
18-742 Fall 2012

Parallel Computer Architecture
Lecture 3: Programming Models and Architectures

Prof. Onur Mutlu

Carnegie Mellon University

9/12/2012

Reminder: Assignments for This Week

1. Review two papers from ISCA 2012 – due September 11,
11:59pm.

2. Attend NVIDIA talk on September 10 – write an online
review of the talk; due September 11, 11:59pm.

3. Think hard about

 Literature survey topics

 Research project topics

4. Examine survey and project topics from Spring 2011

5. Find your literature survey and project partner

 2

Late Review Assignments

 Even if you are late, please submit your reviews

 You will benefit from this

3

Reminder: Reviews Due Sunday

 Sunday, September 16, 11:59pm.

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

 Suleman et al., “Data Marshaling for Multi-core
Architectures,” ISCA 2010.

 Joao et al., “Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

4

Programming Models vs.

Architectures

5

What Will We Cover in This Lecture?

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,”
pp. 551-560, in Readings in Computer Architecture.

 Culler, Singh, Gupta, Chapter 1 (Introduction) in “Parallel
Computer Architecture: A Hardware/Software Approach.”

6

Programming Models vs. Architectures

 Five major models

 (Sequential)

 Shared memory

 Message passing

 Data parallel (SIMD)

 Dataflow

 Systolic

 Hybrid models?

7

Shared Memory vs. Message Passing

 Are these programming models or execution models
supported by the hardware architecture?

 Does a multiprocessor that is programmed by “shared
memory programming model” have to support a shared
address space processors?

 Does a multiprocessor that is programmed by “message
passing programming model” have to have no shared
address space between processors?

8

Programming Models: Message Passing vs. Shared Memory

 Difference: how communication is achieved between tasks

 Message passing programming model

 Explicit communication via messages

 Loose coupling of program components

 Analogy: telephone call or letter, no shared location accessible to
all

 Shared memory programming model

 Implicit communication via memory operations (load/store)

 Tight coupling of program components

 Analogy: bulletin board, post information at a shared space

 Suitability of the programming model depends on the
problem to be solved. Issues affected by the model include:

 Overhead, scalability, ease of programming, bugs, match to
underlying hardware, …

9

Message Passing vs. Shared Memory Hardware

 Difference: how task communication is supported in
hardware

 Shared memory hardware (or machine model)

 All processors see a global shared address space

 Ability to access all memory from each processor

 A write to a location is visible to the reads of other processors

 Message passing hardware (machine model)

 No global shared address space

 Send and receive variants are the only method of
communication between processors (much like networks of
workstations today, i.e. clusters)

 Suitability of the hardware depends on the problem to be
solved as well as the programming model.

 10

Message Passing vs. Shared Memory Hardware

P

M

IO

P

M

IO

P

M

IO

I/O (Network)

Message Passing

P

M

IO

P

M

IO

P

M

IO

Memory

Shared Memory

P

M

IO

P

M

IO

P

M

IO

Processor

(Dataflow/Systolic),

Single-Instruction

Multiple-Data

(SIMD)

==> Data Parallel

Join At:

Program With:

Programming Model vs. Hardware

 Most of parallel computing history, there was no separation
between programming model and hardware

 Message passing: Caltech Cosmic Cube, Intel Hypercube, Intel
Paragon

 Shared memory: CMU C.mmp, Sequent Balance, SGI Origin.

 SIMD: ILLIAC IV, CM-1

 However, any hardware can really support any
programming model

 Why?

 Application compiler/library OS services hardware

12

Layers of Abstraction

 Compiler/library/OS map the communication abstraction at
the programming model layer to the communication
primitives available at the hardware layer

13

Programming Model vs. Architecture

 Machine Programming Model

 Join at network, so program with message passing model

 Join at memory, so program with shared memory model

 Join at processor, so program with SIMD or data parallel

 Programming Model Machine

 Message-passing programs on message-passing machine

 Shared-memory programs on shared-memory machine

 SIMD/data-parallel programs on SIMD/data-parallel machine

 Isn’t hardware basically the same?

 Processors, memory, interconnect (I/O)

 Why not have generic parallel machine and program with
model that fits the problem?

14

A Generic Parallel Machine

 Separation of
programming
models from
architectures

 All models require
communication

 Node with
processor(s),
memory,
communication
assist

Interconnect

CA

Mem
P

$

CA

Mem
P

$

CA

Mem
P

$

CA

Mem
P

$

Node 0 Node 1

Node 2 Node 3

Simple Problem

 for i = 1 to N

 A[i] = (A[i] + B[i]) * C[i]

 sum = sum + A[i]

 How do I make this parallel?

Simple Problem

 for i = 1 to N
 A[i] = (A[i] + B[i]) * C[i]
 sum = sum + A[i]

 Split the loops Independent iterations

 for i = 1 to N
 A[i] = (A[i] + B[i]) * C[i]
 for i = 1 to N
 sum = sum + A[i]

 Data flow graph?

