
Appears in the Proceedings of the
�������

Annual International Symposium on Computer Architecture

Exploiting ILP, TLP, and DLP with the Polymorphous TRIPS Architecture

Karthikeyan Sankaralingam Ramadass Nagarajan Haiming Liu Changkyu Kim
Jaehyuk Huh Doug Burger Stephen W. Keckler Charles R. Moore

Computer Architecture and Technology Laboratory
Department of Computer Sciences
The University of Texas at Austin

cart@cs.utexas.edu - www.cs.utexas.edu/users/cart

Abstract

This paper describes the polymorphous TRIPS archi-
tecture which can be configured for different granularities
and types of parallelism. TRIPS contains mechanisms that
enable the processing cores and the on-chip memory sys-
tem to be configured and combined in different modes for
instruction, data, or thread-level parallelism. To adapt to
small and large-grain concurrency, the TRIPS architecture
contains four out-of-order, 16-wide-issue Grid Processor
cores, which can be partitioned when easily extractable
fine-grained parallelism exists. This approach to polymor-
phism provides better performance across a wide range of
application types than an approach in which many small
processors are aggregated to run workloads with irregu-
lar parallelism. Our results show that high performance
can be obtained in each of the three modes–ILP, TLP,
and DLP–demonstrating the viability of the polymorphous
coarse-grained approach for future microprocessors.

1 Introduction

General-purpose microprocessors owe their success to
their ability to run many diverse workloads well. Today,
many application-specific processors, such as desktop, net-
work, server, scientific, graphics, and digital signal proces-
sors have been constructed to match the particular paral-
lelism characteristics of their application domains. Build-
ing processors that are not only general purpose for single-
threaded programs but for many types of concurrency as
well would provide substantive benefits in terms of system
flexibility as well as reduced design and mask costs.

Unfortunately, design trends are applying pressure in
the opposite direction: toward designs that are more spe-
cialized, not less. This performance fragility, in which ap-
plications incur large swings in performance based on how
well they map to a given design, is the result of the combi-
nation of two trends: the diversification of workloads (me-

dia, streaming, network, desktop) and the emergence of
chip multiprocessors (CMPs), for which the number and
granularity of processors is fixed at processor design time.

One strategy for combating processor fragility is to
build a heterogeneous chip, which contains multiple pro-
cessing cores, each designed to run a distinct class of work-
loads effectively. The proposed Tarantula processor is one
such example of integrated heterogeneity [8]. The two ma-
jor downsides to this approach are (1) increased hardware
complexity since there is little design reuse between the
two types of processors and (2) poor resource utilization
when the application mix contains a balance different than
that ideally suited to the underlying heterogeneous hard-
ware.

An alternative approach to designing an integrated so-
lution using multiple heterogeneous processors is to build
one or more homogeneous processors on a die, which mit-
igates the aforementioned complexity problem. When an
application maps well onto the homogeneous substrate,
the utilization problem is solved, as the application is not
limited to one of several heterogeneous processors. To
solve the fragility problem, however, the homogeneous
hardware must be able to run a wide range of application
classes effectively. We define this architectural polymor-
phism as the capability to configure hardware for efficient
execution across broad classes of applications.

A key question, is what granularity of processors and
memories on a CMP is best for polymorphous capabili-
ties. Should future billion-transistor chips contain thou-
sands of fine-grain processing elements (PEs) or far fewer
extremely coarse-grain processors? The success or failure
of polymorphous capabilities will have a strong effect on
the answer to these questions. Figure 1 shows a range of
points in the spectrum of PE granularities that are possi-
ble for a �	�	��
�
� chip in 100nm technology. Although
other possible topologies certainly exist, the five shown in
the diagram represent a good cross-section of the overall
space:

1

Runs more applications effectively

Exploits fine-grain parallelism more effectively

(a) FPGA

Millions of gates

(b) PIM

256 Proc. elements

(c) Fine-grain CMP

64 In-order cores

(d) Coarse-grain CMP

16 Out-of-order cores

(e) TRIPS

4 ultra-large cores

Figure 1. Granularity of parallel processing elements on a chip.

a) Ultra-fine-grained FPGAs.

b) Hundreds of primitive processors connected to
memory banks such as a processor-in-memory
(PIM) architecture or reconfigurable ALU arrays
such as RaPiD [7], Piperench [9], or PACT [3].

c) Tens of simple in-order processors, such as in
RAW [25] or Piranha [2] architectures.

d) Coarse grained architectures consisting of 10-20
4-issue cores, such as the Power4 [22], Cy-
clops [4], MultiScalar processors [19], other pro-
posed speculatively-threaded CMPs [6, 20], and the
polymorphous Smart Memories [15] architecture.

e) Wide-issue processors with many ALUs each, such
as Grid Processors [16].

The finer-grained architectures on the left of this spec-
trum can offer high performance on applications with fine-
grained (data) parallelism, but will have difficulty achiev-
ing good performance on general-purpose and serial appli-
cations. For example, a PIM topology has high peak per-
formance, but its performance on on control-bound codes
with irregular memory accesses, such as compression or
compilation, would be dismal at best. At the other ex-
treme, coarser-grained architectures traditionally have not
had the capability to use internal hardware to show high
performance on fine-grained, highly parallel applications.

Polymorphism can bridge this dichotomy with either
of two competing approaches. A synthesis approach
uses a fine-grained CMP to exploit applications with fine-
grained, regular parallelism, and tackles irregular, coarser-
grain parallelism by synthesizing multiple processing el-
ements into larger “logical” processors. This approach
builds hardware more to the left on the spectrum in Fig-
ure 1 and emulates hardware farther to the right. A par-
titioning approach implements a coarse-grained CMP in
hardware, and logically partitions the large processors to
exploit finer-grain parallelism when it exists.

Regardless of the approach, a polymorphous architec-
ture will not outperform custom hardware meant for a
given application, such as graphics processing. However,
a successful polymorphous system should run well across
many application classes, ideally running with only small
performance degradations compared to the performance of
customized solutions for each application.

This paper proposes and describes the polymorphous
TRIPS architecture, which uses the partitioning approach,
combining coarse-grained polymorphous Grid Processor
cores with an adaptive, polymorphous on-chip memory
system. Our goal is to design cores that are both as
large and as few as possible, providing maximal single-
thread performance, while remaining partitionable to ex-
ploit fine-grained parallelism. Our results demonstrate
that this partitioning approach solves the fragility problem
by using polymorphous mechanisms to yield high perfor-
mance for both coarse and fine-grained concurrent applica-
tions. To be successful, the competing approach of synthe-
sizing coarser-grain processors from fine-grained compo-
nents must overcome the challenges of distributed control,
long interaction latencies, and synchronization overheads.

