip has its own JTAG interface to the system service processor.
All of the above buses, except for the JTAG interface, scale with processor frequency.
POWER4 systems will be offered at more than one frequency. It is also anticipated that
over time, technological advances will allow us to increase processor frequency. As this
occurs, bus frequencies will scale proportionately allowing system balance to be maintained.

POWER4 Core: Figure 2 shows a high level block diagram of a POWER4 core. Both
cores on a chip are identical and provide a 2-way SMP model to software. The internal
microarchitecture of the core is a speculative superscalar outoforder execution design.
Up to eight instructions can be issued each cycle, with a sustained completion rate of five
instructions. Register rename pools and other outoforder resources coupled with the
pipeline structure allow the design to have over 200 instructions in flight at any given time.
In order to exploit instruction level parallelism there are eight execution units, each capable
of being issued an instruction each cycle. Two identical floating-point execution units, each
capable of starting a fused multiply and add each cycle, i.e., a maximum 4 floating-point
operations (FLOPs) per cycle per core, are provided. In order to feed the dual floating-point
units, two loadstore units, each capable of performing address generation arithmetic, are
provided.

power4 Page 6 of 33

Figure 2: POWER4 Core
Additionally, dual fixed point execution
units, a branch execution unit and an
execution unit to perform logical
operations on the condition register exist.

Branch Prediction: To help mitigate the
effects of the long pipeline necessitated by
the high frequency design, POWER4
invests heavily in branch prediction
mechanisms. In each cycle, up to eight
instructions are fetched from the direct
mapped 64 KB instruction cache. The
branch prediction logic scans the fetched
instructions looking for up to two
branches each cycle. Depending upon the
branch type found, various branch
prediction mechanisms engage to help
predict the branch direction or the target
address of the branch or both. Branch
direction for unconditional branches are
not predicted. All conditional branches
are predicted, even if the condition
register bits upon which they are

dependent are known at instruction fetch time. Branch target addresses for the PowerPC
branch to link register (bclr) and branch to count register (bcctr) instructions can be
predicted using a hardware implemented link stack and count cache mechanism,
respectively. Target addresses for absolute and relative branches are computed directly as
part of the branch scan function.

As branch instructions flow through the rest of the pipeline, and ultimately execute in the
branch execution unit, the actual outcome of the branches are determined. At that point, if
the predictions were found to be correct, the branch instructions are simply completed like
all other instructions. In the event that a prediction is found to be incorrect, the instruction
fetch logic causes the mispredicted instructions to be discarded and starts refetching
instructions along the corrected path.

POWER4 uses a set of three branch history tables to predict the direction of branch
instructions. The first table, called the local predictor, is similar to a traditional branch
history table (BHT). It is a 16K entry array indexed by the branch instruction address
producing a 1-bit predictor that indicates whether the branch direction should be taken or
nottaken. The second table, called the global predictor, predicts the branch direction based
on the actual path of execution to reach the branch. The path of execution is identified by
an 11-bit vector, one bit per group of instructions fetched from the instruction cache for

power4 Page 7 of 33

FX1
Exec
Unit

FX2
Exec
Unit

FP1
Exec
Unit

FP2
Exec
Unit

CR
Exec
Unit

BR
Exec
Unit

BR/CR
Issue Q

FX/LD 1
Issue Q

FX/LD 2
Issue Q

FP
Issue Q

D-cache

StQ

LD2
Exec
Unit

LD1
Exec
Unit

Decode,
Crack &
Group

Formation

Instr Q

IFAR
I-cache

GCT

BR
Scan

BR
Predict

FX1
Exec
Unit

FX2
Exec
Unit

FP1
Exec
Unit

FP2
Exec
Unit

CR
Exec
Unit

BR
Exec
Unit

BR/CR
Issue Q

FX/LD 1
Issue Q

FX/LD 2
Issue Q

FP
Issue Q

D-cache

StQ

LD2
Exec
Unit

LD1
Exec
Unit

FX1
Exec
Unit

FX2
Exec
Unit

FP1
Exec
Unit

FP2
Exec
Unit

CR
Exec
Unit

BR
Exec
Unit

BR/CR
Issue Q

FX/LD 1
Issue Q

FX/LD 2
Issue Q

FP
Issue Q

D-cache

StQ

D-cache

StQ

LD2
Exec
Unit

LD1
Exec
Unit

Decode,
Crack &
Group

Formation

Instr Q

IFAR
I-cacheI-cache

GCT

BR
Scan

BR
Predict

each of the previous eleven fetch groups. This vector is referred to as the global history
vector. Each bit in the global history vector indicates whether the next group of instructions
fetched are from a sequential cache sector or not. The global history vector captures this
information for the actual path of execution through these sectors. That is, if there is a
redirection of instruction fetching, some of the fetched group of instructions are discarded
and the global history vector is immediately corrected. The global history vector is hashed,
using a bitwise exclusive or with the address of the branch instruction. The result indexes
into a 16K entry global history table to produce another 1-bit branch direction predictor.
Similar to the local predictor, this 1-bit global predictor indicates whether the branch should
be predicted to be taken or nottaken. Finally, a third table, called the selector table, keeps
track of which of the two prediction schemes works better for a given branch and is used to
select between the local and the global predictions. The 16K entry selector table is indexed
exactly the same way as the global history table to produce the 1-bit selector. This
combination of branch prediction tables has been shown to produce very accurate
predictions across a wide range of workload types.

If the first branch encountered in a particular cycle is predicted as not taken and a second
branch is found in the same cycle, POWER4 predicts and acts on the second branch in the
same cycle. In this case, the machine will register both branches as predicted, for
subsequent resolution at branch execution, and will redirect the instruction fetching based on
the second branch.

As branch instructions are executed and resolved, the branch history tables and the other
predictors are updated to reflect the latest and most accurate information. Dynamic branch
prediction can be overridden by software. This is useful in cases where software can predict
better than the hardware. It is accomplished by setting two previously reserved bits in
conditional branch instructions, one to indicate a software override and the other to predict
the direction. When these two bits are zero (suggested use for reserved bits), hardware
branch prediction is used. Since only reserved bits are used for this purpose, 100% binary
compatibility with earlier software is maintained.

POWER4 uses a link stack to predict the target address for a branch to link instruction that
it believes corresponds to a subroutine return. By setting the hint bits in a branch to link
instruction, software communicates to the processor whether a branch to link instruction
represents a subroutine return or a target address that is likely to repeat or neither.

When instruction fetch logic fetches a branch and link instruction (either conditional or
unconditional) predicted as taken, it pushes the address of the next instruction onto the link
stack. When it fetches a branch to link instruction with taken prediction and with hint bits
indicating a subroutine return, the link stack is popped and instruction fetching starts from
the popped address.

In order to preserve the integrity of the link stack in the face of mispredicted branch target
link instructions, POWER4 employs extensive speculation tolerance mechanism in its link
stack implementation to allow recovering the link stack under most circumstances.
power4 Page 8 of 33

The target address of a branch to count instruction is often repetitive. This is also true for
some of the branch to link instructions that are not predictable through the use of the link
stack, (because they do not correspond to a subroutine return). By setting the hint bits
appropriately, software communicates to the hardware whether the target address for such
branches are repetitive. In these cases, POWER4 uses a 32 entry, tagless, directmapped
cache, called a count cache, to predict the repetitive targets, as indicated by the software
hints. Each entry in the count cache can hold a 62-bit address. When a branch to link or
branch to count instruction is executed, for which the software indicates that the target is
repetitive and therefore predictable, the target address is written in the count cache. When
such an instruction is fetched, the target address is predicted using the count cache.

Instruction Fetch: Instructions are fetched from the instruction cache (I-cache) based on
the contents of the Instruction Fetch Address Register (IFAR). The IFAR is normally
loaded with an address determined by the branch prediction logic. As noted earlier, on
cases where the branch prediction logic is in error, the branch execution unit will cause the
IFAR to be loaded with the corrected address of the instruction stream to be fetched.
Additionally, there are other factors that can cause a redirection of the instruction stream,
some based on internal events, others on interrupts from external events. In any case, once
the IFAR is loaded, the I-cache is accessed and retrieves up to 8 instructions per cycle.
Each line in the I-cache can hold 32 PowerPC instructions, i.e., 128 bytes. Each line is
divided into four equal sectors. Since I-cache misses are infrequent, to save area, the
I-cache has been designed to have a single port that can be used to read or write one sector
per cycle. The I-cache directory (IDIR) is indexed by the effective address and contains
42 bits of real address per entry.

