18-742 Fall 2012
Parallel Computer Architecture
Lecture 10: Multithreading 11

Prof. Onur Mutlu
Carnegie Mellon University
9/28/2012

Reminder: Review Assignments

Due: Sunday, September 30, 11:59pm.

Mutlu, “"Some Ideas and Principles for Achieving Higher System
Energy Efficiency,” NSF Position Paper and Presentation 2012.

Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO
2011.

Seshadri et al., "The Evicted-Address Filter: A Unified Mechanism
to Address Both Cache Pollution and Thrashing,” PACT 2012.

Pekhimenko et al., “Linearly Compressed Pages: A Main Memory
Compression Framework with Low Complexity and Low Latency,”
CMU SAFARI Technical Report 2012.

Feedback on Project Proposals

In your email

General feedback points

o Concrete mechanisms, even if not fully right, is a good place
to start testing your ideas

l.ast Lecture

Asymmetry in Memory Scheduling
Wrap up Asymmetry
Multithreading

o Fine-grained
o Coarse-grained

Today

= More Multithreading

More Multithreading

Readings: Multithreading

Required

a

a

a

Spracklen and Abraham, “Chip Multithreading: Opportunities and
Challenges,” HPCA Industrial Session, 2005.

Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

Tullsen et al., “Exploiting choice: instruction fetch and issue on an
implementable simultaneous multithreading processor,” ISCA 1996.

Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy for
SMT Processors,” HPCA 2007.

Recommended

Q

Hirata et al., “An Elementary Processor Architecture with Simultaneous
Instruction Issuing from Multiple Threads,” ISCA 1992

Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,”
MICRO 2006.

Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,” ISCA
1990.

Review: Fine-grained vs. Coarse-grained M'T

Fine-grained advantages

+ Simpler to implement, can eliminate dependency checking,
branch prediction logic completely

+ Switching need not have any performance overhead (i.e. dead
cycles)

+ Coarse-grained requires a pipeline flush or a lot of hardware
to save pipeline state

- Higher performance overhead with deep pipelines and
large windows

Disadvantages

- Low single thread performance: each thread gets 1/Nth of the
bandwidth of the pipeline

IBM RS64-1V

4-way superscalar, in-order, 5-stage pipeline
Two hardware contexts
On an L2 cache miss

o Flush pipeline
a Switch to the other thread

Considerations
o Memory latency vs. thread switch overhead

o Short pipeline, in-order execution (small instruction window)
reduces the overhead of switching

Intel Montecito

= McNairy and Bhatia, “Montecito: A Dual-Core, Dual-Thread Itanium
Processor,” IEEE Micro 2005.

Al Ai+1

Al+2

Bi

Bi Bi+1

= Thread switch on

a
a
a
a
a

L3 cache miss/data return

Timeout — for fairness
Switch hint instruction

ALAT invalidation — synchronization fault

Bi+2

Time

Transition to low power mode
m <2% area overhead due to CGMT

-+——Hidden latency —————#~

10

Fairness in Coarse-grained Multithreading

Resource sharing in space and time always causes fairness
considerations

o Fairness: how much progress each thread makes

In CGMT, the time allocated to each thread affects both
fairness and system throughput

o When do we switch?

a For how long do we switch?
When do we switch back?

o How does the hardware scheduler interact with the software
scheduler for fairness?

o What is the switching overhead vs. benefit?
Where do we store the contexts?

11

Fairness in Coarse-grained Multithreading

Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,”

MICRO 2006.

How can you solve the below problem?

Thread 1 Exl M

Ex1

M

Ex1

(alone)

Thread 2 Ex2| M IExZ‘ M ‘ExZ M Ex2| M |Ex2] M]ExZ

(alone) |

Thread 1+2]
(SOE) |

S

Ex1 S\\~Ex2

Exl

M

Ex2 l M lExZ H

ekl e |

time

Figure 1. Intuitive example of unfair execu-
tion in SOE. Ex/ marks execution of instruc-
tions from thread 1, Ex2 from thread 2, M
marks last level cache misses and Sw de-
notes thread switch overheads. When both
threads run together using SOE (bottom), the
2nd thread runs extremely slowly while the
1st thread’s performance is hardly affected

by the multithreading.

