18-742 Fall 2012

Parallel Computer Architecture
Lecture 5: Multi-Core Processors 11

Prof. Onur Mutlu
Carnegie Mellon University
9/17/2012

New Review Assignments

Due: Friday, September 21, 11:59pm.

Smith, “Architecture and applications of the HEP multiprocessor
computer system,” SPIE 1981.

Tullsen et al., “"Exploiting Choice: Instruction Fetch and Issue on
an Implementable Simultaneous Multithreading Processor,” ISCA
1996.

Chappell et al., "Simultaneous Subordinate Microthreading
(SSMT),” ISCA 1999.

Reinhardt and Mukherjee, "Transient Fault Detection via
Simultaneous Multithreading,” ISCA 2000.

Last Lecture: Multi-Core Alternatives

Bigger, more powerful single core

Bigger caches

(Simultaneous) multithreading

Integrate platform components on chip instead
More scalable superscalar, out-of-order engines
Traditional symmetric multiprocessors
Dataflow?

Vector processors (SIMD)?

Integrating DRAM on chip?

Reconfigurable logic? (general purpose?)
Other alternatives?

Today

An Early History of Multi-Core
Homogeneous Multi-Core Evolution

From Symmetry to Asymmetry

Mult1-Core Evolution
(An Early History)

Piranha Chip Multiprocessor

Barroso et al., “Piranha: A Scalable Architecture Based on Single-
Chip Multiprocessing,” ISCA 2000.

An early example of a symmetric multi-core processor
Large-scale server based on CMP nodes
Designed for commercial workloads

Read:

o Barroso et al., "Memory System Characterization of Commercial
Workloads,” ISCA 1998.

o Ranganathan et al., “"Performance of Database Workloads on
Shared-Memory Systems with Out-of-Order Processors,” ASPLOS
1998.

Commercial Workload Characteristics

Memory system is the main bottleneck

o Very high CPI

o Execution time dominated by memory stall times
o Instruction stalls as important as data stalls

o Fast/large L2 caches are critical

Very poor Instruction Level Parallelism (ILP) with existing
techniques

o Frequent hard-to-predict branches
o Large L1 miss ratios
o Small gains from wide-issue out-of-order techniques

No need for floating point and multimedia units

Piranha Processing Node

Alpha core:
1-issue, in-order,
500MHz

Next few slides from
Luiz Barroso’ s ISCA 2000 presentation of

Piranha: A Scalable Architecture
Based on Single-Chip Multiprocessing

Piranha Processing Node

Alpha core:
1-issue, in-order,
500MHz

L1 caches:
I1&D, 64KB, 2-way

1D

Piranha Processing Node

Alpha core:
1-issue, in-order,

L1 caches:
1&D, 64KB, 2-way

Intra-chi itch (ICS
1D 1D 1D 1$ D% ' ;a;(C_;B”?sZ\éV,I f—c§cle)

delay

1D 1D 1D 1D

Piranha Processing Node

Alpha core:
1-issue, in-order,
500MHz
L1 caches:
|1&D, 64KB, 2-way
Intra-chip switch (ICS)
32GB/sec, 1-cycle
delay
L2 cache:
shared, 1MB, 8-way

Piranha Processing Node

Alpha core:
1-issue, in-order,
500MHz
L1 caches:
|1&D, 64KB, 2-way
Intra-chip switch (ICS)
32GB/sec, 1-cycle
delay
L2 cache:
shared, 1MB, 8-way
Memory Controller
(MC)
RDRAM, 12.8GB/sec

DS e YN N D M N M M M D M M Y M

Piranha Processing Node

Alpha core:
1-issue, in-order,
500MHz
L1 caches:
|1&D, 64KB, 2-way
Intra-chip switch (ICS)
32GB/sec, 1-cycle
delay
L2 cache:
shared, 1MB, 8-way
Memory Controller (MC)
RDRAM, 12.8GB/sec
Protocol Engines (HE &
RE)
uprog., 1K ninstr.,
even/odd interleaving

Piranha Processing Node

Alpha core:
4 Links 1-issue, in-order,
@ 8GBI/s 500MHz

L1 caches:

|1&D, 64KB, 2-way
Intra-chip switch (ICS)