On an I-cache miss, instructions are returned from the L2 in four 32-byte beats. The L2
normally returns the critical sector, the sector containing the specific word address that
references the cache line, in one of the first two beats. Instruction fetch logic forwards these
demand-oriented instructions into the pipeline as quickly as possible. In addition, the cache
line is written into one entry of the instruction prefetch buffer so that the I-cache itself is
available for successive instruction fetches. The instructions are written to the I-cache
during cycles when instruction fetching is not using the I-cache as will occur when another
I-cache miss occurs. In this way, writes to the I-cache are hidden and do not interfere with
normal instruction fetching.

The PowerPC architecture specifies a translation lookaside buffer (TLB) and a segment
lookaside buffer (SLB) to translate from the effective address (EA) used by software and
the real address (RA) used by hardware to locate instructions and data in storage. As these
translation mechanisms take several cycles, once translated the {EA,RA} pair is stored in a
128 entry, 2-way setassociative array, called the effective to real address translation table
(ERAT). POWER4 implements separate ERATs for instruction cache (IERAT) and for
data cache (DERAT) accesses. Both ERATs are indexed using the effective address. A
common 1024entry 4-way set associative TLB is implemented for each core.

power4 Page 9 of 33

When the instruction pipeline is ready to accept instructions, the IFAR content is sent to the
I-cache, IDIR, IERAT and the branch prediction logic. The IFAR is updated with the
address of the first instruction in the next sequential sector. In the next cycle, instructions
are received from the I-cache and forwarded to an instruction queue from which the
Decode, Crack and Group Formation logic shown in Figure 2, pulls instructions. This is
done even before it is known that there is a I-cache hit. Also received in the same cycle are
the RA from the IDIR and the {EA,RA} pair from the IERAT and the branch direction
prediction information. The IERAT is checked to insure that it has a valid entry and that its
RA matches what’s in the IDIR. If the IERAT has an invalid entry, the EA must be
translated from the TLB and SLB. Instruction fetching is then stalled. Assuming the
IERAT is valid, if the RA from the IERAT matches what’s in the IDIR, an I-cache hit is
validated. Using the branch prediction logic, the IFAR is reloaded and the process is
repeated. Filling the instruction queue in front of the Decode Crack and Group Formation
logic allows instruction fetching to get ahead of the rest of the system and queue work for
the remainder of the system. In this way, when there is an I-cache miss, there will hopefully
be additional instructions in the instruction queue to be processed and thereby not freeze the
pipeline. In fact, this is what is frequently observed to occur.

If there is an I-cache miss, several different scenarios are possible. First, the instruction
prefetch buffers are examined to see if the requested instructions are there, and, if so, it will
steer these instructions into the pipeline as though they came from the I-cache and also write
the critical sector into the I-cache. If the instructions are not found in the instruction
prefetch buffer, a demand fetch reload request is sent to the L2. The L2 processes this
reload request with high priority. When it is returned from the L2, an attempt will be made
to write it into the I-cache.

In addition to these demand-oriented instruction fetching mechanisms, POWER4 prefetches
instruction cache lines that might be referenced soon into its instruction prefetch buffer
capable of holding four entries of 32 instructions each. The instruction prefetch logic
monitors demand instruction fetch requests and initiates prefetches for the next one (if there
is a hit in the prefetch buffer) or two (if there is a miss in the prefetch buffer) sequential
cache lines after verifying they are not already in the I-cache. As these requests return cache
lines, they are stored in the instruction prefetch buffer so that they do not pollute the
demand-oriented I-cache. The I-cache contains only cache lines that have had a reference to
at least one instruction.

Decode, Crack and Group Formation: As instructions are executed outoforder, it is
necessary to remember the program order of all instructions in flight. In order to minimize
the logic necessary to track a large number of in flight instructions, groups of instructions
are formed. The individual groups are tracked through the system. That is, the state of the
machine is preserved at group boundaries, not at an instruction boundary within a group.
Any exception causes the machine to be restored to the state of the oldest group prior to the
exception.

power4 Page 10 of 33

A group contains up to five internal instructions referred to as IOPs. In the decode stages
the instructions are placed sequentially in a group, the oldest instruction is placed in slot 0,
the next oldest one in slot 1, and so on. Slot 4 is reserved for branch instructions only. If
required, noops are inserted to force the branch instruction to be in the fourth slot. If there
is no branch instruction then slot 4 contains a noop. Only one group of instructions can be
dispatched in a cycle, and all instructions in a group are dispatched together. By dispatch
we mean the movement of a group of instructions into the issue queues. Groups are
dispatched in program order. Individual IOPs are issued from the issue queues to the
execution units out of program order.

Results are committed when the group completes. A group can complete when all older
groups have completed and when all instructions in the group have finished execution.
Only one group can complete in a cycle.

Internal instructions, in most cases, are architected instructions. However, in some cases,
instructions are split into one or more internal instructions. In order to achieve high
frequency operation, we have limited instructions to read at most 2 registers and write at
most one register. (Some floating-point operations do not obey this restriction, for
performance reasons, e.g., the fused multiply and add series of instructions are handled
directly in the floating-point unit though they require three sources.) If this is not the case
then the instruction is split to satisfy this requirement. As an example, the load with update
instructions that load one register and increment an index register is split into a load and an
add instruction. Similarly, the load multiple word instruction is implemented with multiple
load word instructions. As far as group formation, we differentiate two classes. If an
instruction is split into 2 instructions, such as load with update, we consider that cracking.
If an instruction is split into more than 2 IOPs then we term this a millicoded instruction.
Cracked instructions flow into groups as any other instructions with one restriction. Both
IOPs must be in the same group. If both IOPs cannot fit into the current group, the group is
terminated and a new group is initiated. The instruction following the cracked instruction
may be in the same group as the cracked instruction, assuming there is room in the group.
Millicoded instructions always start a new group. The instruction following the millicoded
instruction also initiates a new group.

For correct operation, certain instructions are not allowed to execute speculatively. To
ensure that the instruction executes nonspeculatively, it is not executed until it is next to
complete. This mechanism is called completion serialization. To simplify the
implementation, such instructions form single instruction groups. Examples of completion
serialization instructions include loads and stores to guarded space and context
synchronizing instructions such as mtmsr.

In order to implement outoforder execution, many of the architected registers are renamed,
but not all. To insure proper execution of these instructions, any instruction that sets a non
renamed register terminates a group.

power4 Page 11 of 33

Instructions performing logical operations on the Condition Register appear in lower
frequency than other instructions. As such, a single execution is dedicated to this function.
With the instruction issue rules described in the next section, this required restricting this
class of instructions to only two of the four slots, specifically, slots 0 and 1.

Group Dispatch and Instruction Issue: Instruction groups are dispatched into the issue
queues one group at a time. As a group is dispatched, control information for the group is
stored in the Group Completion Table (GCT). The GCT can store up to 20 groups. The
GCT entry contains the address of the first instruction in the group. As instructions finish
execution, that information is registered in the GCT entry for the group. Information is
maintained in the GCT until the group is retired, i.e., either all of its results are committed or
the group is flushed from the system.

Each instruction slot feeds separate issue queues for the Floating-Point Units, the Branch
Execution Unit, the CR Execution Unit, the Fixed Point Execution Units and the
Load/Store Execution Units. The Fixed Point and Load/Store Execution Units share
common issue queues. Table 1 summarizes the depth of each issue queue and the number
of queues available for each type of queue. For the Floating-Point Issue Queues and the
common issue queues for the Fixed Point and Load/Store Units, the issue queues fed from
instruction slots 0 and 3 hold instructions to be executed in one of the execution units while
the issue queues fed from instruction slots 1 and 2 feed the other execution unit. The CR
Execution Unit draws its instructions from the CR Logical Issue Queue fed from instruction
slots 0 and 1.

