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Reminder: Assignments for This Week 

1. Review two papers from ISCA 2012 – due September 11, 
11:59pm. 

 

2. Attend NVIDIA talk on September 10 – write an online 
review of the talk; due September 11, 11:59pm.  

 

3. Think hard about 

 Literature survey topics 

 Research project topics 

 

4. Examine survey and project topics from Spring 2011 

 

5. Find your literature survey and project partner 
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Late Review Assignments 

 Even if you are late, please submit your reviews 

 

 You will benefit from this 
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Reminder: Reviews Due Sunday 

 Sunday, September 16, 11:59pm.  

 

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009.  

 

 Suleman et al., “Data Marshaling for Multi-core 
Architectures,” ISCA 2010. 

 

 Joao et al., “Bottleneck Identification and Scheduling in 
Multithreaded Applications,” ASPLOS 2012.  
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Programming Models vs. 

Architectures 
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What Will We Cover in This Lecture? 

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” 
pp. 551-560, in Readings in Computer Architecture. 

 

 Culler, Singh, Gupta, Chapter 1 (Introduction) in “Parallel 
Computer Architecture: A Hardware/Software Approach.” 
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Programming Models vs. Architectures 

 Five major models 

 (Sequential) 

 Shared memory   

 Message passing 

 Data parallel (SIMD) 

 Dataflow 

 Systolic 

 

 Hybrid models? 
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Shared Memory vs. Message Passing 

 Are these programming models or execution models 
supported by the hardware architecture?  

 

 Does a multiprocessor that is programmed by “shared 
memory programming model” have to support a shared 
address space processors? 

 

 Does a multiprocessor that is programmed by “message 
passing programming model” have to have no shared 
address space between processors? 
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Programming Models: Message Passing vs. Shared Memory 

 Difference: how communication is achieved between tasks 

 Message passing programming model 

 Explicit communication via messages  

 Loose coupling of program components 

 Analogy: telephone call or letter, no shared location accessible to 
all 

 Shared memory programming model 

 Implicit communication via memory operations (load/store) 

 Tight coupling of program components 

 Analogy: bulletin board, post information at a shared space 
 

 Suitability of the programming model depends on the 
problem to be solved. Issues affected by the model include: 

 Overhead, scalability, ease of programming, bugs, match to 
underlying hardware, … 
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Message Passing vs. Shared Memory Hardware 

 Difference: how task communication is supported in 
hardware 

 Shared memory hardware (or machine model) 

 All processors see a global shared address space 

 Ability to access all memory from each processor 

 A write to a location is visible to the reads of other processors 

 Message passing hardware (machine model) 

 No global shared address space 

 Send and receive variants are the only method of 
communication between processors (much like networks of 
workstations today, i.e. clusters) 
 

 Suitability of the hardware depends on the problem to be 
solved as well as the programming model.  
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Message Passing vs. Shared Memory Hardware 
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Programming Model vs. Hardware 

 Most of parallel computing history, there was no separation 
between programming model and hardware 

 Message passing: Caltech Cosmic Cube, Intel Hypercube, Intel 
Paragon 

 Shared memory: CMU C.mmp, Sequent Balance, SGI Origin. 

 SIMD: ILLIAC IV, CM-1 

 

 However, any hardware can really support any 
programming model 

 Why? 

 Application  compiler/library  OS services  hardware 
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Layers of Abstraction 

 Compiler/library/OS map the communication abstraction at 
the programming model layer to the communication 
primitives available at the hardware layer 
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Programming Model vs. Architecture 

 Machine  Programming Model 

 Join at network, so program with message passing model 

 Join at memory, so program with shared memory model 

 Join at processor, so program with SIMD or data parallel 
 

 Programming Model  Machine 

 Message-passing programs on message-passing machine 

 Shared-memory programs on shared-memory machine 

 SIMD/data-parallel programs on SIMD/data-parallel machine 

 

 Isn’t hardware basically the same?  

 Processors, memory, interconnect (I/O) 

 Why not have generic parallel machine and program with 
model that fits the problem? 

 
14 



A Generic Parallel Machine 

 Separation of 
programming 
models from 
architectures 

 

 All models require 
communication 

 

 Node with 
processor(s), 
memory, 
communication 
assist 

Interconnect 

CA 

Mem 
P 

$ 

CA 

Mem 
P 

$ 

CA 

Mem 
P 

$ 

CA 

Mem 
P 

$ 

Node 0 Node 1 

Node 2 Node 3 



Simple Problem 

   

  for i = 1 to N 

   A[i] = (A[i] + B[i]) * C[i] 

   sum = sum + A[i] 

 

 How do I make this parallel? 