The rest of this paper describes the polymorphous hard-
ware and configurations used to exploit different types of
parallelism across a broad spectrum of application types.
Section 2 describes both the planned TRIPS silicon proto-
type and its polymorphous hardware resources, which per-
mit flexible execution over highly variable application do-
mains. These resources support three modes of execution
that we call major morphs, each of which is well suited
for a different type of parallelism: instruction-level par-
allelism with the desktop or D-morph (Section 3), thread-
level parallelism with the threaded or T-morph (Section 4),
and data-level parallelism with the streaming or S-morph
(Section 5). Section 6 shows how performance increases in
the three morphs as each TRIPS core is scaled from a 16-
wide up to an even coarser-grain, 64-wide issue processor.
We conclude in Section 7 that by building large, partition-

2

D
R

A
M

 I
nt

er
fa

ceM M

MM

M M

MM M

M

M

M M

M

M

M

D
R

A
M

 I
nt

er
fa

ceM

MM

M M

MM M

M

M

M M

M

M

M

M

D
R

A
M

 I
nt

er
fa

ceM M

MM

M M

MM M

M

M

M M

M

M

M D
R

A
M

 I
nt

er
fa

ceM M

MM

M M

MM M

M

M

M M

M

M

M

D
R

A
M

 I
nt

er
fa

ceM M

MM

M M

MM M

M

M

M M

M

M

M

L2 Cache

64−95 95−12732−630−31

(b) TRIPS Core (c) Execution Node(a) TRIPS Chip

ICache−0

ICache−1

ICache−2

ICache−3

Predictor
Next block Block Control

DCache−0

DCache−3

LSQ0

LSQ1

LSQ3

DCache−1

DCache−2 LSQ2 Frame 1
Frame 0

Router

Control

Inst Operands

ICache−M

Stitch Table

Register File

Frame 127

.

.

.

Figure 2. TRIPS architecture overview.

able, polymorphous cores, a single homogeneous design
can exploit many classes of concurrency, making this ap-
proach promising for solving the emerging challenge of
processor fragility.

2 The TRIPS Architecture

The TRIPS architecture uses large, coarse-grained pro-
cessing cores to achieve high performance on single-
threaded applications with high ILP, and augments them
with polymorphous features that enable the core to be sub-
divided for explicitly concurrent applications at different
granularities. Contrary to conventional large-core designs
with centralized components that are difficult to scale, the
TRIPS architecture is heavily partitioned to avoid large
centralized structures and long wire runs. These parti-
tioned computation and memory elements are connected
by point-to-point communication channels that are ex-
posed to software schedulers for optimization.

The key challenge in defining the polymorphous fea-
tures is balancing their appropriate granularity so that
workloads involving different levels of ILP, TLP and DLP
can maximize their use of the available resources, and
at the same time avoid escalating complexity and non-
scalable structures. The TRIPS system employs coarse-
grained polymorphous features, at the level of memory
banks and instruction storage, to minimize both software
and hardware complexity and configuration overheads.
The remainder of this section describes the high level ar-
chitecture of the TRIPS system, and highlights the poly-
morphous resources used to construct the D, T, and S-
morphs described in Sections 3–5.

2.1 Core Execution Model

The TRIPS architecture is fundamentally block ori-
ented. In all modes of operation, programs compiled for

TRIPS are partitioned into large blocks of instructions with
a single entry point, no internal loops, and possibly multi-
ple possible exit points as found in hyperblocks [14]. For
instruction and thread level parallel programs, blocks com-
mit atomically and interrupts are block precise, meaning
that they are handled only at block boundaries. For all
modes of execution, the compiler is responsible for stati-
cally scheduling each block of instructions onto the com-
putational engine such that inter-instruction dependences
are explicit. Each block has a static set of state inputs, and
a potentially variable set of state outputs that depends upon
the exit point from the block. At runtime, the basic opera-
tional flow of the processor includes fetching a block from
memory, loading it into the computational engine, execut-
ing it to completion, committing its results to the persistent
architectural state if necessary, and then proceeding to the
next block.

2.2 Architectural Overview

Figure 2a shows a diagram of the TRIPS architecture
that will be implemented in a prototype chip. While the
architecture is scalable to both larger dimensions and high
clock rates due to both the partitioned structures and short
point-to-point wiring connections, the TRIPS prototype
chip will consist of four polymorphous 16-wide cores, an
array of 32KB memory tiles connected by a routed net-
work, and a set of distributed memory controllers with
channels to external memory. The prototype chip will be
built using a 100nm process and is targeted for completion
in 2005.

Figure 2b shows an expanded view of a TRIPS core and
the primary memory system. The TRIPS core is an exam-
ple of the Grid Processor family of designs [16], which are
typically composed of an array of homogeneous execution
nodes, each containing an integer ALU, a floating point
unit, a set of reservation stations, and router connections
at the input and output. Each reservation station has stor-

3

age for an instruction and two source operands. When a
reservation station contains a valid instruction and a pair
of valid operands, the node can select the instruction for
execution. After execution, the node can forward the result
to any of the operand slots in local or remote reservation
stations within the ALU array. The nodes are directly con-
nected to their nearest neighbors, but the routing network
can deliver results to any node in the array.

The banked instruction cache on the left couples one
bank per row, with an additional instruction cache bank
to issue fetches to values from registers for injection into
the ALU array. The banked register file above the ALU
array holds a portion of the architectural state. To the
right of the execution nodes are a set of banked level-1
data caches, which can be accessed by any ALU through
the local grid routing network. Below the ALU array is
the block control logic that is responsible for sequencing
block execution and selecting the next block. The back-
side of the L1 caches are connected to secondary mem-
ory tiles through the chip-wide two-dimensional intercon-
nection network. The switched network provides a robust
and scalable connection to a large number of tiles, using
less wiring than conventional dedicated channels between
these components.

The TRIPS architecture contains three main types of
resources. First, the hardcoded, non-polymorphous re-
sources operate in the same manner, and present the same
view of internal state in all modes of operation. Some ex-
amples include the execution units within the nodes, the in-
terconnect fabric between the nodes, and the L1 instruction
cache banks. In the second type, polymorphous resources
are used in all modes of operation, but can be configured
to operate differently depending on the mode. The third
type are the resources that are not required for all modes
and can be disabled when not in use for a given mode.

2.3 Polymorphous Resources

Frame Space: As shown in Figure 2c, each execution
node contains a set of reservation stations. Reservation
stations with the same index across all of the nodes com-
bine to form a physical frame. For example, combining
the first slot for all nodes in the grid forms frame 0. The
frame space, or collection of frames, is a polymorphous
resource in TRIPS, as it is managed differently by differ-
ent modes to support efficient execution of alternate forms
of parallelism.

