18-742 Fall 2012

Parallel Computer Architecture
Lecture 16: Speculation 11

Prof. Onur Mutlu
Carnegie Mellon University
10/12/2012

Past Due: Review Assignments

= Was Due: Tuesday, October 9, 11:595pm.
= Sohi et al., "Multiscalar Processors,” ISCA 1995.
= Was Due: Thursday, October 11, 11:59pm.

= Herlihy and Moss, “Transactional Memory: Architectural Support
for Lock-Free Data Structures,” ISCA 1993.

= Austin, "DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” MICRO 1999.

New Review Assignments

= Due: Sunday, October 14, 11:595pm.

= Patel, "Processor-Memory Interconnections for Multiprocessors,”
ISCA 1979.

= Due: Tuesday, October 16, 11:59pm.

= Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip
Networks,” ISCA 2009.

Project Milestone I Due (I)

= Deadline: October 20, 11:59pm (next Saturday)
= Format: Slides (no page limit) + presentation (10-15min)

= What you should turn in:

o PPT/PDF slides describing the following:
= The problem you are solving + your goal
= Your solution ideas + strengths and weaknesses
= Your methodology to test your ideas
= Concrete mechanisms you have implemented so far
= Concrete results you have so far
= What will you do next?
= What hypotheses you have for future?
= How close were you to your target?

Project Milestone I Due (11)

= Next week (Oct 22-26)
a Sign up for Milestone I presentation slots (10-15 min/group)

= Make a lot of progress and find breakthroughs

= Example milestones:
a http://www.ece.cmu.edu/~ece742/2011spring/doku.php?id=p
roject

a http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.p
hp?media=milestonel ausavarungnirun meza yoon.pptx

o http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.p
hp?media=milestonel tumanov lin.pdf

http://www.ece.cmu.edu/~ece742/2011spring/doku.php?id=project
http://www.ece.cmu.edu/~ece742/2011spring/doku.php?id=project
http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=milestone1_ausavarungnirun_meza_yoon.pptx
http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=milestone1_ausavarungnirun_meza_yoon.pptx
http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=milestone1_tumanov_lin.pdf
http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=milestone1_tumanov_lin.pdf

l.ast Lecture

Slipstream processors

Dual-core execution

Thread-level speculation

Key concepts in speculative parallelization

Multiscalar processors

Today

More multiscalar
Speculative lock elision

More speculation

Readings: Speculation

Required
o Sohi et al., "Multiscalar Processors,” ISCA 1995.

o Herlihy and Moss, “Transactional Memory: Architectural Support for
Lock-Free Data Structures,” ISCA 1993.

Recommended

o Rajwar and Goodman, “Speculative Lock Elision: Enabling Highly
Concurrent Multithreaded Execution,” MICRO 2001.

o Colohan et al., “A Scalable Approach to Thread-Level Speculation,”
ISCA 2000.

o Akkary and Driscoll, “A dynamic multithreading processor,” MICRO
1998.

Reading list will be updated...

More Multiscalar

Multiscalar Processors (ISCA 1992, 1995)

Exploit “implicit” thread-level parallelism within a serial
program

Compiler divides program into tasks

Tasks scheduled on independent processing resources

Hardware handles register dependences between tasks

o Compiler specifies which registers should be communicated
between tasks

Memory speculation for memory dependences
o Hardware detects and resolves misspeculation

Franklin and Sohi, “"The expandable split window paradigm for
exploiting fine-grain parallelism,” ISCA 1992.

