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Past Due: Review Assignments 

 Was Due: Tuesday, October 9, 11:59pm. 

 

 Sohi et al., “Multiscalar Processors,” ISCA 1995. 

 

 Was Due: Thursday, October 11, 11:59pm. 

 

 Herlihy and Moss, “Transactional Memory: Architectural Support 
for Lock-Free Data Structures,” ISCA 1993. 

 

 Austin, “DIVA: A Reliable Substrate for Deep Submicron 
Microarchitecture Design,” MICRO 1999. 
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New Review Assignments 

 Due: Sunday, October 14, 11:59pm. 

 Patel, “Processor-Memory Interconnections for Multiprocessors,” 
ISCA 1979. 

 

 Due: Tuesday, October 16, 11:59pm.  

 Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip 
Networks,” ISCA 2009.  
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Project Milestone I Due (I) 

 Deadline: October 20, 11:59pm (next Saturday) 

 

 Format: Slides (no page limit) + presentation (10-15min) 

 

 What you should turn in: 

 PPT/PDF slides describing the following: 

 The problem you are solving + your goal 

 Your solution ideas + strengths and weaknesses 

 Your methodology to test your ideas 

 Concrete mechanisms you have implemented so far  

 Concrete results you have so far  

 What will you do next? 

 What hypotheses you have for future? 

 How close were you to your target? 
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Project Milestone I Due (II) 

 Next week (Oct 22-26) 

 Sign up for Milestone I presentation slots (10-15 min/group) 

 

 Make a lot of progress and find breakthroughs 

 

 Example milestones: 

 http://www.ece.cmu.edu/~ece742/2011spring/doku.php?id=p
roject 

 http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.p
hp?media=milestone1_ausavarungnirun_meza_yoon.pptx 

 http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.p
hp?media=milestone1_tumanov_lin.pdf 
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Last Lecture 

 Slipstream processors 

 

 Dual-core execution 

 

 Thread-level speculation 

 

 Key concepts in speculative parallelization 

 

 Multiscalar processors  
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Today 

 More multiscalar 

 

 Speculative lock elision 

 

 More speculation 
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Readings: Speculation 

 Required 

 Sohi et al., “Multiscalar Processors,” ISCA 1995. 

 Herlihy and Moss, “Transactional Memory: Architectural Support for 
Lock-Free Data Structures,” ISCA 1993. 

 

 Recommended 

 Rajwar and Goodman, “Speculative Lock Elision: Enabling Highly 
Concurrent Multithreaded Execution,” MICRO 2001. 

 Colohan et al., “A Scalable Approach to Thread-Level Speculation,” 
ISCA 2000. 

 Akkary and Driscoll, “A dynamic multithreading processor,” MICRO 
1998. 

 

 Reading list will be updated… 
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More Multiscalar 

 

 

 

 

 



Multiscalar Processors (ISCA 1992, 1995) 

 Exploit “implicit” thread-level parallelism within a serial 
program  

 Compiler divides program into tasks  

 Tasks scheduled on independent processing resources 
 

 Hardware handles register dependences between tasks 

 Compiler specifies which registers should be communicated 
between tasks 

 Memory speculation for memory dependences 

 Hardware detects and resolves misspeculation 

 

 Franklin and Sohi, “The expandable split window paradigm for 
exploiting fine-grain parallelism,” ISCA 1992. 

 Sohi et al., “Multiscalar processors,” ISCA 1995. 
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Multiscalar vs. Large Instruction Windows  
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Multiscalar Model of Execution 
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Multiscalar Tasks 

 A task is a subgraph of the control 
flow graph (CFG)  

 e.g., a basic block, multiple basic 
blocks, loop body, function 

 

 Tasks are selected by compiler and 
conveyed to hardware 

 

 Tasks are predicted and scheduled 
by processor  

 

 Tasks may have data and/or control 
dependences 
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Multiscalar Processor 
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Multiscalar Compiler 
 Task selection: partition CFG into tasks  

 Load balance  

 Minimize inter-task data dependences  

 Minimize inter-task control dependences  

 By embedding hard-to-predict branches within tasks  

 