Register File Banks: Although the programming model
of each execution mode sees essentially the same number
of architecturally visible registers, the hardware substrate
provides many more. The extra copies can be used in dif-
ferent ways, such as for speculation or multithreading, de-
pending on the mode of operation.

Block Sequencing Controls: The block sequencing
controls determine when a block has completed execu-
tion, when a block should be deallocated from the frame
space, and which block should be loaded next into the free
frame space. To implement different modes of operation,
a range of policies can govern these actions. The deallo-
cation logic may be configured to allow a block to execute
more than once, as is useful in streaming applications in
which the same inner loop is applied to multiple data ele-
ments. The next block selector can be configured to limit
the speculation, and to prioritize between multiple concur-
rently executing threads useful for multithreaded parallel
programs.

Memory Tiles: The TRIPS Memory tiles can be con-
figured to behave as NUCA style L2 cache banks [12],
scratchpad memory, synchronization buffers for pro-
ducer/consumer communication. In addition, the memory
tiles closest to each processor present a special high band-
width interface that further optimizes their use as stream
register files.

3 D-morph: Instruction-Level Parallelism

The desktop morph, or D-morph, of the TRIPS pro-
cessor uses the polymorphous capabilities of the proces-
sor to run single-threaded codes efficiently by exploiting
instruction-level parallelism. The TRIPS processor core is
an instantiation of the Grid Processor family of architec-
tures, and as such has similarities to previous work [16],
but with some important differences as described in this
section.

To achieve high ILP, the D-morph configuration treats
the instruction buffers in the processor core as a large, dis-
tributed, instruction issue window, which uses the TRIPS
ISA to enable out-of-order execution while avoiding the
associative issue window lookups of conventional ma-
chines. To use the instruction buffers effectively as a large
window, the D-morph must provide high-bandwidth in-
struction fetching, aggressive control and data speculation,
and a high-bandwidth, low-latency memory system that
preserves sequential memory semantics across a window
of thousands of instructions.

3.1 Frame Space Management

By treating the instruction buffers at each ALU as a dis-
tributed issue window, orders-of-magnitude increases in
window sizes are possible. This window is fundamentally
a three-dimensional scheduling region, where the x- and y-
dimensions correspond to the physical dimensions of the
ALU array and the z-dimension corresponds to multiple
instruction slots at each ALU node, as shown in Figure 2c.
This three-dimensional region can be viewed as a series of
frames, as shown in Figure 3b, in which each frame con-

4

N0N1

N2N3

N0

N2

N3

N1

Dataflow graph

....

....

....

(a)

A−frame 0

Frame 0

Frame 1

(b)

R1

H1

H0

N4

N5 N6

N4

Frame 2

(H0)

A−frame 2

A−frame 1
(H1)

...

Y

X

Z

N5

N6

Frame 3
..

.

R1

Reg. File

Figure 3. D-morph frame management.

sists of one instruction buffer entry per ALU node, result-
ing in a 2-D slice of the 3-D scheduling region.

To fill one of these scheduling regions, the compiler
schedules hyperblocks into a 3-D region, assigning each
instruction to one node in the 3-D space. Hyperblocks are
predicated, single entry, multiple exit regions formed by
the compiler [14]. A 3-D region (the array and the set of
frames) into which one hyperblock is mapped is called an
architectural frame, or A-frame.

Figure 3a shows a four-instruction hyperblock (H0)
mapped into A-frame 0 as shown in Figure 3b, where N0
and N2 are mapped to different buffer slots (frames) on
the same physical ALU node. All communication within
the block is determined by the compiler which schedules
operand routing directly from ALU to ALU. Consumers
are encoded in the producer instructions as X, Y, and Z-
relative offsets, as described in prior work [16]. Instruc-
tions can direct a produced value to any element within
the same A-frame, using the lightweight routed network in
the ALU array. The maximum number of frames that can
be occupied by one program block (the maximum A-frame
size) is architecturally limited by the number of instruction
bits to specify destinations, and physically limited by the
total number of frames available in a given implementa-
tion. The current TRIPS ISA limits the number of instruc-
tions in a hyperblock to 128, and the current implementa-
tion limits the maximum number of frames per A-frame to
16, the maximum number of A-frames to 32, and provides
128 frames total.

3.2 Multiblock Speculation

The TRIPS instruction window size is much larger than
the average hyperblock size that can be constructed. The
hardware fills empty A-frames with speculatively mapped
hyperblocks, predicting which hyperblock will be exe-
cuted next, mapping it to an empty A-frame, and so on.
The A-frames are treated as a circular buffer in which the
oldest A-frame is non-speculative and all other A-frames

are speculative (analogous to tasks in a Multiscalar pro-
cessor [19]). When the A-frame holding the oldest hy-
perblock completes, the block is committed and removed.
The next oldest hyperblock becomes non-speculative, and
the released frames can be filled with a new speculative hy-
perblock. On a misprediction, all blocks past the offending
prediction are squashed and restarted.

Since A-frame IDs are assigned dynamically and all
intra-hyperblock communication occurs within a single A-
frame, each producer instruction prepends its A-frame ID
to the Z-coordinate of its consumer to form the correct in-
struction buffer address of the consumer. Values passed
between hyperblocks are transmitted through the register
file, as shown by the communication of R1 from H0 to
H1 in Figure 3b. Such values are aggressively forwarded
when they are produced, using the register stitch table that
dynamically matches the register outputs of earlier hyper-
blocks to the register inputs of later hyperblocks.

3.3 High-Bandwidth Instruction Fetching

To fill the large distributed window the D-morph re-
quires high-bandwidth instruction fetch. The control
model uses a program counter that points to hyperblock
headers. When there is sufficient frame space to map a hy-
perblock, the control logic accesses a partitioned instruc-
tion cache by broadcasting the index of the hyperblock to
all banks. Each bank then fetches a row’s worth of in-
structions with a single access and streams it to the bank’s
respective row. Hyperblocks are encoded as VLIW-like
blocks, along with a prepended header that contains the
number of frames consumed by the block.

The next-hyperblock prediction is made using a highly
tuned tournament exit predictor [10], which predicts a bi-
nary value that indicates the branch predicted to be the first
to exit the hyperblock. The per-block accuracy of the exit
predictor is shown in row 3 of Table 1; the predictor it-
self is described in more detail elsewhere [17]. The value
generated by the exit predictor is used both to index into a
BTB to obtain the next predicted hyperblock address, and
also to avoid forwarding register outputs produced past the
predicted branch to subsequent blocks.

