
18-742 Fall 2012

Parallel Computer Architecture
Lecture 20: Speculation+Interconnects III

Prof. Onur Mutlu

Carnegie Mellon University

10/24/2012

New Review Assignments

 Due: Sunday, October 28, 11:59pm.

 Das et al., “Aergia: Exploiting Packet Latency Slack in On-Chip
Networks,” ISCA 2010.

 Dennis and Misunas, “A Preliminary Architecture for a Basic Data
Flow Processor,” ISCA 1974.

 Due: Tuesday, October 30, 11:59pm.

 Arvind and Nikhil, “Executing a Program on the MIT Tagged-Token
Dataflow Architecture,” IEEE TC 1990.

2

Due in the Future

 Dataflow

 Gurd et al., “The Manchester prototype dataflow computer,”
CACM 1985.

 Lee and Hurson, “Dataflow Architectures and Multithreading,”
IEEE Computer 1994.

Restricted Dataflow

 Patt et al., “HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

 Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

3

Project Milestone I Presentations (I)

 When: October 26, in class

 Format: 9-min presentation per group, 2-min Q&A, 1-min
grace period

 What to present:

 The problem you are solving + your goal

 Your solution ideas + strengths and weaknesses

 Your methodology to test your ideas

 Concrete mechanisms you have implemented so far

 Concrete results you have so far

 What will you do next?

 What hypotheses you have for future?

 How close were you to your target?
4

Project Milestone I Presentations (I)

 You can update your slides

 Send them to me and Han by 2:30pm on Oct 26, Friday

 Make a lot of progress and find breakthroughs

 Example milestone presentations:

 http://www.ece.cmu.edu/~ece742/2011spring/doku.php?id=p
roject

 http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.p
hp?media=milestone1_ausavarungnirun_meza_yoon.pptx

 http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.p
hp?media=milestone1_tumanov_lin.pdf

5

http://www.ece.cmu.edu/~ece742/2011spring/doku.php?id=project
http://www.ece.cmu.edu/~ece742/2011spring/doku.php?id=project
http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=milestone1_ausavarungnirun_meza_yoon.pptx
http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=milestone1_ausavarungnirun_meza_yoon.pptx
http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=milestone1_tumanov_lin.pdf
http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=milestone1_tumanov_lin.pdf

Last Few Lectures

 Speculation in Parallel Machines

 Interconnection Networks

 Guest Lecture: Adam From, ARM

 6

Today

 Transactional Memory (brief)

 Interconnect wrap-up

7

Review: Speculation to Improve Parallel Programs

 Goal: reduce the impact of serializing bottlenecks

 Improve performance

 Improve programming ease

 Examples

 Herlihy and Moss, “Transactional Memory: Architectural Support for
Lock-Free Data Structures,” ISCA 1993.

 Rajwar and Goodman, “Speculative Lock Elision: Enabling Highly
Concurrent Multithreaded Execution,” MICRO 2001.

 Martinez and Torrellas, “Speculative Synchronization: Applying
Thread-Level Speculation to Explicitly Parallel Applications,” ASPLOS
2002.

 Rajwar and Goodman, ”Transactional lock-free execution of lock-
based programs,” ASPLOS 2002.

8

Review: Speculative Lock Elision

 Many programs use locks for synchronization

 Many locks are not necessary

 Stores occur infrequently during execution

 Updates can occur to disjoint parts of the data structure

 Idea:

 Speculatively assume lock is not necessary and execute critical
section without acquiring the lock

 Check for conflicts within the critical section

 Roll back if assumption is incorrect

 Rajwar and Goodman, “Speculative Lock Elision: Enabling
Highly Concurrent Multithreaded Execution,” MICRO 2001.

 9

Review: Dynamically Unnecessary Synchronization

10

Transactional Memory

Transactional Memory

 Idea: Programmer specifies code to be executed atomically
as transactions. Hardware/software guarantees atomicity
for transactions.

