
18-742 Fall 2012

Parallel Computer Architecture

Lecture 16: Speculation II

Prof. Onur Mutlu

Carnegie Mellon University

10/12/2012

Past Due: Review Assignments

 Was Due: Tuesday, October 9, 11:59pm.

 Sohi et al., “Multiscalar Processors,” ISCA 1995.

 Was Due: Thursday, October 11, 11:59pm.

 Herlihy and Moss, “Transactional Memory: Architectural Support
for Lock-Free Data Structures,” ISCA 1993.

 Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” MICRO 1999.

2

New Review Assignments

 Due: Sunday, October 14, 11:59pm.

 Patel, “Processor-Memory Interconnections for Multiprocessors,”
ISCA 1979.

 Due: Tuesday, October 16, 11:59pm.

 Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip
Networks,” ISCA 2009.

3

Project Milestone I Due (I)

 Deadline: October 20, 11:59pm (next Saturday)

 Format: Slides (no page limit) + presentation (10-15min)

 What you should turn in:

 PPT/PDF slides describing the following:

 The problem you are solving + your goal

 Your solution ideas + strengths and weaknesses

 Your methodology to test your ideas

 Concrete mechanisms you have implemented so far

 Concrete results you have so far

 What will you do next?

 What hypotheses you have for future?

 How close were you to your target?
4

Project Milestone I Due (II)

 Next week (Oct 22-26)

 Sign up for Milestone I presentation slots (10-15 min/group)

 Make a lot of progress and find breakthroughs

 Example milestones:

 http://www.ece.cmu.edu/~ece742/2011spring/doku.php?id=p
roject

 http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.p
hp?media=milestone1_ausavarungnirun_meza_yoon.pptx

 http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.p
hp?media=milestone1_tumanov_lin.pdf

5

http://www.ece.cmu.edu/~ece742/2011spring/doku.php?id=project
http://www.ece.cmu.edu/~ece742/2011spring/doku.php?id=project
http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=milestone1_ausavarungnirun_meza_yoon.pptx
http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=milestone1_ausavarungnirun_meza_yoon.pptx
http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=milestone1_tumanov_lin.pdf
http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=milestone1_tumanov_lin.pdf

Last Lecture

 Slipstream processors

 Dual-core execution

 Thread-level speculation

 Key concepts in speculative parallelization

 Multiscalar processors

6

Today

 More multiscalar

 Speculative lock elision

 More speculation

7

Readings: Speculation

 Required

 Sohi et al., “Multiscalar Processors,” ISCA 1995.

 Herlihy and Moss, “Transactional Memory: Architectural Support for
Lock-Free Data Structures,” ISCA 1993.

 Recommended

 Rajwar and Goodman, “Speculative Lock Elision: Enabling Highly
Concurrent Multithreaded Execution,” MICRO 2001.

 Colohan et al., “A Scalable Approach to Thread-Level Speculation,”
ISCA 2000.

 Akkary and Driscoll, “A dynamic multithreading processor,” MICRO
1998.

 Reading list will be updated…

8

More Multiscalar

Multiscalar Processors (ISCA 1992, 1995)

 Exploit “implicit” thread-level parallelism within a serial
program

 Compiler divides program into tasks

 Tasks scheduled on independent processing resources

 Hardware handles register dependences between tasks

 Compiler specifies which registers should be communicated
between tasks

 Memory speculation for memory dependences

 Hardware detects and resolves misspeculation

 Franklin and Sohi, “The expandable split window paradigm for
exploiting fine-grain parallelism,” ISCA 1992.

 Sohi et al., “Multiscalar processors,” ISCA 1995.

 10

Multiscalar vs. Large Instruction Windows

11

Multiscalar Model of Execution

12

Multiscalar Tasks

 A task is a subgraph of the control
flow graph (CFG)

 e.g., a basic block, multiple basic
blocks, loop body, function

 Tasks are selected by compiler and
conveyed to hardware

 Tasks are predicted and scheduled
by processor

 Tasks may have data and/or control
dependences

13

Multiscalar Processor

14

Multiscalar Compiler
 Task selection: partition CFG into tasks

 Load balance

 Minimize inter-task data dependences

 Minimize inter-task control dependences

 By embedding hard-to-predict branches within tasks

 Convey task and communication information in the executable

 Task headers

 create_mask (1 bit per register)

 Indicates all registers that are possibly modified or created by the task
(better: live-out of the task)

 Don’t forward instances received from prior tasks

 PCs of successor tasks

 Release instructions: Release a register to be forwarded to a
receiving task

15

Multiscalar Program Example

16

Forwarding Registers Between Tasks

 Compiler must identify the last instance of write to a
register within a task

 Opcodes that write a register have additional forward bit,
indicating the instance should be forwarded

 Stop bits - indicate end of task

 Release instruction

 tells PE to forward the register value

17

Task Sequencing

 Task prediction analogous to branch prediction

 Predict inter-task control flow

18

Handling Inter-Task Dependences

 Control dependences

 Predict

 Squash subsequent tasks on inter-task misprediction

 Intra-task mispredictions do not need to cause flushing of later
tasks

 Data dependences

 Register file: mask bits and forwarding (stall until available)

 Memory: address resolution buffer (speculative load, squash
on violation)

19

Address Resolution Buffer

 Multiscalar issues loads to ARB/D-cache as soon as address
is computed

 ARB is organized like a cache, maintaining state for all
outstanding load/store addresses

 Franklin and Sohi, “ARB: A hardware mechanism for
dynamic reordering of memory references,” IEEE TC 1996.