3.4 Memory Interface

To support high ILP, the D-morph memory system must
provide a high-bandwidth, low-latency data cache, and
must maintain sequential memory semantics. As shown
in Figure 2b, the right side of each TRIPS core contains
distributed primary memory system banks, that are tightly
coupled to the processing logic for low latency. The banks
are interleaved using the low-order bits of the cache index,
and can process multiple non-conflicting accesses simulta-

5

Benchmark adpcm ammp art bzip2 compress dct equake gzip hydro2d m88k
Good insts/block 30.7 119 80.4 55.8 21.6 163 33.5 36.2 200 40.2

Exit/target pred. acc. 0.72 0.94 0.99 0.74 0.84 0.99 0.97 0.84 0.97 0.95
Avg. frames 2.4 5.2 3.2 2.8 1.3 6.0 2.1 3.1 7.4 2.3
in window 116 1126 1706 364 129 1738 622 671 1573 796
Benchmark mcf mgrid mpeg2 parser swim tomcatv turb3d twolf vortex mean

Good insts/block 29.8 179 81.3 14.6 361 210 160 48.9 29.4 99.8
Exit/target pred. acc. 0.91 0.99 0.88 0.93 0.99 0.98 0.94 0.76 0.99 0.91

Avg. frames 2.2 6.9 3.8 1.3 11.8 7.4 6.4 2.6 2.0 4.2
in window 462 1590 958 255 1928 1629 1399 361 918 965

Table 1. Execution characteristics of D-morph codes.

adpcm

bzip2
com

pr

gzip
m

88ksim

m
cf

parser

twolf
vortex

M
EAN

0

5

10

15

IP
C

1
2
4
8
16
32
Perf Mem
Perf (Mem+BP)

am
m

p

art
dct

equake

hydro2d

m
grid

m
peg2

swim
tom

catv

turb3d

M
EAN

0

5

10

15

IP
C

Figure 4. D-morph performance as a function of A-frame count.

neously. Each bank is coupled with MSHRs for the cache
bank and a partition of the address-interleaved load/store
queues that enforce ordering of loads and stores. The
MSHRs, the load/store queues, and the cache banks all use
the same interleaving scheme. Stores are written back to
the cache from the LSQs upon block commit.

The secondary memory system in the D-morph con-
figures the networked banks as a non-uniform cache ac-
cess (NUCA) array [12], in which elements of a set are
spread across multiple secondary banks, and are capable of
migrating data on the two-dimensional switched network
that connects the secondary banks. This network also pro-
vides a high-bandwidth link to each L1 bank for parallel
L1 miss processing and fills. To summarize, with accu-
rate exit prediction, high-bandwidth I-fetching, partitioned
data caches, and concurrent execution of hyperblocks with
inter-block value forwarding, the D-morph is able to use
the instruction buffers as a polymorphous out-of-order is-
sue window effectively, as shown in the next subsection.

3.5 D-morph Results

In this subsection, we measure the ILP achieved using
the mechanisms described above. The results shown in
this section assume a 4x4 (16-wide issue) core, with 128
physical frames, a 64KB L1 data cache that requires three
cycles to access, a 64KB L1 instruction cache (both parti-
tioned into 4 banks), 0.5 cycles per hop in the ALU array,

a 10-cycle branch misprediction penalty, a 250Kb exit pre-
dictor, a 12-cycle access penalty to a 2MB L2 cache, and
a 132-cycle main memory access penalty. Optimistic as-
sumptions in the simulator currently include no modeling
of TLBs or page faults, oracular load/store ordering, simu-
lation of a centralized register file, and no issue of wrong-
path instructions to the memory system. All of the bina-
ries were compiled with the Trimaran tool set [24] (based
on the Illinois Impact compiler [5]), and scheduled for the
TRIPS processor with our custom scheduler/rewriter.

The first row of Table 1 shows the average number
of useful dynamically executed instructions per block,
discounting overhead instructions, instructions with false
predicates or instructions past a block exit. The second
row shows the average dynamic number of frames allo-
cated per block by our scheduler for a 4x4 grid. Using the
steady-state block (exit) prediction accuracies shown in the
third row, each benchmarks holds 965 useful instructions
in the distributed window, on average, as shown in row 4
of Table 1.

Figure 4 shows how IPC scales as the number of A-
frames is increased from 1 to 32, permitting deeper spec-
ulative execution. The integer benchmarks are shown on
the left; the floating point and Mediabench [13] bench-
marks are shown on the right. Each 32 A-frame bar
also has two additional IPC values, showing the perfor-
mance with perfect memory in the hashed fraction of each
bar, and then adding perfect branch prediction, shown in

6

white. Increasing the number of A-frames provides a con-
sistent performance boost across many of the benchmarks,
since it permits greater exploitation of ILP by providing a
larger window of instructions. Some benchmarks show no
performance improvements beyond 16 A-frames (bzip2,
m88ksim, and tomcatv), and a few reach their peak at 8 A-
frames (adpcm, gzip, twolf, and hydro2d). In such cases,
the large frame space is underutilized when running a sin-
gle thread, due to either low hyperblock predictability in
some cases or a lack of program ILP in others.

The graphs demonstrate that while control mispredic-
tions cause large performance losses for the integer codes
(close to 50% on average), the large window is able to tol-
erate memory latencies extremely well, resulting in negli-
gible slowdowns due to an imperfect memory system for
all benchmarks but mgrid.

4 T-morph: Thread-Level Parallelism

The T-morph is intended to provide higher processor
utilization by mapping multiple threads of control onto a
single TRIPS core. While similar to simultaneous multi-
threading [23] in that the execution resources (ALUs) and
memory banks are shared, the T-morph statically partitions
the reservation station (issue window) and eliminates some
replicated SMT structures, such as the reorder buffer.

4.1 T-Morph Implementation

There are multiple strategies for partitioning a TRIPS
core to support multiple threads, two of which are row pro-
cessors and frame processors. Row processors space-share
the ALU array, allocating one or more rows per thread.
The advantage to this approach is that each thread has I-
cache and D-cache bandwidth and capacity proportional to
the number of rows assigned to it. The disadvantage is that
the distance to the register file is non-uniform, penalizing
the threads mapped to the bottom rows. Frame proces-
sors, evaluated in this section, time-share the processor by
allocating threads to unique sets of physical frames. We
describe the polymorphous capabilities required for each
of the classes of mechanisms below.