Table 1: Issue Queues

25CR Logical
112Branch Execution
45Floating-Point
49Fixed Point and Load/Store Units

Number of QueuesEntries per QueueQueue Type

Instructions are dispatched into the top of an issue queue. As they are issued from the
queue, the remaining instructions trickle down. In the case of two queues feeding a
common execution unit, the two queues are interleaved. The oldest instruction that has all
of its sources set in the common interleaved queue is issued to the execution unit.

Before a group can be dispatched all resources to support that group must be available. If
they are not, the group is held until the necessary resources are available. To successfully
dispatch, the following resources are assigned:

w GCT entry: One GCT entry is assigned for each group. It is released when the group
retires.

w Issue Queue slot: An appropriate issue queue slot must be available for each
instruction in the group. It is released when the instruction in it has successfully been

power4 Page 12 of 33

issued to the execution unit. Note that in some cases this is not known until several
cycles after the instruction has been issued. As an example, a fixed point operation
dependent on an instruction loading a register can be speculatively issued to the fixed
point unit before we know if the load instruction resulted in an L1 data cache hit.
Should the load instruction miss in the cache, the fixed point instruction is effectively
pulled back and sits in the issue queue until data is successfully loaded into the register.

w Rename Register: For each register that is renamed and set by an instruction in the
group, a corresponding rename resource must be available. Table 2 summarizes the
rename resources available to each POWER4 core. The rename resource is released
when the next instruction writing to the same logical resource is committed.

Table 2: Rename resources

244 fieldsXER
201FPSCR
162Link/Count Registers
328 (9) 4-bit fieldsCRs
7232FPRs
8032 (36)GPRs

Physical SizeLogical SizeResource Type

As a result of cracking and millicode used in forming groups, in some situations it is
necessary to use additional logical registers. Four additional GPRs and one additional
4-bit CR field are required. The condition register is architected to be 1 32-bit register
comprised as 8 4-bit fields. Each field is renamed. Not all of the XER is renamed.
Only four of the XER fields are renamed.

w Load Reorder Queue (LRQ) entry: An LRQ entry must be available for each load
instruction in the group. It is released when the group completes. The LRQ has
32 entries.

w Store Reorder Queue (SRQ) entry: An SRQ entry must be available for each store
instruction in the group. They are released when the result of the store is successfully
sent to the L2, after the group completes. The SRQ has 32 entries.

The operation of the LRQ and the SRQ is described in the section on the Load/Store Unit.

As noted previously, certain instructions require completion serialization. Groups so
marked will not be issued until that group is the next to complete, i.e., all prior groups have
successfully completed. Additionally, instructions that read a nonrenamed register cannot
be executed until we are sure all writes to that register have completed. To simplify the
implementation, any instruction that writes to a nonrenamed register sets a switch that is
reset when the instruction finishes execution. If the switch is set, then this blocks dispatch
of an instruction that reads a nonrenamed register. Writes to a nonrenamed register are
guaranteed to be in program order by making them completion serialization.

power4 Page 13 of 33

Since instruction progression through the machine is tracked in groups, when a particular
instruction within a group needs to signal an interrupt it is achieved by flushing all of the
instructions (and results) of the group and then redispatching the instructions into single
instruction groups. A similar mechanism is used to ensure that the fixed point exception
register summary overflow bit is correctly maintained.

Load/Store Unit Operation: The Load/Store Unit requires special attention in an
outoforder execution machine in order to insure memory consistency. As we cannot be sure
that the result of a store operation will be committed at the time it is executed, a special
mechanism is employed. Associated with each SRQ entry is a Store Data Queue (SDQ)
entry. The SDQ entry maintains the desired result to be stored until the group containing
the store instruction is committed. Once committed, the data maintained in the SDQ is
written to the caches. Additionally, three particular hazards need to be guarded against.

� Load Hit Store: A younger load that executes before an older store to the same
memory location has written its data to the caches must retrieve the data from the SDQ.
As a result, as loads execute they check the SRQ to see if there is any older store to the
same memory location with data in the SDQ. If one is found, the data is forwarded from
the SDQ rather than from the cache. If the data cannot be forwarded, as will be the case
if the load and store instructions operate on overlapping memory locations and the load
data is not the same as or contained within the store data, the group containing the load
instruction is flushed, that is, it and all younger groups are discarded and refetched from
the instruction cache. If we can tell that there is an older store instruction that will write
to the same memory location but has yet to write its result to the SDQ, the load
instruction is rejected and reissues again waiting for the store instruction to execute.

� Store Hit Load: If a younger load instruction executes before we have had a chance to
recognize that an older store will be writing to the same memory location, the load
instruction has gotten stale data. To guard against this, as a store instruction executes it
checks the LRQ and if it finds a younger load that has executed and loaded from
memory locations the store is writing to, the group containing the load instruction and
all younger groups are flushed and refetched from the instruction cache. To simplify the
logic, all groups following the store are flushed. If the offending load is in the same
group as the store instruction, the group is flushed and all instructions in the group form
single instruction groups.

� Load Hit Load: Two loads to the same memory location must observe the memory
reference order and guard against a store to the memory location from another
processor between the intervening loads. If the younger load obtains old data the older
load must not obtain new data. This requirement is called sequential load consistency.
To guard against this, LRQ entries for all loads include a bit, that, if set, indicates a
snoop has occurred to the line containing the loaded data for that entry. When a load
instruction executes, it compares its load address against all addresses in the LRQ. A

power4 Page 14 of 33

match against a younger entry which has been snooped indicates that a sequential load
consistency problem exists. To simplify the logic all groups following the older load
instruction are flushed. If both load instructions are in the same group then the flush
request is for the group itself. In this case each instruction in the group when refetched
form single instruction groups so as to avoid this situation the second time around.

Instruction Execution Pipeline: Figure 3 shows the POWER4 instruction execution
pipeline for the various pipelines. The IF, IC and BP cycles correspond to the instruction
fetching and branch prediction cycles. The D0 through GD cycles are the cycles during
which instruction decode and group formation occur. The MP cycle is the Mapper cycle
where all dependencies are determined, resources assigned and the group dispatched into
the appropriate issue queues. During the ISS cycle the IOP is issued to the appropriate
execution unit, reads the appropriate register to retrieve its sources during the RF cycle and
executes during the EX cycle writing its result back to the appropriate register during the
WB cycle. At this point the instruction has finished execution but has not yet been
completed. It cannot complete for at least 2 more cycles, the Xfer and CP cycle, assuming
all older groups have completed and all other instructions in the same group have also
finished.

Figure 3: POWER4 Instruction execution pipeline

power4 Page 15 of 33

MP ISS RF EA DC WB Xfer

MP ISS RF EX WB Xfer

MP ISS RF EX WB Xfer

MP ISS RF F6

Xfer

F6F6F6F6F6

D1 D2 D3 Xfer GD

IF BP
CP

BR

LD/ST

FX

FP
Instruction Crack &
Group Formation

Instruction Fetch

Branch Redirects

Interrupts & Flushes

Out-of-Order Processing

WB

Fmt

D0

IC
MP ISS RF EA DC WB Xfer

MP ISS RF EX WB Xfer

MP ISS RF EX WB Xfer

MP ISS RF F6

Xfer

F6F6F6F6F6

D1 D2 D3 Xfer GD

IF BP
CP

BR

LD/ST

FX

FP
Instruction Crack &
Group Formation

Instruction Fetch

Branch Redirects

Interrupts & Flushes

Out-of-Order Processing

WB

Fmt

D0

IC
MP ISS RF EA DC WB Xfer

MP ISS RF EX WB Xfer

MP ISS RF EX WB Xfer

MP ISS RF F6

Xfer

F6F6F6F6F6

D1 D2 D3 Xfer GD

IF BP
CP

BR

LD/ST

FX

FP
Instruction Crack &
Group Formation

Instruction Fetch

Branch Redirects

Interrupts & Flushes

Out-of-Order Processing

WB

Fmt

D0

IC

Instructions waiting in the Instruction Queue after being fetched from the instruction cache
wait prior to the D1 cycle. This will be the case if instruction are fetched (up to 8 per cycle)
faster than they can be formed into groups. Similarly, instructions can wait prior to the MP
cycle if resources are not available to dispatch the entire group into the issue queues.
Instructions wait in the issue queues prior to the ISS cycle. Similarly, they can wait to
complete prior to the CP cycle.

