CHAPTER 5

Dataflow and Multithreading

A Preliminary Architecture for a Bastc Data-Flow Processt ... 2., o, i, . oo 315
J. B. Dennis and D. P. Misunas

Executing a Program on the MIT Tagged-Token Dataflow Architecture ...... . .. . 323
Arvind and R. S. Nikhil

Architecture and Applications of the HEP Multiprocessor Computer System ....... . .. .. 342
B. J. Smith

Exploiting Choice: Instruction Fetch and Issue on an

Implementable Simultaneous Multithreading Processor ................... ... 350

D. M. Tullsen, S. J. Eggers, J. S. Emer, H M. Levy, J. L. Lo, and R. L. Stamm

5.1 Dataflow Computers

Most computers today are based on a Sequential execution
model, where instructions of a program are executed in
an implied (sequential) order. This model closely
resembles the way processors were implemented in
their early days, where program instructions were
processed one at a time. The sequential execution
model also led to instruction sets and programming
languages with sequential execution semantics. Today,
almost all programs are written in programming
languages and compiled to instruction sets that have
an implied execution order.
To maximize parallelism, ordering constraints
must be minimized. Ideally, the execution of an
instruction should be constrained only by dependence
relationships and not by any other ordering constraints.
Therefore, to achieve high performance in the sequential
execution model, means are needed to discover and
extract parallelism from the serial specification, and to
execute these operations on parallel hardware.
Dataflow is a computing model that has been proposed
10 overcome the performance limitations of the traditional
Sequential computing model. Many of the limitations
of the traditional (sequential) model have to do with
exposing and extracting parallelism hidden as a result
of serial program semantics, exploiting it on parallel
hardware, and maintaining the implied program ordering.
The idea of dataflow is to have a computing
engine that has no ordering constraints on operation
ecution other than data (and control) dependences

that exist in the computation. Computation is represented
as a dataflow graph, which captures the data dependence
relationships between the operations. Control dependences
are treated just like data dependences (by using a
SWITCH operator to gate data values using a Boolean
condition). By not imposing a “total order” on program
execution, opportunities for parallelism are not artificially
constrained. In the absence of a total order, other rules
are needed to determine the order in which operations
should be executed. The dataflow model uses a data-
driven (or dependence-driven) rule governing the
execution of operations.

A dataflow program consists of blocks of instructions,
or code blocks, whose execution is governed by the
dataflow “firing” rule. The dynamic state of a code
block, analogous to a stack frame, resides in a token
store. When an operation executes, it “wakes up” other
operations in the token store that depend on it, and
when the operands of an operation are ready, it can be
“fired.” Different types of dataflow computers use
different means to wake up operations. The classic
tagged-token dataflow architecture (TTDA), which is
described in the paper by Arvind and Nikhil, uses an
associative token store [3]. When an operation executes,
it creates one or two result tokens, each with a tag
indicating the instance of an instruction that needs the
token. The token store is searched (associatively) to
see if another token with the same tag is present. If
such a match is found, then the new instruction
becomes ready to execute. Otherwise, the token is left

309




310 Chapter 5/ Dataflow and Multithreading

in the token store. Because token stores can be large,
associative searching is implemented via hashing
[9,14]. A more recent proposal, the explicit token store
(ETS) dataflow machine eliminates the need to do an
associative search in the token store [13] by mapping
dynamic instances of code blocks to a linear (addressable)
memory; a token can be forwarded directly to.the
consuming instructions at known memory addresses.

Even though the dataflow execution model eliminates
artificial ordering constraints, conventional programming
languages have ordering constraints that might be carried
through by the translation process, just as a (conventional)
program is compiled into a dataflow executable. To
overcome this problem, dataflow researchers have
proposed dataflow languages such as Id [2], which are
devoid of artificial ordering constraints.

A dataflow computing system (language, compiler,
instruction set, and execution hardware) allows parallelism
to be exposed and exploited to its fullest. However, the
abundance of parallelism is not necessarily a good thing:
Means must exist to deal with this parallelism [4]. These
means include large token stores to handle all the operations
that are waiting to execute, means to manage the token
‘store, and means to schedule the (hundreds or thousands)
of operations that are ready to execute so that they can
execute on the limited amount of available hardware. In
many cases, constraining the amount of parallelism
actually allows for more efficient solutions!