12

Fairness vs. Throughput

Switch not only on miss, but also on data return

Problem: Switching has performance overhead
o Pipeline and window flush

o Reduced locality and increased resource contention (frequent
switches increase resource contention and reduce locality)

One possible solution

o Estimate the slowdown of each thread compared to when run
alone

o Enforce switching when slowdowns become significantly
unbalanced

o Gabor et al., “Fairness and Throughput in Switch on Event
Multithreading,” MICRO 2006.

13

Thread Switching Urgency in Montecito

Thread urgency levels
o 0-7

Nominal level 5: active progress
After timeout: set to 7
After ext. interrupt: set to 6

Reduce urgency level for each
blocking operation

o L3 miss

Switch if urgency of foreground
lower than that of background

TO T1
i ' TO executing
l vs——l [‘— T1 in background
| 4] [‘ | TO issues load that

misses L3 cache

v—""f L
1 Thread “Z_
<, switch <
s <

TO is in background,
3 5 initiated another access
before thread switch

Load return from TO but
4 5 T1 is still higher urgency
so no thread switch occurs

T1 issues load that
lA 4 l l 4 ‘_ misses L3 cache

l 5] l 4]—4 Load returns from TO

[J Background thread
O Foreground thread

Figure 4. Urgency and thread switches on the Montecito
0rocessor.

14

Simultaneous Multithreading

Fine-grained and coarse-grained multithreading can start
execution of instructions from on/y a single thread at a
given cycle

Execution unit (or pipeline stage) utilization can be low if
there are not enough instructions from a thread to
“dispatch” in one cycle

o In a machine with multiple execution units (i.e., superscalar)

Idea: Dispatch instructions from multiple threads in the

same cycle (to keep multiple execution units utilized)

o Hirata et al., "An Elementary Processor Architecture with Simultaneous
Instruction Issuing from Multiple Threads,” ISCA 1992.

o Yamamoto et al., "Performance Estimation of Multistreamed, Superscalar
Processors,” HICSS 1994.

o Tullsen et al., "Simultaneous Multithreading: Maximizing On-Chip

Parallelism,” ISCA 1995.
15

Functional Unit Utilization

Time

»
»

= Data dependencies reduce functional unit utilization in
pipelined processors

16

Functional Unit Utilization in Superscalar

Time

»
»

= Functional unit utilization becomes lower in superscalar,
000 machines. Finding 4 instructions in parallel is not

___always possible

17

Predicated Execution

Time

»
»

= Idea: Convert control dependencies into data dependencies
= Improves FU utilization, but some results are thrown away

18

Chip Multiprocessor

Time

= Idea: Partition functional units across cores

= Still limited FU utilization within a single thread; limited
single-thread performance

19

Fine-grained Multithreading

Time

»
»

= Still low utilization due to intra-thread dependencies

= Single thread performance suffers

Simultaneous Multithreading

Time

= Idea: Utilize functional units with independent operations
from the same or different threads

»
»

21

Horizontal vs. Vertical Waste

Issue width

Instruction
issue i

Completely idle cycle
(vertical waste)

Time

Partially filled cycle,
;:;*i — ie,IPC<4

(horizontal waste)

Why is there horizontal and vertical waste?
How do you reduce each?

Slide from Joel Emer

22

Simultaneous Multithreading

Reduces both horizontal and vertical waste

Required hardware

o The ability to dispatch instructions from multiple threads
simultaneously into different functional units

Superscalar, Oo0 processors already have this machinery

o Dynamic instruction scheduler searches the scheduling
window to wake up and select ready instructions

o As long as dependencies are correctly tracked (via renaming
and memory disambiguation), scheduler can be thread-
agnostic

23

Basic Superscalar OoO Pipeline

Fetch Decode Queue Reg Execute Dcache/ Reg Retire
/Map Read Store Write
Buffer

A\ 4

Regs

Regs

Dcache

|#¥% |

v

A

Thread-
blind

SMT Pipeline

= Physical register file needs to become larger. Why?