32GB/sec, 1-cycle
delay
L2 cache:

shared, 1MB, 8-way
Memory Controller (MC)

RDRAM, 12.8GB/sec
Protocol Engines (HE &
RE):

uprog., 1K uinstr.,

even/odd interleaving
System Interconnect:

4-port Xbar router

topology independent
el iieieieliele 32GB/sec total
bandwidth

Piranha Processing Node

. Alpha core:
1-issue, in-order,
500MHz
: L1 caches:
i 1&D, 64KB, 2-way
: Intra-chip switch (ICS)
: 32GB/sec, 1-cycle
: delay
: L2 cache:
: shared, 1MB, 8-way
: Memory Controller (MC)
: RDRAM, 12.8GB/sec
: Protocol Engines (HE &
: RE):
i pprog., 1K pinstr.,
: even/odd interleaving
: System Interconnect:
4- port Xbar router

to ndent

Piranha Processing Node

Interconnect Links

r—— — — — — 7/ T/ T/ 0 7 1
| Outpit CPU, te CPU; | |
| [Quene +— Home ? T¢ ? T¢ |
v Engine | [377] JarL1 iL1) act] |

‘J:tl ,_, 2| = 4v 4y 4y Av v
Router 7 2;::;; 4 Intra-Chip Switch |
i 3 N Ay A |
| = Remote L1 |

.1_

| {3':3:11"2 —»(Engine |
-

Direct

Rambus Array

16

Inter-Node Coherence Protocol Engine

Input Stage
(Hardwired)

Execution Stage
(Firmware Conirolled)

Qutput Stage
(Hardwired)

From Packet Switch

\ 4

From Intra-Chip Switch

\ 4

Input Controller (FSM)

v

v

Input Buffers
Fr[

d4—Pp —
|;JTSRF5

—_— — — I.I_I
+ I Conditional Branching

r |\~ — — T Tw, - T

Test & Execution -
Uit o Instn;nun L 4

Output Buffers Microcode

4 <+

I | RAM

v

v

Output Controller (FSM)

v

To Packet Switch

v

To Intra-Chip Switch

Figure 4. Block diagram of a protocol engine.

17

Piranha System

Figure 3. Example configuration for a Piranha system with six
processing (8 CPUs each) and two I/O chips.

18

Piranha I/O Node

[1y
Output CPU PCIX ﬂm
erue *_.]gl ﬂg;.;fe + “ ++
_E - iL1 |dL1
=R Y — 2 I 5
2 Router 7 i ystem & g - Chip Switch
= 3."" Control +.+
= ‘ - tv .
= i
= 4—— Remote +*

Input > ;

Queune Engine MC

L _
Direct

Rambus Array

Figure 2. Block diagram of a single-chip Piranha I/O node.

Sun Niagara (UltraSPARC T1)

= Kongetira et al., “Niagara: A 32-Way Multithreaded SPARC

Processor,” IEEE Micro 2005.

Sparc pipe
Ay MT

Sparc pipe
Ay MT

Sparc pipe
A-way MT

Sparc pipe
Ay MT

Sparc pipe
Ay MT

Sparc pipe
A-way MT

Sparc pipe
Ay MT

Sparc pipe
A-way MT

Crosshar

8]

- - Dram combrol - DlDH
L2 B0 Channal O
-
CCR
. - Chamai [
L2 B1
-
CCR
B " Chamez [
L2 B2
-
b oo DCR
TELM GO .
Channel 3
L2 B3
-
ARAI
and shared functions
D interface

20

Niagara Core

= 4-way fine-grain multithreaded, 6-stage, dual-issue in-order
= Round robin thread selection (unless cache miss)
= Shared FP unit among cores

Fatch | Thread select | Decode | Exacute ‘ Memuory | Wihiteback

Ragister

.y
N

ICache | .| Instruction [= D-Cache =
me butfer=4 | | I Thread I'f-"I][!LII_ - CTLE Crossbar
E:nlmi | Drecode [~ Shifter store interface
T
| L o buffers = 4

[! -
~+— |nstruction bype
Thread selacts Thread |4 ptisses
salact
- PC
Thread lagic
select w4
Mux

logic -s—— Traps and interrupis

= Resource conflicts

21

Niagara Design Point

= Also designed for commercial applications

Table 1. Commercial server applications.