5. 2 Multithreaded Computers

Multithreaded computers are computers that can execute
instructions from more than one execution thread. The
term multithreaded, however, is a heavily overloaded
term in computer science in general, and in computer
architecture in particular. A thread is a piece of code
together with a state (registers and memory); instructions
from a thread modify this state as they execute. In its
most common usage, multiple threads imply multiple
different programs (or processes). However, computer
architects, especially processor architects, are rarely
concerned with computer designs that improve the
overall throughput when processing a workload consisting
of several programs. Rather, they are concerned about
improving the time that it takes to execute a single
program. In this context, multiple threads refer to different
(generally independent) portions of a single program;
for example, the different iterations of a loop. In either
case, a multithreaded processor can also be viewed as
an alternate way of implementing a parallel processor
(albeit a small-scale one).

To support multiple threads, multithreaded proces-
sors have to provide hardware resources to implement
the thread context, that is, the state for each thread.
Recall that state for a thread generally resides in two
name spaces: registers and memory. Multithreaded
processors typically provide a separate register file for
each thread. However, the (physical) memory is shared
amongst the different threads just as it would be in a
nonmultithreaded processor running a multipro-
grammed workload.

The most common use of multithreading is to
improve the utilization of a resource. For example,
when a processor is idling while waiting for the result
of along-latency memory operation, processor utilization
(and overall processing throughput) can be improved
if the processor switches execution to a different
thread, and instructions from that thread are executed
during cycles that would otherwise have been idle.
By performing work during otherwise dead cycles,
the processor is able to tolerate long latencies.
Accordingly, many also view multithreading as a
means for tolerating long latencies. However, the
beneficial effect of tolerating the latency on the execution
time of a single program only shows up if the operations
that are overlapped with the long-latency operation are
from the same program; that is, the multiple threads
are threads of the same program.

Multithreading has a cost overhead, in that additional
hardware must be provided to handle state from multiple
threads. In addition, it has performance overheads
related to thread switching that can impact single-
thread performance. First, switching to a different
thread can incur an overhead, depending on how the
register contexts of the different threads are implemented.
The impact of this overhead can be reduced by having
more hardware that allows switches between threads
to take place without any time penalty. Second, once a
thread is switched out, it might not be restarted
immediately after its long-latency operation is finished,
resulting in increased execution time for the thread
(versus a scenario where the thread was not switched
out, and was able to resume execution immediately on
completion of its long-latency operation). The tradeoff
between thread switching and single-thread performance
has been central to the design of multithreaded processors
over the decades, and several different switching policies
have been proposed.

One commonly used thread-switching policy is to
switch to a different thread on every cycle. This policy
is relatively straightforward to implement. Moreover,




if there are as many threads as there are stages in the
processing pipeline, there is only one instruction from
any thread in the processing pipeline. This obviates the
need for hardware dedicated to overcoming the problems
of overlapping the processing of instructions from a
single thread (for example, dependence checking
logic, branch prediction hardware, etc.). The drawback
of this approach, however, is that the performance ofa
single thread is sacrificed.

Another policy is to keep processing a single
thread until a long-latency operation (such as a cache
miss) is encountered and switch to a new thread at that
point [1]. This degrades single-thread performance
less than the previous proposal (the issue of restarting
a thread on completion of its long-latency operation
still exists) but is more involved. There have been several
other proposals for thread-switching policies.

Most of the multithreading policies studied until
the 1990s were aimed at processors that can execute
only a single operation in a clock cycle. For these
processors, it made sense only to switch threads after a
clock cycle (or after multiple cycles), because at least
one operation should be executed from a thread once it
has been selected, and this took at least one clock
cycle. The advent of multiple-issue long instruction
word (LIW) and superscalar processors in the late
1980s and 1990s caused researchers to rethink the
notion of thread switching. Multiple-issue processors
allow multiple operations to be launched in every
clock cycle, and not all of these issue slots might be
usable by a given thread in a given clock cycle. In this
case, the possibility of thread switching at a granularity
of less than a clock cycle (i.e., within a clock cycle)
arises: Issue slots within a clock cycle that are unused
by the primary thread could be used for operations
from another thread. This could potentially be a win-win
situation: A single thread continues its execution
unperturbed, and other threads get to use execution
slots that would otherwise have not been used. Of
course, this assumes that the hardware and software
complexity is not increased, and that the different
threads do not cause interfere in other resources of the
machine (e.g., caches, memory systems, and intercon-
nects). Executing operations from multiple threads in a
single clock cycle is called simultaneous multithreading.

