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New Review Assignments 

 Due: Sunday, October 28, 11:59pm. 

 Das et al., “Aergia: Exploiting Packet Latency Slack in On-Chip 
Networks,” ISCA 2010. 

 Dennis and Misunas, “A Preliminary Architecture for a Basic Data 
Flow Processor,” ISCA 1974. 

 

 Due: Tuesday, October 30, 11:59pm.  

 Arvind and Nikhil, “Executing a Program on the MIT Tagged-Token 
Dataflow Architecture,” IEEE TC 1990. 
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Due in the Future 

 Dataflow 

 Gurd et al., “The Manchester prototype dataflow computer,” 
CACM 1985. 

 Lee and Hurson, “Dataflow Architectures and Multithreading,” 
IEEE Computer 1994. 

 

Restricted Dataflow 

 Patt et al., “HPS, a new microarchitecture: rationale and 
introduction,” MICRO 1985. 

 Patt et al., “Critical issues regarding HPS, a high performance 
microarchitecture,” MICRO 1985. 
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Project Milestone I Presentations (I) 

 When: October 26, in class 

 

 Format: 9-min presentation per group, 2-min Q&A, 1-min 
grace period 

 

 What to present: 

 The problem you are solving + your goal 

 Your solution ideas + strengths and weaknesses 

 Your methodology to test your ideas 

 Concrete mechanisms you have implemented so far  

 Concrete results you have so far  

 What will you do next? 

 What hypotheses you have for future? 

 How close were you to your target? 
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Project Milestone I Presentations (I) 

 You can update your slides 

 Send them to me and Han by 2:30pm on Oct 26, Friday 

 

 Make a lot of progress and find breakthroughs 

 

 Example milestone presentations: 

 http://www.ece.cmu.edu/~ece742/2011spring/doku.php?id=p
roject 

 http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.p
hp?media=milestone1_ausavarungnirun_meza_yoon.pptx 

 http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.p
hp?media=milestone1_tumanov_lin.pdf 
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Last Few Lectures 

 Speculation in Parallel Machines 

 

 Interconnection Networks 

 

 Guest Lecture: Adam From, ARM 
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Today 

 Transactional Memory (brief) 

 

 Interconnect wrap-up 
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Review: Speculation to Improve Parallel Programs 

 Goal: reduce the impact of serializing bottlenecks 

 Improve performance 

 Improve programming ease 

 

 Examples 

 Herlihy and Moss, “Transactional Memory: Architectural Support for 
Lock-Free Data Structures,” ISCA 1993. 

 Rajwar and Goodman, “Speculative Lock Elision: Enabling Highly 
Concurrent Multithreaded Execution,” MICRO 2001. 

 Martinez and Torrellas, “Speculative Synchronization: Applying 
Thread-Level Speculation to Explicitly Parallel Applications,” ASPLOS 
2002. 

 Rajwar and Goodman, ”Transactional lock-free execution of lock-
based programs,” ASPLOS 2002. 
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Review: Speculative Lock Elision 

 Many programs use locks for synchronization 

 Many locks are not necessary 

 Stores occur infrequently during execution 

 Updates can occur to disjoint parts of the data structure 

 

 Idea:  

 Speculatively assume lock is not necessary and execute critical 
section without acquiring the lock 

 Check for conflicts within the critical section  

 Roll back if assumption is incorrect 

 

 Rajwar and Goodman, “Speculative Lock Elision: Enabling 
Highly Concurrent Multithreaded Execution,” MICRO 2001. 
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Review: Dynamically Unnecessary Synchronization 
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Transactional Memory 

 

 

 

 

 



Transactional Memory 

 Idea: Programmer specifies code to be executed atomically 
as transactions. Hardware/software guarantees atomicity 
for transactions. 