) Memory latency [l Compute latency

Instruction-level Thread-level Working Data
Benchmark Application category parallelism parallelism set sharing
Web38 Web server Low High Large Low
J3B Java application server Low High Large Medium
TPC-C Transaction processing Low High Large High
SAP-2T Enterprise resource planning Medium High Medium Medium
SAP-3T Enterprise resource planning Low High Large High
TPC-H Decision support system High High Large Medium
Single =~
LPE M € MC M [==
TLPIC M] '
{on shared - . Time saved
singleissue |© M T =
pipeline) B M |
-

22

Sun Niagara II (UltraSPARC T2)

= 8 SPARC cores, 8
N— : threads/core. 8 stages. 16 KB
TiorE T 1$ per Core. 8 KB D$ per

Bank0 B -t 3L - - jx* .
1280 |[SPARG SPARE SPARC SPARG I Core. FP, Graphics, Crypto,

L2 Data | (COFESE "Core® Mioie’s “Core® |1 ‘| units per Core.
Bank 1 | ank W

1281 | DSl ot B 08,
L2 L2 1250 T 2% e
MCUO 5 TAG1 | TAGS TAG4 |- | = 4 MB Shared L2, 8 banks, 16-

= way set associative.

= 4 dual-channel FBDIMM
memory controllers.

SPARG SPARS wPARC SPARC
“Core 2 "Cor@ & ~Core I ‘Corg & RDP TDS

= X8 PCIl-Express @ 2.5 Gb/s.

3.

= Two 10G Ethernet ports @
3.125 Gb/s.

23

Chip Multithreading (CM'T)

Spracklen and Abraham, “Chip Multithreading:
Opportunities and Challenges,” HPCA Industrial Session,
2005.

Idea: Chip multiprocessor where each core is multithreaded
o Niagara 1/2: fine grained multithreading
o IBM POWERS5: simultaneous multithreading

Motivation: Tolerate memory latency better
o A simple core stays idle on a cache miss

o Multithreading enables tolerating cache miss latency when
there is TLP

24

CMT (CMP + MT) vs. CMP

Advantages of adding multithreading to each core
+ Better memory latency tolerance when there are enough threads

+ Fine grained multithreading can simplify core design (no need for
branch prediction, dependency checking)

+ Potentially better utilization of core, cache, memory resources

+ Shared instructions and data among threads not replicated
+ When one thread is not using a resource, another can

Disadvantages

- Reduced single-thread performance (a thread does not have the
core and L1 caches to itself)

- More pressure on the shared resources (cache, off-chip
bandwidth) = more resource contention

- Applications with limited TLP do not benefit

25

Sun ROCK

Chaudhry et al., “Rock: A High-Performance Sparc CMT Processor,”
IEEE Micro, 2009.

Chaudhry et al., “Simultaneous Speculative Threading: A Novel Pipeline
Architecture Implemented in Sun's ROCK Processor,” ISCA 2009

Goals:
o Maximize throughput when threads are available

o Boost single-thread performance when threads are not
available and on cache misses

Ideas:

2 Runahead on a cache miss = ahead thread executes miss-
independent instructions, behind thread executes dependent
instructions

o Branch prediction (gshare)

26

Sun ROCK

512 KB

L2$ Bnk

mﬁmmm

512 KB

16 cores, 2 threads
per core (fewer
threads than Niagara
2)

4 cores share a 32KB
instruction cache

2 cores share a 32KB
data cache

2MB L2 cache (smaller
than Niagara 2)

27

Runahead Execution (I)

A simple pre-execution method for prefetching purposes

Mutlu et al., “Runahead Execution: An Alternative to Very
Large Instruction Windows for Out-of-order Processors,”
HPCA 2003.

