
Runahead Threads to Improve SMT Performance

Tanausú Ramı́rez1, Alex Pajuelo1, Oliverio J. Santana2, Mateo Valero1,3

1Universitat Politècnica de Catalunya, Spain. {tramirez,mpajuelo,mateo}@ac.upc.edu.

2Universidad de Las Palmas de Gran Canaria, Spain. ojsantana@dis.ulpgc.es

3Barcelona Supercomputing Center, Spain.

Abstract

In this paper, we propose Runahead Threads (RaT)
as a valuable solution for both reducing resource con-
tention and exploiting memory-level parallelism in Si-
multaneous Multithreaded (SMT) processors. Our
technique converts a resource intensive memory-bound
thread to a speculative light thread under long-latency
blocking memory operations. These speculative threads
prefetch data and instructions with minimal resources,
reducing critical resource conflicts between threads.

We compare an SMT architecture using RaT to both
state-of-the-art static fetch policies and dynamic re-
source control policies. In terms of throughput and
fairness, our results show that RaT performs better
than any other policy. The proposed mechanism im-
proves average throughput by 37% regarding previous
static fetch policies and by 28% compared to previous
dynamic resource scheduling mechanisms. RaT also
improves fairness by 36% and 30% respectively. In ad-
dition, the proposed mechanism permits register file size
reduction of up to 60% in a SMT processor without per-
formance degradation.

1. Introduction

Simultaneous Multithreading (SMT) [18][21] is a
modern architectural design based on executing multi-
ple instructions from multiple threads at the same time.
This paradigm focuses on sharing different processor
resources to overlap execution of different threads to
enhance performance. However, in SMT environments,
threads not only share important resources, but also
compete for them in processor core. The different char-
acteristics and requirements of every thread can unbal-
ance resource allocation. Some threads will consume
more resources than others, degrading overall perfor-
mance seriously and hindering the benefit of multi-
threaded execution.

To overcome this situation, different fetch policies
and resource schedulers have been proposed. A fetch
policy decides which threads can feed the processor

with new instructions to exploit available resources.
A resource scheduler controls the resource allocation
among threads, trying to avoid resource monopoliza-
tion. These resource control policies stall or flush
threads under determined conditions to prevent re-
source overuse.

The worst case happens when threads with poor
cache behavior (memory-bound threads) are executed.
A memory-bound thread can block the reorder buffer,
because following instructions can neither issue nor
commit while waiting for long-latency memory oper-
ations. Besides, a lot of critical resources may have
already been assigned to this thread, starving other
threads of required resources and preventing their for-
ward progress. This effect would likely lead to global
performance degradation in SMT processors.

However, if we stall threads during memory inten-
sive periods, they will advance too slowly. Conse-
quently, the available memory-level parallelism is not
exploited, failing to reach the potential performance
achievable. Current resource policies do control ac-
tions, either stalling or flushing threads, which harm
performance opportunities of memory-bound threads
to unfairly benefit fast threads. Also, these policies can
sometimes produce a resource under-utilization situa-
tion, preventing a stalled thread from using resources
that no other thread requires.

In this paper, we propose Runahead Threads
(RaT) to exploit this memory-level parallelism while
reducing resource contention in SMT processors.
Runahead[5][11] execution is a mechanism whose goal
is to bring speculative data and instructions into the
caches. We propose a new utilization of the Runa-
head mechanism on SMT processors as a different, fair
memory-aware fetch policy to improve performance of
memory-bound threads without harming ILP threads.

Our technique applies Runahead execution to any
running thread when a long-latency load is pending.
Thus, when a thread undergoes a long-latency load,
it turns into a runahead thread. That is, it enters
into a speculative light mode. While being a runa-
head thread, this thread uses the different resources



during short time without limiting the available re-
sources for other threads. At the same time, the is-
sued prefetches increase the memory-level parallelism,
improving its own performance. In other words, our
proposal transforms an eager resource thread into a
light-consumer thread with fast instruction stream ex-
ecution. With this ability, RaT allows memory-bound
threads to advance speculatively, instead of stalling the
thread, doing beneficial work without disturbing the
other threads.

Our evaluation shows that RaT improves through-
put for different kinds of workloads with respect to
previous I-fetch polices and dynamic resource schedul-
ing techniques. This improvement is especially high
for memory-bound workloads, which performs, on av-
erage, 83% and 65% better respectively. In addition,
this throughput improvement is achieved with a signif-
icant overall balance between performance and fairness
(70% and 56%) in a power-efficient way (better ED2).
Finally, we show that the presented mechanism allows
to reduce the size of the register file (up to 60%) of an
SMT processor without penalizing performance.

The rest of this paper is organized as follows. Firstly,
Section 2 discusses previous related work. We describe
Runahead Threads in detail in Section 3. Section 4
describes our experimental environment and simulation
tool. We evaluate RaT with regard to state-of-the art
fetch and resource allocation policies in Section 5. In
Section 6 we analyze the sources of improvement and
the benefits of RaT. Finally, concluding remarks are
given in Section 7.