 



Simple Problem 

  for i = 1 to N 
   A[i] = (A[i] + B[i]) * C[i] 
   sum = sum + A[i] 
 
 Split the loops  Independent iterations  

 
  for i = 1 to N 
   A[i] = (A[i] + B[i]) * C[i] 
  for i = 1 to N 
   sum = sum + A[i] 
 
 Data flow graph? 
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Partitioning of Data Flow Graph 
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Shared (Physical) Memory 

 Communication, sharing, 
and synchronization with 
store / load on shared 
variables 

 

 Must map virtual pages to 
physical page frames 

 

 Consider OS support for 
good mapping 
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Shared (Physical) Memory on Generic MP 
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Return of The Simple Problem 

  private int i, my_start, my_end, mynode; 

  shared float A[N], B[N], C[N], sum; 

  for i = my_start to my_end 

   A[i] = (A[i] + B[i]) * C[i] 

  GLOBAL_SYNCH; 

  if (mynode == 0) 

   for i = 1 to N 

    sum = sum + A[i] 

 

 Can run this on any shared memory machine 



Message Passing Architectures 

 Cannot directly 
access memory 
on another node 

 

 IBM SP-2, Intel 
Paragon 
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Message Passing Programming Model 

 User level send/receive abstraction 

 local buffer (x,y), process (Q,P) and tag (t) 

 naming and synchronization 

Local Process 

Address Space 

address x address y 

match 

Process P Process Q 

Local Process 

Address Space 

Send x, Q, t 

Recv y, P, t 



The Simple Problem Again 

  int i, my_start, my_end, mynode; 

  float A[N/P], B[N/P], C[N/P], sum; 

  for i = 1 to N/P 

   A[i] = (A[i] + B[i]) * C[i] 

   sum = sum + A[i] 

  if (mynode != 0) 

   send (sum,0); 

  if (mynode == 0) 

   for i = 1 to P-1 

    recv(tmp,i) 

    sum = sum + tmp 
 

 Send/Recv communicates and synchronizes 

 P processors 



Separation of Architecture from Model 

 At the lowest level shared memory model is all about 
sending and receiving messages 

 HW is specialized to expedite read/write messages using load 
and store instructions 

 

 What programming model/abstraction is supported at user 
level? 

 

 Can I have shared-memory abstraction on message passing 
HW? How efficient? 

 

 Can I have message passing abstraction on shared memory 
HW? How efficient? 



Challenges in Mixing and Matching 
 Assume prog. model same as ABI (compiler/library  OS 
 hardware) 

 Shared memory prog model on shared memory HW 

 How do you design a scalable runtime system/OS? 

 Message passing prog model on message passing HW 

 How do you get good messaging performance? 

 Shared memory prog model on message passing HW 

 How do you reduce the cost of messaging when there are 
frequent operations on shared data? 

 Li and Hudak, “Memory Coherence in Shared Virtual Memory 
Systems,” ACM TOCS 1989. 

 Message passing prog model on shared memory HW 

 Convert send/receives to load/stores on shared buffers 

 How do you design scalable HW? 
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Data Parallel Programming Model 

 Programming Model 

 Operations are performed on each element of a large (regular) 
data structure (array, vector, matrix) 

 Program is logically a single thread of control, carrying out a 
sequence of either sequential or parallel steps 

 

 The Simple Problem Strikes Back 

                    A = (A + B) * C 

   sum = global_sum (A) 

 

 Language supports array assignment 

 
 

 

 

 



Data Parallel Hardware Architectures (I) 

 Early architectures directly mirrored programming model 

 

 Single control processor (broadcast each instruction to an 
array/grid of processing elements) 

 Consolidates control 

 Many processing elements controlled by the master 

 

 Examples: Connection Machine, MPP 

 Batcher, “Architecture of a massively parallel processor,” ISCA 
1980. 

 16K bit serial processing elements 

 Tucker and Robertson, “Architecture and Applications of the 
Connection Machine,” IEEE Computer 1988. 

 64K bit serial processing elements 
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Connection Machine 
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Data Parallel Hardware Architectures (II) 

 Later data parallel architectures  

 Higher integration  SIMD units on chip along with caches 

 More generic  multiple cooperating multiprocessors with 

vector units 

 Specialized hardware support for global synchronization 

 E.g. barrier synchronization 

 

 Example: Connection Machine 5 

 Hillis and Tucker, “The CM-5 Connection Machine: a scalable 
supercomputer,” CACM 1993. 

 Consists of 32-bit SPARC processors 

 Supports Message Passing and Data Parallel models 

 Special control network for global synchronization 
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Review: Separation of Model and Architecture 

 Shared Memory 

 Single shared address space 

 Communicate, synchronize using load / store 

 Can support message passing 
 

 Message Passing 

 Send / Receive  

 Communication + synchronization 

 Can support shared memory 
 

 Data Parallel 

 Lock-step execution on regular data structures 

 Often requires global operations (sum, max, min...) 