Frame space management: Instead of holding non-
speculative and speculative hyperblocks for a single thread
as in the D-morph, the physical frames are partitioned a
priori and assigned to threads. For example, a TRIPS core
can dedicate all 128 frames to a single thread in the D-
morph, or 64 frames to each of two threads in the T-morph
(uneven frame sharing is also possible). Within each
thread, the frames are further divided into some number of
A-frames and speculative execution is allowed within each
thread. No additional register file space is required, since
the same storage used to hold state for speculative blocks

can instead store state from multiple non-speculative and
speculative blocks. The only additional frame support
needed is thread-ID bits in the register stitching logic and
augmentations to the A-frame allocation logic.

Instruction control: The T-morph maintains � pro-
gram counters (where � is the number of concurrent
threads allowed) and � global history shift registers in
the exit predictor to reduce thread-induced mispredictions.
The T-morph fetches the next block for a given thread us-
ing a prediction made by the shared exit predictor, and
maps it onto the array. In addition to the extra prediction
registers, � copies of the commit buffers and block control
state must be provided for � hardware threads.

Memory: The memory system operates much the same
as the D-morph, except that per-thread IDs on cache tags
and LSQ CAMs are necessary to prevent illegal cross-
thread interference, provided that shared address spaces
are implemented.

4.2 T-morph Results
To evaluate the performance of multi-programmed

workloads running on the T-morph, we classified the ap-
plications as “high memory intensive” and “low memory
intensive”, based on L2 cache miss rates. We picked eight
different benchmarks and ran different combinations of
2, 4 and 8 benchmarks executing concurrently. The high
memory intensive benchmarks are ��� ��� ,
��
	 � , ��������� � ,
and

���
���� ����� . The low memory intensive benchmarks
are � �
���������� � , !#"%$&�('�� , �(���������
� , and
�)%)%�*� $
�� . We ex-
amine the performance obtained while executing multiple
threads concurrently and quantify the sources of perfor-
mance degradation. Compared to a single thread executing
in the D-morph, running threads concurrently introduces
the following sources of performance loss: ��+ inter-thread
contention for ALUs and routers in the grid, !�+ cache pol-
lution, �
+ pollution and interaction in the branch predictor
tables, and ,-+ reduced speculation depth for each thread,
since the number of available frames for each thread is re-
duced.

Table 2 shows T-morph performance on a 4x4 TRIPS
core with parameters similar to those of the baseline D-
morph. The second column lists the combined instruc-
tion throughput of the running threads. The third column
shows the sum of the IPCs of the benchmarks when each
is run on a separate core but with same number of frames
as available to each thread in the T-morph. Comparing the
throughput of column 3 with the throughput in column 2,
indicates the performance drop due to inter-thread interac-
tion in the T-morph. Column 4 shows the cumulative IPCs
of the threads when each is run by itself on a TRIPS core
with all frames available to it. Comparison of this column
with column 4, indicates the performance drop incurred
from both inter-thread interaction and reduced speculation

7

Benchmarks Throughput (aggregate IPC) Overall Per Thread Speedup
T-morph Constant A-frames Scaled A-frames Efficiency (%) Efficiency (%)

2 Threads ���������
, 	�
�
��� � 	 �

4.9 5.5 5.5 90 93, 86 1.8����� ��� ��� , 	�
�
��� � 	 �
3.7 3.8 4.1 90 88, 91 1.8�������

, ����	 ��� ����� � 5.1 5.7 6.0 86 93, 62 1.6	���� � ,
������� �

3.2 3.9 3.9 81 98, 75 1.7�������
, 	���� � 5.1 5.3 5.6 90 91, 87 1.8�� �! � "� � , 	���� � 3.3 3.4 3.5 95 101, 83 1.8

MEAN 4.7 - - 87 84 1.7
4 Threads���������$# 	�
�
��� � 	 ��#%����� ��� ���&# ����	 ��� ����� � 6.1 6.7 8.4 72 79, 70, 59, 78 2.9�� �! � "� � ,

����� �
,
����� ��� � � , ����	 ��� ����� � 6.1 7.0 10.0 61 68, 69, 38, 47 2.2� ��	�� �"�&'�� , 	���� � , 	�
�
��� � 	 �

,
�$�������

8.3 10.7 15.0 55 54, 65, 55, 58 2.3�� �! � "� �(#$�������)#$� ��	�� �"�&'��*# 	���� � 9.0 10.5 16.6 54 60, 58, 51, 53 2.2
MEAN 7.4 - - 61 60 2.4

8 Threads�����
,
� ��	�� ���&' ,

�������
, 	�
�
��� � 	 9.8 17.7 25.0 39 40, 44, 34, 33 2.9�� �! � "� ,

����� ��� � , ����	 ��� ����� , 	���� 50, 23, 26, 43

Table 2. T-morph thread efficiency and throughput.

in the T-morph. Our experiments showed that T-morph
performance is largely insensitive to cache and branch pre-
dictor pollution, but is highly sensitive to instruction fetch
bandwidth stalls.

Column 5 shows the overall T-morph efficiency, de-
fined as the ratio of multithreading performance to
throughput of threads running on independent cores
(column 2 + column 4). Column 6 breaks this down fur-
ther showing the fraction of peak D-morph performance
achieved by each thread when sharing a TRIPS core with
other threads. The last column shows an estimate of the
speedup provided by the T-morph versus running each of
the applications one at a time on a single TRIPS core (with
the assumption that each application has approximately the
same running time). The overall efficiency varies from
80–100% with 2 threads down to 39% with 8 threads.
Having the low memory benchmarks resident simultane-
ously provided the highest efficiency, while mixes of high
memory benchmarks provided the lowest efficiency, due
to increased T-morph cache contention. This effect is less
pronounced in the 2-thread configurations with the pair-
ing of high memory benchmarks being equally efficient as
others. The overall speedup provided by multithreading
ranges from a factor 1.4 to 2.9 depending on the number
of threads. In summary, most benchmarks do not com-
pletely exploit the deep speculation provided by all of the
A-frames available in the D-morph, due to branch mispre-
dictions. The T-morph converts these less useful A-frames
to non-speculative computations when multiple threads or
jobs are available. Future work will evaluate the T-morph
on multithreaded parallel programs.

5 S-morph: Data-Level Parallelism

The S-morph is a configuration of the TRIPS processor
that leverages the technology scalable array of ALUs and

the fast inter-ALU communication network for stream-
ing media and scientific applications. These applica-
tions are typically characterized by data-level parallelism
(DLP) including predictable loop-based control flow with
large iteration counts [21], large data sets, regular access
patterns, poor locality but tolerance to memory latency,
and high computation intensity with tens to hundreds of
arithmetic operations performed per element loaded from
memory [18]. The S-morph was heavily influenced by the
Imagine architecture [11] and uses the Imagine execution
model in which a set of stream kernels are sequenced by
a control thread. Figure 5 highlights the features of the
S-morph which are further described below.