2. Related Work

In the context of SMT processors, several specula-
tive multithreading approaches try to exploit thread
level parallelism by speculatively spawning threads:
TME [20], SSMT [2] and DDMT [12]. Most of these
pre-computation or pre-execution techniques directly
execute a subset of the original program on separate
processor contexts to speed up the main computation
thread. These additional threads are commonly called
helper or assisted threads. Recent proposals [4][22] dy-
namically construct code slices (p-slices) via hardware
to execute in helper threads (p-threads) which perform
pre-computation and prefetching. These techniques re-
quire the construction of efficient p-slices and the in-
sertion of special instructions in the code.

Runahead Threads share some aspects with these
pre-execution techniques. However, they use a differ-
ent approach. They try to accelerate single running
threads by spawning helper threads to pre-execute a
shortened version of the program. Then, they employ
several contexts and processor resources to improve
the performance of that single main thread. Unfortu-
nately, spawning separate threads and communication

between them with the main thread can be complex
and detrimental for performance.

On the contrary, our mechanism does not spawn
new threads nor insert specific instructions. Our ap-
proach uses the same thread context to take benefit of
long-latency useless memory access periods. In these
periods, we apply Runahead Threads (RaT) to both
exploit the memory-level parallelism and alleviate re-
source contention among threads. That is, we switch
the critical thread into a light speculative thread that
uses as few resources as possible to improve its perfor-
mance.

SMT processors in literature include fetch policies
and resource allocation schedulers that work together
to alleviate resource contention. Initial fetch policies,
like Round Robin [18] and ICOUNT [18], only deter-
mine which threads feed the processor pipeline and
which are left out, assigning different priority to each
thread. Several techniques built on top of ICOUNT
were proposed later to prevent threads blocked by
memory operations from monopolize the shared re-
sources. STALL [17] detects that a thread has a pend-
ing L2 miss and stops fetching further instructions.
The allocated resources are held until the L2 miss is
solved. FLUSH [17] minimizes this problem by flush-
ing the instructions of a thread during a long-latency
memory operation. The victim thread de-allocates all
of its resources, making them available to other execut-
ing threads at the cost of increasing its re-start latency.

These static policies never control the per-thread re-
source utilization. They only make decisions based on
static criteria or events to release resources. Therefore,
even if they try to prevent resource monopolization,
they can sometimes cause resource under-utilization if
other threads do not require the deallocated resource.
Recently, some dynamic resource control policies have
been proposed. DCRA [1] directly monitors the us-
age of resources by each thread, trying to guarantee
that all threads get a fair amount of the critical shared
resources. Hill Climbing [3], instead of monitoring
the resource indicators, varies the resource allocation
of multiple threads by using the gradient descent al-
gorithm to improve throughput. In both techniques,
when a thread exceeds its assigned resource sharing, it
is stalled until that utilization decreases.

The MLP-aware fetch policy presented in [15] is a re-
cent proposal that is related to our work. However, un-
like our technique, it executes only some extra instruc-
tions indicated by a memory-level parallelism (MLP)
predictor. After that, it stalls or flushes the thread.
The number of speculative instructions executed is lim-
ited by the hardware setup of the MLP predictor (e.g.
the long-latency shift register size). This limitation re-
duces the opportunities to improve performance, since
not all distant MLP can be exploited.



Finally, a recent work [13] in the SMT context pro-
poses a mechanism to release physical registers early
belonging to those instructions that are independent of
an L2 cache miss. The basis of this mechanism consists
of traversing the ROB several times to identify which
registers can be early deallocated (those that are not
dependent on the L2-miss load). However, even if the
idea is simple, the hardware overhead of the proposed
mechanism is not when compared to our proposal.

3. Introducing Runahead Threads

Runahead execution is a well-known mechanism
whose goal is to bring speculative data and instruc-
tions into the caches. It was first proposed for in-order
processors [5] to improve the data cache performance.
It was later extended for out-of-order processor as a
simple alternative to large instruction windows [11]. In
this sense, Runahead consists of avoiding the blockage
of the instruction window due to long-latency opera-
tions (eg. a load that misses in the L2-cache). In-
stead, the processor continues executing instructions
speculatively, trying to follow the most likely program
path until the load that triggered the runahead mode
is resolved. The runahead benefit comes from the pre-
execution of these speculative instructions which im-
proves the data and instruction cache efficiency.

3.1. Runahead Operation

Runahead execution prevents the reorder buffer
(ROB) from stalling on long-latency memory opera-
tions by executing speculative instructions. When a
memory operation that missed in the L2 cache reaches
the head of the ROB, a checkpoint of the architectural
state is taken. After that, the processor assigns an in-
valid or bogus value to the destination register of the
memory instruction that caused the L2 miss and enters
in runahead mode. During runahead mode, the proces-
sor continues speculatively executing instructions and
pseudo-retiring them out of the instruction window.
All the instructions that operate over the invalid value
will be considered invalid. The propagation of this in-
valid state is made using an invalid bit (INV) associ-
ated with each physical register. These invalid instruc-
tions are folded (not executed) once they are detected
as invalid. The instructions that do not depend on an
invalid value are executed as normal, except that they
do not update the architectural registers and memory
state.

