
18-742 Fall 2012

Parallel Computer Architecture

Lecture 4: Multi-Core Processors

Prof. Onur Mutlu

Carnegie Mellon University

9/14/2012

Reminder: Reviews Due Sunday

 Sunday, September 16, 11:59pm.

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

 Suleman et al., “Data Marshaling for Multi-core
Architectures,” ISCA 2010.

 Joao et al., “Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

2

Multi-Core Processors

3

Moore’s Law

4

Moore, “Cramming more components onto integrated circuits,”
Electronics, 1965.

5

Multi-Core

 Idea: Put multiple processors on the same die.

 Technology scaling (Moore’s Law) enables more transistors
to be placed on the same die area

 What else could you do with the die area you dedicate to
multiple processors?

 Have a bigger, more powerful core

 Have larger caches in the memory hierarchy

 Simultaneous multithreading

 Integrate platform components on chip (e.g., network
interface, memory controllers)

6

Why Multi-Core?

 Alternative: Bigger, more powerful single core

 Larger superscalar issue width, larger instruction window,
more execution units, large trace caches, large branch
predictors, etc

+ Improves single-thread performance transparently to
programmer, compiler

- Very difficult to design (Scalable algorithms for improving
single-thread performance elusive)

- Power hungry – many out-of-order execution structures
consume significant power/area when scaled. Why?

- Diminishing returns on performance

- Does not significantly help memory-bound application
performance (Scalable algorithms for this elusive)

 7

Large Superscalar vs. Multi-Core

 Olukotun et al., “The Case for a Single-Chip
Multiprocessor,” ASPLOS 1996.

8

Multi-Core vs. Large Superscalar

 Multi-core advantages

+ Simpler cores  more power efficient, lower complexity,

easier to design and replicate, higher frequency (shorter
wires, smaller structures)

+ Higher system throughput on multiprogrammed workloads 

reduced context switches

+ Higher system throughput in parallel applications

 Multi-core disadvantages

- Requires parallel tasks/threads to improve performance
(parallel programming)

- Resource sharing can reduce single-thread performance

- Shared hardware resources need to be managed

- Number of pins limits data supply for increased demand
9

Large Superscalar vs. Multi-Core

 Olukotun et al., “The Case for a Single-Chip
Multiprocessor,” ASPLOS 1996.

 Technology push

 Instruction issue queue size limits the cycle time of the
superscalar, OoO processor  diminishing performance

 Quadratic increase in complexity with issue width

 Large, multi-ported register files to support large instruction
windows and issue widths  reduced frequency or longer RF

access, diminishing performance

 Application pull

 Integer applications: little parallelism?

 FP applications: abundant loop-level parallelism

 Others (transaction proc., multiprogramming): CMP better fit

10

Comparison Points…

11

Why Multi-Core?

 Alternative: Bigger caches

+ Improves single-thread performance transparently to
programmer, compiler

+ Simple to design

- Diminishing single-thread performance returns from cache size.
Why?

- Multiple levels complicate memory hierarchy

12

Cache vs. Core

13

Time

N
u

m
b

e
r

o
f

T
ra

n
s
is

to
rs

Cache

Microprocessor

Why Multi-Core?
 Alternative: (Simultaneous) Multithreading

+ Exploits thread-level parallelism (just like multi-core)

+ Good single-thread performance with SMT

+ No need to have an entire core for another thread

+ Parallel performance aided by tight sharing of caches

- Scalability is limited: need bigger register files, larger issue
width (and associated costs) to have many threads 

complex with many threads

- Parallel performance limited by shared fetch bandwidth

- Extensive resource sharing at the pipeline and memory system
reduces both single-thread and parallel application
performance

14

Why Multi-Core?

 Alternative: Integrate platform components on chip instead

+ Speeds up many system functions (e.g., network interface
cards, Ethernet controller, memory controller, I/O controller)

- Not all applications benefit (e.g., CPU intensive code sections)

15

Why Multi-Core?

 Alternative: More scalable superscalar, out-of-order engines

 Clustered superscalar processors (with multithreading)

+ Simpler to design than superscalar, more scalable than
simultaneous multithreading (less resource sharing)

+ Can improve both single-thread and parallel application
performance

- Diminishing performance returns on single thread: Clustering
reduces IPC performance compared to monolithic superscalar.
Why?

- Parallel performance limited by shared fetch bandwidth

- Difficult to design

16

Clustered Superscalar+OoO Processors

 Clustering (e.g., Alpha 21264 integer units)

 Divide the scheduling window (and register file) into multiple clusters

 Instructions steered into clusters (e.g. based on dependence)

 Clusters schedule instructions out-of-order, within cluster scheduling
can be in-order

 Inter-cluster communication happens via register files (no full bypass)

+ Smaller scheduling windows, simpler wakeup algorithms

+ Smaller ports into register files

+ Faster within-cluster bypass

-- Extra delay when instructions require across-cluster communication

17

Clustering (I)

 Scheduling within each cluster can be out of order

18

Clustering (II)

19

 Palacharla et al., “Complexity

Effective Superscalar
Processors,” ISCA 1997.

Clustering (III)

20

Each scheduler is a FIFO

+ Simpler

+ Can have N FIFOs

 (OoO w.r.t. each other)

+ Reduces scheduling

complexity

-- More dispatch stalls

Inter-cluster bypass: Results

produced by an FU in

Cluster 0 is not individually

forwarded to each FU in

another cluster.

Why Multi-Core?

 Alternative: Traditional symmetric multiprocessors

+ Smaller die size (for the same processing core)

+ More memory bandwidth (no pin bottleneck)

+ Fewer shared resources  less contention between threads

- Long latencies between cores (need to go off chip)  shared
data accesses limit performance  parallel application

scalability is limited

- Worse resource efficiency due to less sharing  worse

power/energy efficiency

21

Why Multi-Core?

 Other alternatives?

 Dataflow?

 Vector processors (SIMD)?

 Integrating DRAM on chip?

 Reconfigurable logic? (general purpose?)

22

Review: Multi-Core Alternatives

 Bigger, more powerful single core

 Bigger caches

 (Simultaneous) multithreading

 Integrate platform components on chip instead

 More scalable superscalar, out-of-order engines

 Traditional symmetric multiprocessors

 Dataflow?

 Vector processors (SIMD)?

 Integrating DRAM on chip?

 Reconfigurable logic? (general purpose?)

 Other alternatives?

23