Fetch Decode Queue Reg Execute Dcache/ Reg Retire
/Map Read Store Write
Buffer

5

Dcache Regs

25

Changes to Pipeline tor SM'T

Replicated resources

o Program counter

o Register map

o Return address stack
o Global history register

Shared resources

o Register file (size increased)
o Instruction queue (scheduler)
o First and second level caches
o Translation lookaside buffers
o Branch predictor

26

Changes to OoO+SS Pipeline for SMT

¢ multiple program counters and some mechanism by which the
fetch unit selects one each cycle,

¢ aseparate return stack for each thread for predicting subroutine
return destinations,

¢ per-thread instruction retirement, instruction queue flush, and
trap mechanisms,

e a thread 1d with each branch target buffer entry to avoid pre-
dicting phantom branches, and

e a larger register file, to support logical registers for all threads
plus additional registers for register renaming. The size of
the register file affects the pipeline (we add two extra stages)
and the scheduling of load-dependent instructions, which we
discuss later in this section.

Tullsen et al., “Exploiting Choice: Instruction Fetch and Issue on an Implementable
Simultaneous Multithreading Processor,” ISCA 1996.

27

SMT Scalability

Diminishing returns from more threads. Why?

Unmodified Superscalar

Throughput (Instructions Per Cycle)
Lad
|

1 T 1 |
2 4 6]

MNumber of Threads

SMT Design Considerations

Fetch and prioritization policies
o Which thread to fetch from?

Shared resource allocation policies
o How to prevent starvation?

o How to maximize throughput?

o How to provide fairness/QoS?

o Free-for-all vs. partitioned

How to measure performance
o Is total IPC across all threads the right metric?

How to select threads to co-schedule
o Snavely and Tullsen, “Symbiotic Jobscheduling for a

Simultaneous Multithreading Processor,” ASPLOS 2000.

29

Which Thread to Fetch From?

(Somewhat) Static policies

o Round-robin

8 instructions from one thread
4 instructions from two threads
2 instructions from four threads

o O 0O 0O

Dynamic policies

o Favor threads with minimal in-flight branches

o Favor threads with minimal outstanding misses
o Favor threads with minimal in-flight instructions
Q

30

Which Instruction to Select/Dispatch?

= Can be thread agnostic.

31

SMT Fetch Policies (I)

Round robin: Fetch from a different thread each cycle
Does not work well in practice. Why?

Instructions from slow threads hog the pipeline and block
the instruction window

o E.g., a thread with long-latency cache miss (L2 miss) fills up
the window with its instructions

o Once window is full, no other thread can issue and execute
instructions and the entire core stalls

32

SMT Fetch Policies (1)

= ICOUNT: Fetch from thread with the least instructions in
the earlier pipeline stages (before execution)

:‘—.

—-

e e = = — — — —— — — — —_— e — — — — — —

= Why does this improve throughput?

Slide from Joel Emer

33

SMT ICOUNT Fetch Policy

Favors faster threads that have few instructions waiting

Advantages over round robin

+ Allows faster threads to make more progress (before threads
with long-latency instructions block the window fast)

+ Higher IPC throughput

Disadvantages over round robin
- Is this fair?

- Prone to short-term starvation: Need additional methods to
ensure starvation freedom

34

Some Results on Fetch Policy

s4 O rris -5
RR 24 %
o] O rr42 M] : | |4
o | @ =r2s mp [EH TE T :
£ T B
241 [J RR28 -2
BRCOUNT2 8
1- [0 misscount2s|| |
[1counT2s
: : [F] 1QPOSN238
oL EL A4 4 il & : ; CrErrrE L
1 2 4 6 8) 4 6 8
Number of Threads Number of Threads

Figure 4: Instruction throughput for the different instruction
cache interfaces with round-robin instruction scheduling.

Handling L.ong Latency LLoads

= Long-latency (L2/L3 miss) loads are a problem in a single-threaded
processor

o Block instruction/scheduling windows and cause the processor to stall

= In SMT, a long-latency load instruction can block the window for ALL
threads

o i.e. reduce the memory latency tolerance benefits of SMT

= Brown and Tullsen, “Handling Long-latency Loads in a Simultaneous
Multithreading Processor,” MICRO 2001. s

EILP thread
OMEM thread

4

3_

H|l ﬂlﬂ | H‘AH

MIX.2.1 MIX.2.2 MIX.23 MIX.24 MIX 25 MIX 2.6
Workload

=

36

Proposed Solutions to Long-Latency lLoads

Idea: Flush the thread that incurs an L2 cache miss

o Brown and Tullsen, “Handling Long-latency Loads in a Simultaneous Multithreading
Processor,” MICRO 2001.