Once the memory access that started runahead
mode is resolved, the processor rolls back to the ini-
tial checkpoint and resumes normal execution. As a
consequence, all the speculative work done by the pro-
cessor is discarded. Nevertheless, this execution is not
completely useless since Runahead execution will gen-

erate useful data and instruction prefetches, improving
the behavior of the memory hierarchy during real exe-
cution.

3.2. Runahead Threads

Resource conflicts are an important drawback for
SMT processor performance. Our idea is to use Runa-
head Threads to transform a resource intensive thread
(memory-bound thread) into a light-consumer thread
with fast instruction stream execution. This allows
threads to go forward, doing speculative prefetches
without limiting the available resources for other
threads.

When a thread is turned into a Runahead Thread,
the invalid instructions do not use processor resources
since they are pseudo-retired immediately. Other long-
latency loads are also invalidated just like the load that
started the runahead mode, performing the memory
access only as a prefetch. The rest of the valid in-
structions executed in the runahead thread are usu-
ally short-latency instructions that use different re-
sources for short periods of time. Therefore, Runahead
Threads are much less aggressive than normal threads
with the valuable processor resources, allocating and
deallocating them in short periods of time. Besides,
the issued prefetches in runahead increase the memory-
level parallelism of threads. So, Runahead Threads
allow the threads to do useful processing instead of
stalling for several cycles due to resource contention.

3.3. Implementation details

The adaptation of runahead to SMT scenarios is not
straightforward. Now, we describe some relevant de-
sign aspects related to Runahead Threads.
- Checkpoints. Each thread context usually has its
own architectural registers per register file. To cor-
rectly recover the architectural state, each thread only
needs to checkpoint the contents of its architectural
registers. A copy of the full physical register file is un-
necessary. Otherwise, the checkpoint would include the
register information of all threads, taking long time.
- Register control. A runahead thread also needs
the INV bit vector to identify the validity of computed
values because, in case of an invalid one, its value is
unimportant. Then, to adapt the runahead operation
to a multithreaded environment, each thread has its
own INV bit vector to track the propagation of register
invalidations. An instruction with an invalid operand
is not executed and when it reaches the commit stage,
it is pseudo-retired in program order. If it is a valid
instruction, it updates its physical destination register
and pseudo-retires. So, when a physical register is in-
valid (INV bit set to 1) this can be freed and used for
the rest of the threads.



-Runahead cache. Mutlu et al. [11] introduce
the runahead cache to provide communication of data
and invalid status between runahead loads and stores.
Based on this information, some loads dependent on
stores can be identified as valid or invalid. Neverthe-
less, there are some cases in which this memory depen-
dency cannot be identified. For example, a store that
has an invalid effective address cannot save its status
or data in the runahead cache.

From the SMT point of view, using a runahead cache
can be expensive in terms of hardware. The runahead
cache needs to be large to avoid line contention among
threads. Likewise, it is necessary to include a new iden-
tification tag for each thread to distinguish the block
owner. We measure the performance with and with-
out the runahead cache to consider the need to include
it in the RaT proposal and we found that using the
runahead cache does not have significant impact on
performance in our SMT model1. Based on this result
and the fact that a runahead cache implies the use of
more area in the SMT core, we decide not to use it in
our RaT implementation. The functional difference is
that some loads dependent on previous retired stores
use stale values for speculative memory accesses, but it
just affects Runahead execution, i.e., it does not affect
correct program execution.
-Floating-point resources. Runahead Threads im-
prove the performance of the SMT processor mainly
due to the pre-execution of memory operations. Gen-
erally, the computation of the address for memory ac-
cesses involves a base register plus an offset. This is
an integer arithmetic operation, so floating-point (FP)
instructions are not needed to compute the effective ad-
dress. According to this observation, we can decrease
the resource demand of Runahead Threads by avoiding
the execution of FP instructions in Runahead Threads.

This modification was considered for runahead ex-
ecution in out-of-order processors [10]. We apply it
here again for an additional benefit in the SMT envi-
ronment. If a runahead thread does not execute FP in-
structions, it does not need the floating-point resources
of the SMT processor. So, once an instruction is de-
tected to be an FP operation in the decode stage, it
is invalidated and directly proceeds to pseudo-commit.
With this modification, FP instructions in a runahead
thread do not use any processor resources after they
are decoded. Therefore, the FP issue queue, the FP
functional units, and the FP physical register file are
not used by most FP runahead instructions. The ex-
ceptions are FP loads and stores, which are treated as
prefetch instructions because their effective addresses
are obtained in the integer pipeline.

1In [11], the performance deviation without RA cache in
SPEC2000 is also very small for a single-threaded out-of-order
processor.

- Synchronization. Finally, an important issue in the
context of SMT processors is that there can be both in-
dependent and parallel programs. The latter normally
uses a scheme that allows threads to synchronize each
other within the processor. The basic mechanism re-
lies on block, acquire, and release instructions to per-
form thread synchronization. In the case that a parallel
thread switches to a runahead thread, these instruc-
tions are ignored. The instructions inside the critical
section are speculatively executed but do not modify
program state avoiding data inconsistency among par-
allel threads.