When the oldest instruction is a long-latency cache miss:
o Checkpoint architectural state and enter runahead mode

In runahead mode:

o Speculatively pre-execute instructions

o The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original miss returns

o Checkpoint is restored and normal execution resumes
28

Runahead Execution (II)

Small Window:

Load 1 Miss Load 2 Miss
Miss 1

Runahead: :
Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Hit i

Saved Cycles

29

Runahead Execution (111)

Advantages

+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path

+ Simple to implement, most of the hardware is already built in

Disadvantages
-- Extra executed instructions

Limitations

-- Limited by branch prediction accuracy

-- Cannot prefetch dependent cache misses. Solution?

-- Effectiveness limited by available Memory Level Parallelism

Mutlu et al., “Efficient Runahead Execution: Power-Efficient Memory
Latency Tolerance,” IEEE Micro Jan/Feb 2006.

30

Performance of Runahead Execution

1.3

12% Hl No prefetcher, no runahead
1.2 B Only prefetcher (baseline)
1.1 B Only runahead
Bl Prefetcher + runahead
1.0 ;
0.9 | 22% 12%

16% S52%

Micro-operations Per Cycle

S95 FP00 INT00 WEB MM PROD SERV WS AVG

Sun ROCK Cores

Load miss in L1 cache starts parallelization using 2 HW threads

Ahead thread
o Checkpoints state and executes speculatively
o Instructions independent of load miss are speculatively executed

o Load miss(es) and dependent instructions are deferred to behind
thread

Behind thread
o Executes deferred instructions and re-defers them if necessary

Memory-Level Parallelism (MLP)
o Run ahead on load miss and generate additional load misses
Instruction-Level Parallelism (ILP)

o Ahead and behind threads execute independent instructions from
different points in program in parallel

32

ROCK Pipeline

_.I IWRF

¥

|-Buffer
Fetch >
I-cache [pipeline
-

Defer
Instr.
Queue

Decode
Pipeline

1 A0 I o o o
IARF
5 A1 ALU |9—— I—v
Instruction
Queue 11l 1
—
—_— Issue BR BR 9
Pipelin
-
¥]
o] FP FP pipeline |-+ FARF
FWRF
— j
—
MEM MEM pipe
i

33

More Powerful Cores in Sun ROCK

Advantages

+ Higher single-thread performance (MLP + ILP)
+ Better cache miss tolerance = Can reduce on-chip cache sizes

Disadvantages

- Bigger cores - Fewer cores = Lower parallel throughput (in
terms of threads).

How about each thread’ s response time?

- More complex than Niagara cores (but simpler than
conventional out-of-order execution) - Longer design time?

34

More Powerful Cores in Sun ROCK

= Chaudhry talk, Aug 2008.

3.00

2.50 7" No
o // Scout
% 2.00 |Buys 12 MB
Q i
% 1.50 — Buys 7 MB /.,/V
Q
< 1.00 40% Better

= Performance
0.50 i

256KB512KB 1iMB 2MB 4MB 8MB 16MB 32MB 64MB
L2 Cache Size

35

More Powerful Cores in Sun ROCK

Chaudhry et al., “Simultaneous Speculative Threading: A Novel Pipeline
Architecture Implemented in Sun's ROCK Processor,” ISCA 2009

Performance Improvement over STALL

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

JBB &P
SAP 8P |EG—_—
SAP 32P W

o
o
ol
Fae
Gy
e
fesie
ol
Fae
s
o
A

OLTP 32P ;:=:=:=:=:=:=:=:=:=:=:
JBB 32P

COMMERCIAL M
COMMERCIAL W

Figure 9: Commercial Performance. v

IBM POWER4

= Tendler et al., “POWER4 system microarchitecture,” IBM]

= Another symmetric multi-core chip...
= But, fewer and more powerful cores

R&D, 2002.
— e —
37

IBM POWER4

2 cores, out-of-order execution

100-entry instruction window in each core
8-wide instruction fetch, issue, execute
Large, local+global hybrid branch predictor
1.5MB, 8-way L2 cache

Aggressive stream based prefetching

38

IBM POWERDS5

= Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

Data

Data

Translation Cache

[e Dynamic
| Branch prediction J instruction
{ selection
Shared S
Program Branch| || Return| | Target e execution
counter nistory| | stack | | cache queues units
tables LSuUO
2 Altemate [FXU0!
lnmlgn G f tio LS
: roup formation - ~ = >
Init;ﬁt;on Instruction decode [— ¢ . s EXUY— S
Dispatch FPUOD
Instruction
translation lem]
Thread BXY
priority Shared- Read CBLJ \write
reqister shared- shared-
mappers register files reqister files
[—_)Shared by two threads [[) Thread O resources [l Thread 1 resources

Data Data

translation | | cache
L2

cache

Figure 4. Power5 instruction data flow (BXU = branch execution unit and CRL = condition register logical execution unit).

