18-742 Fall 2012
Parallel Computer Architecture
Lecture 4: Multi-Core Processors

Prof. Onur Mutlu
Carnegie Mellon University
9/14/2012

Reminder: Reviews Due Sunday

Sunday, September 16, 11:59pm.

Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

Suleman et al., "Data Marshaling for Multi-core
Architectures,” ISCA 2010.

Joao et al., “"Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

Multi-Core Processors

b4
Moore s Law

MOORE'S LAW

1970 1975 1980 1985 1990 1995 2000 2005

Moore, “Cramming more components onto integrated circuits,”
Electronics, 1965.

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

Transistor count

2,600,000,000
1,000,000,000 +

100,000,000 -

10,000,000

1,000,000 -

100,000

10,000 +

2,300 -

16-Cone SPARC T2
Sw-Cone Cone i7
Slw<Coim Xaon 7400

\\.. . W 10Core Kaon Wakiman-EX
CuakCore Hanium 2 ,H-m:lﬁ PD'-'-EEB.'-‘
. 1
AMD me ,:: gu-mﬁlun um Tuiawita
FOWERS & = B-Core Xoon Mohalmm-EX
Hanum 2 with 8WI8 cacho @ ", Sx-Come Opteron 2200
AMD KD Cone |7 | Cuad)
are 2 Duo
anim 2§ EHF
AMDER
Pl 4 Al
ARMD T
W 20D KE-lI
curve shows transistar AMD K&
eaunl doubling every ﬁmflrlwum m
wAKD ES
I I | | 1
1971 1980 1990 2000 2011

| T i U [.
Crate ormiroguction

Multi-Core

Idea: Put multiple processors on the same die.

Technology scaling (Moore’ s Law) enables more transistors
to be placed on the same die area

What else could you do with the die area you dedicate to
multiple processors?

o Have a bigger, more powerful core

o Have larger caches in the memory hierarchy
o Simultaneous multithreading
Q

Integrate platform components on chip (e.g., network
interface, memory controllers)

Why Multi-Core?

Alternative: Bigger, more powerful single core

o Larger superscalar issue width, larger instruction window,
more execution units, large trace caches, large branch
predictors, etc

+ Improves single-thread performance transparently to
programmer, compiler

- Very difficult to design (Scalable algorithms for improving
single-thread performance elusive)

- Power hungry — many out-of-order execution structures
consume significant power/area when scaled. Why?

- Diminishing returns on performance

- Does not significantly help memory-bound application
performance (Scalable algorithms for this elusive)

Large Superscalar vs. Multi-Core

= Olukotun et al., “The Case for a Single-Chip

Multiprocessor,” ASPLOS 1996.

-

21 mm

-

21 mm

Clocking & Pads

Extarnal
Interface

Instruction
Fetch

Inst. Decode &
Hename

Instruction
Cache

(32 KB)

TLBE

Data
Cache
(32 KB)

Reorder Buffer,

Instruction Queues,
and Out-of-Order Logic

Floating Point

Unit

Integer Unit

On-Chip L2 Cache (256KB)

Figure 2.

Floorplan for the six-issue dynamic superscalar
MiCroprocessor.

21

mim

- 21 mm
T-ache #1 |BR] | FLache 72 [BR)
External
Intarizca
Processor | Processor &
#1 #2 ¥
. e
[44]
e & o
o @ o
o : e 5
O-Cache #1 (BK] | D-Cache #2 [SK] L o
g’ O-Cache #3 [BR} | D-Cache #4 |8R) =]
k™ =] k|
3 w a
== (&} e
[= ﬁ
=
Processor | Processor E =
#3 #4 E o
[]
2
(a1
—
[-Cache #4 [BR) | |-Lache #4 [ER)

Figure 3. Floorplan for the four-way single-chip
multiprocessor.

Multi-Core vs. Large Superscalar

Multi-core advantages

+ Simpler cores > more power efficient, lower complexity,
easier to design and replicate, higher frequency (shorter
wires, smaller structures)

+ Higher system throughput on multiprogrammed workloads -
reduced context switches

+ Higher system throughput in parallel applications

Multi-core disadvantages

- Requires parallel tasks/threads to improve performance
(parallel programming)

- Resource sharing can reduce single-thread performance
- Shared hardware resources need to be managed
- Number of pins limits data supply for increased demand

Large Superscalar vs. Multi-Core

Olukotun et al., “The Case for a Single-Chip
Multiprocessor,” ASPLOS 1996.

Technology push

o Instruction issue queue size limits the cycle time of the
superscalar, Oo0 processor - diminishing performance

Quadratic increase in complexity with issue width

o Large, multi-ported register files to support large instruction
windows and issue widths = reduced frequency or longer RF
access, diminishing performance

Application pull
o Integer applications: little parallelism?
o FP applications: abundant loop-level parallelism

o Others (transaction proc., multiprogramming): CMP better fit
10

Comparison Points...

6-way S5 4x2-way MP
of CPUs 1 4
Degree superscalar 6 4x2
of architectural registers 32int / 32fp 4 x32nt/ 326p
of physical registers 160int / 160fp 4 x 40int / 40fp
of integer functional units 3 4x1
of floating pt. functional units 3 4x1
of load/store ports 8 (one per bank) 4x1
BTB size 2048 entries 4 x 512 entries
Return stack size 32 entries 4 x 8 entries
Instruction issue queue size 128 entries 4 x § entries

I cache 32KB.2-way S A. 4x8KB.2-way S_A.
D cache 32KB.2-way S A. 4x8KB.2-way S_A.
L1 hit time 2 cycles (4 ns) 1 cycle (2 ns)

L1 cache interleaving 8 banks N/A

Unified 1.2 cache

256 KB, 2-way 5. A.

256 KB, 2-way S_A.

L2 hat time / .1 penalty 4 cycles (8 ns) 5 cycles (10 ns)
Memory latency / L2 penalty 50 cycles (100 ns) 50 cycles (100 ns)
T_L1_ 4 o - _a_ P _ar_ _ _0al . oa Wi _a_

11

Why Multi-Core?