4. Experimental Framework

Our simulation environment is based on an SMT
execution-driven simulator derived from SMTSIM [16].
We have extended the simulator to support simulation
checkpoints and a more precise memory hierarchy. We
have implemented Runahead Threads in this simula-
tor, as well as other fetch and resource scheduling tech-
niques for comparison purposes.

Current SMT models use dynamic resource parti-
tioning, which allows threads to improve their perfor-
mance by allocating idle shared resources. This can-
not be done in the case of a statically partitioned or
monolithic SMT design, since each context has a fixed
resource pool assigned. Thus, statically partitioned de-
signs lead to a lack of flexibility far from the SMT ideal.
In our SMT model, we use a complete resource sharing
organization to benefit from the dynamic design ad-
vantages. The threads coexist in the different proces-
sor stages, sharing the issue queues, the reorder buffer
(ROB), the physical registers, the functional units, and
the caches. Table 1 lists the main configuration param-
eters of this simulated SMT processor.

Table 1. SMT processor baseline configuration
Processor core

Processor depth 10 stages
Processor width 8 way
Reorder buffer size 512 shared entries
INT/FP registers 320 / 320
INT/FP/LS issue queues 64 / 64 / 64
INT/FP/LdSt units 6 / 3 / 4
Branch predictor Perceptron

Memory subsystem
Icache 64 KB, 4-way, 1 cyc pipelined
Dcache 64 KB, 4-way, 3 cyc latency
L2 Cache 1 MB, 8-way, 20 cyc latency
Caches line size 64 bytes
Main memory latency 400 cycles

As we can observe, the simulated processor uses a
shared ROB for all the hardware threads. Using a
separate ROB per thread would probably require less
hardware complexity to implement Runahead Threads.



Table 2. SMT simulation workload classification
ILP2 MIX2 MEM2 ILP4 MIX4 MEM4

apsi,eon applu,vortex applu,art apsi,eon,fma3d,gcc ammp,applu,apsi,eon art,mcf,swim,twolf
apsi,gcc art,gzip art,mcf apsi,eon,gzip,vortex art,gap,twolf,crafty art,mcf,vpr,swim

bzip2,vortex bzip2,mcf art,twolf apsi,gap,wupwise,perl art,mcf,fma3d,gcc art,twolf,equake,mcf
fma3d,gcc equake,bzip2 art,vpr crafty,fma3d,apsi,vortex gzip,twolf,bzip2,mcf equake,parser,mcf,lucas

fma3d,mesa galgel,equake equake,swim fma3d,gcc,gzip,vortex lucas,crafty,equake,bzip2 equake,vpr,applu,twolf
gcc,mgrid lucas,crafty mcf,twolf gzip,bzip2,eon,gcc mcf,mesa,lucas,gzip mcf,twolf,vpr,parser
gzip,bzip2 mcf,eon parser,mcf mesa,gzip,fma3d,bzip2 swim,fma3d,vpr,bzip2 parser,applu,swim,twolf
gzip,vortex swim,mgrid swim,mcf wupwise,gcc,mgrid,galgel swim,twolf,gzip,vortex swim,applu,art,mcf
mgrid,galgel twolf,apsi swim,vpr
wupwise,gcc wupwise,twolf twolf,swim

However, we have chosen the shared ROB design to
expose the mechanism to any possible critical resource
contention. The additional complexity mainly lies in
selectively squashing the speculative instructions once
the runahead mode finishes. Nevertheless, this proce-
dure is already implemented in an SMT processor with
a shared ROB to recover from branch mispredictions.

The experiments were performed with workloads
created from the SPEC 2000 benchmark suite. All
benchmarks were compiled on an Alpha AXP-21264
using the Compaq C/C++ compiler with the -O3 opti-
mization level to obtain Alpha standard binaries. For
each benchmark, we select an interval of 300 million
instructions representative of entire program execution
using the reference input set. To identify the most rep-
resentative simulation point, we have analyzed the dis-
tribution of basic block execution using SimPoint[14].
Measurements are then taken using the FAME[19] eval-
uation methodology. FAME re-executes all traces in a
multithreaded workload until all of them are fairly rep-
resented in the final measurements.

To create the multithreaded workloads, we consider
only workloads composed of 2 or 4 threads. Several
studies [6][8] have shown that SMT performance sat-
urates or even degrades for workloads with more than
4 threads. We characterize the benchmarks based on
the L2 cache miss rate of each program simulated in a
single-threaded processor. Next, we group them into
three types of workloads: high instruction-level paral-
lelism threads (ILP), memory-bound threads (MEM),
and a mixture of both (MIX). Table 2 shows our sim-
ulation workloads identified by the number of threads
they contain and the thread types. Note that we choose
large groups of workloads to avoid result deviation due
to the specific behavior of a particular workload.

5. Comparative Evaluation

Now, we evaluate the performance and fairness of
RaT compared to previous proposals based on instruc-
tion fetch and resource control policies.