39

IBM POWERG

= Leetal., “IBM POWER6
microarchitecture,” IBM J R&D,
2007.

= 2 cores, in order, high
frequency (4.7 GHz)

= 8 wide fetch

= Simultaneous multithreading in
each core

= Runahead execution in each
core

a Similar to Sun ROCK

POWERS chip

High-
frequency
POWERS

SMT2

core

High-
frequency
POWERS

SMT2

cone

e

~2-MB L2

Ia-ME
L3
controller

POWERSG chip

Ultrahigh-
frequency
POWERS
SMT2
core

Ultrahigh-
frequency
POWERS
SMT2
core

|

SMP interconnect
fabrnc

4-MB L2

4MB L2

36-MRB L3 chip

M, Fi

J32-MB
L3
controller

I
¥

I

Memory controller

1
1

Buffer
chips

SMP interconnect

fabric

32-MB L3 chipis)

40

IBM POWERY

Kalla et al., "Power7: IBM’s Next-Generation Server
Processor,” IEEE Micro 2010.

8 out-of-order cores, 4-way SMT in each core

TurboCore mode
o Can turn off cores so that other cores can be run at higher

frequency

41

Large vs. Small Cores

Large Small
Core Core
e Qut-of-order In-order
* Wide fetch e.g. 4-wide - Narrow Fetch e.g. 2-wide
* Deeper pipeline + Shallow pipeline
e Aggressive branch . .
predictor (e.g. hybrid) « Simple branch predictor
o Multiple functional units (e.9. Gshare)
o Trace cache * Few functional units
o Memory dependence
speculation
4 . .. A
Large Cores are power Inefficient:

e.g., 2x performance for 4x area (power)
_ J

42

Large vs. Small Cores

= Grochowski et al., “Best of both Latency and Throughput,”

ICCD 2004.
Large core Small core
Microarchitecture Qut-of-order, In-order
128-256 entry
ROB
Width 3-4 1
Pipeline depth 20-30 9
MNormalized 5-8x 1%
performance
Normalized power 20-50x 1x
MNormalized 4-6x 1%

energy/instruction

43

Tile-Large Approach

Large Large
core core
Large Large
core core
“Tile-Large”

Tile a few large cores

IBM Power 5, AMD Barcelona, Intel Core2Quad, Intel Nehalem
+ High performance on single thread, serial code sections (2 units)
- Low throughput on parallel program portions (8 units)

Tile-Small Approach

Small Small Small Small
core core core core

Small Small Small Small
core core core core

Small Small Small Small
core core core core

Small Small Small Small
core core core core

“Tile-Small”

Tile many small cores

Sun Niagara, Intel Larrabee, Tilera TILE (tile ultra-small)
+ High throughput on the parallel part (16 units)
- Low performance on the serial part, single thread (1 unit)

Can We Get the Best of Both worlds?

Tile Large

+ High performance on single thread, serial code sections (2
units)

- Low throughput on parallel program portions (8 units)

Tile Small
+ High throughput on the parallel part (16 units)

- Low performance on the serial part, single thread (1 unit),
reduced single-thread performance compared to existing single
thread processors

Idea: Have both large and small on the same chip >
Performance asymmetry

46

Asymmetric

Chip Multiprocessor (ACMP)

Large
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small Small Small Small
Large Large core core core core
core core Small Small Small Smal
core core core core
Small Small Small Small
Large Large core core core core
core core Small Small Small Smal
core core core core
“Tile-Large” “Tile-Small”

Provide one large core and many small cores

ACMP

+ Accelerate serial part using the large core (2 units)
+ Execute parallel part on all cores for high throughput (14

units)