 Can be supported on either SM or MP 



Review: A Generic Parallel Machine 

 Separation of 
programming 
models from 
architectures 

 All models require 
communication 

 Node with 
processor(s), 
memory, 
communication 
assist 

Interconnect 

CA 

Mem 
P 

$ 

CA 

Mem 
P 

$ 

CA 

Mem 
P 

$ 

CA 

Mem 
P 

$ 

Node 0 Node 1 

Node 2 Node 3 



Data Flow Programming Models and Architectures 

 A program consists of data flow nodes 

 A data flow node fires (fetched and executed) when all its 
inputs are ready 

 i.e. when all inputs have tokens 

 No artificial constraints, like sequencing instructions 

 How do we know when operands are ready? 

 Matching store for operands (remember OoO execution?) 

 large associative search! 

 

 Later machines moved to coarser grained dataflow (threads 

+ dataflow across threads) 

 allowed registers and cache for local computation 

 introduced messages (with operations and operands) 
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Scalability, Convergence, and 

Some Terminology 
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Scaling Shared Memory Architectures 
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Interconnection Schemes for Shared Memory 

 Scalability dependent on interconnect 
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UMA/UCA: Uniform Memory or Cache Access 

• All processors have the same uncontended latency to memory 

• Latencies get worse as system grows 

• Symmetric multiprocessing (SMP) ~ UMA with bus interconnect 

Processor Processor Processor. . .

. . .

latency

long

Main Memory

contention in memory banks

Interconnection Network

contention in network



Uniform Memory/Cache Access 

+ Data placement unimportant/less important (easier to optimize code and 
make use of available memory space) 

- Scaling the system increases all latencies 

- Contention could restrict bandwidth and increase latency 

Processor Processor Processor. . .

. . .

latency

long

Main Memory

contention in memory banks

Interconnection Network

contention in network



Example SMP 

 Quad-pack Intel Pentium Pro 
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How to Scale Shared Memory Machines? 

 Two general approaches 

 

 Maintain UMA  

 Provide a scalable interconnect to memory 

 Downside: Every memory access incurs the round-trip network 
latency 

 

 Interconnect complete processors with local memory 

 NUMA (Non-uniform memory access) 

 Local memory faster than remote memory 

 Still needs a scalable interconnect for accessing remote 
memory 

 Not on the critical path of local memory access 
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NUMA/NUCA: NonUniform Memory/Cache Access 

• Shared memory as local versus remote memory 

+ Low latency to local memory 

- Much higher latency to remote memories 

. . .

Interconnection Network

contention in network

. . .

latency

long

Memory

Processor

Memory

Processor

Memory

Processor

short

latency

+ Bandwidth to local memory may be higher 

- Performance very sensitive to data placement 

 



Example NUMA Machines (I) – CM5 

 CM-5 

 Hillis and Tucker, “The 
CM-5 Connection 
Machine: a scalable 
supercomputer,” CACM 
1993. 
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Example NUMA Machines (I) – CM5 
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Example NUMA Machines (II) 

 Sun Enterprise Server 

 Cray T3E 
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Convergence of Parallel Architectures 

 Scalable shared memory architecture is similar to scalable 
message passing architecture 

 Main difference: is remote memory accessible with 
loads/stores? 
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Historical Evolution: 1960s & 70s 

• Early MPs 
– Mainframes 

– Small number of processors 

– crossbar interconnect 

– UMA 

Processor

Memory
Memory

Memory
Memory

Memory
Memory

Memory
Memory

Processor

Processor

Processor

corssbar



Historical Evolution: 1980s 

• Bus-Based MPs 

– enabler: processor-on-a-board 

– economical scaling 

– precursor of today’s SMPs 

– UMA 

MemoryMemoryMemoryMemory

Proc

cache

Proc

cache

Proc

cache

Proc

cache



Historical Evolution: Late 80s, mid 90s 

• Large Scale MPs   (Massively Parallel Processors) 

– multi-dimensional interconnects 

– each node a computer (proc + cache + memory) 

– both shared memory and message passing versions 

– NUMA 

– still used for “supercomputing”  



Historical Evolution: Current 

 Chip multiprocessors (multi-core) 

 Small to Mid-Scale multi-socket CMPs 

 One module type:  processor + caches + memory 

 Clusters/Datacenters 

 Use high performance LAN to connect SMP blades, racks 

 

 Driven by economics and cost 

 Smaller systems => higher volumes 

 Off-the-shelf components 

 Driven by applications 

 Many more throughput applications (web servers) 

 … than parallel applications (weather prediction) 

 Cloud computing 



Historical Evolution: Future 

 Cluster/datacenter on a chip? 

 

 Heterogeneous multi-core? 

 

 Bounce back to small-scale multi-core? 

 

 ??? 
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Required Readings 

 Hillis and Tucker, “The CM-5 Connection Machine: a scalable 
supercomputer,” CACM 1993. 

 

 Seitz, “The Cosmic Cube,” CACM 1985. 
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