Sohi et al., “"Multiscalar processors,” ISCA 1995.
10

Multiscalar vs. Large Instruction Windows

Instruction Stream Instruction Stream

Register File

Ker ae
" (i)
Figure 1: Splitting a large window of instructions

into smaller windows
(i) A single large window (ii) A number of small windows

11

Multiscalar Model of Execution

Superscalar Multiscalar

single centralized window multiple distributed windows

task

PC—"

task

PC—*

task

Pc—-,

|
- Im
:J

|

PC —*

=t

N\

dynam [IFISUUC!IDFI STI’EEHT'I

FAERL AR AN E R d R AR R Y TR

Multiscalar Tasks

A task is a subgraph of the control
flow graph (CFG)

0 e.g., a basic block, multiple basic
blocks, loop body, function

Tasks are selected by compiler and
conveyed to hardware

Tasks are predicted and scheduled
by processor

Tasks may have data and/or control CE
dependences

13

Multiscalar Processor

Task

sequencer

l

Tail l Head 1 l 1
|-cache |-cache |-cache |-cache
Processing Processing Processing Processing

Element (PE)

Element (PE)

Element {PE)

Register
File

Element {PE)

Register
File

i

!

|

Interconnection Metwork

!

ARB

D—cache

!

ARB

[
b |

D—cache

14

Multiscalar Compiler

Task selection: partition CFG into tasks
o Load balance

o Minimize inter-task data dependences

o Minimize inter-task control dependences
By embedding hard-to-predict branches within tasks

Convey task and communication information in the executable
o Task headers

create_mask (1 bit per register)

0 Indicates all registers that are possibly modified or created by the task
(better: live-out of the task)

0 Don’t forward instances received from prior tasks
PCs of successor tasks
o Release instructions: Release a register to be forwarded to a
receiving task
15

Multiscalar Program Example

for (ndx = 0 indx < BUFSIZE: indx++) {
*# get the symbol for which to search */
symbal = SYMVAL(buffer[indx]);

/* do a linear search for the symbol in the list */
for (list = listhd; list; list = LNEXT(list}) |
/# if symbol already present, process entry */
if (symbol == LELE(list)) |
process(hst);
break;

}

[+ if symbol not found in the list, add 1o the il +/
if {!ist) {
addlist(symbaol);

Figure 3: An Example Code Segment.

Targ Spec Branch, Branch
Targl OUTER
Targ2 OUTERFALLOUT

Create mask $4,58,517,520,%23

OUTER:

addu %20, $20, 16

1d %23, SYMVAL-16(520)

move $17, 521

beq $17,50, SKIPINNER
INNER.:

1d %8, LELE(S$1T

bne %8, 523, SKIPCALL

move §4, 517

jal Process

jump INNERFALLOUT
SKIPCALL:

1d %17, NEXTLIST($17)

bne %17, 50, INNER
INNERFALLOUT:

release $8,517

bne %17, 80, SKIPINNER

move 54,523

jal addlist
SKIPINNER:

release 34

bne %20, 516, OUTER
OUTERFALLOUT:

5 =
(=9
=]
£ &
F
F
F
Stop
Always

Figure 4: An Example of a Multiscalar Program.

16

Forwarding Registers Between Tasks

Compiler must identify the last instance of write to a
register within a task

o Opcodes that write a register have additional forward bit,
indicating the instance should be forwarded

o Stop bits - indicate end of task
o Release instruction

tells PE to forward the register value

17

Task Sequencing

= Task prediction analogous to branch prediction
= Predict inter-task control flow

Control ndependent Highly predictable
inter-task branch

18

Handling Inter-Task Dependences

Control dependences
o Predict

o Squash subsequent tasks on inter-task misprediction

Intra-task mispredictions do not need to cause flushing of later
tasks

Data dependences
o Register file: mask bits and forwarding (stall until available)

o Memory: address resolution buffer (speculative load, squash
on violation)

19

Address Resolution Buffer

Multiscalar issues loads to ARB/D-cache as soon as address
IS computed

ARB is organized like a cache, maintaining state for all
outstanding load/store addresses

Franklin and Sohi, “"ARB: A hardware mechanism for
dynamic reordering of memory references,” IEEE TC 1996.