47

Accelerating Serial Bottlenecks

Single thread - Large core

Small
core

Small
core

Small
core

Small Small Small Small
core core core core

ACMP Approach

48

Performance vs. Parallelism

Assumptions:

1. Small core takes an area budget of 1 and has
performance of 1

2. Large core takes an area budget of 4 and has
performance of 2

49

ACMP Performance vs. Parallelism

Area-budget = 16 small cores

-

~N

(Small

~

(

Small{Small|Small Small|Small
Large Large core | core | core | core Large core | core
core core Small{Small| Small|Small core |Small|Small
core | core | core | core core | core
Small|Small|Small[Small Small|Small{Small|Small
Large Large core | core | core | core core | core | core | core
core core Small|Small{ Small|Small Small|Small| Small|Small
core | core | core | core core | core | core | core
“Tile-Large” “Tile-Small” ACMP
Large 4 o) 1
Cores
Small 0 16 12
Cores
Serial 2 1 2
Performance
Parallel 2Xx4=8 1x16=16 1x2 + 1x12 =14
Throughput

IU

-0

Some Analysis

Hill and Marty, “Amdahl’ s Law in the Multi-Core Era,” IEEE
Computer 2008.

Each Chip Bounded to N BCEs (Base Core Equivalents)
One R-BCE Core leaves N-R BCEs

Use N-R BCEs for N-R Base Cores

Therefore, 1 + N - R Cores per Chip

For an N = 16 BCE Chip:
il e I 1Dl [t | 1
]:B=_ _]:B_=_
D:%jiwm D:%jimm Bt Eﬁim Bt
D:%i: I D:%i: I it R ot
4 1)1 (B3] [t
Symmetric: Four 4-BCE cores Asymmetric: One 4-BCE core

& Twelve 1I-BCE base cores

Amdahl’ s Law Modified

= Serial Fraction 1-F same, so time = (1 — F) / Perf(R)

= Parallel Fraction F
a One core at rate Perf(R)
o N-R cores at rate 1
o Parallel time = F / (Perf(R) + N - R)

= Therefore, w.r.t. one base core:

Asymmetric Speedup = .
1-F

+
Perf(R) Perf(R) + N - R

52

Asymmetric Multicore Chip, N = 256 BC

250

@\
)

)

F=0.99

N
/y
/ F=0.9

F=0.5

e T T T T T T |
1 2 4 8 16 32 64 128 256
R BCEs

[EEN
o
o

Asymmetric Speedup

Ul
o

o

= Number of Cores = 1 (Enhanced) + 256 — R (Base)

53

Symmetric Multicore Chip, N = 256 BCEs

Symmetric Speedup

250

N
o
o

[EEN
Ul
o

[EEN
o
o

Ul
o

o

Vggg
F=0.99
/m
" F09
F=0.5 !S
=0.9,R=28, s=9, Speedup=26.7
1 2 4 8 16 32 64 128 256

R BCEs

54

Asymmetric Multicore Chip, N = 256 BCEs

250

F=0.999

_— N F=0.99

2 200
3 R 41 (vs. 3)
Q Cores 216 (vs. 85)
» 150 F=0.99 Speedup=166 (vs. 80)
(9]
‘3 /
g 100 F=0.975
>
<< 50 F=0.9 F=0.9
F=0.5 R=118 (vs. 28)
0 — . ' Cores= 139 (vs. 9)
1 2 4 8

2>6 Speedup=65.6

R BCES (vs. 26.7)

= Asymmetric multi-core provides better speedup than
symmetric multi-core when N is large

55

Asymmetric vs. Symmetric Cores

Advantages of Asymmetric

+ Can provide better performance when thread parallelism is
limited

+ Can be more energy efficient
+ Schedule computation to the core type that can best execute it

Disadvantages

- Need to design more than one type of core. Always?

- Scheduling becomes more complicated
- What computation should be scheduled on the large core?
- Who should decide? HW vs. SW?

- Managing locality and load balancing can become difficult if
threads move between cores (transparently to software)

- Cores have different demands from shared resources

56

How to Achieve Asymmetry

Static
o Type and power of cores fixed at design time

o Two approaches to design “faster cores”:

High frequency

Build a more complex, powerful core with entirely different uarch
o Is static asymmetry natural? (chip-wide variations in frequency)

Dynamic
o Type and power of cores change dynamically

a Two approaches to dynamically create “faster cores”:
Boost frequency dynamically (limited power budget)
Combine small cores to enable a more complex, powerful core
Is there a third, fourth, fifth approach?