 

 Motivated by difficulty of lock-based programming 

 Motivated by lack of concurrency (performance issues) in 
blocking synchronization (or “pessimistic concurrency”) 
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Locking Issues 

 Locks: objects only one thread can hold at a time 

 Organization: lock for each shared structure 

 Usage: (block)  acquire  access  release 

 

 Correctness issues 

 Under-locking  data races 

 Acquires in different orders  deadlock 

 

 Performance issues 

 Conservative serialization 

 Overhead of acquiring 

 Difficult to find right granularity 

 Blocking 
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Locks vs. Transactions 

 

 

 

 

 

 

 

 

 Locks  pessimistic concurrency 

 Transactions  optimistic concurrency 
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Lock issues: 

– Under-locking  data races 

– Deadlock due to lock ordering  

– Blocking synchronization 

– Conservative serialization 

 

How transactions help: 

+ Simpler interface/reasoning 

+ No ordering 

+ Nonblocking (Abort on conflict)  

+ Serialization only on conflicts 

 

 



Transactional Memory 
 Transactional Memory (TM) allows arbitrary multiple memory 

locations to be updated atomically (all or none) 
 

 Basic Mechanisms: 

 Isolation and conflict management: Track read/writes per 
transaction, detect when a conflict occurs between transactions 

 Version management: Record new/old values (where?) 

 Atomicity: Commit new values or abort back to old values  all 

or none semantics of a transaction 
 

 Issues the same as other speculative parallelization schemes 

 Logging/buffering 

 Conflict detection 

 Abort/rollback 

 Commit 
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Four Issues in Transactional Memory 

 How to deal with unavailable values: predict vs. wait 

 

 How to deal with speculative updates: logging/buffering 

 

 How to detect conflicts: lazy vs. eager 

 

 How and when to abort/rollback or commit 
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Many Variations of TM 

 Software 

 High performance overhead, but no virtualization issues 

 

 Hardware 

 What if buffering is not enough? 

 Context switches, I/O within transactions? 

 Need support for virtualization 

 

 Hybrid HW/SW 

 Switch to SW to handle large transactions and buffer overflows 
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Initial TM Ideas 

 Load Linked Store Conditional Operations 

 Lock-free atomic update of a single cache line 

 Used to implement non-blocking synchronization 

 Alpha, MIPS, ARM, PowerPC 

 Load-linked returns current value of a location 

 A subsequent store-conditional to the same memory location 
will store a new value only if no updates have occurred to the 
location 

 

 Herlihy and Moss, ISCA 1993 

 Instructions explicitly identify transactional loads and stores 

 Used dedicated transaction cache  

 Size of transactions limited to transaction cache 
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Herlihy and Moss, ISCA 1993 
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Current Implementations of TM/SLE 

 Sun ROCK 

 Dice et al., “Early Experience with a Commercial Hardware 
Transactional Memory Implementation,” ASPLOS 2009. 

 

 IBM Blue Gene 

 Wang et al., “Evaluation of Blue Gene/Q Hardware Support for 
Transactional Memories,” PACT 2012.  

 

 IBM System z: Two types of transactions 

 Best effort transactions: Programmer responsible for aborts 

 Guaranteed transactions are subject to many limitations 

 

 Intel Haswell 
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Some TM Research Issues 

 How to virtualize transactions (without much complexity) 

 Ensure long transactions execute correctly 

 In the presence of context switches, paging 

 

 Handling I/O within transactions 

 No problem with locks 

 

 Semantics of nested transactions (more of a 
language/programming research topic) 

 

 Does TM increase programmer productivity? 

 Does the programmer need to optimize transactions? 
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Interconnects III: Review and Wrap-Up 

 

 

 

 

 



Last Lectures 

 Interconnection Networks 

 Introduction & Terminology 

 Topology 

 Buffering and Flow control 

 Routing 

 Router design 

 Network performance metrics 

 On-chip vs. off-chip differences 
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Some Questions 

 What are the possible ways of handling contention in a 
router? 

 What is head-of-line blocking? 

 What is a non-minimal routing algorithm? 

 What is the difference between deterministic, oblivious, and 
adaptive routing algorithms? 

 What routing algorithms need to worry about deadlock? 

 What routing algorithms need to worry about livelock? 

 How to handle deadlock?  

 How to handle livelock? 

 What is zero-load latency? 

 What is saturation throughput? 