 An ARB entry:

20

Address Resolution Buffer

 Loads

 ARB miss: data comes from D-cache (no prior stores yet)

 ARB hit: get most recent data to the load, which may be from
D-cache, or nearest prior task with S=1

 Stores

 ARB buffers speculative stores

 If store from an older task finds a load from a younger task to
the same address  misspeculation detected

 When a task commits, commit all of the task’s stores into the
D-cache

21

Address Resolution Buffer

 Franklin and Sohi, “ARB: A hardware mechanism for
dynamic reordering of memory references,” IEEE TC 1996.

22

Memory Dependence Prediction

 ARB performs memory renaming

 However, it does not perform dependence prediction

 Can reduce intra-task dependency flushes by accurate
memory dependence prediction

 Idea: Predict whether or not a load instruction will be
dependent on a previous store (and predict which store).
Delay the execution of the load if it is predicted to be
dependent.

 Moshovos et al., “Dynamic Speculation and Synchronization of
Data Dependences,” ISCA 1997.

 Chrysos and Emer, “Memory Dependence Prediction using Store
Sets,” ISCA 1998.

23

740: Handling of Store-Load Dependencies

 A load’s dependence status is not known until all previous store
addresses are available.

 How does the OOO engine detect dependence of a load instruction on a
previous store?

 Option 1: Wait until all previous stores committed (no need to
check)

 Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

 How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?

 Option 1: Assume load independent of all previous stores

 Option 2: Assume load dependent on all previous stores

 Option 3: Predict the dependence of a load on an outstanding store

24

740: Memory Disambiguation

 Option 1: Assume load independent of all previous stores

 + Simple and can be common case: no delay for independent loads

 -- Requires recovery and re-execution of load and dependents on misprediction

 Option 2: Assume load dependent on all previous stores

 + No need for recovery

 -- Too conservative: delays independent loads unnecessarily

 Option 3: Predict the dependence of a load on an
outstanding store

 + More accurate. Load store dependencies persist over time

 -- Still requires recovery/re-execution on misprediction

 Alpha 21264 : Initially assume load independent, delay loads found to be dependent

 Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

 Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.

25

740: Memory Disambiguation

 Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

 Predicting store-load dependencies important for performance

 Simple predictors (based on past history) can achieve most of
the potential performance

26

Multiscalar Comparisons and Questions

 vs. superscalar, out-of-order?

 vs. multi-core?

 vs. CMP and SMT-based thread-level speculation
mechanisms

 What is different in multiscalar hardware?

 Scalability of fine-grained register communication

 Scalability of memory renaming and dependence
speculation

27

More Speculation

Speculation to Improve Parallel Programs

 Goal: reduce the impact of serializing bottlenecks

 Improve performance

 Improve programming ease

 Examples

 Herlihy and Moss, “Transactional Memory: Architectural Support for
Lock-Free Data Structures,” ISCA 1993.

 Rajwar and Goodman, “Speculative Lock Elision: Enabling Highly
Concurrent Multithreaded Execution,” MICRO 2001.

 Martinez and Torrellas, “Speculative Synchronization: Applying
Thread-Level Speculation to Explicitly Parallel Applications,” ASPLOS
2002.

 Rajwar and Goodman, ”Transactional lock-free execution of lock-
based programs,” ASPLOS 2002.

29

Speculative Lock Elision

 Many programs use locks for synchronization

 Many locks are not necessary

 Stores occur infrequently during execution

 Updates can occur to disjoint parts of the data structure

 Idea:

 Speculatively assume lock is not necessary and execute critical
section without acquiring the lock

 Check for conflicts within the critical section

 Roll back if assumption is incorrect

 Rajwar and Goodman, “Speculative Lock Elision: Enabling
Highly Concurrent Multithreaded Execution,” MICRO 2001.