Data Flow Graph

A[0] B[0]

+
C[0]

*

+

A[1] B[1]

+
C[1]

*

A[2] B[2]

+
C[2]

*

+

A[3] B[3]

+
C[3]

*

+

2 + N-1 cycles to execute on N processors

what assumptions?

Partitioning of Data Flow Graph

A[0] B[0]

+
C[0]

*

+

A[1] B[1]

+
C[1]

*

A[2] B[2]

+
C[2]

*

+

A[3] B[3]

+
C[3]

*

+
global synch

Shared (Physical) Memory

 Communication, sharing,
and synchronization with
store / load on shared
variables

 Must map virtual pages to
physical page frames

 Consider OS support for
good mapping

Pn

P0

load

store

Private Portion

of Address

Space

Shared Portion

of Address

Space

Common Physical

Addresses

Pn Private

P0 Private

P1 Private

P2 Private

Machine Physical Address Space

Shared (Physical) Memory on Generic MP

Interconnect

CA

Mem
P

$

CA

Mem
P

$

CA

Mem
P

$
CA

Mem
P

$

Node 0 0,N-1 (Addresses) Node 1 N,2N-1

Node 2 2N,3N-1 Node 3 3N,4N-1

Keep private data

and frequently

used shared data

on same node as

computation

Return of The Simple Problem

 private int i, my_start, my_end, mynode;

 shared float A[N], B[N], C[N], sum;

 for i = my_start to my_end

 A[i] = (A[i] + B[i]) * C[i]

 GLOBAL_SYNCH;

 if (mynode == 0)

 for i = 1 to N

 sum = sum + A[i]

 Can run this on any shared memory machine

Message Passing Architectures

 Cannot directly
access memory
on another node

 IBM SP-2, Intel
Paragon

 Cluster of
workstations

Interconnect

CA

Mem
P

$

CA

Mem
P

$

Node 0 0,N-1 Node 1 0,N-1

Node 2 0,N-1 Node 3 0,N-1

CA

Mem
P

$

CA

Mem
P

$

Message Passing Programming Model

 User level send/receive abstraction

 local buffer (x,y), process (Q,P) and tag (t)

 naming and synchronization

Local Process

Address Space

address x address y

match

Process P Process Q

Local Process

Address Space

Send x, Q, t

Recv y, P, t

The Simple Problem Again

 int i, my_start, my_end, mynode;

 float A[N/P], B[N/P], C[N/P], sum;

 for i = 1 to N/P

 A[i] = (A[i] + B[i]) * C[i]

 sum = sum + A[i]

 if (mynode != 0)

 send (sum,0);

 if (mynode == 0)

 for i = 1 to P-1

 recv(tmp,i)

 sum = sum + tmp

 Send/Recv communicates and synchronizes

 P processors

Separation of Architecture from Model

 At the lowest level shared memory model is all about
sending and receiving messages

 HW is specialized to expedite read/write messages using load
and store instructions

 What programming model/abstraction is supported at user
level?

 Can I have shared-memory abstraction on message passing
HW? How efficient?

 Can I have message passing abstraction on shared memory
HW? How efficient?

Challenges in Mixing and Matching
 Assume prog. model same as ABI (compiler/library OS
 hardware)

 Shared memory prog model on shared memory HW

 How do you design a scalable runtime system/OS?

 Message passing prog model on message passing HW

 How do you get good messaging performance?

 Shared memory prog model on message passing HW

 How do you reduce the cost of messaging when there are
frequent operations on shared data?

 Li and Hudak, “Memory Coherence in Shared Virtual Memory
Systems,” ACM TOCS 1989.

 Message passing prog model on shared memory HW

 Convert send/receives to load/stores on shared buffers

 How do you design scalable HW?

27

Data Parallel Programming Model

 Programming Model

 Operations are performed on each element of a large (regular)
data structure (array, vector, matrix)

 Program is logically a single thread of control, carrying out a
sequence of either sequential or parallel steps

 The Simple Problem Strikes Back

 A = (A + B) * C

 sum = global_sum (A)

 Language supports array assignment

Data Parallel Hardware Architectures (I)

 Early architectures directly mirrored programming model

 Single control processor (broadcast each instruction to an
array/grid of processing elements)

 Consolidates control

 Many processing elements controlled by the master

 Examples: Connection Machine, MPP

 Batcher, “Architecture of a massively parallel processor,” ISCA
1980.

 16K bit serial processing elements

 Tucker and Robertson, “Architecture and Applications of the
Connection Machine,” IEEE Computer 1988.

 64K bit serial processing elements

29

Connection Machine

30

Data Parallel Hardware Architectures (II)

 Later data parallel architectures

 Higher integration SIMD units on chip along with caches

 More generic multiple cooperating multiprocessors with

vector units

 Specialized hardware support for global synchronization

 E.g. barrier synchronization

 Example: Connection Machine 5

 Hillis and Tucker, “The CM-5 Connection Machine: a scalable
supercomputer,” CACM 1993.