 What is an application-aware packet scheduling algorithm? 
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Routing Mechanism 

 Arithmetic 

 Simple arithmetic to determine route in regular topologies 

 Dimension order routing in meshes/tori 

 

 Source Based 
 Source specifies output port for each switch in route 

+ Simple switches  

 no control state: strip output port off header 

- Large header 

 

 Table Lookup Based 
 Index into table for output port 

+ Small header 

- More complex switches 
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Routing Algorithm 

 Types 

 Deterministic: always choose the same path 

 Oblivious: do not consider network state (e.g., random) 

 Adaptive: adapt to state of the network 

 

 How to adapt 

 Local/global feedback 

 Minimal or non-minimal paths 
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Deterministic Routing 

 All packets between the same (source, dest) pair take the 
same path 

 

 Dimension-order routing 

 E.g., XY routing (used in Cray T3D, and many on-chip 
networks) 

 First traverse dimension X, then traverse dimension Y 

 

+ Simple 

+ Deadlock freedom (no cycles in resource allocation) 

- Could lead to high contention 

- Does not exploit path diversity 
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Deadlock 

 No forward progress 

 Caused by circular dependencies on resources 

 Each packet waits for a buffer occupied by another packet 
downstream 
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Handling Deadlock 

 Avoid cycles in routing 

 Dimension order routing 

 Cannot build a circular dependency 

 Restrict the “turns” each packet can take 

 

 

 Avoid deadlock by adding virtual channels 

 

 

 Detect and break deadlock 

 Preemption of buffers 

 

 

 

 

29 



Turn Model to Avoid Deadlock 

 Idea 

 Analyze directions in which packets can turn in the network 

 Determine the cycles that such turns can form 

 Prohibit just enough turns to break possible cycles 

 Glass and Ni, “The Turn Model for Adaptive Routing,” ISCA 
1992. 
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Valiant’s Algorithm 

 An example of oblivious algorithm 

 Goal: Balance network load  

 Idea: Randomly choose an intermediate destination, route 
to it first, then route from there to destination 

 Between source-intermediate and intermediate-dest, can use 
dimension order routing 

 

+ Randomizes/balances network load 

- Non minimal (packet latency can increase) 

 

 Optimizations: 

 Do this on high load 

 Restrict the intermediate node to be close (in the same quadrant) 
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Adaptive Routing 

 Minimal adaptive 

 Router uses network state (e.g., downstream buffer 
occupancy) to pick which “productive” output port to send a 
packet to 

 Productive output port: port that gets the packet closer to its 
destination 

+ Aware of local congestion 

- Minimality restricts achievable link utilization (load balance) 

 

 Non-minimal (fully) adaptive 

 “Misroute” packets to non-productive output ports based on 
network state 

+ Can achieve better network utilization and load balance 

- Need to guarantee livelock freedom 
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More on Adaptive Routing 

 Can avoid faulty links/routers 

 

 Idea: Route around faults 

 

+ Deterministic routing cannot handle faulty components 

- Need to change the routing table to disable faulty routes 

  - Assuming the faulty link/router is detected 
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Real On-Chip Network Designs 

 Tilera Tile64 and Tile100 

 Larrabee 

 Cell 
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On-Chip vs. Off-Chip Differences 

Advantages of on-chip 

 Wires are “free” 

 Can build highly connected networks with wide buses 

 Low latency 

 Can cross entire network in few clock cycles 

 High Reliability 

 Packets are not dropped and links rarely fail  

 

Disadvantages of on-chip 

 Sharing resources with rest of components on chip 

 Area 

 Power 

 Limited buffering available 

 Not all topologies map well to 2D plane 
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Tilera Networks 

 2D Mesh 

 Five networks 

 Four packet switched 
 Dimension order routing, 

wormhole flow control 

 TDN: Cache request 
packets 

 MDN: Response packets 

 IDN: I/O packets 

 UDN: Core to core 
messaging 

 

 One circuit switched 
 STN: Low-latency, high-

bandwidth static network 

 Streaming data 
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We did not cover the following slides in lecture. 

These are for your preparation for the next lecture.  



Research Topics in Interconnects 

 Plenty of topics in on-chip networks. Examples: 
 

 Energy/power efficient/proportional design 

 Reducing Complexity: Simplified router and protocol designs 

 Adaptivity: Ability to adapt to different access patterns 

 QoS and performance isolation 

 Reducing and controlling interference, admission control 

 Co-design of NoCs with other shared resources 

 End-to-end performance, QoS, power/energy optimization 

 Scalable topologies to many cores 

 Fault tolerance 

 Request prioritization, priority inversion, coherence, … 

 New technologies (optical, 3D) 
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Packet Scheduling 

 Which packet to choose for a given output port? 

 Router needs to prioritize between competing flits 

 Which input port? 