 30

Dynamically Unnecessary Synchronization

31

Speculative Lock Elision: Issues

 Either the entire critical section is committed or none of it

 How to detect the lock

 How to keep track of dependencies and conflicts in a critical
section

 Read set and write set

 How to buffer speculative state

 How to check if “atomicity” is violated

 Dependence violations with another thread

 How to support commit and rollback

32

Maintaining Atomicity

 If atomicity is maintained, all locks can be removed

 Conditions for atomicity:

 Data read is not modified by another thread until critical
section is complete

 Data written is not accessed by another thread until critical
section is complete

 If we know the beginning and end of a critical section, we
can monitor the memory addresses read or written to by
the critical section and check for conflicts

 Using the underlying coherence mechanism

33

SLE Implementation

 Checkpoint register state before entering SLE mode

 In SLE mode:

 Store: Buffer the update in the write buffer (do not make
visible to other processors), request exclusive access

 Store/Load: Set “access” bit for block in the cache

 Trigger misspeculation on some coherence actions

 If external invalidation to a block with “access” bit set

 If exclusive access to request to a block with “access” bit set

 If not enough buffering space, trigger misspeculation

 If end of critical section reached without misspeculation,
commit all writes (needs to appear instantaneous)

34

Accelerated Critical Sections (ACS) vs. SLE

 ACS Advantages over SLE

+ Speeds up each individual critical section

+ Keeps shared data and locks in a single cache (improves
shared data and lock locality)

+ Does not incur re-execution overhead since it does not
speculatively execute critical sections in parallel

 ACS Disadvantages over SLE

- Needs transfer of private data and control to a large core
(reduces private data locality and incurs overhead)

- Executes non-conflicting critical sections serially

- Large core can reduce parallel throughput (assuming no SMT)

35

ACS vs. SLE

36

Suleman et al., “Accelerating Critical Section Execution with Asymmetric Multi-Core
Architectures,” ASPLOS 2009, IEEE Micro Top Picks 2010.

ACS vs. Transactional Lock Removal

37

ACS vs. SLE

 Can you combine both?

 How would you combine both?

 Can you do better than both?

38

Four Issues in Speculative Parallelization

 How to deal with unavailable values: predict vs. wait

 How to deal with speculative updates: Logging/buffering

 How to detect conflicts

 How and when to abort/rollback or commit

39

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

Transactional Memory

Transactional Memory

 Idea: Programmer specifies code to be executed atomically
as transactions. Hardware/software guarantees atomicity
for transactions.

 Motivated by difficulty of lock-based programming

 Motivated by lack of concurrency (performance issues) in
blocking synchronization (or “pessimistic concurrency”)

42

Locking Issues

 Locks: objects only one thread can hold at a time

 Organization: lock for each shared structure

 Usage: (block)  acquire  access  release

 Correctness issues

 Under-locking  data races

 Acquires in different orders  deadlock

 Performance issues

 Conservative serialization

 Overhead of acquiring

 Difficult to find right granularity

 Blocking

 43

Locks vs. Transactions

 Locks  pessimistic concurrency

 Transactions  optimistic concurrency

44

Lock issues:

– Under-locking  data races

– Deadlock due to lock ordering

– Blocking synchronization

– Conservative serialization

How transactions help:

+ Simpler interface/reasoning

+ No ordering

+ Nonblocking (Abort on conflict)

+ Serialization only on conflicts

Transactional Memory
 Transactional Memory (TM) allows arbitrary multiple memory

locations to be updated atomically (all or none)

 Basic Mechanisms:

 Isolation and conflict management: Track read/writes per
transaction, detect when a conflict occurs between transactions

 Version management: Record new/old values (where?)

 Atomicity: Commit new values or abort back to old values  all

or none semantics of a transaction

 Issues the same as other speculative parallelization schemes

 Logging/buffering

 Conflict detection

 Abort/rollback

 Commit

45

Four Issues in Transactional Memory

 How to deal with unavailable values: predict vs. wait

 How to deal with speculative updates: logging/buffering

 How to detect conflicts: lazy vs. eager

 How and when to abort/rollback or commit

46

Many Variations of TM

 Software

 High performance overhead, but no virtualization issues

 Hardware

 What if buffering is not enough?

 Context switches, I/O within transactions?

 Need support for virtualization

 Hybrid HW/SW

 Switch to SW to handle large transactions and buffer overflows

47

Initial TM Ideas

 Load Linked Store Conditional Operations

 Lock-free atomic update of a single cache line

 Used to implement non-blocking synchronization

 Alpha, MIPS, ARM, PowerPC

 Load-linked returns current value of a location

 A subsequent store-conditional to the same memory location
will store a new value only if no updates have occurred to the
location

 Herlihy and Moss, ISCA 1993

 Instructions explicitly identify transactional loads and stores

 Used dedicated transaction cache

 Size of transactions limited to transaction cache

48

Herlihy and Moss, ISCA 1993

49

Current Implementations of TM/SLE

 Sun ROCK

 IBM Blue Gene

 IBM System Z: Two types of transactions

 Best effort transactions: Programmer responsible for aborts

 Guaranteed transactions are subject to many limitations

 Intel Haswell

50

TM Research Issues

 How to virtualize transactions (without much complexity)

 Ensure long transactions execute correctly

 In the presence of context switches, paging

 Handling I/O within transactions

 No problem with locks

 Semantics of nested transactions (more of a
language/programming research topic)

 Does TM increase programmer productivity?

 Does the programmer need to optimize transactions?

51