An ARB entry:

' ' ! | Stage = Task = PE
Tag |[L|S| Data L|S| Data L|S| Data L|S| Data L' load performed
= store performed

Stage 0 ' Stage 1 Stage 2 I Stage 3 Data: store data

20

Address Resolution Buffer

Loads
o ARB miss: data comes from D-cache (no prior stores yet)

o ARB hit: get most recent data to the load, which may be from
D-cache, or nearest prior task with S=1

Stores
o ARB buffers speculative stores

o If store from an older task finds a load from a younger task to
the same address - misspeculation detected

o When a task commits, commit all of the task’s stores into the
D-cache

21

Address Resolution Buffer

= Franklin and Sohi, “"ARB: A hardware mechanism for
dynamic reordering of memory references,” IEEE TC 1996.

[|] A | |
_.fl. I. 1I :
l'l o i \ 1.\.
Lo 00 T50 TF0 Thbwl i
| i B o B H 1 ! 1 '
Be Address L8Vl & r ;
2000 b - 1:
Bank 0 :
s N P
Bgge 01 : Stage 1 Elape 2 Rlage 3 Stuge 4 I] Stage §
I Hend [-
e Active ARB Window ——

Figure 1: A 4-Way Interleaved, f-stage ARB

Memory Dependence Prediction

ARB performs memory renaming

However, it does not perform dependence prediction

o Can reduce intra-task dependency flushes by accurate
memory dependence prediction

Idea: Predict whether or not a load instruction will be
dependent on a previous store (and predict which store).
Delay the execution of the load if it is predicted to be
dependent.

Moshovos et al., "Dynamic Speculation and Synchronization of
Data Dependences,” ISCA 1997.

Chrysos and Emer, "Memory Dependence Prediction using Store
Sets,” ISCA 1998.

23

740: Handling of Store-lL.oad Dependencies

A load’ s dependence status is not known until all previous store
addresses are available.

How does the OO0 engine detect dependence of a load instruction on a
previous store?

o Option 1: Wait until all previous stores committed (no need to
check)

o Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?

o Option 1: Assume load independent of all previous stores
o Option 2: Assume load dependent on all previous stores
o Option 3: Predict the dependence of a load on an outstanding store

24

740: Memory Disambiguation

Option 1: Assume load independent of all previous stores

+ Simple and can be common case: no delay for independent loads

-- Requires recovery and re-execution of load and dependents on misprediction

Option 2: Assume load dependent on all previous stores

+ No need for recovery
-- Too conservative: delays independent loads unnecessarily

Option 3: Predict the dependence of a load on an
outstanding store

+ More accurate. Load store dependencies persist over time

-- Still requires recovery/re-execution on misprediction
o Alpha 21264 : Initially assume load independent, delay loads found to be dependent

o Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

o Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.

25

740: Memory Disambiguation

Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

IPC
O = NWAGO O N

xlisp e

compress [
- perl scr

‘A no speculatlon B naive sﬁécullation.." ;;erfect

Predicting store-load dependencies important for performance

Simple predictors (based on past history) can achieve most of
the potential performance

26

Multiscalar Comparisons and Questions

VS. superscalar, out-of-order?
vs. multi-core?

vs. CMP and SMT-based thread-level speculation
mechanisms

o What is different in multiscalar hardware?

Scalability of fine-grained register communication

Scalability of memory renaming and dependence
speculation

27

More Speculation

Speculation to Improve Parallel Programs

Goal: reduce the impact of serializing bottlenecks
o Improve performance
o Improve programming ease

Examples

o Herlihy and Moss, “Transactional Memory: Architectural Support for
Lock-Free Data Structures,” ISCA 1993.

o Rajwar and Goodman, “Speculative Lock Elision: Enabling Highly
Concurrent Multithreaded Execution,” MICRO 2001.

o Martinez and Torrellas, “"Speculative Synchronization: Applying
Thread-Level Speculation to Explicitly Parallel Applications,” ASPLOS
2002.

o Rajwar and Goodman, “Transactional lock-free execution of lock-
based programs,” ASPLOS 2002.