 Which virtual channel? 

 Which application’s packet? 

 

 Common strategies 

 Round robin across virtual channels 

 Oldest packet first (or an approximation) 

 Prioritize some virtual channels over others 

 

 Better policies in a multi-core environment 

 Use application characteristics 
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Application-Aware Packet Scheduling 

 

 

 

 

 

Das et al., “Application-Aware Prioritization Mechanisms for On-Chip 
Networks,” MICRO 2009. 



The Problem: Packet Scheduling 
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The Problem: Packet Scheduling 

 Existing scheduling policies  

 Round Robin 

 Age 

 Problem 1: Local to a router 

 Lead to contradictory decision making between routers: packets 

from one application may be prioritized at one router, to be 

delayed at next.  

 Problem 2: Application oblivious 

 Treat all applications packets equally 

 But applications are heterogeneous 

 Solution : Application-aware global scheduling policies. 

 

 

 



Motivation: Stall Time Criticality 

 Applications are not homogenous 

 

 Applications have different criticality with respect to the 

network 

 Some applications are network latency sensitive  

 Some applications are network latency tolerant 

 

 Application’s Stall Time Criticality (STC) can be measured by 
its average network stall time per packet (i.e. NST/packet) 

 Network Stall Time (NST) is number of cycles the processor 

stalls waiting for network transactions to complete 

 



Motivation: Stall Time Criticality 

 Why applications have different network stall time criticality 

(STC)?  

 Memory Level Parallelism (MLP)  

 Lower MLP  leads to higher STC 

 

 Shortest Job First Principle (SJF)  

 Lower network load leads to higher STC  

 

 Average Memory Access Time 

 Higher memory access time leads to higher STC 

 



 

 

 

 

 

 

 

 

 Observation 1: Packet Latency != Network Stall Time 
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STC Principle 1 {MLP} 
Compute 



 

 

 

 

 

 

 

 

 Observation 1: Packet Latency != Network Stall Time 

 Observation 2: A low MLP application’s  packets have higher 

criticality than a high MLP application’s 

STALL STALL 

STALL of  Red Packet = 0 

LATENCY 

LATENCY 

LATENCY 

Application with high MLP  

STALL 

LATENCY 

STALL 

LATENCY 

STALL 
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Application with low MLP 

STC Principle 1 {MLP} 



STC Principle 2 {Shortest-Job-First} 

4X network slow down 

1.2X network slow down 

1.3X network slow down 

1.6X network slow down 

Overall system throughput{weighted speedup} increases by 34% 

Running ALONE 

Baseline (RR) Scheduling 

SJF  Scheduling 

Light Application Heavy Application 

Compute 



Solution: Application-Aware Policies 

  Idea 

 Identify stall time critical applications (i.e. network 

sensitive applications) and prioritize their packets in 

each router. 

 

 Key components of scheduling policy: 

 Application Ranking 

 Packet Batching 

 

 Propose low-hardware complexity solution 



Component 1 : Ranking 

 Ranking distinguishes applications based on Stall Time 

Criticality (STC) 

 Periodically  rank applications based on Stall Time Criticality 

(STC). 

 Explored many heuristics for quantifying STC (Details & 

analysis in paper) 

 Heuristic based on outermost private cache Misses Per 

Instruction (L1-MPI) is the most effective 

 Low L1-MPI => high STC => higher rank 

 Why Misses Per Instruction (L1-MPI)? 

 Easy to Compute (low complexity) 

 Stable Metric (unaffected by interference in network) 



Component 1 : How to Rank? 
 Execution time is divided into fixed “ranking intervals” 

 Ranking interval is 350,000 cycles  

 At the end of an interval, each core calculates their L1-MPI and  

sends it to the Central Decision Logic (CDL) 

 CDL is located in the central node of mesh 

 CDL forms a ranking order and sends back its rank to each core 

 Two control packets per core every ranking interval 

 Ranking order is a “partial order” 

 

 Rank formation is not on the critical path 

 Ranking interval is significantly longer than rank computation time 

 Cores use older rank values until new ranking is available 



Component 2: Batching 

 Problem: Starvation 

 Prioritizing a higher ranked application can lead to starvation of 

lower ranked application 

 Solution: Packet Batching 

 Network packets are grouped into finite sized batches  

 Packets of older batches are prioritized over younger 

batches 

 Alternative batching policies explored in paper 

 Time-Based Batching 

 New batches are formed in a periodic, synchronous manner 

across all nodes in the network, every T cycles  

 