 Motivated by difficulty of lock-based programming

 Motivated by lack of concurrency (performance issues) in
blocking synchronization (or “pessimistic concurrency”)

12

Locking Issues

 Locks: objects only one thread can hold at a time

 Organization: lock for each shared structure

 Usage: (block)  acquire  access  release

 Correctness issues

 Under-locking  data races

 Acquires in different orders  deadlock

 Performance issues

 Conservative serialization

 Overhead of acquiring

 Difficult to find right granularity

 Blocking

 13

Locks vs. Transactions

 Locks  pessimistic concurrency

 Transactions  optimistic concurrency

14

Lock issues:

– Under-locking  data races

– Deadlock due to lock ordering

– Blocking synchronization

– Conservative serialization

How transactions help:

+ Simpler interface/reasoning

+ No ordering

+ Nonblocking (Abort on conflict)

+ Serialization only on conflicts

Transactional Memory
 Transactional Memory (TM) allows arbitrary multiple memory

locations to be updated atomically (all or none)

 Basic Mechanisms:

 Isolation and conflict management: Track read/writes per
transaction, detect when a conflict occurs between transactions

 Version management: Record new/old values (where?)

 Atomicity: Commit new values or abort back to old values  all

or none semantics of a transaction

 Issues the same as other speculative parallelization schemes

 Logging/buffering

 Conflict detection

 Abort/rollback

 Commit

15

Four Issues in Transactional Memory

 How to deal with unavailable values: predict vs. wait

 How to deal with speculative updates: logging/buffering

 How to detect conflicts: lazy vs. eager

 How and when to abort/rollback or commit

16

Many Variations of TM

 Software

 High performance overhead, but no virtualization issues

 Hardware

 What if buffering is not enough?

 Context switches, I/O within transactions?

 Need support for virtualization

 Hybrid HW/SW

 Switch to SW to handle large transactions and buffer overflows

17

Initial TM Ideas

 Load Linked Store Conditional Operations

 Lock-free atomic update of a single cache line

 Used to implement non-blocking synchronization

 Alpha, MIPS, ARM, PowerPC

 Load-linked returns current value of a location

 A subsequent store-conditional to the same memory location
will store a new value only if no updates have occurred to the
location

 Herlihy and Moss, ISCA 1993

 Instructions explicitly identify transactional loads and stores

 Used dedicated transaction cache

 Size of transactions limited to transaction cache

18

Herlihy and Moss, ISCA 1993

19

Current Implementations of TM/SLE

 Sun ROCK

 Dice et al., “Early Experience with a Commercial Hardware
Transactional Memory Implementation,” ASPLOS 2009.

 IBM Blue Gene

 Wang et al., “Evaluation of Blue Gene/Q Hardware Support for
Transactional Memories,” PACT 2012.

 IBM System z: Two types of transactions

 Best effort transactions: Programmer responsible for aborts

 Guaranteed transactions are subject to many limitations

 Intel Haswell

20

Some TM Research Issues

 How to virtualize transactions (without much complexity)

 Ensure long transactions execute correctly

 In the presence of context switches, paging

 Handling I/O within transactions

 No problem with locks

 Semantics of nested transactions (more of a
language/programming research topic)

 Does TM increase programmer productivity?

 Does the programmer need to optimize transactions?

21

Interconnects III: Review and Wrap-Up

Last Lectures

 Interconnection Networks

 Introduction & Terminology

 Topology

 Buffering and Flow control

 Routing

 Router design

 Network performance metrics

 On-chip vs. off-chip differences

23

Some Questions

 What are the possible ways of handling contention in a
router?

 What is head-of-line blocking?

 What is a non-minimal routing algorithm?

 What is the difference between deterministic, oblivious, and
adaptive routing algorithms?

 What routing algorithms need to worry about deadlock?

 What routing algorithms need to worry about livelock?

 How to handle deadlock?

 How to handle livelock?

 What is zero-load latency?

 What is saturation throughput?

 What is an application-aware packet scheduling algorithm?