We use two metrics for the evaluation. One is the
performance (IPC) throughput, measured as the aver-
age sum of IPC of all running threads in a workload:

Throughput =
∑n

i=1 IPCMT,i

n
(1)

The other metric represents the fairness-
performance balance, proposed in [9], which is
the harmonic mean of IPC speedup of each thread
compared to its single thread performance:

Fairness =
n∑n

i=1
IPCST,i

IPCMT,i

(2)

with IPCMT,i and IPCST,i being the IPC for thread
i in multithreaded and single-threaded mode respec-
tively, and n being the number of threads.

5.1. RaT and I-Fetch Policies
An instruction fetch (I-Fetch) policy determines

which thread is going to fetch instructions in a given cy-
cle. We compare two I-fetch schemes for handling long-
latency loads, STALL and FLUSH [17], with RaT. All
of them are compared to the ICOUNT policy, which
we use as the reference baseline.

Figure 1 shows the throughput (a) and the fair-
ness (b) of these techniques for the different workloads.
From the performance point of view, FLUSH outper-
forms STALL, but RaT is clearly ahead of both. In
Figure 1(a), among the three types of workloads, RaT
has the best performance mainly for memory-bound
workloads, namely 83% and 70% better than FLUSH
for 2 and 4 threads respectively. The fact that RaT
exploits the memory-level parallelism during runahead
mode avoids the need for stalling or flushing a thread,
and thus it does not slow down the program progress.

Figure 1(b) compares the fairness of the differ-
ent static techniques evaluated here. In this Figure,
a higher bar is interpreted as better. Again, RaT
achieves the best results in terms of fairness. Al-
though the performance improvement for ILP work-
loads is moderate (10% for ILP4), it is more impressive
for MEM workloads: RaT gets 55% and 63% improve-
ment over FLUSH for 2-thread and 4-thread workloads
respectively. We also observe that the fairness for both
STALL and FLUSH has little deviation, being close
to ICOUNT for all 4-thread workloads. Furthermore,
STALL loses around 10% for MEM workloads.



(a) Throughput (IPC) (b) Fairness

Figure 1. Throughput and Fairness relative to workloads for different I-Fetch policies.

5.2. RaT and Resource Control Policies

Here, we compare RaT with two dynamic policies.
DCRA [1] that makes resource scheduling decisions
based on resource utilization and HillClimbing [3] that
follows a strategy guided by performance. Regarding
HillClimbing, we use the performance function based
on the throughput (named Hill-Thru in [3]). The other
two possibilities for the performance function (with
weighted speedup and harmonic mean) use the IPC
of each benchmark as a single thread as an external
input. In this sense, we consider these options for Hill-
Climbing highly dependent on the variability of the
program characteristics. They require the repetition of
the single program execution for different inputs and
each thread in a real multithreaded processor to guide
the mechanism.

Figure 2 shows the IPC throughput (a) and fair-
ness (b) for ICOUNT (baseline), DCRA, HillClimb-
ing and RaT respectively. As Figure 2(a) shows, all
evaluated techniques perform better than the baseline
ICOUNT. The DCRA policy manages the situation
well when there are ILP threads, and slightly outper-
forms HillClimbing (4% for ILP2 and 5% for ILP4)
in these cases. For HillClimbing the fast execution
of phases of the ILP workloads avoids a fine adjust-
ment in the performance function, which controls the
resource scheduling. However, HillClimbing performs
better than DCRA for MIX workloads (14% for MIX2
and 12% for MIX4), since it better controls the dif-
ferent performance characteristics of the programs to
guide the resource requirements.

Nevertheless, we remark that RaT achieves higher
throughput than any of the other resource control poli-
cies for all workloads. Like static policies, RaT in-
creases considerably the performance of MEM work-
loads. RaT has a throughput improvement of 75%
for MEM2 workloads and 74% for MEM4 workloads
over DCRA, and 53% and 58% respectively over Hill-

Climbing. These results (65% on average) prove that
it is more preferable to exploit the memory-level paral-
lelism than strictly limiting the resources or stalling the
threads. The penalty of a long-latency memory access
has a bigger impact than the cycle penalties of resource
conflicts. If we alleviate the former, we ease the latter,
while avoiding any possible resource monopolization.

In the case of fairness, shown in Figure 2(b), RaT
achieves better results than the other policies. Es-
sential is the fact that RaT considerably outperforms
ICOUNT for all 4-thread workloads, whereas DCRA
and HillClimbing lose fairness in some cases. Like-
wise, RaT fairness is also quite good for MEM work-
loads: 57% better than DCRA and 54% better than
HillClimbing.

Therefore, although RaT does not have any knowl-
edge about the direct resource allocation among
threads, it lets threads use a fair amount of resources
to allow speculative execution to improve the perfor-
mance. The advantage comes from the right inter-
action between the fast runahead threads and nor-
mal threads, which means that both memory-bound
threads and the other threads obtain performance im-
provements using the available resources. However, we
want to remark that the techniques evaluated in this
subsection (both DCRA and HillClimbing) are orthog-
onal to the mechanism proposed in this paper, i.e., it is
possible to incorporate an additional resource control
mechanism to avoid possible inefficient resource utiliza-
tion among normal and speculative threads. Logically,
handling this new situation requires the adaptation and
modification of the policies. We leave this study for fu-
ture work.