5.1 S-morph Mechanisms

Frame Space Management: Since the control flow of
the programs is highly predictable, the S-morph fuses mul-
tiple A-frames to make a super A-frame, instead of using
separate A-frames for speculation or multithreading. In-
ner loops of a streaming application are unrolled to fill the
reservation stations within these super A-frames. Code re-
quired to set up the execution of the inner loops and to
connect multiple loops can run in one of three ways: (1)
embedded into the program that uses the frames for S-
morph execution, (2) executed on a different core within
the TRIPS chip–similar in function to the Imagine host
processor, or (3) run within its own set of frames on the
same core running the DLP kernels. In this third mode, a
subset of the frames are dedicated to a data parallel thread,
while a different subset are dedicated to a sequential con-
trol thread.
Instruction Fetch: To reduce the power and instruction
fetch bandwidth overhead of repeated fetching of the same
code block across inner-loop iterations, the S-morph em-
ploys mapping reuse, in which a block is kept in the reser-
vation stations and used multiple times. The S-morph im-

8

Benchmark Original Iteration Fused Iterations # of
Kernel size Inputs/ Unrolling Compute insts Block Total Revitalizations

(insts) Outputs Constants factor per block size Constants
convert 15 3/3 9 16 240 303 144 171
dct 70 8/8 10 8 560 580 80 128
fir16 34 1/1 16 16 544 620 256 512
fft8 104 16/16 16 4 416 570 64 128
idea 112 2/2 52 8 896 1020 416 512
transform 37 8/8 21 16 592 740 336 64

Table 3. Characteristics of S-morph codes.

D−morph L1
Memory System

���
���

���
���

���
���

���
���

N2

....

....

....

Super
A−frame

L2 NUCA Cache

SRF
On chip memory tiles

T
O

 P
R

O
C

E
SS

O
R

N3

N0N1

Frame 0

Frame 1

Frame 7

(a) (b)

Figure 5. Polymorphism for S-morph.

plements mapping reuse with a 	
repeat N
 instruction

(similar to RPTB in the TMS320C54x [1]) which indicates
that the next block of instructions constitute a loop and is
to execute a finite number of times N where N can be de-
termined at runtime and is used to set an iteration counter.
When all of the instructions from an iteration complete,
the hardware decrements the iteration counter and triggers
a revitalization signal which resets the reservation stations,
maintaining constant values residing in reservation station,
so that they may fire again when new operands arrive for
the next iteration. When the iteration counter reaches zero,
the super A-frame is cleared and the hardware maps the
next block onto the ALUs for execution.

Memory System: Similar to Smart Memories [15], the
TRIPS S-morph implements the Imagine stream register
file (SRF) using a subset of on-chip memory tiles. S-
morph memory tile configuration includes turning off tag
checks to allow direct data array access and augmenting
the cache line replacement state machine to include DMA-
like capabilities. Enhanced transfer mechanisms include
block transfer between the tile and remote storage (main
memory or other tiles), strided access to remote storage
(gather/scatter), and indirect gather/scatter in which the re-
mote addresses to access are contained within a subset of
the tile’s storage. Like the Imagine programming model,
we expect that transfers between the tile and remote mem-
ory will be orchestrated by a separate thread.

As shown in Figure 5b, memory tiles adjacent to the
processor core are used for the SRF and are augmented
with dedicated wide channels (256 bits per row assuming
4 64-bit channels for the 4x4 array) into the ALU array for

increased SRF bandwidth. The S-morph DLP loops can
execute an SRF read that acts as load multiple word in-
struction by transferring an entire SRF line into the grid,
spreading it across the ALUs in a fixed pattern within a
row. Once within the grid, data can be easily moved to any
ALU using the high-bandwidth in-grid routing network,
rather than requiring a data switch between the SRF banks
and the ALU array. Streams are striped across the multi-
ple banks of the SRF. Stores to the SRF are aggregated in
a store buffer and then transmitted to the SRF bank over
narrow channels to the memory tile. Memory tiles not ad-
jacent to the processing core can be configured as a con-
ventional level-2 cache still accessible to the unchanged
level-1 cache hierarchy. The conventional cache hierarchy
can be used to store irregularly accessed data structures,
such as texture maps.

5.2 Results

We evaluate the performance of the TRIPS S-morph on
a set of streaming kernels, shown in Table 3, extracted
from the Mediabench benchmark suite [13]. These ker-
nels were selected to represent different computation-to-
memory ratios, varying from less than 1 to more than 14.
The kernels are hand-coded in a TRIPS meta-assembly
language, then mapped to the ALU array using a custom
scheduler akin to the D-morph scheduler, and simulated
using an event-driven simulator that models the TRIPS S-
morph.
Program characteristics: Columns 2–4 of Table 3 show
the intrinsic characteristics for one iteration of the kernel
code, including the number of arithmetic operations, the
number of bytes read from/written to memory, and number
of unique run time constants required. The unrolling factor
for each inner loop is determined by the size of the kernel
and the capacity of the super A-frame (a 4x4 grid with
128 frames or 2K instructions). The useful instructions
per block includes only computation instructions while
the block size numbers include overhead instructions for
memory access and data movement within the grid. The
total constant count indicates the number of reservation
stations that must be filled with constant values from the
register file for each iteration of the unrolled loop. Most

9

convert

dct
fft8

fir16
idea

transform

M
EAN

0

5

10

15

C
om

pu
te

 I
ns

t/
C

yc
le

D-morph
S-morph
S-morph ideal
1/4 LD B/W
4X ST B/W
NoRevitalize

Figure 6. S-morph performance.
of these register moves can be eliminated by allowing the
constants to remain in reservation stations across revital-
izations. The number of revitalizations corresponds to the
number of iterations of the unrolled loop. The unrolling of
the kernels is based on 64-Kbyte input and output streams,
both being striped and stored in the SRF.
Performance analysis: Figure 6 compares the perfor-
mance of the D-morph to the S-morph on a 4x4 TRIPS
core with 128 frames, a 32 entry store buffer, 8 cycle revi-
talization delay, and a pipelined 7-cycle SRF access delay.
The D-morph configuration in this experiment assumes
perfect L1 caches with 3-cycle hit latencies. Figure 6
shows that the S-morph sustains an average of 7.4 com-
putation instructions per cycle (not counting overhead in-
structions or address compute instructions), a factor of 2.4
higher than the D-morph. A more idealized S-morph con-
figuration that employs 256 frames and no revitalization la-
tency improves performance to 9 compute ops/cycle, 26%
higher than the realistic S-morph. An alternative approach
to S-morph polymorphism is the Tarantula architecture [8]
which exploits data-level parallelism by augmenting the
processor core of an Alpha 21464 with a dedicated vector
data path of 32 ALUs, an approach that sustains between
10 and 20 FLOPS per cycle. Our results indicate that the
TRIPS S-morph can provide competitive performance on
data-parallel workloads; a 8x4 grid consisting of 32 ALUs
sustains, on average, 15 compute ops per cycle. Further-
more, the polymorphous approach provides superior area
efficiency compared to Tarantula, which contains two large
heterogeneous cores.
SRF bandwidth: To investigate the sensitivity of the S-
morph to SRF bandwidth we investigated two alternative
design points: load bandwidth decreased to 64 bits per
row (1/4 LD B/W) and store bandwidth increased to 256
bits per row (4X ST B/W). Decreasing the load bandwidth
drops performance by 5% to 31%, with a mean percentage
drop of 27%. Augmenting the store bandwidth increases