24

Routing Mechanism

 Arithmetic

 Simple arithmetic to determine route in regular topologies

 Dimension order routing in meshes/tori

 Source Based
 Source specifies output port for each switch in route

+ Simple switches

 no control state: strip output port off header

- Large header

 Table Lookup Based
 Index into table for output port

+ Small header

- More complex switches

25

Routing Algorithm

 Types

 Deterministic: always choose the same path

 Oblivious: do not consider network state (e.g., random)

 Adaptive: adapt to state of the network

 How to adapt

 Local/global feedback

 Minimal or non-minimal paths

26

Deterministic Routing

 All packets between the same (source, dest) pair take the
same path

 Dimension-order routing

 E.g., XY routing (used in Cray T3D, and many on-chip
networks)

 First traverse dimension X, then traverse dimension Y

+ Simple

+ Deadlock freedom (no cycles in resource allocation)

- Could lead to high contention

- Does not exploit path diversity

27

Deadlock

 No forward progress

 Caused by circular dependencies on resources

 Each packet waits for a buffer occupied by another packet
downstream

28

Handling Deadlock

 Avoid cycles in routing

 Dimension order routing

 Cannot build a circular dependency

 Restrict the “turns” each packet can take

 Avoid deadlock by adding virtual channels

 Detect and break deadlock

 Preemption of buffers

29

Turn Model to Avoid Deadlock

 Idea

 Analyze directions in which packets can turn in the network

 Determine the cycles that such turns can form

 Prohibit just enough turns to break possible cycles

 Glass and Ni, “The Turn Model for Adaptive Routing,” ISCA
1992.

30

Valiant’s Algorithm

 An example of oblivious algorithm

 Goal: Balance network load

 Idea: Randomly choose an intermediate destination, route
to it first, then route from there to destination

 Between source-intermediate and intermediate-dest, can use
dimension order routing

+ Randomizes/balances network load

- Non minimal (packet latency can increase)

 Optimizations:

 Do this on high load

 Restrict the intermediate node to be close (in the same quadrant)

31

Adaptive Routing

 Minimal adaptive

 Router uses network state (e.g., downstream buffer
occupancy) to pick which “productive” output port to send a
packet to

 Productive output port: port that gets the packet closer to its
destination

+ Aware of local congestion

- Minimality restricts achievable link utilization (load balance)

 Non-minimal (fully) adaptive

 “Misroute” packets to non-productive output ports based on
network state

+ Can achieve better network utilization and load balance

- Need to guarantee livelock freedom

32

More on Adaptive Routing

 Can avoid faulty links/routers

 Idea: Route around faults

+ Deterministic routing cannot handle faulty components

- Need to change the routing table to disable faulty routes

 - Assuming the faulty link/router is detected

33

Real On-Chip Network Designs

 Tilera Tile64 and Tile100

 Larrabee

 Cell

34

On-Chip vs. Off-Chip Differences

Advantages of on-chip

 Wires are “free”

 Can build highly connected networks with wide buses

 Low latency

 Can cross entire network in few clock cycles

 High Reliability

 Packets are not dropped and links rarely fail

Disadvantages of on-chip

 Sharing resources with rest of components on chip

 Area

 Power

 Limited buffering available

 Not all topologies map well to 2D plane

35

Tilera Networks

 2D Mesh

 Five networks

 Four packet switched
 Dimension order routing,

wormhole flow control

 TDN: Cache request
packets

 MDN: Response packets

 IDN: I/O packets

 UDN: Core to core
messaging

 One circuit switched
 STN: Low-latency, high-

bandwidth static network

 Streaming data
36

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

Research Topics in Interconnects

 Plenty of topics in on-chip networks. Examples:

 Energy/power efficient/proportional design

 Reducing Complexity: Simplified router and protocol designs

 Adaptivity: Ability to adapt to different access patterns

 QoS and performance isolation

 Reducing and controlling interference, admission control

 Co-design of NoCs with other shared resources

 End-to-end performance, QoS, power/energy optimization

 Scalable topologies to many cores

 Fault tolerance

 Request prioritization, priority inversion, coherence, …

 New technologies (optical, 3D)

38

Packet Scheduling

 Which packet to choose for a given output port?

 Router needs to prioritize between competing flits

 Which input port?

 Which virtual channel?

 Which application’s packet?