With a simultaneous-multithreading policy allowing
multithreading without sacrificing single-thread per-

Discussion of Included Papers 3nM

formance, and with semiconductor technology allowing
sufficient hardware resources to build (register) contexts
for multiple threads on a single chip, computer architects
are considering multithreading support even in general-
purpose processors.

The reader may ask: Dataflow and multithreading
appear to be very different concepts, so why are we
lumping them together in a single chapter? It is true
that dataflow and multithreading are different concepts.
However, a lot of multithreading research has been
carried out within the dataflow context for reasons we
discuss next.

The objective of dataflow is to expose and exploit
parallelism, and this requires parallel hardware.
Parallel hardware introduces latencies that may not
exist in non-parallel hardware, such as latencies resulting
from traversing interconnection structures, and due to
distributing resources such as memory. In the data-driven
execution model, where an operation wakes up when
its predecessor operation communicates a value to it,
latencies introduced by parallel hardware aggravate
the interoperation communication latency, and we
have to tolerate this latency by overlapping this
communication with other (independent) computations.
Moreover, a code block of a dataflow program can be
viewed as a “thread.”! Because the dynamic execution
of a dataflow program results in several such “threads”
being active at the same time, it is natural to design
machines that can handle multiple such threads.

5. 3 Discussion of Included Papers

Next, we present a brief discussion of the papers
reprinted in this chapter.

5.3.1 Dennis and Misunas’s “A Preliminary
Architecture for a Basic Data-Flow Processor” [6]

The paper by Dennis and Misunas was the first paper
to describe the architecture of an entire processor based
on data-driven execution principles. Here, the program
is a dataflow program, and the proposal is for a processor
that executes a dataflow program. This was not the
earliest description of dataflow execution principles,
however: Tomasulo’s algorithm [18], implemented in
the IBM 360/91, applied dataflow principles (which
were not called dataflow at the time) to come up with
hardware that allowed data-driven execution of a small
number of instructions. Note, however, that this

11f we characterize machines on a multithreading spectrum based on the length of the threads that they support, pure classical dataflow
(e.g., MIT TTDA) has threads with a length of one operation. It is possible to think of threads of a dataflow machine consisting of several

operations that are executed together (e.g., MIT Monsoon).




312 Chapter 5/ Dataflow and Multithreading

group of instructions was not represented as a dataflow
program. Rather, they were created dynamically by
sequencing through a more traditional control flow
program.

5.3.2 Arvind and Nikhil’s “Executing a Program
on the MIT TTDA” [3]

The early work by Dennis and his colleagues provided
the spark for a significant amount of research on
dataflow processors at several institutions worldwide in
addition to the continuing research at MIT. The paper by
Arvind and Nikhil presents a snapshot of the work in
dataflow at MIT (as well as at other places) circa 1987.
In addition to describing the architecture of the MIT
tagged-token dataflow architecture (TTDA) computer, it
discusses several other aspects of dataflow computing.
The paper starts out by describing the dataflow language
Id. As mentioned earlier, dataflow proponents believe
that more conventional languages introduce ordering
constraints on operations (perhaps unintentionally) that
can only serve to obscure parallelism. The paper then
describes how Id programs can be compiled into
dataflow graphs and an architecture for interpreting (i.e.,
executing) programs represented as dataflow graphs.

5.3.3 Smith’s “Architecture and Applications of
the HEP Multiprocessor” [15]

The paper by Smith describes aspects of the heteroge-
neous element processor (HEP) built by Denelcor. The
HEP was an early example of a (publicly documented)
machine that used multithreaded execution for processing
the “main” instruction stream(s). Earlier machines
used multithreading for some aspects of processing
(e.g., the input/output units of the MIT TX-2 and the
peripheral processors of the CDC 6600). Other multi-
threaded machines were proposed (and some were
even built) prior to HEP, but documentation about such
machines is not readily available.

The paper also describes of a novel synchronization
mechanism (full-empty bits) and of Fortran extensions
that would allow an application to be compiled in
order to make use of the multithreaded architecture
and the synchronization features of the HEP.