Though not shown, the CR Logical Execution Unit, the unit responsible for executing
logical operations on the Condition Register, is identical to the Fixed Point Execution
pipeline, shown as the FX pipeline in the figure. The Branch Execution Unit pipeline is
shown as the BR pipeline in the figure. If a branch instruction is mispredicted, either
direction or target, then there is at least a 12 cycle branch mispredict penalty, depending on
how long the mispredicted branch needed to wait to be issued.

The pipeline for the two Load/Store Units is identical and is shown as the LD/ST pipeline in
the figure. After accessing the register file, load and store instructions generate the effective
address in the EA cycle. The DERAT and for load instructions the Data Cache Directory
and the data cache, are all accessed during the DC cycle. If a DERAT miss should occur
the instruction is rejected, i.e., it is kept in the issue queue. Meanwhile a request is made to
the TLB to reload the DERAT with the translation information. The rejected instruction
reissues again a minimum of 7 cycles after it was first issued. If the DERAT still does not
contain the translation information the instruction is rejected again. This process continues
until the DERAT is reloaded. If a TLB miss occurs, i.e., we do not have translation
information in the TLB, the translation is initiated speculatively. However, the TLB is not
updated until we are sure the instruction will be executed, i.e., the TLB is updated when the
group the instruction failing translation is in becomes the next group to complete. Two
different page sizes are supported, 4-KB and 16-MB.

In the case of loads, if the directory indicates the L1 data cache contains the cache line, the
requested bytes from the returned data are formatted, the fmt cycle, and written into the
appropriate register. They are also available for use by dependent instructions during this
cycle. In anticipation of a data cache hit, dependent instructions are issued so that their RF
cycle lines up with the load instructions writeback cycle. If a cache miss is indicated, then a
request is initiated to the L2 to retrieve the line. Requests to the L2 are stored in the Load
Miss Queue (LMQ). The LMQ can hold up to eight requests to the L2. If the LMQ is full,
the load instruction missing in the data cache is rejected, reissues again in 7 cycles and the
process is repeated. If there is already a request to the L2 for the same line from another
load instruction, the second request is merged into the same LMQ entry. If this is the third
request to the same line, the load instruction is rejected and processing continues as above.
All reloads from the L2 check the LMQ to see if there is an outstanding request yet to be
honored against a just returned line. If there is, the requested bytes are forwarded to the
register to complete the execution of the load instruction. After the line has been reloaded,
the LMQ entry is freed for reuse.

power4 Page 16 of 33

In the case of store instructions, rather than write data to the data cache, the data is stored
in the SDQ as described above. Once the group containing the store instruction is
completed, an attempt is made to write the data in the data cache. If the cache line
containing the data is already in the L1 data cache, the changed data is written to the data
cache. If it is not, the line is not reloaded from the L2. In both cases, the changed data is
written to the L2. The coherency point for POWER4 is the L2 cache. Additionally, all data
in the L1 data cache is also in the L2 cache. If data needs to be cast out of the L2, the line
is marked invalid in the L1 data cache if it is resident there.

The pipeline for the two fixed point execution units is shown as the FX pipe in Figure 3.
Two fixed point instructions, with one dependent on the other, cannot issue on the
successive cycles. There must be at least one dead cycle between their issue cycles.

The two floating-point execution units follow the same pipeline and is shown as the FP pipe
in the figure. Floating-point instructions require 6 execution cycles. But, both pipes are
fully piped, that is, two instructions can be issued to the floating-point pipes each cycle.

4. Storage Hierarchy

The POWER4 storage hierarchy consists of three levels of cache and the memory
subsystem. The first and second levels of the hierarchy are on board the POWER4 chip.
The directory for the third level cache, the L3, is on the chip, but the actual cache is off chip.
Table 3 shows capacities and organization of the various levels of the hierarchy on a per
chip basis.

Table 3: Storage hierarchy organization and size

0-16 GB---Memory

32 MB8-way, 512-byte line managed as
4 128-byte sectors

L3

~ 1.5 MB8-way, 128-byte lineL2

64 KB (32 KB per processor)2-way, 128-byte lineL1 Data Cache

128 KB (64 KB per
processor)

Direct map, 128-byte line
managed as 4 32-byte sectors

L1 Instruction Cache
Capacity per ChipOrganizationComponent

L1 Caches: The L1 instruction cache is single ported capable of either one 32-byte read or
write each cycle. The store through L1 data cache is triple ported capable of two 8-byte
reads and one 8 byte write per cycle with no blocking. L1 data cache reloads are 32-bytes
per cycle. The L1 caches are parity protected. When attempting to read data that exhibits a
parity error, the faulty line is invalidated in the cache and retrieved from the L2. All data

power4 Page 17 of 33

stored in the L1 data cache is available in the L2 cache guaranteeing no data loss. Data in
the L1 can be in one of two states:

w I (invalid state): The data is invalid.

w V (valid state): The data is valid.

L2 Cache: The unified second level cache is shared across the two processors on the
POWER4 chip. Figure 4 shows a logical view of the L2 cache. The L2 is implemented as
three identical controllers. Cache lines are hashed across the three controllers.

Figure 4: L2 logical view

Each L2 controller consists
of 4 SRAM partitions, each
capable of supplying 16
bytes of data every other
cycle. The four partitions
can supply 32 bytes per
cycle, taking four
consecutive cycles to
transfer a 128-byte line to
the processor. The data
arrays are ECC protected
(single error correct, double
error detect). Both wordline
and bitline redundancy are
implemented.

The L2 cache directory is
implemented in two
redundant 8-way set
associative parity protected

arrays. The redundancy, in addition to providing a backup capability, also provides two
nonblocking read ports to permit snoops to proceed without causing interference to load
and store requests.

A pseudo LRU replacement algorithm is implemented as a standard 7-bit tree structure.
As the L1 is a store through design, store requests to the L2 are at most 8 bytes per request.
The L2 implements two 4-entry 64-byte queues for gathering individual stores and
minimizing L2 requests for stores.

The majority of control for L2 cache management is handled by four coherency processors
in each controller. For each request to the L2 from the processors, either L1 data cache

power4 Page 18 of 33

L2 Controller C
L2 Controller B

L2 Controller A

Core 1
Store
Queue

Core 2
Store
Queue

Coherency Processor Arbiter

L2 Cache Array and Directory
(~0.5MB)

Snp Snp

Fabric Controller

NC
Unit

NC
Unit

Snp
Q

Cast
Out
Q

Rd Req

L3 Req
Fabric Req

Core 2 ReqCore 1 Req

Coherency
Proc 2

CIU

Coherency
Proc 3

Coherency
Proc 4

Coherency
Proc 1

L2 Controller C
L2 Controller B

L2 Controller A

Core 1
Store
Queue

Core 2
Store
Queue

Coherency Processor Arbiter

L2 Cache Array and Directory
(~0.5MB)

Snp Snp

Fabric Controller

NC
Unit

NC
Unit

Snp
Q

Cast
Out
Q

Rd Req

L3 Req
Fabric Req

Core 2 ReqCore 1 Req

Coherency
Proc 2

CIU

Coherency
Proc 3

Coherency
Proc 4

Coherency
Proc 1

L2 Controller CL2 Controller C
L2 Controller BL2 Controller B

L2 Controller AL2 Controller A

Core 1
Store
Queue

Core 2
Store
Queue

Coherency Processor Arbiter

L2 Cache Array and Directory
(~0.5MB)

Snp Snp

Fabric Controller

NC
Unit

NC
Unit

Snp
Q

Cast
Out
Q

Rd Req

L3 Req
Fabric Req

Core 2 ReqCore 1 Req

Coherency
Proc 2

CIU

Coherency
Proc 3

Coherency
Proc 4

Coherency
Proc 1

reload requests or instruction fetches, or from one of the store queues, a coherency
processor is assigned to handle the request. Each coherency processor has associated with
it a castout processor to handle deallocation of cache lines to accommodate L2 reloads on
L2 misses. The coherency processor does the following:

w Controls the return of data from the L2 (hit) or from the fabric controller (miss) to the
requesting core via the CIU;

w Updates the L2 directory as needed;

w Issues fabric commands for L2 misses on fetch requests and for stores that do not hit in
the L2 in the M, Me or Mu state (described below);

w Controls writing into the L2 when either reloading due to fetch misses in the L2 or stores
from the processors; and,

w Initiates back invalidates to a processor via the CIU resulting from a store from one core
that hits a cache line marked as resident in the other processor’s L1 data cache.