 Common strategies

 Round robin across virtual channels

 Oldest packet first (or an approximation)

 Prioritize some virtual channels over others

 Better policies in a multi-core environment

 Use application characteristics

39

Application-Aware Packet Scheduling

Das et al., “Application-Aware Prioritization Mechanisms for On-Chip
Networks,” MICRO 2009.

The Problem: Packet Scheduling

Network-on-Chip

L2$ L2$
L2$

L2$

Bank

mem

cont

Memory

Controller

P

Accelerator
L2$

Bank

L2$

Bank

P P P P P P P

Network-on-Chip

Network-on-Chip is a critical resource

shared by multiple applications

App1 App2 App N App N-1

From East

From West

From North

From South

From PE

VC 0

VC Identifier

VC 1

VC 2

The Problem: Packet Scheduling

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Crossbar (5 x 5)

To East

To PE

To West

To North

To South

Input Port with Buffers

Control Logic

Crossbar

R Routers

PE Processing Element
(Cores, L2 Banks, Memory Controllers etc)

Routing Unit
(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

VC 0
Routing Unit

(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

VC 1

VC 2

From East

From West

From North

From South

From PE

The Problem: Packet Scheduling

Conceptual

View

From East

From West

From North

From South

From PE

VC 0

VC 1

VC 2

App1 App2 App3 App4
App5 App6 App7 App8

The Problem: Packet Scheduling

VC 0
Routing Unit

(RC)

VC Allocator
(VA)

Switch

VC 1

VC 2

From East

From West

From North

From South

From PE

Allocator (SA)

Sc
h

e
d

u
le

r

Conceptual

View

VC 0
Routing Unit

(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

VC 1

VC 2

From East

From West

From North

From South

From PE

From East

From West

From North

From South

From PE

VC 0

VC 1

VC 2

App1 App2 App3 App4
App5 App6 App7 App8

Which packet to choose?

The Problem: Packet Scheduling

The Problem: Packet Scheduling

 Existing scheduling policies

 Round Robin

 Age

 Problem 1: Local to a router

 Lead to contradictory decision making between routers: packets

from one application may be prioritized at one router, to be

delayed at next.

 Problem 2: Application oblivious

 Treat all applications packets equally

 But applications are heterogeneous

 Solution : Application-aware global scheduling policies.

Motivation: Stall Time Criticality

 Applications are not homogenous

 Applications have different criticality with respect to the

network

 Some applications are network latency sensitive

 Some applications are network latency tolerant

 Application’s Stall Time Criticality (STC) can be measured by
its average network stall time per packet (i.e. NST/packet)

 Network Stall Time (NST) is number of cycles the processor

stalls waiting for network transactions to complete

Motivation: Stall Time Criticality

 Why applications have different network stall time criticality

(STC)?

 Memory Level Parallelism (MLP)

 Lower MLP leads to higher STC

 Shortest Job First Principle (SJF)

 Lower network load leads to higher STC

 Average Memory Access Time

 Higher memory access time leads to higher STC

 Observation 1: Packet Latency != Network Stall Time

STALL STALL

STALL of Red Packet = 0

LATENCY

LATENCY

LATENCY

Application with high MLP

STC Principle 1 {MLP}
Compute

 Observation 1: Packet Latency != Network Stall Time

 Observation 2: A low MLP application’s packets have higher

criticality than a high MLP application’s

STALL STALL

STALL of Red Packet = 0

LATENCY

LATENCY

LATENCY

Application with high MLP

STALL

LATENCY

STALL

LATENCY

STALL

LATENCY

Application with low MLP

STC Principle 1 {MLP}

STC Principle 2 {Shortest-Job-First}

4X network slow down

1.2X network slow down

1.3X network slow down

1.6X network slow down

Overall system throughput{weighted speedup} increases by 34%

Running ALONE

Baseline (RR) Scheduling

SJF Scheduling

Light Application Heavy Application

Compute

Solution: Application-Aware Policies

 Idea

 Identify stall time critical applications (i.e. network

sensitive applications) and prioritize their packets in

each router.

 Key components of scheduling policy:

 Application Ranking

 Packet Batching

 Propose low-hardware complexity solution

Component 1 : Ranking

 Ranking distinguishes applications based on Stall Time

Criticality (STC)

 Periodically rank applications based on Stall Time Criticality

(STC).