average IPC to 7.65 corresponding to 5% performance im-
provement on average. However, on a 8x8 TRIPS core,
experiments show that increased store bandwidth can im-
prove performance by 22%. As expected, compute inten-
sive kernels, such as fir and idea, show little sensitivity to
SRF bandwidth.

Revitalization: As shown in the NoRevitalize bar in Fig-
ure 6, eliminating revitalization causes S-morph perfor-
mance to drop by a factor of 5 on average. This effect
is due to the additional latency for mapping instructions
into the grid as well as redistributing the constants from
the register file on every unrolled iteration. For exam-
ple, the unrolled inner loop of the dct kernel requires 37
cycles to fetch the 580 instructions (assuming 16 instruc-
tions fetched per cycle) plus another 10 cycles to fetch the
80 constants from the banked register file. Much of this
overhead is exposed because unlike the D-morph with its
speculative instruction fetch, the S-morph has hard syn-
chronization boundaries between iterations. One solution
that we are examining to further reduce the impact of in-
struction fetch is to overlap revitalization and execution.
Further extensions to this configuration can allow the indi-
vidual ALUs at each node to act as separate MIMD pro-
cessors. This technique would benefit applications with
frequent data-dependent control flow, such as real-time
graphics and network processing workloads.

6 Scalability to Larger Cores

While the experiments in Sections 3 – 5 reflect the per-
formance achievable on three application classes with 16
ALUs, the question of granularity still remains. Given
a fixed single-chip silicon budget, how many processors
should be on the chip, and how powerful should each pro-
cessor be? To address this question, we first examined
the performance of each application class as a function of
the architecture granularity by varying the issue width of
a TRIPS core. We use this information to determine the
sweet spot for each application class and then describe how
this sweet spot can be achieved for each application class
using the configurability of the TRIPS system.

Figures 7a and 7b show the aggregate performance of
ILP and DLP workloads on TRIPS cores of different di-
mensions, including 2x2, 4x4, 8x4, and 8x8. The selected
benchmarks represent the general behavior of the bench-
mark suite as a whole. Unsurprisingly, the benchmarks
with low instruction-level concurrency see little benefit
from TRIPS cores larger than 4x4, and a class of them
(represented by adpcm) sees little benefit beyond 2x2.
Benchmarks with higher concurrency such as swim and
idea see diminishing returns beyond 8x4, while others,
such as mgrid and fft continue to benefit from increasing

10

(a) ILP on single thread (b) DLP (c) ILP on multiple threads

adpcm

vortex

M
EAN-Dlow

m
grid

swim
M

EAN-Dhigh

0

5

10

15

IP
C

2x2

4x4

8x4

8x8

fft8
idea

M
EAN-S

0

5

10

15

20

25

C
om

pu
te

 I
ns

t/
C

yc
le

1-way

2-way

4-way

8-way

0

10

20

30

40

50

IP
C

8 4 4
2

16 8
8

4

16
16

8

32

32

16

Figure 7. TRIPS single-core scalability and CMP throughput.

ALU density. Table 4 shows the best suited configurations
for the different applications in column 2.

The variations across applications and application do-
mains demand both large coarse-grain processors (8x4 and
8x8) and small fine-grain processors (2x2). Nonetheless,
for single-threaded ILP and DLP applications, the larger
processors provide better aggregate performance at the ex-
pense of low utilization for some applications. For multi-
threaded and multiprogrammed workloads, the decision is
more complex. Table 4 shows several alternative TRIPS
chip designs, ranging from 8 2x2 TRIPS cores to 2 8x8
cores, assuming a 400
�
� die in a 100nm technology.
The equivalent real estate could be used to construct 10
Alpha 21264 processors and 4MB of on-chip L2 cache.

Figure 7c shows the instruction throughput (in aggre-
gate IPC), with each bar representing the core dimensions,
each cluster of bars showing the number of threads per
core, and the number atop each bar showing the total num-
ber of threads (# cores times threads per core). The 2x2 ar-
ray is the worst performing when large number of threads
are available. The 4x4 and 8x4 configurations have the
same number of cores due to changing on-chip cache ca-
pacity, but the 8x4 and 8x8 have the same total number of
ALUs and instruction buffers across the full chip. With
ample threads and at most 8 threads per core, the best de-
sign point is the 8x4 topology, no matter how many to-
tal threads are available (e.g., of all the bars labeled 16
threads, the 8x4 configuration is the highest-performing).
These results validate the large-core approach; one 8x4
core has higher performance for both single-threaded ILP
and DLP workloads than a smaller core, and shows higher
throughput than many smaller cores using the same area
when many threads are available. We are currently explor-
ing and evaluating space-based subdivision for both TLP
and DLP applications beyond the time-based multithread-
ing approach described in this paper.

7 Conclusions and Future Directions

The polymorphous TRIPS system enables a single set
of processing and storage elements to be configured for

Grid Preferred # TRIPS Total L2
Dimensions Applications cores (MB)

2x2 adpcm 8 3.90
4x4 vortex 4 3.97
8x4 swim, idea 4 1.25
8x8 mgrid, fft 2 1.25

21264 - 10 3.97

Table 4. TRIPS CMP Designs.

multiple application domains. Unlike prior configurable
systems that aggregate small primitive components into
larger processors, TRIPS starts with a large, technology-
scalable core that can be logically subdivided to support
ILP, TLP, and DLP. The goal of this system is to achieve
performance and efficiency approaching that of special-
purpose systems. In this paper, we proposed a small set
of mechanisms (managing reservation stations and mem-
ory tiles) for a large-core processor that enables adaptation
into three modes for these diverse application domains.
We have shown that all three modes achieve the goal of
high performance on their respective application domain.
The D-morph sustains 1–12 IPC (average of 4.4) on serial
codes, the T-morph achieves average thread efficiencies of
87%, 60%, and 39% for two, four, and eight threads, re-
spectively, and the S-morph executes as many as 12 arith-
metic instructions per clock on a 16-ALU core, and an av-
erage of 23 on an 8x8 core.