57

Asymmetry via Boosting of Frequency

Static

a Due to process variations, cores might have different
frequency

o Simply hardwire/design cores to have different frequencies

Dynamic

o Annavaram et al., “Mitigating Amdahl’ s Law Through EPI
Throttling,” ISCA 2005.

o Dynamic voltage and frequency scaling

58

EPI Throttling

Goal: Minimize execution time of parallel programs while
keeping power within a fixed budget

For best scalar and throughput performance, vary energy
expended per instruction (EPI) based on available
parallelism

o P = EPI IPS

o P = fixed power budget

o EPI = energy per instruction

o IPS = aggregate instructions retired per second

Idea: For a fixed power budget
o Run sequential phases on high-EPI processor
o Run parallel phases on multiple low-EPI processors

59

EPI Throttling via DVES

DVFS: Dynamic voltage frequency scaling

In phases of low thread parallelism
o Run a few cores at high supply voltage and high frequency

In phases of high thread parallelism
o Run many cores at low supply voltage and low frequency

60

Possible EPI Throttling Techniques

Grochowski et al., “Best of both Latency and Throughput,”
ICCD 2004.

Pl Range | Tim o Alts EP

Voltage /frequency 100us (ramp Vcc) Lower voltage and frequency

scaling

Asymmetric cores 10us (migrate 256KB | Migrate threads from large
L2 cache) cores to small cores

Variable-size core 1:1 to 1:2 Tus (fill 32KB L1 Reduce capacity of processor
cache) resources

Speculation control 1:1 to 1:1.4 10ns (pipeline Reduce amount of
latency) speculation

01

Boosting Frequency of a Small Core vs. Large Core

Frequency boosting implemented on Intel Nehalem, IBM
POWER7

Advantages of Boosting Frequency

+ Very simple to implement; no need to design a new core
+ Parallel throughput does not degrade when TLP is high
+ Preserves locality of boosted thread

Disadvantages
- Does not improve performance if thread is memory bound

- Does not reduce Cycles per Instruction (remember the
performance equation?)

- Changing frequency/voltage can take longer than switching to a

large core
62

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

EPI Throttling (Annavaram et al., ISCA’ 05)

Static AMP

Q

o O 0O 0O

Duty cycles set once prior to program run

Parallel phases run on 3P/1.25GHz

Sequential phases run on 1P/2GHz

Affinity guarantees sequential on 1P and parallel on 3

Benchmarks that rapidly transition between sequential and
parallel phases

Dynamic AMP

Q

Q
Q
Q

Duty cycle changes during program run

Parallel phases run on all or a subset of four processors
Sequential phases of execution on 1P/2GHz
Benchmarks with long sequential and parallel phases

04

EPI Throttling (Annavaram et al., ISCA’ 05)

Evaluation on Base SMP: 4 Base SMP: 4-way 2GHz Xeon,
2MB L3, 4GB Memory

Hand-modified programs

o OMP threads set to 3 for static AMP

o Calls to set affinity in each thread for static AMP

o Calls to change duty cycle and to set affinity in dynamic AMP

AMP Configuration Programs
Static AMP: 1P/2GHz | wupwise, swim, mgrid,
or 3P/1.25GHz equake, fma3d, art, ammp,
BLAST, HMMER
Dynamic AMP: | applu, apsi, FFTW, TPC-H

1P/2GHz to 4P/1GHz

65

EPI Throttling (Annavaram et al., ISCA’ 05)

2

1 W
o o BAMP OCO4P/MGHz
2.5
- D
2 w0 M~ e
o il | ~r~wnne 3 m o @ o
J - ¥ o TNy
1.5 olmm Rl o3 o New
e W A Bl @ <o
=1 M9 o Too

==
= n =i
L]
F y

Speed up Normalized to 1P/ 2GHz

Q W e D e & A ﬁ & *2'*- d}
L' QR 8 L &
QO @ S @

= Frequency boosting AMP improves performance compared
to 4-way SMP for many applications

06

EPI Throttling

Why does Frequency Boosting (FB) AMP not always
improve performance?