Included in each L2 controller are four snoop processors responsible for managing
coherency operations snooped off of the fabric. When a fabric operation hits on a valid L2
directory entry, a snoop processor is assigned to take the appropriate action. Depending on
the type of operation, the inclusivity bits in the L2 directory, and the cache line’s coherency
state, one or more of the following actions may result:

w Send a back invalidate request to the core(s) to invalidate a cache line in its L1 data
cache;

w Read the data from the L2 cache;

w Update the cache line’s directory state;

w Issue a push operation to the fabric to write modified data back to memory; and,

w Source data to another L2 from this L2.

In addition to dispatching a snoop processor, the L2 provides a snoop response to the fabric
for all snooped operations. When a fabric operation is snooped by the L2, the directory is
accessed to determine if the targeted cache line is resident in the L2 cache and, if so, what
its coherency state is. Coincident with the snoop directory lookup, the snooped address is
compared with the addresses of any currently active coherency, castout and snoop
processors to detect address collision scenarios. The address is also compared to the per
core reservation address registers. Based upon all of this information, the snoop response
logic determines the appropriate snoop response to send back.

power4 Page 19 of 33

The L2 cache controller also acts as the reservation station for the two cores on the chip in
support of the lwarx/ldarx and stwcx/stdcx instructions. One address register for each core
is used to hold the reservation address. The reservation logic maintains a reservation flag
per core to indicate when a reservation is set. The flag is set when a lwarx or ldarx
instruction is received from the core, and is reset when a stwcx or stdcx instruction succeeds,
or when certain invalidating type operations are snooped, including a store to the
reservation address from other cores in the system.

The L2 cache implements an enhanced version of the MESI coherency protocol supporting
seven states as follows:

w I (invalid state): The data is invalid. This is the initial state of the L2 entered from a
Power OnReset or a Snoop invalidate hit.

w SL (shared state, can be source to local requesters): The data is valid. The cache line
may also be valid in other L2 caches. From this state, the data can be sourced to another
L2 on the same module via intervention. This state is entered as a result of a core L1
data cache load request or instruction fetch request that misses in the L2 and is sourced
from another cache or from memory when not in other L2s.

w S (shared state): The data is valid. The cache line may also be valid in other L2
caches. In this state, the data cannot be sourced to another L2 via intervention. This
state is entered when a snoop read hit from another processor on a chip on the same
module occurs and the data and tag were in the SL state.

w M (modified state): The data is valid. The data has been modified and is exclusively
owned. The cache line cannot be valid in any other L2. From this state the data can be
sourced to another L2 in a chip on the same or remote module via intervention. This
state results from a store operation performed by one of the cores on the chip.

w Me (exclusive state): The data is valid. The data is not considered modified but is
exclusive to this L2. The cache line cannot be valid in any other L2. Castout of an Me
line only requires invalidation of the tag, i.e., data does not have to be written back to
memory. This state is entered as a result of one of the cores on the chip asking for a
reservation via the lwarx or ldarx instruction when data is sourced from memory or for a
cache line being prefetched into the L2 that was sourced from memory. (Sourcing data
from the L3 in O state is equivalent to sourcing it from memory.)

w Mu (unsolicited modified state): The data is valid. The data is considered to have
been modified and is exclusively owned. The cache line cannot be valid in any other L2.
 This state is entered as a result of one of the cores on the chip asking for a reservation
via the lwarx or ldarx instruction when data is sourced from another L2 in

power4 Page 20 of 33

 M state or for a cache line being prefetched into the L2 that was sourced from another
L2 in M state.

w T (tagged state): The data is valid. The data is modified with respect to the copy in
memory. It has also been sourced to another cache, i.e., it was in the M state at
sometime in the past, but is not currently exclusively owned. From this state, the data
will not be sourced to another L2 via intervention until the combined response is
received and it is determined that no other L2 is sourcing data, i.e., if no L2s have the
data in SL state. This state is entered when a snoop read hit occurs while in the M state.

The L2 state is maintained in the L2 directory. Table 4 summarizes the L2 states and
possible L1 data cache state and possible state in other L2s. The directory also includes bits
to indicate whether or not the data may be contained in one or both of the core’s L1 data
caches. Whenever a core requests data to be loaded into its L1 data cache a bit
corresponding to that processor is set. This bit is not set for instruction fetches. This
indication is imprecise as it is not reset if the data is replaced by the L1.

Table 4: Valid l2 states

I, S, SLI, VT
II, VM, Me or Mu

I, S, TI, VS
I, S, SL, TI, VSL

AnyII
Sate in Other L2sL1 Data CacheL2 State

Included within the L2 subsystem are two Noncacheable Units (NCU), one per core, labeled
the NC Units in Figure 4. The NCUs handle noncacheable loads and stores, as well as cache
and synchronization operations. Each NCU is partitioned into two parts: the NCU Master
and the NCU Snooper. The NCU Master handles requests originating from cores on the
chip while the NCU Snooper handles the snooping of tlbie and icbi operations from the
fabric.

The NCU Master includes a 4-deep FIFO queue for handling cache inhibited stores,
including memory mapped I/O store operations, and cache and barrier operations. It also
contains a 1-deep queue for handling cache inhibited load operations.

The return of data for a noncacheable load operation is via the L2 controller using the same
reload buses as for cacheable load operations. Cache inhibited stores are routed through the
NCU in order to preserve execution ordering of noncacheable stores with respect to each
other.

Cache and synchronization operations originating in a core on the chip are handled in a
similar manner as are cache inhibited stores except that they do not have any data associated
with them. These operations are issued to the fabric. Most will be snooped by an L2

power4 Page 21 of 33

controller. Included in this category are icbi, tlbie, tlbsync, eieio, sync, ptesync, lsync, dcbf,
dcbi and a core acknowledgment that a snooped TLB has completed.

The NCU Snooper snoops icbi and tlbie operations from the fabric propagating them
upstream to the cores. These snoops are sent to the core via the L2 controller’s reload
buses. It also snoops sync, ptesync, lsync, and eieio. These are snooped as they may need
to be retried due to an icbi or TLB that has not yet completed to the same processor.

L3 Cache: Figure 5 shows a logical view of the L3 cache. The L3 consists of two
components, the L3 controller and the L3 data array. The L3 controller is on the POWER4
chip and contains the tag directory, and the queues and arbitration logic to support the L3
and the memory behind it. The data array is stored in two 16 MB eDRAM chips mounted
on a separate module. A separate memory controller can be attached to the backside of the
L3 module.

Figure 5: L3 logical view
To facilitate physical design
and minimize bank conflicts,
the embedded DRAM on the
L3 chip is organized as 8 banks
at 2 MB per bank, with banks
grouped in pairs to divide the
chip into four 4 MB quadrants.
The L3 Controller is also
organized in quadrants. Each
quadrant contains two
coherency processors to
service requests from the
Fabric, perform any L3 cache
and/or memory accesses, and
update the L3 tag directory.
Additionally, each quadrant
contains 2 processors to
perform the memory castouts,
invalidate functions and DMA
writes for I/O operations.
Each pair of quadrants shares
one of the two L3 tag directory
SRAMs.