29

Speculative Lock Elision

Many programs use locks for synchronization
Many locks are not necessary

o Stores occur infrequently during execution
o Updates can occur to disjoint parts of the data structure

Idea:

o Speculatively assume lock is not necessary and execute critical
section without acquiring the lock

o Check for conflicts within the critical section
o Roll back if assumption is incorrect

Rajwar and Goodman, “Speculative Lock Elision: Enabling
Highly Concurrent Multithreaded Execution,” MICRO 2001.

30

Dynamically Unnecessary Synchronization

i) 1.L0OCK({locks->error lock)
2.1f (local errcor > multi-2err multi)
3. multi->err multi = local err;

4 . UNLOCE { locks->arror lock)

b} Thread 1 Thread 2

LOCK({hash tbl.lock)
var = hash tbhl.lookup(X)
1f (lwvar)
hash tbl.add(X});
UNLOCK (hash tbl.lock)
LOCK{hash tbl.lock)
var = hash thbhl.lookup(Y}
i1f [iwvar)
hash tbhl-=add(Y):;
UNLOCK (hash tbl.lock)

Figure 1. Two examples of potential paralielism masked b_‘;:'.
dynamically unnecessary synchronization.

31

Speculative Lock Elision: Issues

Either the entire critical section is committed or none of it

How to detect the lock

How to keep track of dependencies and conflicts in a critical
section

o Read set and write set
How to buffer speculative state

How to check if “atomicity” is violated
o Dependence violations with another thread

How to support commit and rollback

32

Maintaining Atomicity

If atomicity is maintained, all locks can be removed

Conditions for atomicity:

o Data read is not modified by another thread until critical
section is complete

o Data written is not accessed by another thread until critical
section is complete

If we know the beginning and end of a critical section, we
can monitor the memory addresses read or written to by
the critical section and check for conflicts

a Using the underlying coherence mechanism

33

SLE Implementation

Checkpoint register state before entering SLE mode

In SLE mode:

o Store: Buffer the update in the write buffer (do not make
visible to other processors), request exclusive access

o Store/Load: Set “access” bit for block in the cache

o Trigger misspeculation on some coherence actions
If external invalidation to a block with “access” bit set
If exclusive access to request to a block with “access” bit set

o If not enough buffering space, trigger misspeculation

If end of critical section reached without misspeculation,
commit all writes (needs to appear instantaneous)

34

Accelerated Critical Sections (ACS) vs. SLE

ACS Advantages over SLE
+ Speeds up each individual critical section

+ Keeps shared data and locks in a single cache (improves
shared data and lock locality)

+ Does not incur re-execution overhead since it does not
speculatively execute critical sections in parallel

ACS Disadvantages over SLE

- Needs transfer of private data and control to a large core
(reduces private data locality and incurs overhead)

- Executes non-conflicting critical sections serially
- Large core can reduce parallel throughput (assuming no SMT)

35

ACS vs. SLE

8.2 Hiding the Latency of Critical Sections

Several proposals try to hide the latency of a critical sec-
tion by executing it speculatively with other instances of the
same critical section as long as they do not have data con-
flicts with each other. Examples include transactional mem-
ory (TM) [14], speculative lock elision (SLE) [33], trans-
actional lock removal (TLR) [34], and speculative synchro-
nization (SS) [29]. SLE is a hardware technique that allows
multiple threads to execute the critical sections speculatively
without acquiring the lock. If a data conflict is detected, only
one thread is allowed to complete the critical section while
the remaining threads roll back to the beginning of the crit-
ical section and try again. TLR improves upon SLE by pro-
viding a timestamp-based conflict resolution scheme that en-
ables lock-free execution. ACS is partly orthogonal to these
approaches due to three major reasons:

Suleman et al., “Accelerating Critical Section Execution with Asymmetric Multi-Core
Architectures,” ASPLOS 2009, IEEE Micro Top Picks 2010.

36

ACS vs. Transactional LLock Removal

Figure 13. ACS vs. TLR performance.