5.3. Efficiency: Performance and Energy

Runahead Threads involve speculative execution,
which translates into a higher number of executed
instructions. Among the previously evaluated tech-



(a) Throughput (IPC) (b) Fairness

Figure 2. Throughput and Fairness relative to workloads for different resource control policies.

niques, FLUSH is the only other technique that exe-
cutes additional instructions. This is due to the fact
that FLUSH executes twice the instructions issued un-
til the long-latency load detection point is reached, at
which point these instructions are squashed. There-
fore, the drawback of these techniques is that they
generate extra instruction re-execution, increasing the
overall energy consumption.

We evaluate the efficiency of the performance gain
achieved and the additional energy consumed by each
technique. To measure this efficiency, we use the com-
monly accepted Energy-Delay2 metric [7]. This metric
relates the processor power consumption to its perfor-
mance. In our case, we measure the energy as the num-
ber of executed instructions. Although the wasted en-
ergy depends on the particular instructions executed,
we assume that all the instructions consume the same
amount of energy to simplify the analysis. The delay
is counted as the average CPI, leading to this formula:

ED2 = Num Executed Instr. * CPI2

This formula provides an approximation of how effi-
ciently the instructions are executed in terms of energy
consumption. In Figure 3 we show the ED2 for the
evaluated techniques from left to right for each group
of workloads. The bars are normalized to the ICOUNT
values. Each bar may be interpreted as the higher the
bar is, the more energy that is wasted per executed
instruction compared to ICOUNT.

As shown in Figure 3, in spite of executing ex-
tra instructions, RaT provides excellent ED2 results
for the evaluated mechanisms. On average, RaT has
0.6 ED2 for 2-thread workloads and 0.78 ED2 for
4-thread workloads with regard to ICOUNT, while
FLUSH presents 0.78 ED2 for both workloads. In
the MIX4 workloads, HillClimbing achieves better ED2
due to its good throughput and the smaller number of
executed instructions. Except for this particular case,

Figure 3. Energy-Delay2

the SMT processor consumes less energy per commit-
ted instruction using RaT while obtaining better per-
formance.

6. RaT Benefits

Once RaT has been evaluated, we evaluate the
sources of its benefit. One interesting point is how
much threads are being improved by using Runahead
Threads. This overall improvement comes from two
distinct factors: (i) each thread itself is faster be-
cause of the prefetching effect via Runahead execution
and (ii) Runahead Threads release resources to other
threads. The former increases the memory-level paral-
lelism whereas the latter reduces resource contention.
In this section we make an analysis to distinguish the
partial contribution of these two important factors, and
complete the study with the register file impact.

6.1. Sources of Improvement

To isolate the sources of improvement of the pro-
posed mechanism we have performed the following ex-
periments:



Figure 4. Sources of Improvement of RaT

-Prefetching. First, to measure the benefit of
prefetching, we disable any access to the L2 cache
during Runahead. Threads effectively turn into RaT
but they perform no prefetch. In addition, loads and
branches are tracked during Runahead mode to ensure
that the runahead periods are the same in both nor-
mal RaT and RaT without prefetching. So, L2 miss
loads found during RaT (without prefetching) will not
switch again to RaT when they are encountered after
recovering from Runahead.

The leftmost bar in Figure 4 shows the perfor-
mance improvement of RaT compared to RaT without
prefetching. Prefetch accounts, on average, for about
58% of the performance improvement. MIX and MEM
workloads are the ones that benefit the most from this
effect (56% and 109% respectively).

-Resource Availability. The resource availability
comes from two points. Invalid instructions during
Runahead do not hold resources because they are not
executed. Secondly, instructions executed in Runahead
present short latencies, meaning that registers are al-
located for short periods of time.

In the next experiment, we prevent threads in Runa-
head mode from fetching more instructions when a load
missing in the L2 cache is detected. Therefore, after the
execution of already fetched instructions, RaT will not
execute any more instruction, allowing other threads to
exploit the available resources. The result of this ex-
periment will serve as a measure of the benefit of early
resource release by RaT.

The second bar in Figure 4 shows the performance
improvement of this source of benefit. Although on
average, the resource availability seems to improve the
overall performance marginally (3%), this positive ef-
fect is mainly important for MIX workloads (22%).
From the ILP-threads point of view, RaT behave
like the flush mechanism for memory-bound threads:
they release resources associated to invalid instructions
while the L2 miss is being served. This fact enhances
the execution of ILP threads since more resources are
available.

-Overhead. Finally, we present the possible raw over-
head of Runahead execution in SMT processors. In this
case, we try to determine if the extra work performed
in Runahead mode could disturb the other threads in
the processor. As an approximated measure of this
overhead, we examine if the remaining threads in the
processor have any performance degradation when a
RaT is executing without prefetched data. Notice that
this is the worst case scenario since all the speculative
work during Runahead mode is useless (no prefetch is
performed and a lot of extra speculative work is exe-
cuted).