5.3.4 Tullsen et al.’s “Exploiting Choice:
Instruction Fetch and Issue on an Implementable
Simultaneous Multithreading Processor’ [20]
Multithreaded architectures that switched threads
every cycle (or every few cycles) were not seriously

considered by architects of mainstream general-purpose
processors, because they were viewed as sacrificing
single-thread latency in favor of multiple-thread
throughput. And limited chip resources called into
question the utility of expending hardware to support
multiple thread contexts, especially if single-thread
performance was going to be compromised.

The advent of wide-issue machines resulted in a
new form of multithreading, one in which operations
from multiple threads were issued in the same cycle.
This form of multithreading could improve multiple-
thread throughput without compromising single-thread
latency (assuming that interthread interference did not
degrade single-thread latency; e.g., resulting from
increased cache misses). There were several proposals
for this type of multithreading in the 1990s, both with-
in the context of statically scheduled wide-issue
machines [12, 21] as well as within the context of
dynamically scheduled wide-issue machines [5, 11,
19, 20, 22].

The paper by Tullsen et al. discusses several
issues that need to be considered when implementing
simultaneous multithreading on top of a dynamically
scheduled superscalar processor. They show how the
basic mechanisms of a superscalar processor could be
extended to allow multiple simultaneous processing of
instructions from multiple threads. Though the threads
in this proposal are different programs, it is easy to see
how they could be different parts of the same program.

5.4 Looking Ahead

Despite its promise, the dataflow computing model has
not been adopted in mainstream processor design.
There are several reasons for this. First, it is not practical
to give up traditional serial programming languages
and instruction sets entirely. Second, the main source
of the “power” of the dataflow model (no artificial
ordering constraints, and consequently no well-
defined, reproducible state) results in several practical
problems. Perhaps the most important of these is the
difficulty of debugging.? A discussion of some of these
limitations can be found in a paper by Gajski, et al. [8].
The computer architect is then faced with the question:
Can we apply some of the principles of dataflow
computing to more practical computing situations?
The answer to this question so far has been a resounding
yes. The dataflow paradigm continues to serve as the
inspiration for many innovations in ILP processors,
whose goal is to achieve dataflow-like execution, but

2parallel machines without artificial ordering constraints (i.e., synchronization) have very similar problems.




starting out with an imperative language and a practical
microarchitecture. Modern dynamically scheduled
superscalar processors are one example of this influence,
called micro dataflow machines by some. In the future,
the dataflow model (coupled with suitable speculation
techniques) is likely to continue to be the inspiration
for many upcoming innovations in exploiting parallelism.
Future innovators are likely to benefit from a thorough
understanding of dataflow concepts and their evolution.
And the dataflow computing model is likely to evolve
to include different forms of speculation, including
speculation that even removes the one ordering constraint
in the dataflow model: data dependences.

Future processors are also likely to be influenced
by multithreading techniques. Recall that one way of
viewing a multithreaded processor is an implementation
of a parallel processor (with several resources that are
shared). As technology allows “parallel processing”
capability to be put on a single chip, different ways of
incorporating “parallel processing” functionality need
to be considered. Multithreading techniques that are
likely to succeed are techniques that do not hinder
single-thread latency. Ideally, multithreading might
even be used to improve single-program performance
rather than simply be a means for improving multiple-
thread throughput. This can be done using thread-level
speculation, as has been proposed in several recent
research projects [7, 10, 16, 17].

5.5 References

[1] A.Agarwal, B.-H. Lim, D. Kranz, and J.
Kubiatowicz, “APRIL: A processor architecture for
multiprocessing,” Proceedings of the 17th Annual
International Symposium on Computer Architecture,
pp. 104-114, May 1990.

[2] Arvind, K. Gostelow, and W. Plouffe, “An
asynchronous programming language and computing
machine,” Tech. Rep. TR-114a, Department of
Information and Computer Science, University of
California, Irvine, Dec. 1978.

[31  Arvind and R. S. Nikhil, “Executing a program on
the MIT tagged-token dataflow architecture,” IEEE
Transactions on Computers, 39(3):300-318, Mar. 1990.

[4] D.E. Culler and Arvind, “Resource requirements of
dataflow programs,” Proceedings of the 15th Annual
International Symposium on Computer Architecture,
pp. 141-150, May 1998.