The L3 cache is 8-way setassociative organized in 512 byte blocks, with coherence
maintained on 128-byte sectors for compatibility with the L2 cache. Five coherency states
are supported for each of the 128-byte sectors as follows:

w I (invalid state): The data is invalid.
power4 Page 22 of 33

Fabric Controller

Coh
Proc

Coh
Proc

Coh
Proc

Coh
Proc

Coh
Proc

Coh
Proc

Coh
Proc

Coh
Proc

L3 Directory

16 MB
L3 Cache
(eDRAM)

16 MB
L3 Cache
(eDRAM)

8
Snp/CO
Queues

L3 Resource Manager

Memory

Fabric Controller

Coh
Proc

Coh
Proc

Coh
Proc

Coh
Proc

Coh
Proc

Coh
Proc

Coh
Proc

Coh
Proc

L3 Directory

16 MB
L3 Cache
(eDRAM)

16 MB
L3 Cache
(eDRAM)

8
Snp/CO
Queues

L3 Resource Manager

Memory

Fabric Controller

Coh
Proc

Coh
Proc

Coh
Proc

Coh
Proc

Coh
Proc

Coh
Proc

Coh
Proc

Coh
Proc

L3 Directory

16 MB
L3 Cache
(eDRAM)

16 MB
L3 Cache
(eDRAM)

8
Snp/CO
Queues

L3 Resource Manager

Memory

w S (shared state): The data is valid. In this state, the L3 can only source data to L2s
that it is caching data for.

w T (tagged state): The data is valid. The data is modified relative to the copy stored in
memory. The data may be shared in other L2 or L3 caches.

w Trem (remote tagged state): This is the same as the T state, but the data was sourced
from memory attached to another chip.

w O (prefetch data state): The data in the L3 is identical to the data in memory. The
data was sourced from memory attached to this L3. The status of the data in other L2
or L3 caches is unknown.

Each L3 coherency processor supports one random cache or memory access. For sequential
accesses the L3 coherency processors can support up to four concurrent load/store requests
within a 512-byte L3 cache block. This allows the L3 to support increased cache and
memory throughput for many common technical workloads to take advantage of the
bandwidth capability available with the high speed buses in POWER4 systems.

The L3 is designed to be used as a standalone 32 MB L3 cache, or to be combined with
other L3s on the same processor module in pairs or groups of four to create a larger,
address interleaved L3 cache of 64 MB or 128 MB. Combining L3s into groups not only
increases the L3 cache size, but also scales the available L3 bandwidth. When combined
into groups, L3s and the memory behind them are interleaved on 512 byte granularity. The
fabric bus controller controls which quadrant of which L3 a particular real address maps to,
and the selected L3 controller adjusts the mapping from real address to L3 index and tag to
account for the increase in the effective cache size. Table 5 shows the mapping of real
address bits to L3 index and tag, as well as the algorithm for routing an address to the
corresponding L3 controller and quadrant. The custom address flow logic is optimized for
the 128-MByte combined case. To handle the index/tag adjustment for the smaller L3 cache
sizes, the appropriate bits are swapped as the L3 controller receives an address from the
Fabric Bus Controller. This approach causes the index bits to appear in a nonintuitive order,
but avoids the need for the custom address flow logic to shift all of the address bits to make
this adjustment. All address bit ranges in Table 5 assume that the full 42-bit address is
denoted as bits 22:63. Bits 55:56 are the sector ID bits, and bits 57:63 are the offset within
the 128-byte coherence granule.

Table 5: Mapping of real address bits to access L3 depending on L3 size

51:5253:5422:3940:50128 MB

52:535422:4051,41:5064 MB
53:54--22:4151:52, 42:5032 MB

L3 Quadrant SelectL3 Chip SelectL3 TabL3 IndexLogical L3 Size

power4 Page 23 of 33

The L3 caches data, either from memory that resides beneath it or that resides elsewhere in
the system, on behalf of the processors attached to its processor module. When one of its
processors issues a load request that misses the L3 cache, the L3 controller allocates a copy
of the data in S (shared) state. Inclusivity with the L1 and L2 is not enforced. Hence, when
the L3 deallocates data it does not invalidate any L1 or L2 copies. The L3 enters T or
Trem state when one of its local L2 caches does a castout from M or T state. An address
decode is performed at snoop time to determine whether the address maps to memory
behind the L3 or elsewhere in the system, and this causes the L3 to transition to T or Trem
state as appropriate. This design point was chosen to avoid the need for a memory address
range decode when the L3 performs a castout operation. The L3 can use the T/Trem
distinction to determine whether the data can be written to the attached memory controller,
or whether the castout operation must be issued as a Fabric Bus transaction.

When in T or Trem state, the L3 sources data to any requestor in the system. However,
when in S state, the L3 will only source data to its own L2s. This minimizes data traffic on
the buses between processor modules, since whenever possible, data is sourced by an L3
cache on the requesting processor module. When in O state, the L3 sources data to any
requestor using the same rules that determine when it is permitted to send data from its
attached memory controller, i.e., no cache is sourcing data and no snooper retried the
request.

The L3 tag directory is ECC protected to support single bit error correct and double bit
error detect. Uncorrectable errors result in a system checkstop. If a directory access results
in a correctable error, the access is stalled while the error is corrected. After correction the
original access takes place. When an error is corrected, a Recovered Attention is sent to the
Service Processor for thresholding purposes.

The L3, memory address and control buses have parity bits for singlebit error detection.
The L3 and memory data buses, as well as the L3 cache embedded DRAMs, have ECC to
support singlebit error correct and doublebit error detect. Uncorrectable errors are flagged
and delivered to the requesting processor with an error indication, resulting in a machine
check interrupt. Correctable errors are corrected inline, and a Recovered Attention is sent
to the Service Processor for thresholding purposes.

The L3 supports Cache Line Delete. The Cache Line Delete function is used to mask stuck
faults in the L3 cache embedded DRAMs. Line Delete Control Registers allow the Service
Processor to specify values of L3 index for which a particular member should not be used.
When the L3 controller snoops a request that matches a specified L3 index, it masks off the
tag directory compare for the member in question. The replacement algorithm also avoids
the deleted member when choosing a victim in the specified congruence class. Cache Line
Delete can be invoked at IPL time based upon results of poweron diagnostic testing, or it
can be enabled dynamically due to a fault detected at runtime.

power4 Page 24 of 33

If an L3 tag directory develops a stuck fault, or L3 cache embedded DRAMs develop more
stuck faults than can be handled with the Line Delete Control Registers, the L3 cache on the
failing processor chip can be reconfigured and logically taken out of the system without
removing other L3 caches in the system and without reconfiguring the memory attached to
that L3. Memory accesses continue to pass through the reconfigured L3 module, but that
L3 controller no longer performs cache operations.

Memory Subsystem: A logical view of the memory subsystem is shown in Figure 6. Each
POWER4 chip can have an optional memory controller attached behind the L3 cache.
Memory controllers are packaged two to a memory card and support two of the four
processor chips on a module. A module can attach 2 memory cards, maximum. Memory
controllers can have either one or two ports to memory.

Figure 6: Memory
subsystem logical view

The memory controller is
attached to the L3
eDRAM chips, with each
chip having two 8-byte
buses, one in each
direction, to the data
interface in the memory
controller. These buses
operate at one-third
processor speed using the
Synchronous Wave
Pipeline Interface to
operate at high
frequencies.