Alternative: Bigger caches

+ Improves single-thread performance transparently to
programmer, compiler

+ Simple to design

- Diminishing single-thread performance returns from cache size.
Why?

- Multiple levels complicate memory hierarchy

12

Cache vs. Core

Cache

B Microprocessor

Number of Transistors

ITime

Why Multi-Core?

Alternative: (Simultaneous) Multithreading

+ Exploits thread-level parallelism (just like multi-core)
+ Good single-thread performance with SMT

+ No need to have an entire core for another thread

+ Parallel performance aided by tight sharing of caches

- Scalability is limited: need bigger register files, larger issue
width (and associated costs) to have many threads -
complex with many threads

- Parallel performance limited by shared fetch bandwidth

- Extensive resource sharing at the pipeline and memory system
reduces both single-thread and parallel application
performance

14

Why Multi-Core?

Alternative: Integrate platform components on chip instead

+ Speeds up many system functions (e.qg., network interface
cards, Ethernet controller, memory controller, I/O controller)

- Not all applications benefit (e.g., CPU intensive code sections)

15

Why Multi-Core?

Alternative: More scalable superscalar, out-of-order engines
o Clustered superscalar processors (with multithreading)

+ Simpler to design than superscalar, more scalable than
simultaneous multithreading (less resource sharing)

+ Can improve both single-thread and parallel application
performance

- Diminishing performance returns on single thread: Clustering

reduces IPC performance compared to monolithic superscalar.
Why?

- Parallel performance limited by shared fetch bandwidth
- Difficult to design

16

Clustered Superscalar+OoO Processors

Clustering (e.g., Alpha 21264 integer units)

Q

Q

Q

Q

Divide the scheduling window (and register file) into multiple clusters
Instructions steered into clusters (e.g. based on dependence)

Clusters schedule instructions out-of-order, within cluster scheduling
can be in-order

Inter-cluster communication happens via register files (no full bypass)

+ Smaller scheduling windows, simpler wakeup algorithms

+ Smaller ports into register files

+ Faster within-cluster bypass

-- Extra delay when instructions require across-cluster communication

17

Clustering (I)

Scheduling within each cluster can be out of order

SCHED SCHED SCHED
WINDOW WINDOW WINDOW
REG REG REG
FILE FILE FILE
FU FU FU FU FU FU
fast bypass Jast bypass Sfast bypass

slow bypass

Clustering (1I)

kY \‘1 0
L ¥ -} C = e i
13 S| 3EEE s EC B
5 B R ICE E M= &
e ==Y 20| | N =
| o L/ [
WAKEUP EXECUTE| DCACHE |REG WRITE
FETCH | DECODE | RENAME | opy por REG BYPASS | ACCESS | COMMIT
.3
. SRR = L 4w
S S s o : Dol. 3 - A —
3! £ = : = Z = - !
o L/ =)
FIFOS
_ RENAME | WAKEUP . _JEXECUTE| DCACHE |REG WRITE
FETCH | DECODE | "grppr | sELECT [FEC READ Bypass | ACCESS | COMMIT

19

Clustering (I1I)

RENAMED INSTRUCTIONS

L
N SRR = S BN
= L s —Hgs|| 5 L2 'D S
] & = o . D D D = 5
o 3 S = : <3 Z = - &
[ety S \— = = e [\ =
—_ = ol = ¥ =
o | 1/ -
FIFOS
_ . RENAME | WAKEUP . __, |EXECUTE| DCACHE |REG WRITE
FETCH | DECODE | “orppp™ | sergcT [REC READ "Bypass | ACCESS | COMMIT
LOCAL BYPASSES
FIFOs
2 .
B = Z FUI
&= =
e = FU2
mm =
— [» l:.d'_‘,!
7N\ Z
[S CLUSTER 0 =
- il
Z | Z
! E |I :_1
\ E lll.'l ﬁl”.
\\i/ FIFOs ! __'
j:|:|:|—~ -] FUS
2 2
& = FUG
EE=t
T o
CLUSTEE. 1 LOCAL BYPASSES

Each scheduler is a FIFO

+ Simpler

+ Can have N FIFOs
(00O w.r.t. each other)

+ Reduces scheduling

complexity

-- More dispatch stalls

Inter-cluster bypass: Results
produced by an FU in
Cluster 0 is not individually
forwarded to each FU in
another cluster.

Palacharla et al., “Complexity
Effective Superscalar
Processors,” ISCA 1997.

20

Why Multi-Core?

Alternative: Traditional symmetric multiprocessors

+ Smaller die size (for the same processing core)
+ More memory bandwidth (no pin bottleneck)
+ Fewer shared resources - less contention between threads

- Long latencies between cores (need to go off chip) > shared
data accesses limit performance - parallel application
scalability is limited

- Worse resource efficiency due to less sharing > worse
power/energy efficiency

21

Why Multi-Core?

Other alternatives?

Q

Q
Q
Q

Dataflow?

Vector processors (SIMD)?

Integrating DRAM on chip?
Reconfigurable logic? (general purpose?)

22

Review: Multi-Core Alternatives

Bigger, more powerful single core

Bigger caches

(Simultaneous) multithreading

Integrate platform components on chip instead
More scalable superscalar, out-of-order engines
Traditional symmetric multiprocessors
Dataflow?

Vector processors (SIMD)?

Integrating DRAM on chip?

Reconfigurable logic? (general purpose?)
Other alternatives?

23