 Explored many heuristics for quantifying STC (Details &

analysis in paper)

 Heuristic based on outermost private cache Misses Per

Instruction (L1-MPI) is the most effective

 Low L1-MPI => high STC => higher rank

 Why Misses Per Instruction (L1-MPI)?

 Easy to Compute (low complexity)

 Stable Metric (unaffected by interference in network)

Component 1 : How to Rank?
 Execution time is divided into fixed “ranking intervals”

 Ranking interval is 350,000 cycles

 At the end of an interval, each core calculates their L1-MPI and

sends it to the Central Decision Logic (CDL)

 CDL is located in the central node of mesh

 CDL forms a ranking order and sends back its rank to each core

 Two control packets per core every ranking interval

 Ranking order is a “partial order”

 Rank formation is not on the critical path

 Ranking interval is significantly longer than rank computation time

 Cores use older rank values until new ranking is available

Component 2: Batching

 Problem: Starvation

 Prioritizing a higher ranked application can lead to starvation of

lower ranked application

 Solution: Packet Batching

 Network packets are grouped into finite sized batches

 Packets of older batches are prioritized over younger

batches

 Alternative batching policies explored in paper

 Time-Based Batching

 New batches are formed in a periodic, synchronous manner

across all nodes in the network, every T cycles

Putting it all together

 Before injecting a packet into the network, it is tagged by

 Batch ID (3 bits)

 Rank ID (3 bits)

 Three tier priority structure at routers

 Oldest batch first (prevent starvation)

 Highest rank first (maximize performance)

 Local Round-Robin (final tie breaker)

 Simple hardware support: priority arbiters

 Global coordinated scheduling

 Ranking order and batching order are same across all routers

STC Scheduling Example

In
je

ct
io

n
C

yc
le

s

1

2

3

4

5

6

7

8

2 2

3

Batch 0

Packet Injection Order at Processor

Core1 Core2 Core3

Batching interval length = 3 cycles

Ranking order =

Batch 1

Batch 2

STC Scheduling Example

4 8

5

1 7

2

1

6 2

1

3

Router

Sc
h

e
d

u
le

r

In
je

ct
io

n
C

yc
le

s

1

2

3

4

5

6

7

8

2 2

3

Batch 2

Batch 1

Batch 0

Applications

STC Scheduling Example

4 8

5

1 7

3

2

6 2

2

3

Router

Sc
h

e
d

u
le

r

Round Robin

3 2 8 7 6

STALL CYCLES Avg

RR 8 6 11 8.3

Age

STC

Time

STC Scheduling Example

4 8

5

1 7

3

2

6 2

2

3

Router

Sc
h

e
d

u
le

r

Round Robin

5 4 3 1 2 2 3 2 8 7 6

Age

3 3 5 4 6 7 8

STALL CYCLES Avg

RR 8 6 11 8.3

Age 4 6 11 7.0

STC

Time

Time

STC Scheduling Example

4 8

5

1 7

3

2

6 2

2

3

Router

Sc
h

e
d

u
le

r

Round Robin

5 4 3 1 2 2 3 2 8 7 6

Age

2 3 3 5 4 6 7 8 1 2 2

STC

3 5 4 6 7 8

STALL CYCLES Avg

RR 8 6 11 8.3

Age 4 6 11 7.0

STC 1 3 11 5.0

Ranking order

Time

Time

Time

Qualitative Comparison
 Round Robin & Age

 Local and application oblivious

 Age is biased towards heavy applications
 heavy applications flood the network

 higher likelihood of an older packet being from heavy application

 Globally Synchronized Frames (GSF) [Lee et al., ISCA
2008]

 Provides bandwidth fairness at the expense of system
performance

 Penalizes heavy and bursty applications
 Each application gets equal and fixed quota of flits (credits) in each batch.

 Heavy application quickly run out of credits after injecting into all active
batches & stall till oldest batch completes and frees up fresh credits.