Each port to memory has
four 4-byte bidirectional
buses operating at 400
MHz connecting
Load/Store buffers in the
memory controller to
four System Memory

Interface (SMI) chips used to read and write data from memory. When two memory ports
are available they each work on 512-byte boundaries. The memory controller has a 64-entry
Read Command Queue, a 64-entry Write Command Queue and a 16-entry Write Cache
Queue.

power4 Page 25 of 33

16 MB
L3 Cache
(eDRAM)

16 MB
L3 Cache
(eDRAM)

Data InterfaceCommand Interface

Load
Qs

Store
Qs

Port
0

Port
1

Cmd/Addrs Decode

Load &Store
Buffers

200 MHz DDR DIMM Quads

SMI Chips
(4/port)

Memory Controller
8888

1616

16 16

44444444

16 MB
L3 Cache
(eDRAM)

16 MB
L3 Cache
(eDRAM)

16 MB
L3 Cache
(eDRAM)

16 MB
L3 Cache
(eDRAM)

Data InterfaceCommand Interface

Load
Qs

Store
Qs

Port
0

Port
1

Load
Qs

Store
Qs

Port
0

Port
1

Cmd/Addrs Decode

Load &Store
Buffers

200 MHz DDR DIMM Quads

SMI Chips
(4/port)

Memory Controller
8888

1616

16 16

44444444

The memory is protected by a singlebit error correct, doublebit error detect ECC.
Additionally, memory scrubbing is used in the background to find and correct soft errors.

Each memory extent has an extra DRAM to allow for transparent replacement of one failing
DRAM per group of four DIMMs using chip kill technology. Redundant bit steering is also
employed.

Hardware Data Prefetch: POWER4 systems employ hardware to prefetch data
transparently to software into the L1 data cache. When load instructions miss sequential
cache lines, either ascending or descending, the prefetch engine initiates accesses to the
following cache lines before being referenced by load instructions. In order to insure the
data will be in the L1 data cache, data is prefetched into the L2 from the L3 and into the L3
from memory. Figure 7 shows the sequence of prefetch operations. Eight such streams per
processor are supported.

Figure 7: POWER4 hardware data prefetch

Once a sequential reference stream is recognized, whenever a load instruction initiates a
request for data in a new cache line the prefetch engine starts staging the next sequential line
into the L1 data cache from the L2. At the same time it initiates a request to the L3 to stage
a line into the L2. However, as latencies to load the L2 from the L3 are longer than the
latency to load the L1 from the L2, rather than prefetch the second cache line, the fifth is
prefetched, as shown in Figure 7. Prior references, or the initial ramp up on stream
initiation, has already staged the second through fourth lines from the L2 to the L1 data
cache. Similarly, a line is replaced in the L3 from memory. In order to minimize processing
required to retrieve data from memory into the L3, a 512-byte line is prefetched. This needs
to be done only every fourth line referenced. In the case shown in the figure, lines 17
through 20 are prefetrched from memory to the L3.

As memory references are based on real addresses, whenever a page boundary is crossed the
prefetching must be stopped as we do not know the real address of the next page. Towards
this end, POWER4 implements two page sizes, 4KB and 16MB. In addition to allowing the
prefetch to continue for longer streams, it also saves translation time. This is especially
useful for technical applications where it is common to sequentially reference large amounts
of data.

power4 Page 26 of 33

l1 l2 l4l3

L2

l5

l5 l6 l7 l8

l9 l10 l11 l12

L3

l13 l14 l15 l16

l17 l18 l19 l20

l17 l18 l19 l20

Memory

DL1

EU l0

Core

l1
l1 l2 l4l3

L2

l5

l5 l6 l7 l8l5 l6 l7 l8

l9 l10 l11 l12l9 l10 l11 l12

L3

l13 l14 l15 l16l13 l14 l15 l16

l17 l18 l19 l20l17 l18 l19 l20

l17 l18 l19 l20l17 l18 l19 l20

Memory

DL1

EU l0

Core

l1

In order to guard against prematurely installing a stream to be prefetched by the hardware,
POWER4 ramps up the prefetches slowly requiring an additional 4 sequential cache misses
to occur before the entire sequence of cache lines are in various stages of prefetch to the L1
data cache. However, software can often tell that a prefetch stream should be initiated.
Towards this end, the data cache block touch (dcbt) instruction has been extended using a
previously reserved bit to indicate to the hardware that a prefetch stream should be installed
immediately without waiting for confirmation.

Special logic to implement data prefetching exists in the core’s Load/Store Unit (LSU) and
in the L2 and L3. The direction to prefetch, up or down, is determined by the actual load
address within the line that causes the cache miss. If the load address is in the bottom _ of
the line then the guessed direction is up. If the actual load address is in the top _ of the line
then the guessed direction is down. The prefetch engine initiates a new prefetch when it
detects a reference to the line it guessed will be used. If the initial guess on the direction is
not correct the subsequent access will not confirm to the prefetch engine that it had a
stream. The incorrectly initiated stream will eventually be deallocated. The corrected
stream will be installed as a new stream.

5. Interconnecting Chips to Form Larger SMPs

The basic building block is a multichip module (MCM) with four POWER4 chips to form an
8-way SMP. Multiple MCMs can be further interconnected to form 16, 24 and 32-way
SMPs.

4-chip, 8-way SMP Module: Figure 8 shows the logical interconnection of four POWER4
chips across four logical buses to form an 8-way SMP. Each chip writes to its own bus
arbitrating between the L2, I/O controller, and the L3 controller for the bus. Each of the
four chips snoop all of the buses and if a transaction is presented that it needs to act on it
takes the appropriate action. Request for data from an L2 are snooped by all chips to (a) see
if it is in their L2 and in a state that it can source it to the requesting chip, or (b) see if it is in
its L3 or in memory behind its L3 cache based on the real address of the request. Assuming
it is, the sourcing chip returns the requested data to the requesting chip on its bus.

The interconnection topology appears like a bus-based system from a single chip’s
perspective. From the module’s perspective it appears like a switch.

power4 Page 27 of 33

Figure 8: POWER4 multi-chip module with four chips

Multiple Module Interconnect: Figure 9 shows the interconnection of multiple 4-chip
MCMs to form larger SMPs. From 1 to 4 MCMs can be interconnected. When
interconnecting multiple MCMs, the intermodule buses act as repeaters moving requests and
responses from one module to another module in a ring topology. As with the single MCM
configuration, each chip always sends requests/commands and data on its own bus but
snoops all buses.

12. L3 Memory Configurations: As noted earlier, each MCM can have from zero to two
memory cards. In the case of two memory cards, there is no requirement that they be of
equal size. In the case of no memory cards or two equal size memory cards connected to an
MCM, the four L3s attached to the module act as a single 128 MB L3. In a single MCM
system, each L3 caches data sourced from the memory attached behind its L3 cache. In the
case of multiple MCMs and data being sourced from memory attached to another module,
an attempt is made to cache the returned data on the requesting module. The particular L3
chosen is the L3 attached to the chip controlling the bus on which the data is returned on.

power4 Page 28 of 33

IOCC

GX Bus

C C

L2

L3

Memory

L3 Ctl/Dir

IOCC

GX Bus

C C

L2

L3

Memory

L3 Ctl/Dir

IOCC

GX Bus

C C

L2

L3

Memory

L3 Ctl/Dir

IOCC

GX Bus

C C

L2

L3

Memory

L3 Ctl/Dir

To other modules

From other modules

IOCC

GX Bus

C C

L2

L3

Memory

L3 Ctl/Dir

IOCC

GX Bus

C C

L2

L3

Memory

L3 Ctl/Dir

IOCC

GX Bus

C C

L2

L3

Memory

L3 Ctl/Dir

IOCC

GX Bus

C C

L2

L3

Memory

L3 Ctl/Dir

To other modules

From other modules

IOCC

GX Bus

C C

L2

L3

Memory

L3 Ctl/Dir

IOCC

GX Bus

IOCC

GX Bus

C C

L2

C C

L2

L3

Memory

L3 Ctl/Dir

L3

Memory

L3 Ctl/Dir

IOCC

GX Bus

C C

L2

L3

Memory

L3 Ctl/Dir

IOCC

GX Bus

IOCC

GX Bus

C C

L2

C C

L2

L3

Memory

L3 Ctl/Dir

L3

Memory

L3 Ctl/Dir

IOCC

GX Bus

C C

L2

L3

Memory

L3 Ctl/Dir

IOCC

GX Bus

IOCC

GX Bus

C C

L2

C C

L2

L3

Memory

L3 Ctl/Dir

L3

Memory

L3 Ctl/Dir

IOCC

GX Bus

C C

L2

L3

Memory

L3 Ctl/Dir

IOCC

GX Bus

IOCC

GX Bus

C C

L2

C C

L2

L3

Memory

L3 Ctl/Dir

L3

Memory

L3 Ctl/Dir

To other modulesTo other modules

From other modulesFrom other modules

However, if the L3 is busy servicing requests, it is not cached. Also, data is not cached on
the sourcing module if it is being sourced to a chip on another module.