 



Putting it all together 

 Before injecting a packet into the network, it is tagged by  

 Batch ID (3 bits) 

 Rank ID (3 bits) 

 Three tier priority structure at routers 

 Oldest batch first (prevent starvation) 

 Highest rank first   (maximize performance) 

 Local Round-Robin        (final tie breaker) 

 Simple hardware support: priority arbiters 

 Global coordinated scheduling 

 Ranking order and batching order are same across all routers 

 



STC Scheduling Example 
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STC Scheduling Example 
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STC Scheduling Example 
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STC Scheduling Example 
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STC Scheduling Example 
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Qualitative Comparison 
 Round Robin & Age 

 Local and application oblivious 

 Age is biased towards heavy applications 
 heavy applications flood the network 

 higher likelihood of an older packet being from heavy application 

 Globally Synchronized Frames (GSF) [Lee et al., ISCA 
2008] 

 Provides bandwidth fairness at the expense of system 
performance 

 Penalizes heavy and bursty applications  
 Each application gets equal and fixed quota of flits (credits) in each batch. 

 Heavy application quickly run out of credits after injecting into all active 
batches & stall till oldest batch completes and frees up fresh credits. 

 Underutilization of network resources 
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 STC provides 9.1% improvement in weighted speedup over 

the best existing policy{averaged across 96 workloads} 

 Detailed case studies in the paper 



Slack-Driven Packet Scheduling 

 

 

 

 

 

Das et al., “Aergia: Exploiting Packet Latency Slack in On-Chip Networks,” 

ISCA 2010. 



Packet Scheduling in NoC 

 Existing scheduling policies   

 Round robin   

 Age 

 

 Problem 

 Treat all packets equally 

 Application-oblivious 

 

 Packets have different criticality  

 Packet is critical if latency of a packet affects application’s 

performance 

 Different criticality due to memory level parallelism (MLP) 

All packets are not the same…!!! 



Latency (   ) 

MLP Principle 

Stall Compute 

Latency (   ) 

Latency (   ) 

Stall (   )  = 0    

Packet Latency != Network Stall Time 

Different Packets have different criticality due to MLP 

Criticality(   )  >    Criticality(   )  >    Criticality(   )    



Outline 

 

 Introduction 

 Packet Scheduling  

 Memory Level Parallelism 

 Aérgia  

 Concept of Slack 

 Estimating Slack 

 Evaluation 

 Conclusion 



What is Aérgia? 
 

 

 

 

 

 

 

 

 

 Aérgia is the spirit of laziness in Greek mythology 

 Some packets can afford to slack! 
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Slack of Packets 
 

 What is slack of a packet? 

 Slack of a packet is number of cycles it can be delayed in a 
router without reducing application’s performance 

 Local network slack 

 

 Source of slack: Memory-Level Parallelism (MLP) 

 Latency of an application’s packet hidden from application due 
to overlap with latency of pending cache miss requests 

 

 Prioritize packets with lower slack 

 

 

 

 

 



Concept of Slack  
Instruction 

 Window 

Stall 

Network-on-Chip 

Load Miss  Causes  

 

   returns earlier than necessary 

Compute 

Slack (   ) = Latency (   ) – Latency (   ) = 26 – 6 = 20 hops 

Execution Time 

Packet(  ) can be delayed for available slack cycles  

without reducing performance! 

Causes  Load Miss  

Latency (   ) 

Latency (   ) 

Slack Slack 



Prioritizing using Slack  

Core A 

Core B 

Packet Latency Slack 

13 hops 0   hops 

3  hops 10 hops 

10 hops 0 hops 

4  hops  6 hops 

Causes 

Causes Load Miss  

Load Miss  

Prioritize   

Load Miss  

Load Miss  Causes 

Causes 

Interference at 3 hops 

Slack(   )   >  Slack (   )  



Slack in Applications 
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Diversity in Slack 

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

P
e
rc

e
n
ta

g
e
 o

f 
a
ll 

P
a
c
k
e
ts

 (
%

) 

Slack in cycles 

Gems

omnet

tpcw

mcf

bzip2

sjbb

sap

sphinx

deal

barnes

astar

calculix

art

libquantum

sjeng

h264ref



Diversity in Slack 
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Slack varies between packets of  different applications 