37

ACS vs. SLE

Can you combine both?
How would you combine both?

Can you do better than both?

38

Four Issues in Speculative Parallelization
How to deal with unavailable values: predict vs. wait
How to deal with speculative updates: Logging/buffering
How to detect conflicts

How and when to abort/rollback or commit

39

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Transactional Memory

Transactional Memory

Idea: Programmer specifies code to be executed atomically
as transactions. Hardware/software guarantees atomicity
for transactions.

Motivated by difficulty of lock-based programming

Motivated by lack of concurrency (performance issues) in
blocking synchronization (or “pessimistic concurrency”)

42

Locking Issues

Locks: objects only one thread can hold at a time
o Organization: lock for each shared structure
o Usage: (block) - acquire - access - release

Correctness issues
o Under-locking > data races
o Acquires in different orders - deadlock

Performance issues

o Conservative serialization

o Overhead of acquiring

o Difficult to find right granularity
o Blocking

L.ocks vs. Transactions

Lock issues: How transactions help:

— Under-locking - data races + Simpler interface/reasoning

— Deadlock due to lock ordering + No ordering

— Blocking synchronization + Nonblocking (Abort on conflict)
— Conservative serialization + Serialization only on conflicts

Locks = pessimistic concurrency
Transactions - optimistic concurrency

44

Transactional Memory

Transactional Memory (TM) allows arbitrary multiple memory
locations to be updated atomically (all or none)

Basic Mechanisms:

o Isolation and conflict management: Track read/writes per
transaction, detect when a conflict occurs between transactions

o Version management: Record new/old values (where?)

o Atomicity: Commit new values or abort back to old values - all
or none semantics of a transaction

Issues the same as other speculative parallelization schemes
o Logging/buffering
o Conflict detection
o Abort/rollback
Q

Commit
45

Four Issues in Transactional Memory
How to deal with unavailable values: predict vs. wait
How to deal with speculative updates: logging/buffering
How to detect conflicts: lazy vs. eager

How and when to abort/rollback or commit

46

Many Variations ot TM

Software
o High performance overhead, but no virtualization issues

Hardware

o What if buffering is not enough?

o Context switches, I/O within transactions?
o Need support for virtualization

Hybrid HW/SW
o Switch to SW to handle large transactions and buffer overflows

47

Initial TM Ideas

Load Linked Store Conditional Operations

Q

Q

Lock-free atomic update of a single cache line

Used to implement non-blocking synchronization
Alpha, MIPS, ARM, PowerPC

Load-linked returns current value of a location

A subsequent store-conditional to the same memory location
will store a new value only if no updates have occurred to the
location

Herlihy and Moss, ISCA 1993

o Instructions explicitly identify transactional loads and stores
o Used dedicated transaction cache

o Size of transactions limited to transaction cache

48

Herlihy and Moss, ISCA 1993

Our transactions are intended to replace short critical sec-
tions. For example, a lock-free data structure would typ-
ically be implemented in the following stylized way (see
Section 5 for specific examples). Instead of acquring a
lock, executing the critical section, and releasing the lock,
a process would:

1

"

use LT or LTX to read from a set of locations,

nse VALIDATE to check that the values read are consis-
tent,

. use ST to modify a set of locations, and

. use COMMIT to make the changes permanent. If either

the VALIDATE or the COMMIT fails, the process returns
to Step (1).

49

Current Implementations of TM/SLE
Sun ROCK

IBM Blue Gene

IBM System Z: Two types of transactions
o Best effort transactions: Programmer responsible for aborts
o Guaranteed transactions are subject to many limitations

Intel Haswell

50

TM Research Issues

How to virtualize transactions (without much complexity)
o Ensure long transactions execute correctly
o In the presence of context switches, paging

Handling I/O within transactions
o No problem with locks

Semantics of nested transactions (more of a
language/programming research topic)

Does TM increase programmer productivity?
o Does the programmer need to optimize transactions?

51