Loss of throughput in static AMP (only 3 processors in
parallel portion)

o Is this really the best way of using FB-AMP?

Rapid transitions between serial and parallel phases
o Data/thread migration and throttling overhead

Boosting frequency does not help memory-bound phases

67

Review So Far

Symmetric Multicore

o Evolution of Sun’s and IBM’s Multicore systems and design
choices

o Niagara, Niagara 2, ROCK
o IBM POWERX

Asymmetric multicore

o Motivation

a Functional vs. Performance Asymmetry
o Static vs. Dynamic Asymmetry

o EPI Throttling

Design Tradeotts in ACMP (I)

Hardware Design Effort vs. Programmer Effort
- ACMP requires more design effort
+ Performance becomes less dependent on length of the serial part

+ Can reduce programmer effort: Serial portions are not as bad for
performance with ACMP

Migration Overhead vs. Accelerated Serial Bottleneck
+ Performance gain from faster execution of serial portion

- Performance loss when architectural state is migrated/switched
in when the master changes
Can be alleviated with multithreading and hidden by long serial portion

- Serial portion incurs cache misses when it needs data
generated by the parallel portion

- Parallel portion incurs cache misses when it needs data

generated by the serial portion ~

Design Tradeotfs in ACMP (II)

Fewer threads vs. accelerated serial bottleneck
+ Performance gain from accelerated serial portion

- Performance loss due to unavailability of L threads in parallel
portion

o This need not be the case - Large core can implement
Multithreading to improve parallel throughput

o As the number of cores (threads) on chip increases, fractional
loss in parallel performance decreases

70

Uses of Asymmetry

So far:
o Improvement in serial performance (sequential bottleneck)

What else can we do with asymmetry?
o Energy reduction?

o Energy/performance tradeoff?

o Improvement in parallel portion?

71

Use of Asymmetry for Energy Etficiency

Kumar et al., “Single-ISA Heterogeneous Multi-Core Architectures: The
Potential for Processor Power Reduction,” MICRO 2003.

Idea:
o Implement multiple types of cores on chip

o Monitor characteristics of the running thread (e.g., sample energy/perf
on each core periodically)
o Dynamically pick the core that provides the best energy/performance
tradeoff for a given phase
“Best core” = Depends on optimization metric

72

Use of Asymmetry for Energy Etficiency

EVE-

Figure 1. Relative sizes of the Alpha cores scaled to 0.10 pm. EVE is 80 times
bigger but provides only two fo three times more single-threaded performance.

Table 1. Power and relative performance of Alpha cores scaled to
0.10 pm. Performance is expressed normalized to EV4 performance.

Peak power Average power Performance
Core (Watts) (Watts) (norm. IPC)
EV4 4.97 3.73 1.00
EV5 9.83 6.88 1.30
EVE 17.8 10.68 1.87
EVS 92.88 46.44 214

20
16
7z 12
§
E EV8-
&
= 08 EV6
EVS
0.4
EV4
0
201 401 601 801
(a) Committed instructions (millions)
= .
Z6 EVS
25 EV4
S
(b)
g EVS-
= EVE
£3
g 5 I! Il ” | I | l EVS
§ EV4

—
©

S—
W |

Use of Asymmetry for Energy Etficiency

Advantages
+ More flexibility in energy-performance tradeoff

+ Can execute computation to the core that is best suited for it (in terms of
energy)

Disadvantages/issues

- Incorrect predictions/sampling = wrong core = reduced performance or
increased energy

- Overhead of core switching
- Disadvantages of asymmetric CMP (e.g., design multiple cores)
- Need phase monitoring and matching algorithms

- What characteristics should be monitored?

- Once characteristics known, how do you pick the core?

74

Use ot ACMP to Improve Parallel Portion Performance

Mutual Exclusion:
o Threads are not allowed to update shared data concurrently

Accesses to shared data are encapsulated inside
critical sections

Only one thread can execute a critical section at
a given time

Idea: Ship critical sections to a large core

Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE
Micro Top Picks 2010.

75