 Consists of 32-bit SPARC processors

 Supports Message Passing and Data Parallel models

 Special control network for global synchronization

31

Review: Separation of Model and Architecture

 Shared Memory

 Single shared address space

 Communicate, synchronize using load / store

 Can support message passing

 Message Passing

 Send / Receive

 Communication + synchronization

 Can support shared memory

 Data Parallel

 Lock-step execution on regular data structures

 Often requires global operations (sum, max, min...)

 Can be supported on either SM or MP

Review: A Generic Parallel Machine

 Separation of
programming
models from
architectures

 All models require
communication

 Node with
processor(s),
memory,
communication
assist

Interconnect

CA

Mem
P

$

CA

Mem
P

$

CA

Mem
P

$

CA

Mem
P

$

Node 0 Node 1

Node 2 Node 3

Data Flow Programming Models and Architectures

 A program consists of data flow nodes

 A data flow node fires (fetched and executed) when all its
inputs are ready

 i.e. when all inputs have tokens

 No artificial constraints, like sequencing instructions

 How do we know when operands are ready?

 Matching store for operands (remember OoO execution?)

 large associative search!

 Later machines moved to coarser grained dataflow (threads

+ dataflow across threads)

 allowed registers and cache for local computation

 introduced messages (with operations and operands)

 34

Scalability, Convergence, and

Some Terminology

35

Scaling Shared Memory Architectures

36

Interconnection Schemes for Shared Memory

 Scalability dependent on interconnect

37

UMA/UCA: Uniform Memory or Cache Access

• All processors have the same uncontended latency to memory

• Latencies get worse as system grows

• Symmetric multiprocessing (SMP) ~ UMA with bus interconnect

Processor Processor Processor. . .

. . .

latency

long

Main Memory

contention in memory banks

Interconnection Network

contention in network

Uniform Memory/Cache Access

+ Data placement unimportant/less important (easier to optimize code and
make use of available memory space)

- Scaling the system increases all latencies

- Contention could restrict bandwidth and increase latency

Processor Processor Processor. . .

. . .

latency

long

Main Memory

contention in memory banks

Interconnection Network

contention in network

Example SMP

 Quad-pack Intel Pentium Pro

40

How to Scale Shared Memory Machines?

 Two general approaches

 Maintain UMA

 Provide a scalable interconnect to memory

 Downside: Every memory access incurs the round-trip network
latency

 Interconnect complete processors with local memory

 NUMA (Non-uniform memory access)

 Local memory faster than remote memory

 Still needs a scalable interconnect for accessing remote
memory

 Not on the critical path of local memory access

41

NUMA/NUCA: NonUniform Memory/Cache Access

• Shared memory as local versus remote memory

+ Low latency to local memory

- Much higher latency to remote memories

. . .

Interconnection Network

contention in network

. . .

latency

long

Memory

Processor

Memory

Processor

Memory

Processor

short

latency

+ Bandwidth to local memory may be higher

- Performance very sensitive to data placement

Example NUMA Machines (I) – CM5

 CM-5

 Hillis and Tucker, “The
CM-5 Connection
Machine: a scalable
supercomputer,” CACM
1993.

43

Example NUMA Machines (I) – CM5

44

Example NUMA Machines (II)

 Sun Enterprise Server

 Cray T3E

45

Convergence of Parallel Architectures

 Scalable shared memory architecture is similar to scalable
message passing architecture

 Main difference: is remote memory accessible with
loads/stores?

46

Historical Evolution: 1960s & 70s

• Early MPs
– Mainframes

– Small number of processors

– crossbar interconnect

– UMA

Processor

Memory
Memory

Memory
Memory

Memory
Memory

Memory
Memory

Processor

Processor

Processor

corssbar

Historical Evolution: 1980s

• Bus-Based MPs

– enabler: processor-on-a-board

– economical scaling

– precursor of today’s SMPs

– UMA

MemoryMemoryMemoryMemory

Proc

cache

Proc

cache

Proc

cache

Proc

cache

Historical Evolution: Late 80s, mid 90s

• Large Scale MPs (Massively Parallel Processors)

– multi-dimensional interconnects

– each node a computer (proc + cache + memory)

– both shared memory and message passing versions

– NUMA

– still used for “supercomputing”

Historical Evolution: Current

 Chip multiprocessors (multi-core)

 Small to Mid-Scale multi-socket CMPs

 One module type: processor + caches + memory

 Clusters/Datacenters

 Use high performance LAN to connect SMP blades, racks

 Driven by economics and cost

 Smaller systems => higher volumes

 Off-the-shelf components

 Driven by applications

 Many more throughput applications (web servers)

 … than parallel applications (weather prediction)

 Cloud computing

Historical Evolution: Future

 Cluster/datacenter on a chip?

 Heterogeneous multi-core?

 Bounce back to small-scale multi-core?

 ???

51

Required Readings

 Hillis and Tucker, “The CM-5 Connection Machine: a scalable
supercomputer,” CACM 1993.

 Seitz, “The Cosmic Cube,” CACM 1985.

52