The rightmost bar in Figure 4 shows that there is
only a negligible 4% performance degradation. This de-
mostrates that the periods of Runahead do not hurt the
performance of the processor even if no useful prefetch-
ing is performed. As a result, RaT gets the full benefit
of prefetching, without observing any effects of inter-
ference from the Runahead threads.

6.2. Impact on Register File

To complement the previous experiments, we select
the register file as a case study of early resource re-
lease advantages obtained by RaT. Figure 5 shows the
average amount of allocated physical registers per cy-
cle for each kind of workload. There are two bars per
workload. The left bar shows the average number of
allocated physical registers per cycle in normal mode.
The right bar shows the average number of allocated
physical registers per cycle in runahead mode. This
data clearly show that programs in runahead mode use
less registers than in normal execution. In particular,
memory-bound workloads with RaT use less than half
the number of registers they would use without this
mechanism.

Figure 5. Average physical registers used per cy-
cle between normal and RA modes

The register file is an important shared resource in-
side an SMT processor, and its size is one of the key
issues in SMT design. This parameter, related to the
ISA, sets the number of threads that an SMT processor
is able to simultaneously execute in its core. With N



(a) 2-thread Workloads (b) 4-thread Workloads

Figure 6. Throughput (IPC) relative to workloads for different register file size.

logical registers, N physical registers are needed and re-
served for keeping the precise state of every thread. For
example, in a 4-threaded SMT with an Alpha ISA (like
our model) 32*4 = 128 physical registers are needed to
maintain the architectural state of each thread. The
rest of physical registers (i.e. 320 − 128) are avail-
able for sharing between threads. Then, the number
of renaming registers must be large enough to support
several simultaneous threads. However, larger regis-
ter files have higher access times and a more complex
design.

In this sense, we show that RaT additionally allows
reducing the size of the register file. Following this,
we compare the throughput of an SMT processor with
the FLUSH policy (which also releases registers) to an
SMT with RaT reducing the register file size. Figures
6(a) and 6(b) show the throughput for the 2-thread and
4-thread workloads respectively as a function of the
register file size (from 64 to 320 registers). As we can
observe, the throughput decreases when the number of
registers is reduced, especially in the case of 4-thread
workloads. However, this reduction is less dramatic
when the RaT mechanism is used. For instance, the
MEM4 workloads with FLUSH suffer from 27% slow-
down passing from 320 registers to 64. When runahead
threads are applied the slowdown is only 15%. There-
fore, an SMT processor with RaT is less sensitive to
register file size.

On the other hand, if we compare the throughput
of FLUSH for all configurations to RaT with 64 reg-
isters, the latter overcomes the former for almost all
combinations except for the ILP workloads. In fact,
the performance of RaT using 128 physical registers is
better than the performance of FLUSH using 320 phys-
ical registers (reduction of 60%). The performance im-
provement is 4%, 20% and 85% for ILP, MIX and MEM
2-thread workloads while is 0.2%, 21% and 92% for
ILP, MIX and MEM 4-thread workloads respectively.

Therefore, RaT allows using smaller register files with-
out degrading performance, since it reduces the time a
register is allocated making it available sooner to other
instructions.

7. Conclusions

Memory-bound threads can monopolize resources in
SMT processors without making any progress due to
long-latency memory operations, degrading the perfor-
mance of the other threads in the processor. Current
fetch policies and resource control schemes usually re-
strict memory-bound threads in order to get higher
throughputs. However the performance of fast threads
is improved at the cost of degrading the performance
of slow memory-bound threads.

Both Runahead and SMT processors are well-known
microarchitectural techniques. Nevertheless, they are
two different and clearly separate techniques that have
not been considered together before. In this paper we
propose joining both mechanisms to improve the per-
formance of memory-bound threads without prejudic-
ing fast threads.

Runahead Threads are an alternative solution to
alleviate the resource contention in SMT proces-
sors. RaT avoids the possible resource monopoliza-
tion of memory-bound threads, transforming them into
light resource-demand threads and allowing the other
threads to continue executing with the remaining re-
sources. At the same time, memory threads get an
important improvement from prefetching.

We evaluate and compare RaT with state-of-the-
art resource contention techniques. In all cases, we
show the significant advantages of using RaT over these
techniques, especially for memory-bound workloads:
RaT has 83% better throughput over static fetch poli-
cies (FLUSH and STALL). In the case of the perfor-
mance/fairness balance, RaT shows 70% improvement



compared to fetch policies for MEM workloads. Like-
wise, RaT shows 65% and 56% better throughput and
fairness compared to recent dynamic resource schedul-
ing schemes. Overall, RaT outperforms all of them,
with improvements up to 83%.

RaT is also more power-efficient than previous
resource-aware SMT mechanisms. The extra power
consumption is well-balanced for better global perfor-
mance, which shows good efficiency in terms of ED2
(0.7) compared to other techniques. Moreover, it is in-
teresting to note that RaT makes it possible to use
smaller register files without degrading performance
via a simple checkpoint implementation. Therefore,
we conclude that RaT is an interesting choice for SMT
processor designs that would influence the way in which
future SMT processors balance resource usage between
ILP and memory-bound threads.