 Convey task and communication information in the executable  

 Task headers  

 create_mask (1 bit per register)  

 Indicates all registers that are possibly modified or created by the task 
(better: live-out of the task) 

 Don’t forward instances received from prior tasks  

 PCs of successor tasks  

 Release instructions: Release a register to be forwarded to a 
receiving task 
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Multiscalar Program Example 
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Forwarding Registers Between Tasks 

 Compiler must identify the last instance of write to a 
register within a task  

 Opcodes that write a register have additional forward bit, 
indicating the instance should be forwarded  

 Stop bits - indicate end of task  

 Release instruction  

 tells PE to forward the register value 
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Task Sequencing 

 Task prediction analogous to branch prediction  

 Predict inter-task control flow 
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Handling Inter-Task Dependences 

 Control dependences  

 Predict  

 Squash subsequent tasks on inter-task misprediction  

 Intra-task mispredictions do not need to cause flushing of later 
tasks 

 

 Data dependences  

 Register file: mask bits and forwarding (stall until available) 

 Memory: address resolution buffer (speculative load, squash 
on violation) 
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Address Resolution Buffer 

 Multiscalar issues loads to ARB/D-cache as soon as address 
is computed  

 ARB is organized like a cache, maintaining state for all 
outstanding load/store addresses  

 Franklin and Sohi, “ARB: A hardware mechanism for 
dynamic reordering of memory references,” IEEE TC 1996.  

 

 An ARB entry: 
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Address Resolution Buffer 

 Loads  

 ARB miss: data comes from D-cache (no prior stores yet) 

 ARB hit: get most recent data to the load, which may be from 
D-cache, or nearest prior task with S=1  

 

 Stores  

 ARB buffers speculative stores  

 If store from an older task finds a load from a younger task to 
the same address  misspeculation detected  

 When a task commits, commit all of the task’s stores into the 
D-cache  
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Address Resolution Buffer 

 Franklin and Sohi, “ARB: A hardware mechanism for 
dynamic reordering of memory references,” IEEE TC 1996.  
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Memory Dependence Prediction 

 ARB performs memory renaming 

 However, it does not perform dependence prediction 

 Can reduce intra-task dependency flushes by accurate 
memory dependence prediction 

 

 Idea: Predict whether or not a load instruction will be 
dependent on a previous store (and predict which store). 
Delay the execution of the load if it is predicted to be 
dependent.  

 

 Moshovos et al., “Dynamic Speculation and Synchronization of 
Data Dependences,” ISCA 1997. 

 Chrysos and Emer, “Memory Dependence Prediction using Store 
Sets,” ISCA 1998.  
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740: Handling of Store-Load Dependencies 

 A load’s dependence status is not known until all previous store 
addresses are available.  

 

 How does the OOO engine detect dependence of a load instruction on a 
previous store? 

 Option 1: Wait until all previous stores committed (no need to 
check)  

 Option 2: Keep a list of pending stores in a store buffer and check 
whether load address matches a previous store address 

 

 How does the OOO engine treat the scheduling of a load instruction wrt 
previous stores? 

 Option 1: Assume load independent of all previous stores 

 Option 2: Assume load dependent on all previous stores 

 Option 3: Predict the dependence of a load on an outstanding store 
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740: Memory Disambiguation  

 Option 1: Assume load independent of all previous stores 

 + Simple and can be common case: no delay for independent loads 

 -- Requires recovery and re-execution of load and dependents on misprediction 
 

 Option 2: Assume load dependent on all previous stores 

 + No need for recovery  

    -- Too conservative: delays independent loads unnecessarily 
 

 Option 3: Predict the dependence of a load on an 
outstanding store 

 + More accurate. Load store dependencies persist over time 

 -- Still requires recovery/re-execution on misprediction 

 Alpha 21264 : Initially assume load independent, delay loads found to be dependent  

 Moshovos et al., “Dynamic speculation and synchronization of data dependences,” 
ISCA 1997. 

 Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998. 
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740: Memory Disambiguation 

 Chrysos and Emer, “Memory Dependence Prediction Using Store 
Sets,” ISCA 1998. 

 

 

 

 

 

 

 

 

 Predicting store-load dependencies important for performance 

 Simple predictors (based on past history) can achieve most of 
the potential performance  
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Multiscalar Comparisons and Questions 

 vs. superscalar, out-of-order? 

 vs. multi-core? 

 vs. CMP and SMT-based thread-level speculation 
mechanisms 

 What is different in multiscalar hardware? 

 

 Scalability of fine-grained register communication 

 Scalability of memory renaming and dependence 
speculation 
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More Speculation 

 

 

 

 

 



Speculation to Improve Parallel Programs 

 Goal: reduce the impact of serializing bottlenecks 

 Improve performance 

 Improve programming ease 

 

 Examples 

 Herlihy and Moss, “Transactional Memory: Architectural Support for 
Lock-Free Data Structures,” ISCA 1993. 

 Rajwar and Goodman, “Speculative Lock Elision: Enabling Highly 
Concurrent Multithreaded Execution,” MICRO 2001. 

 Martinez and Torrellas, “Speculative Synchronization: Applying 
Thread-Level Speculation to Explicitly Parallel Applications,” ASPLOS 
2002. 

 Rajwar and Goodman, ”Transactional lock-free execution of lock-
based programs,” ASPLOS 2002. 
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Speculative Lock Elision 

 Many programs use locks for synchronization 

 Many locks are not necessary 

 Stores occur infrequently during execution 

 Updates can occur to disjoint parts of the data structure 

 

 Idea:  

 Speculatively assume lock is not necessary and execute critical 
section without acquiring the lock 

 Check for conflicts within the critical section  

 Roll back if assumption is incorrect 

 

 Rajwar and Goodman, “Speculative Lock Elision: Enabling 
Highly Concurrent Multithreaded Execution,” MICRO 2001. 
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Dynamically Unnecessary Synchronization 
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Speculative Lock Elision: Issues 

 Either the entire critical section is committed or none of it 

 

 How to detect the lock 

 How to keep track of dependencies and conflicts in a critical 
section 

 Read set and write set 

 How to buffer speculative state 

 How to check if “atomicity” is violated 

 Dependence violations with another thread 

 How to support commit and rollback 
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Maintaining Atomicity 

 If atomicity is maintained, all locks can be removed 

 Conditions for atomicity: 

 Data read is not modified by another thread until critical 
section is complete 

 Data written is not accessed by another thread until critical 
section is complete 

 

 If we know the beginning and end of a critical section, we 
can monitor the memory addresses read or written to by 
the critical section and check for conflicts 

 Using the underlying coherence mechanism 
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SLE Implementation 

 Checkpoint register state before entering SLE mode 

 

 In SLE mode: 

 Store: Buffer the update in the write buffer (do not make 
visible to other processors), request exclusive access 

 Store/Load: Set “access” bit for block in the cache 

 Trigger misspeculation on some coherence actions 

 If external invalidation to a block with “access” bit set 

 If exclusive access to request to a block with “access” bit set 

 If not enough buffering space, trigger misspeculation 

 

 If end of critical section reached without misspeculation, 
commit all writes (needs to appear instantaneous)    
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Accelerated Critical Sections (ACS) vs. SLE 

 ACS Advantages over SLE 

+ Speeds up each individual critical section 

+ Keeps shared data and locks in a single cache (improves 
shared data and lock locality) 

+ Does not incur re-execution overhead since it does not 
speculatively execute critical sections in parallel 

 

 ACS Disadvantages over SLE 

- Needs transfer of private data and control to a large core 
(reduces private data locality and incurs overhead) 

- Executes non-conflicting critical sections serially 

- Large core can reduce parallel throughput (assuming no SMT) 
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ACS vs. SLE 

36 

Suleman et al., “Accelerating Critical Section Execution with Asymmetric Multi-Core 
Architectures,” ASPLOS 2009, IEEE Micro Top Picks 2010.  