 Underutilization of network resources

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
al

iz
e

d
 S

y
st

e
m

 S
p

e
e

d
u

p

LocalRR LocalAge

GSF STC

0

2

4

6

8

10

N
e

tw
o

rk
 U

n
fa

ir
n

e
ss

LocalRR LocalAge

GSF STC

System Performance

 STC provides 9.1% improvement in weighted speedup over

the best existing policy{averaged across 96 workloads}

 Detailed case studies in the paper

Slack-Driven Packet Scheduling

Das et al., “Aergia: Exploiting Packet Latency Slack in On-Chip Networks,”

ISCA 2010.

Packet Scheduling in NoC

 Existing scheduling policies

 Round robin

 Age

 Problem

 Treat all packets equally

 Application-oblivious

 Packets have different criticality

 Packet is critical if latency of a packet affects application’s

performance

 Different criticality due to memory level parallelism (MLP)

All packets are not the same…!!!

Latency ()

MLP Principle

Stall Compute

Latency ()

Latency ()

Stall () = 0

Packet Latency != Network Stall Time

Different Packets have different criticality due to MLP

Criticality() > Criticality() > Criticality()

Outline

 Introduction

 Packet Scheduling

 Memory Level Parallelism

 Aérgia

 Concept of Slack

 Estimating Slack

 Evaluation

 Conclusion

What is Aérgia?

 Aérgia is the spirit of laziness in Greek mythology

 Some packets can afford to slack!

Outline

 Introduction

 Packet Scheduling

 Memory Level Parallelism

 Aérgia

 Concept of Slack

 Estimating Slack

 Evaluation

 Conclusion

Slack of Packets

 What is slack of a packet?

 Slack of a packet is number of cycles it can be delayed in a
router without reducing application’s performance

 Local network slack

 Source of slack: Memory-Level Parallelism (MLP)

 Latency of an application’s packet hidden from application due
to overlap with latency of pending cache miss requests

 Prioritize packets with lower slack

Concept of Slack
Instruction

 Window

Stall

Network-on-Chip

Load Miss Causes

 returns earlier than necessary

Compute

Slack () = Latency () – Latency () = 26 – 6 = 20 hops

Execution Time

Packet() can be delayed for available slack cycles

without reducing performance!

Causes Load Miss

Latency ()

Latency ()

Slack Slack

Prioritizing using Slack

Core A

Core B

Packet Latency Slack

13 hops 0 hops

3 hops 10 hops

10 hops 0 hops

4 hops 6 hops

Causes

Causes Load Miss

Load Miss

Prioritize

Load Miss

Load Miss Causes

Causes

Interference at 3 hops

Slack() > Slack ()

Slack in Applications

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

P
e
rc

e
n
ta

g
e
 o

f
a
ll

P
a
c
k
e
ts

 (
%

)

Slack in cycles

Gems

50% of packets have 350+ slack cycles

10% of packets have <50 slack cycles

Non-critical

critical

Slack in Applications

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

P
e
rc

e
n
ta

g
e
 o

f
a
ll

P
a
c
k
e
ts

 (
%

)

Slack in cycles

Gems

art

68% of packets have zero slack cycles

Diversity in Slack

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

P
e
rc

e
n
ta

g
e
 o

f
a
ll

P
a
c
k
e
ts

 (
%

)

Slack in cycles

Gems

omnet

tpcw

mcf

bzip2

sjbb

sap

sphinx

deal

barnes

astar

calculix

art

libquantum

sjeng

h264ref

Diversity in Slack

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

P
e
rc

e
n
ta

g
e
 o

f
a
ll

P
a
c
k
e
ts

 (
%

)

Slack in cycles

Gems

omnet

tpcw

mcf

bzip2

sjbb

sap

sphinx

deal

barnes

astar

calculix

art

libquantum

sjeng

h264ref

Slack varies between packets of different applications

Slack varies between packets of a single application

Outline

 Introduction

 Packet Scheduling

 Memory Level Parallelism

 Aérgia

 Concept of Slack

 Estimating Slack

 Evaluation

 Conclusion

Estimating Slack Priority

Slack (P) = Max (Latencies of P’s Predecessors) – Latency of P

 Predecessors(P) are the packets of outstanding cache miss

requests when P is issued

 Packet latencies not known when issued

 Predicting latency of any packet Q

 Higher latency if Q corresponds to an L2 miss

 Higher latency if Q has to travel farther number of hops

 Slack of P = Maximum Predecessor Latency – Latency of P

 Slack(P) =

PredL2: Set if any predecessor packet is servicing L2 miss

MyL2: Set if P is NOT servicing an L2 miss

HopEstimate: Max (# of hops of Predecessors) – hops of P

Estimating Slack Priority

PredL2

(2 bits)