Acknowledgments

This work has been supported by the Ministry
of Education of Spain under grant AP2003-3682 and
project contracts TIN-2004-07739 and TIN2007-60625,
the HiPEAC European Network of Excellence, and the
Barcelona Supercomputing Center (BSC-CNS).

We would like to thank Dean Tullsen for his useful
suggestions and help on improving this work. We also
like to thank Rick Strong, Ramon Canal, and Manoj
Gupta for their help in preparing the final version of
this manuscript.

References

[1] F. J. Cazorla, A. Ramirez, E. Fernandez, and
M. Valero. Dynamically controlled resource allocation
in smt processors. In Int. Symposium on Microarchi-
tecture (MICRO-37), pages 171–182, 2004.

[2] R. S. Chappell, J. Stark, S. K. Reinhardt, Y. N.
Patt, and S. P. Kim. Simultaneous subordinate mi-
crothreading (ssmt). Int. Symposium on Computer
Architecture (ISCA-26), 00, 1999.

[3] S. Choi and D. Yeung. Learning-based smt processor
resource distribution via hill-climbing. In Int. Sym-
posium on Computer Architecture (ISCA-33), pages
239–251, Washington, DC, USA, 2006.

[4] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen.
Dynamic speculative precomputation. Int. Symposium
on Microarchitecture (MICRO-34), 2001.

[5] J. Dundas and T. Mudge. Improving data cache per-
formance by pre-executing instructions under a cache
miss. In Int. Conference on Supercomputing (ICS-11),
NY, USA, 1997.

[6] R. Gonçalves, E. Ayguade, M. Valero, and P. Navaux.
Performance evaluation of decoding and dispatching
stages in simultaneous multithreaded architectures.
SBAC-PAD, 2001.

[7] R. Gonzalez and M. Horowitz. Energy dissipation in
general purpose microprocessors. IEEE J. Solid-State
Circuits, pages Vol. 31, No. 9, 1996.

[8] S. Hily and A. Seznec. Contention on 2nd level
cache may limit the effectiveness of simultaneous mul-
tithreading. Technical Report PI-1086, INRIA, 1997.

[9] K. Luo, J. Gummaraju, and M. Franklin. Balancing
throughput and fairness in smt processors. In ISPASS,
Tucson - AZ, USA, 2001.

[10] O. Mutlu, H. Kim, and Y. N. Patt. Techniques for ef-
ficient processing in runahead execution engines. In
International Symposium on Computer Architecture
(ISCA-32), pages 370–381, 2005.

[11] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt.
Runahead execution: An alternative to very large in-
struction windows for out-of-order processors. In Int.
Symposium on High-Performance Computer Architec-
ture (HPCA-9), page 129, Washington, DC, USA,
2003.

[12] A. Roth and G. S. Sohi. Speculative data-driven mul-
tithreading. Int. Symposium on High-Performance
Computer Architecture (HPCA-7), 2001.

[13] J. Sharkey and D. Ponomarev. An l2-miss-driven early
register deallocation for smt processors. In Int. Con-
ference on Supercomputing (ICS-21), pages 138–147,
NY, USA, 2007.

[14] T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and sim-
ulation points in applications. In Parallel Architectures
and Compilation Techniques (PACT-10), pages 3–14,
Barcelona, Spain, 2001.

[15] E. Stijn and E. Lieven. A memory-level parallelism
aware fetch policy for smt processors. In Int. Sym-
posium on High-Performance Computer Architecture
(HPCA-13), 2007.

[16] D. M. Tullsen. Simulation and modeling of a simulta-
neous multithreading processor. In Int. Annual Com-
puter Measurement Group Conference, pages 819–828,
1996.

[17] D. M. Tullsen and J. A. Brown. Handling long-latency
loads in a simultaneous multithreading processor. In
Int. Symposium on Microarchitecture, 2007 (MICRO-
34), Washington, DC, USA, 2001.

[18] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy,
J. L. Lo, and R. L. Stamm. Exploiting choice: in-
struction fetch and issue on an implementable simul-
taneous multithreading processor. In Int. Symposium
on Computer Architecture (ISCA-23), pages 191–202,
New York, NY, USA, 1996.

[19] J. Vera, F. J. Cazorla, A. Pajuelo, O. J. Santana,
E. Fernandez, and M. Valero. Fame: Fairly measuring
multithreaded architectures. In Parallel Architectures
and Compilation Techniques (PACT-16), 2007.

[20] S. Wallace, B. Calder, and D. M. Tullsen. Threaded
multiple path execution. In Int. Symposium on Com-
puter Architecture (ISCA-25), pages 238–249, Wash-
ington, DC, USA, 1998.

[21] W. Yamamoto and M. Nemirovsky. Increasing super-
scalar performance through multistreaming. In Paral-
lel Architectures and Compilation Techniques (PACT-
4), pages 49–58, Manchester, UK, 1995.

[22] W. Zhang, D. M. Tullsen, and B. Calder. Accelerat-
ing and adapting precomputation threads for efficient
prefetching. In Int. Symposium on High-Performance
Computer Architecture (HPCA-13), 2007.