While we have described the TRIPS system as having
three distinct personalities (the D, T, and S-morphs), in
reality each of these configurations is composed of basic
mechanisms that can be mixed and matched across exe-
cution models. In addition, there are also minor recon-
figurations, such as adjusting the level-2 cache capacity,
that do not require a change in the programming model.
A major challenge for polymorphous systems is designing
the interfaces between the software and the configurable
hardware as well as determining when and how to initiate
reconfiguration. At one extreme, application programmers
and compiler writers can be given a fixed number of static
morphs; programs are written and compiled to these static
machine models. At the other extreme, a polymorphous

11

system could expose all of the configurable mechanisms to
the application layers, enabling them to select the config-
urations and the time of reconfiguration. We are exploring
both the hardware and software design issues in the course
of our development of the TRIPS prototype system.

Acknowledgments

We thank the anonymous reviewers for their suggestions
that helped improve the quality of this paper. This research is
supported by the Defense Advanced Research Projects Agency
under contract F33615-01-C-1892, NSF instrumentation grant
EIA-9985991, NSF CAREER grants CCR-9985109 and CCR-
9984336, two IBM University Partnership awards, and grants
from the Alfred P. Sloan Foundation, the Peter O’Donnell Foun-
dation, and the Intel Research Council.

References

[1] TMS320C54x DSP Reference Set, Volume 2: Mnemonic Instruc-
tion Set, Literature Number: SPRU172C, March 2001.

[2] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha: A
scalable architecture based on single-chip multiprocessing. In Pro-
ceedings of the 27th Annual International Symposium on Computer
Architecture, pages 282–293, June 2000.

[3] V. Baumgarte, F. May, A. Nückel, M. Vorbach, and M. Weinhardt.
PACT XPP – A Self-Reconfigurable Data Processing Architecture.
In 1st International Conference on Engineering of Reconfigurable
Systems and Algorithms, June 2001.

[4] C. Casçaval, J. Castanos, L. Ceze, M. Denneau, M. Gupta,
D. Lieber, J. E. Moreira, K. Strauss, and H. S. W. Jr. Evaluation of
multithreaded architecture for cellular computing. In Proceedings
of the 8th International Symposium on High Performance Computer
Architecture, pages 311–322, January 2002.

[5] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. mei
W. Hwu. IMPACT: An architectural framework for multiple-
instruction-issue processors. In Proceedings of the 18th Annual In-
ternational Symposium on Computer Architecture, pages 266–275,
May 1991.

[6] M. Cintra, J. F. Martı́nez, and J. Torrellas. Architectural support for
scalable speculative parallelization in shared-memory multiproces-
sors. In Proceedings of the 27th Annual International Symposium
on Computer Architecture, pages 13–24, June 2000.

[7] C. Ebeling, D. C. Cronquist, and P. Franklin. Configurable comput-
ing: The catalyst for high-performance architectures. In Interna-
tional Conference on Application-Specific Systems, Architectures,
and Processors, pages 364–372, 1997.

[8] R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt,
I. Hernandez, T. Juan, G. Lowney, M. Mattina, and A. Seznec.
Tarantula: A Vector Extension to the Alpha Architecture. In Pro-
ceedings of The 29th International Symposium on Computer Archi-
tecture, pages 281–292, May 2002.

[9] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and
R. Taylor. Piperench: A reconfigurable architecture and compiler.
IEEE Computer, 33(4):70–77, April 2000.

[10] Q. Jacobson, S. Bennett, N. Sharma, and J. E. Smith. Control flow
speculation in multiscalar processors. In Proceedings of the 3rd
International Symposium on High Performance Computer Archi-
tecture, Feb. 1997.

[11] B. Khailany, W. J. Dally, S. Rixner, U. J. Kapasi, P. Mattson,
J. Namkoong, J. D. Owens, B. Towles, and A. Chang. Imag-
ine: Media processing with streams. IEEE Micro, 21(2):35–46,
March/April 2001.

[12] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform
cache structure for wire-delay dominated on-chip caches. In 10th
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages 211–
222, October 2002.

[13] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench:
A tool for evaluating and synthesizing multimedia and communi-
cations systems. In International Symposium on Microarchitecture,
pages 330–335, 1997.

[14] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bring-
mann. Effective compiler support for predicated execution using
the hyperblock. In Proceedings of the 25st International Sympo-
sium on Microarchitecture, pages 45–54, 1992.

[15] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and
M. Horowitz. Smart memories: A modular reconfigurable architec-
ture. In Proceedings of the 27th Annual International Symposium
on Computer Architecture, pages 161–171, June 2000.

[16] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keckler. A
design space evaluation of grid processor architectures. In Proceed-
ings of the 34th Annual International Symposium on Microarchitec-
ture, pages 40–51, December 2001.

[17] N. Ranganathan, R. Nagarajan, D. Burger, and S. W. Keckler. Com-
bining hyperblocks and exit prediction to increase front-end band-
width and performance. Technical Report TR-02-41, Department of
Computer Sciences, The University of Texas at Austin, September
2002.

[18] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. Lopez-
Lagunas, P. R. Mattson, and J. D. Owens. A bandwidth-efficient
architecture for media processing. In Proceedings on the 31st Inter-
national Symposium on Microarchitecture, pages 3–13, December
1998.

[19] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar pro-
cessors. In Proceedings of the 22nd International Symposium on
Computer Architecture, pages 414–425, June 1995.

[20] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable
approach to thread-level speculation. In Proceedings of the 27th
Annual International Symposium on Computer Architecture, pages
1–12, June 2000.

[21] D. Talla, L. John, and D. Burger. Bottlenecks in multimedia
processing with SIMD style extensions and architectural enhance-
ments. IEEE Transactions on Computers, to appear, pages 35–46,
2003.

[22] J. M. Tendler, J. S. Dodson, J. J. S. Fields, H. Le, and B. Sinharoy.
POWER4 system microarchitecture. IBM Journal of Research and
Development, 26(1):5–26, January 2001.

[23] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multi-
threading: Maximizing on-chip parallelism. In Proceedings of the
22nd International Symposium on Computer Architecture, pages
392–403, June 1995.

[24] V.Kathail, M.Schlansker, and B.R.Rau. Hpl-pd architecture speci-
fication: Version 1.1. Technical Report HPL-93-80(R.1), Hewlett-
Packard Laboratories, February 2000.

[25] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee,
J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarsinghe, and
A. Agarwal. Baring it all to software: RAW machines. IEEE Com-
puter, 30(9):86–93, September 1997.

12