MyL2

(1 bit)

HopEstimate

(2 bits)

Estimating Slack Priority

 How to predict L2 hit or miss at core?

 Global Branch Predictor based L2 Miss Predictor

 Use Pattern History Table and 2-bit saturating counters

 Threshold based L2 Miss Predictor

 If #L2 misses in “M” misses >= “T” threshold then next load is a L2 miss.

 Number of miss predecessors?

 List of outstanding L2 Misses

 Hops estimate?

 Hops => ∆X + ∆ Y distance

 Use predecessor list to calculate slack hop estimate

Starvation Avoidance

 Problem: Starvation

 Prioritizing packets can lead to starvation of lower priority

packets

 Solution: Time-Based Packet Batching

 New batches are formed at every T cycles

 Packets of older batches are prioritized over younger batches

Putting it all together

 Tag header of the packet with priority bits before injection

 Priority(P)?

 P’s batch (highest priority)

 P’s Slack

 Local Round-Robin (final tie breaker)

PredL2

(2 bits)

MyL2

(1 bit)

HopEstimate

(2 bits)

Batch

(3 bits)
Priority (P) =

Outline

 Introduction

 Packet Scheduling

 Memory Level Parallelism

 Aérgia

 Concept of Slack

 Estimating Slack

 Evaluation

 Conclusion

Evaluation Methodology
 64-core system

 x86 processor model based on Intel Pentium M

 2 GHz processor, 128-entry instruction window

 32KB private L1 and 1MB per core shared L2 caches, 32 miss buffers

 4GB DRAM, 320 cycle access latency, 4 on-chip DRAM controllers

 Detailed Network-on-Chip model
 2-stage routers (with speculation and look ahead routing)

 Wormhole switching (8 flit data packets)

 Virtual channel flow control (6 VCs, 5 flit buffer depth)

 8x8 Mesh (128 bit bi-directional channels)

 Benchmarks
 Multiprogrammed scientific, server, desktop workloads (35 applications)

 96 workload combinations

Qualitative Comparison

 Round Robin & Age

 Local and application oblivious

 Age is biased towards heavy applications

 Globally Synchronized Frames (GSF)
[Lee et al., ISCA 2008]

 Provides bandwidth fairness at the expense of system performance

 Penalizes heavy and bursty applications

 Application-Aware Prioritization Policies (SJF)
[Das et al., MICRO 2009]

 Shortest-Job-First Principle

 Packet scheduling policies which prioritize network sensitive

applications which inject lower load

System Performance

 SJF provides 8.9% improvement

in weighted speedup

 Aérgia improves system

throughput by 10.3%

 Aérgia+SJF improves system

throughput by 16.1%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N
o

rm
al

iz
e

d
 S

y
st

e
m

 S
p

e
e

d
u

p

Age RR

GSF SJF

Aergia SJF+Aergia

Network Unfairness

 SJF does not imbalance

 network fairness

 Aergia improves network

unfairness by 1.5X

 SJF+Aergia improves

network unfairness by 1.3X

0.0

3.0

6.0

9.0

12.0

 N
e

tw
o

rk
 U

n
fa

ir
n

e
ss

Age RR

GSF SJF

Aergia SJF+Aergia

Conclusions & Future Directions

 Packets have different criticality, yet existing packet

scheduling policies treat all packets equally

 We propose a new approach to packet scheduling in NoCs

 We define Slack as a key measure that characterizes the relative

importance of a packet.

 We propose Ae ́rgia a novel architecture to accelerate low slack

critical packets

 Result

 Improves system performance: 16.1%

 Improves network fairness: 30.8%