ACS vs. Transactional Lock Removal 
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ACS vs. SLE 

 Can you combine both? 

 

 How would you combine both? 

 

 Can you do better than both?  
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Four Issues in Speculative Parallelization 

 How to deal with unavailable values: predict vs. wait 

 

 How to deal with speculative updates: Logging/buffering 

 

 How to detect conflicts 

 

 How and when to abort/rollback or commit 
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We did not cover the following slides in lecture. 

These are for your preparation for the next lecture.  



Transactional Memory 

 

 

 

 

 



Transactional Memory 

 Idea: Programmer specifies code to be executed atomically 
as transactions. Hardware/software guarantees atomicity 
for transactions. 

 

 Motivated by difficulty of lock-based programming 

 Motivated by lack of concurrency (performance issues) in 
blocking synchronization (or “pessimistic concurrency”) 
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Locking Issues 

 Locks: objects only one thread can hold at a time 

 Organization: lock for each shared structure 

 Usage: (block)  acquire  access  release 

 

 Correctness issues 

 Under-locking  data races 

 Acquires in different orders  deadlock 

 

 Performance issues 

 Conservative serialization 

 Overhead of acquiring 

 Difficult to find right granularity 

 Blocking 
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Locks vs. Transactions 

 

 

 

 

 

 

 

 

 Locks  pessimistic concurrency 

 Transactions  optimistic concurrency 
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Lock issues: 

– Under-locking  data races 

– Deadlock due to lock ordering  

– Blocking synchronization 

– Conservative serialization 

 

How transactions help: 

+ Simpler interface/reasoning 

+ No ordering 

+ Nonblocking (Abort on conflict)  

+ Serialization only on conflicts 

 

 



Transactional Memory 
 Transactional Memory (TM) allows arbitrary multiple memory 

locations to be updated atomically (all or none) 
 

 Basic Mechanisms: 

 Isolation and conflict management: Track read/writes per 
transaction, detect when a conflict occurs between transactions 

 Version management: Record new/old values (where?) 

 Atomicity: Commit new values or abort back to old values  all 

or none semantics of a transaction 
 

 Issues the same as other speculative parallelization schemes 

 Logging/buffering 

 Conflict detection 

 Abort/rollback 

 Commit 
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Four Issues in Transactional Memory 

 How to deal with unavailable values: predict vs. wait 

 

 How to deal with speculative updates: logging/buffering 

 

 How to detect conflicts: lazy vs. eager 

 

 How and when to abort/rollback or commit 
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Many Variations of TM 

 Software 

 High performance overhead, but no virtualization issues 

 

 Hardware 

 What if buffering is not enough? 

 Context switches, I/O within transactions? 

 Need support for virtualization 

 

 Hybrid HW/SW 

 Switch to SW to handle large transactions and buffer overflows 
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Initial TM Ideas 

 Load Linked Store Conditional Operations 

 Lock-free atomic update of a single cache line 

 Used to implement non-blocking synchronization 

 Alpha, MIPS, ARM, PowerPC 

 Load-linked returns current value of a location 

 A subsequent store-conditional to the same memory location 
will store a new value only if no updates have occurred to the 
location 

 

 Herlihy and Moss, ISCA 1993 

 Instructions explicitly identify transactional loads and stores 

 Used dedicated transaction cache  

 Size of transactions limited to transaction cache 
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Herlihy and Moss, ISCA 1993 
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Current Implementations of TM/SLE 

 Sun ROCK 

 

 IBM Blue Gene 

 

 IBM System Z: Two types of transactions 

 Best effort transactions: Programmer responsible for aborts 

 Guaranteed transactions are subject to many limitations 

 

 Intel Haswell 
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TM Research Issues 

 How to virtualize transactions (without much complexity) 

 Ensure long transactions execute correctly 

 In the presence of context switches, paging 

 

 Handling I/O within transactions 

 No problem with locks 

 

 Semantics of nested transactions (more of a 
language/programming research topic) 

 

 Does TM increase programmer productivity? 

 Does the programmer need to optimize transactions? 
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