Figure 9: Multiple POWER4 multi-chip module interconnection
If one memory card or two unequal size memory cards are attached to a module, then the
L3s attached to the module function as two 64 MB L3s. The two L3s that act in concert
are the L3s that would be in front of the memory card. (Note that one memory card is
attached to two chips.) The caching of requests to remote modules described above
functions in this case in a comparable manner with the exception that the two L3s acting as
a single L3 are considered to logically form a module boundary (for caching purposes).

6. I/O Structure

Figure 10 shows the I/O structure in POWER4 systems. Attached to a POWER4 GX bus is
a Remote I/O (RIO) Bridge chip. This chip transmits the data across two 1-byte wide RIO
buses to PCI Host Bridge (PHB) chips. Two separate PCI buses attach to PCIPCI bridge
chips that further fan the data out across multiple PCI buses. When multiple nodes are

power4 Page 29 of 33

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

L3 L3 L3L3

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

L3L3 L3 L3

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

L3L3 L3 L3

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

L3L3 L3 L3

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

L3 L3 L3L3

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

L3L3 L3 L3

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

L3L3 L3 L3

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

L3L3 L3 L3

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

L3 L3 L3L3

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

L3L3 L3 L3

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

L3L3 L3 L3

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

L3L3 L3 L3

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

L3L3 L3 L3

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

L3L3 L3 L3

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

L3L3 L3 L3

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

L3L3 L3 L3

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

GX Bus

Memory

L3L3 L3 L3

Figure 10: I/O logical view

interconnected to form clusters of systems, the RIO Bridge chip is replaced with a chip that
connects with the switch. This provides increased bandwidth and reduced latency over
switches attached via the PCI interface.

7. System Balance

POWER4 systems are designed to deliver balanced performance. As an example, as
additional chips and MCMs are added to form larger SMP systems, additional resources are
added, as can be seen from Figure 9. With the addition of each pair of POWER4 chips, the
ability to add a memory card is provided. In addition to memory capacity, memory
bandwidth is increased. Each additional POWER4 chip provides additional L3 resource.

All buses interconnecting POWER4 chips, whether or not on or off module, operate at half
processor speed. As future technology is exploited allowing chip size to decrease and
operating frequencies to increase, system balance is maintained, as bus speeds are no longer
fixed but geared to processor frequency.

power4 Page 30 of 33

IOCC

GX Bus
4B @ 3:1

C C

L2

L3

Memory

L3 Ctl/Dir

Remote I/O
(RIO)

Bridge Chip

PCI
Host

Bridge
(PHB)
Chip

Remote
I/O Bus
1B @

500MHz

PCI-PCI
Bridge Chip

PCI 32b/64b
@ 33/66 MHz

PCI

POWER4

PCI-PCI
Bridge Chip

PCI

IOCC

GX Bus
4B @ 3:1

C C

L2

C C

L2

L3

Memory

L3 Ctl/Dir

L3

Memory

L3 Ctl/Dir

Remote I/O
(RIO)

Bridge Chip

PCI
Host

Bridge
(PHB)
Chip

Remote
I/O Bus
1B @

500MHz

PCI-PCI
Bridge Chip

PCI 32b/64b
@ 33/66 MHz

PCI

POWER4

PCI-PCI
Bridge Chip

PCI

The multi-MCM configuration provides a worst case memory access latency of slightly over
10% more than the best case memory access latency maintaining the flat memory model
simplifying programming.

The 8-way MCM is the building block for the system. It is only available with four chips,
each with its attached L3. A single processor on a chip has all of the L3 resources attached
to the module, and the full L2 onboard the chip. If this processor is the only processor
executing, it would exhibit extremely good performance. If only one chip of the four on the
module is active, the situation is similar, though both processors now share a common L2.
They both have full access to all of the L3s attached to the module. When analyzing
measurements comparing 1-way to 2-way to 4-way to 8-way performance one must account
for the full L3 available in all of these configurations.

8. RAS Philosophy

It is not our intent here to describe the RAS mechanisms implemented in POWER4 systems.
However, we would be remiss if we did not address the basic philosophy driving the design.
Other white papers are planned to address this area in depth.

Simply stated, the RAS approach is to minimize outages as much as possible. This is
achieved using several mechanisms. They manifest themselves by using redundant resources
in some cases (as is the case with bit steering to allow spare memory bits to be used to
correct faulty memory cells and by, after general availability, dynamically switching in spare
resources such as processors, if a resource fails); by changing many checkstops into
synchronous machine interrupts to allow software to take corrective action rather than
halting execution; by failing only the affected partition in an LPAR environment and letting
other partitions continue operation. If the POWER4 service processor detects a component
beginning to exhibit errors above a predetermined threshold, the Field Replaceable Unit
(FRU) containing the component, is scheduled to be replaced before it incurs a hard failure

9. Future Roadmap

Enhancements to the current POWER4 system in the coming years will take several
directions.

We are in the process of leveraging newer technologies to allow us to increase frequency
while further decreasing power. We have already stated we will exploit IBM’s low-k
technology employed in their 0.13 _m lithography process. We will aggressively increase
processor frequencies to the 2+ GHz range while maintaining the system balance our
current design offers.

power4 Page 31 of 33

The current design introduces parallelism throughout the system so as to overcome the
relatively speaking increasing memory latencies resulting from high frequency operations.
The parallelism allows one to continue executing in the presence of cache misses. Future
POWER4 systems will continue this design, increasing parallelism and providing larger
caches.

We have already invested in insuring that software can exploit the increased performance
levels POWER4 systems will be offering. But, this is a never ending endeavor. We will
continue making system level enhancements so as to provide even greater performance
increases over time.

10. Summary

POWER4 development has met our objectives in terms of performance and schedule as
defined at the project start.

Enormous levels of bandwidth and concurrency contribute to superior performance across a
broad range of commercial and high performance computing environments. These
unprecedented performance levels are achieved by a total system design that exploits IBM’s
leading technologies.

As early as January 2000, the superiority of this design point was recognized by the
publishers of the MicroProcessor Report. At that time they awarded POWER4 the 2000
MicroProcessor Technology Award in recognition of its innovations and technology
exploitation.

We are well along in developing follow-on systems to the current POWER4 to further
enhance its leadership. POWER4 is redefining what is meant by a server and how a server
needs to be designed.

power4 Page 32 of 33

11. Notices

© International Business Machines Corporation 2001

IBM Corporation
Marketing Communications
Server Group
Route 100
Somers, NY 10589

Produced in the United States of America
10-01
All Rights Reserved

More details on IBM UNIX hardware, software and solutions may be found at:
ibm.com/servers/eserver/pseries.

You can find notices, including applicable legal information, trademark attribution, and notes on benchmark
and performance at ibm.com/servers/eserver/pseries/hardware/specnote.html.

IBM, the IBM logo, the e-business logo, RS/6000, SP, pSeries and iSeries are registered trademarks or
trademarks of the International Business Machines Corporation in the United States and/or other countries.
The list of all IBM marks can be found at:
http://iplswww.nas.ibm.com/wpts/trademarks/trademar.htm.

The [e(logo) server] brand consists of the established IBM e-business logo followed by the descriptive term
"server."

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company, Limited.

Other company, product and service names may be trademarks or service marks of others.

IBM may not offer the products, programs, services or features discussed herein in other countries, and the
information may be subject to change without notice.

General availability may vary by geography.

IBM hardware products are manufactured from new parts, or new and used parts. Regardless, our warranty
terms apply.

All statements regarding IBM future directions and intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

Any performance data contained in this document was determined in a controlled environment. Results
obtained in other operating environments may vary significantly.

IBM may have patents or pending patent applications covering subject matter in this paper. The furnishing
of this presentation does not give you any license to these patents. Send license inquiries, in writing, to IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

power4 Page 33 of 33