Slack varies between packets of  a single application 
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Estimating Slack Priority 

Slack (P) = Max (Latencies of P’s Predecessors) – Latency of P 
 

 Predecessors(P) are the packets of outstanding cache miss 

requests when P is issued 
 

 Packet latencies not known when issued 

 

 Predicting latency of any packet Q 

 Higher latency if Q corresponds to an L2 miss 

 Higher latency if Q has to travel farther number of hops 

 



 Slack of P = Maximum Predecessor Latency – Latency of P 

 

 Slack(P) =  

 

PredL2: Set if any predecessor packet is servicing L2 miss 

 

MyL2:  Set if  P is NOT servicing an L2 miss 

 

HopEstimate: Max (# of hops of Predecessors) – hops of P 

 

Estimating Slack Priority 

PredL2 

(2 bits) 

MyL2 

(1 bit) 

HopEstimate 

(2 bits) 



Estimating Slack Priority 

 How to predict L2 hit or miss at core? 

 Global Branch Predictor based L2 Miss Predictor  

 Use Pattern History Table and 2-bit saturating counters 

 Threshold based L2 Miss Predictor 

 If  #L2 misses in “M” misses >= “T” threshold then next load is a L2 miss.  

 Number of miss predecessors? 

 List of outstanding L2 Misses 

 Hops estimate? 

 Hops => ∆X + ∆ Y distance 

 Use predecessor list to calculate slack hop estimate 



Starvation Avoidance 

 Problem: Starvation 

 Prioritizing packets can lead to starvation of lower priority 

packets 

 

 Solution: Time-Based Packet Batching 

 New batches are formed at every T cycles  

 

 Packets of older batches are prioritized over younger batches 

 

 



Putting it all together 

 Tag header of the packet with priority bits before injection 

 

 

 Priority(P)? 

 P’s batch                 (highest priority) 

 P’s Slack 

 Local Round-Robin                                        (final tie breaker) 

 

 

PredL2 

(2 bits) 

MyL2 

(1 bit) 

HopEstimate 

(2 bits) 

Batch 

(3 bits) 
Priority (P) = 
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Evaluation Methodology 
 64-core system 

 x86 processor model based on Intel Pentium M 

 2 GHz processor, 128-entry instruction window 

 32KB private L1 and 1MB per core shared L2 caches, 32  miss buffers 

 4GB DRAM, 320 cycle access latency, 4 on-chip DRAM controllers 

 Detailed Network-on-Chip model  
 2-stage routers (with speculation  and look ahead routing) 

 Wormhole switching (8 flit data packets) 

 Virtual channel flow control (6 VCs, 5 flit buffer depth) 

 8x8 Mesh (128 bit bi-directional channels) 

 Benchmarks 
 Multiprogrammed scientific, server, desktop workloads (35 applications) 

 96 workload combinations 



Qualitative Comparison 

 Round Robin & Age 

 Local and application oblivious 

 Age is biased towards heavy applications 

 Globally Synchronized Frames (GSF)  
[Lee et al., ISCA 2008] 

 Provides bandwidth fairness at the expense of system performance 

 Penalizes heavy and bursty applications  

 Application-Aware Prioritization Policies (SJF)  
[Das et al., MICRO 2009] 

 Shortest-Job-First Principle 

 Packet scheduling policies which prioritize network sensitive 

applications which inject lower load  

 

 



System Performance 
 

 SJF provides 8.9% improvement 

in weighted speedup 

 Aérgia improves system  

throughput by 10.3% 

 Aérgia+SJF improves system  

throughput by 16.1% 
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Network Unfairness 
 

 SJF does not imbalance 

 network fairness 

 Aergia improves network 

unfairness by 1.5X 

 SJF+Aergia improves  

network unfairness by 1.3X 
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Conclusions & Future Directions 

 Packets have different criticality, yet existing packet 

scheduling policies treat all packets equally   

 We propose a new approach to packet scheduling in NoCs 

 We define Slack as a key measure that characterizes the relative 

importance of a packet. 

 We propose Ae ́rgia a novel architecture to accelerate low slack 

critical packets 

 Result 

 Improves system performance: 16.1%  

 Improves network fairness: 30.8% 