[S1 G.E. Daddis, Jr. and H. C. Torng, “The concurrent
execution of multiple instruction streams on superscalar

processors,” International Conference on Parallel
Processing, pp. 1:76-83, Aug. 1991.

[6]

(71

(8]
[l

[10]

[11]

[12]

[13]

[14]

[15]

[16]

References 313

J. B. Dennis and D. P. Misunas, “A preliminary
architecture for a basic dataflow processor,”
Proceedings of the 2nd Annual Symposium on
Computer Architecture, pp. 126—132, Dec. 1974.

P. K. Dubey, K. O’Brien, K. O’Brien, and C.
Barton, “Single-program speculative multithreading
(SPSM) architecture: Compiler-assisted fine-grained
multithreading,” Proceedings of the Conference on
Parallel Architectures and Compilation Techniques,
pp. 109-121, June 1995.

D. Gajski, D. Padua, D. Kuck, and R. Kuhn, “A
second opinion on data flow machines and languages,”
IEEE Computer, pp. 58—69, Feb. 1982.

J. R. Gurd, C. C. Kirkham, and I. Watson, “The
Manchester prototype dataflow computer,”
Communications of the ACM, vol. 28, 1985.

L. Hammond, M. Willey, and K. Olukotun, “Data
speculation support for a chip multiprocessor,”
Proceedings of the 8th International Conference on
Architectural Support for Programming Languages
and Operating Systems, pp. 58-69, Oct. 1998,

H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki,
A. Nishimura, Y. Nakase, and T. Nishizawa, “An
elementary processor architecture with simultaneous
instruction issuing from multiple threads,”
Proceedings of the 19th Annual International
Symposium on Computer Architecture, pp. 136-145,
May 1992.

S. W. Keckler and W. J. Dally, “Processor coupling:
Integrating compile time and runtime scheduling for
parallelism,” Proceedings of the 19th Annual
International Symposium on Computer Architecture,
Queensland, Australia, pp. 202-213, 1992.

G. M. Papadopoulos and D. E. Culler, “Monsoon:
An explicit token-store architecture,” Proceedings of
the 17th Annual International Symposium on
Computer Architecture, pp. 82-91, May 1990.

T. Shimada, K. Hiraki, K. Nishida, and S.
Sekiguchi, “Evaluation of a prototype data flow
processor of the SIGMA-1 for scientific computations,”
Proceedings of the 13th Annual International
Symposium on Computer Architecture, pp. 226-234,
June 1986.

B. Smith, “Architecture and applications of the HEP
multiprocessor computer system,” Proceedings of
the International Society for Optical Engineering,
pp. 241-248, 1982.

G. S. Sohi, S. E. Breach, and T. N. Vijaykumar,
“Multiscalar processors,” Proceedings of the 22nd

Annual International Symposium on Computer
Architecture, pp. 414-425, June 1995.



314

[17]

[18]

[19]

Chapter 5/ Dataflow and Multithreading

J. G. Steffan and T. C. Mowry, “The potential for
using thread-level data speculation to facilitate
automatic parallelization,” Proceedings of the 4th
International Symposium on High-Performance
Computer Architecture, Feb. 1998.

R. M. Tomasulo “An efficient algorithm for exploiting
multiple arithmetic units,” IBM Journal of Research
and Development, pp. 25-33, Jan. 1967.

D. M. Tullsen, S. J. Eggers, and H. M. Levy,
“Simultaneous multithreading: Maximizing on-chip
parallelism,” Proceedings of the 22nd Annual
International Symposium on Computer Architecture,
pp- 392-403, June 1995.

[20]

[21]

[22]

D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy,
J.L. Lo, and R. L. Stamm, “Exploiting choice:
Instruction fetch and issue on an implementable
simultaneous multithreading processor,”
Proceedings of the 23rd Annual International
Symposium on Computer Architecture, pp. 191-202,
May 1996.

A. Wolfe and J. P. Shen, “A variable instruction
stream extension to the VLIW architecture,”
Proceedings of the 4th International Conference on
Architectural Support for Programming Languages
and Operating Systems, pp. 2-14, Apr. 1991.

W. Yamamoto and M. Nemirovsky, “Increasing
superscalar performances through multistreaming,”
Proceedings of the Conference on Parallel
Architectures and Compilation Techniques, pp.
49-58, June 1995.