Idea: Predict load miss on fetch and do not insert following instructions from
that thread into the scheduler

o EI-Moursy and Albonesi, “Front-End Policies for Improved Issue Efficiency in SMT
Processors,” HPCA 2003.

Idea: Partition the shared resources among threads so that a thread’s long-
latency load does not affect another

o Raasch and Reinhardt, “The Impact of Resource Partitioning on SMT Processors,”
PACT 2003.

Idea: Predict if (and how much) a thread has MLP when it incurs a cache miss;
flush the thread after its MLP is exploited

o Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy for SMT
Processors,” HPCA 2007.

37

MI.P-Aware Fetch Policies

The stall fetch approach proposed by Tullsen and
Brown [24], i.e., a thread that experiences a long-
latency load 1s fetch stalled until the data returns from
memory.

The predictive stall fetch approach. following [2], ex-
tends the above stall fetch policy by predicting long-
latency loads in the front-end pipeline. Predicted long-
latency loads trigger fetch stalling a thread.

The MLP-aware stall fetch approach predicts long-
latency loads, predicts the amount of MLP for pre-
dicted long-latency loads and fetch stalls threads when
the number of instructions has been fetched as pre-

dicted by the MLP predictor.

The flush approach proposed by Tullsen and
Brown [24] flushes on long-latency loads. Our
mmplementation flushes when a long-latency load 1s
detected (thus 1s the "TM’ or trigger on long-latency
nuss 1n [24]) and flushes starting from the instruction
following the long-latency load (this 1s the ‘next’
approach in [24]).

The MLP-aware flush approach predicts the amount of
MLP for a long-latency load, and fetch stalls or flushes
the thread after m mstructions since the long-latency
load, with m the MLP distance predicted by the MLP

predictor.

Eyerman and Eeckhout, “A Memory-Level
Parallelism Aware Fetch Policy for SMT
Processors,” HPCA 2007.

38

More Results ...

1 ILP-intensive MLP-intensive
08 - — =
%’ 06 . I’ S
& 04 —
0z —
i : .
o B = I E ; Ty T = - 3, - =} - B P _.E - _E _Iz
;& F § 5 i f g i f g FfF i Fiie
d £ Z & £ & F B ¢ ¥ § £ 3 g F F &
£ . 3 & #] 3 4 # U g‘ =
1 mixed ILP/MLP-intensive
OICOUNT
08 Ostall fatch
Sos mpredictive stall fetch
ﬁ EMLP-aware dall fetch
o 0.4 mflush
0.2 EMLP-awara flush
0

e,
5 H
5 3

z

Figure 5. The speedup for the various SMT fetch policies compared to single-threaded execution for
the 2-thread workloads.

g
F

oy hary

39

Runahead Threads

= Idea: Use runahead execution on a long-latency load
+ Improves both single thread and multi-thread performance

= Ramirez et al., “Runahead Threads to Improve SMT
Performance,” HPCA 2008.

B ICOUNT B STALL @ FLUSH mRaT WICOUNT B STALL @ FLUSH mRaT
4.0 10
A5 _
-
W
-
3.0 £
S L
g 25+ o
2201 = 0
.i 7]
3 £
5 1,5 2
< = ¢
1.0 1 5
L
E
0.5 T .
0.0 4
ILP2 MIX2 MEM2 ILP4 MIX4A MEMd ILP2 MIX2 MEM2 ILP4 MIX4 MEM4
(a) Throughput (IPC) (b) Fairness

40

Doing Even Better

Predict whether runahead will do well
If so, runahead on thread until runahead becomes useless

Else, exploit and flush thread

Ramirez et al., “Efficient Runahead Threads,” PACT 2010.

Van Craeynest et al., "MLP-Aware Runahead Threads in a
Simultaneous Multithreading Processor,” HIPEAC 20009.

41

Commercial SMT Implementations

= Intel Pentium 4 (Hyperthreading)
= IBM POWERS
= Intel Nehalem

42

SMT in IBM POWERDS5

= Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

Data

Data

Translation Cache

[e Dynamic
| Branch prediction J instruction
{ selection
Shared S
Program Branch| || Return| | Target e execution
counter nistory| | stack | | cache queues units
tables LSUO
2 Altemate [FXU0!
lnmlgn G f tio! [LSL“]
: roup formation - " s -
Init;g::\téon Instruction decode [— ¢ 2 e 2hl .
Dispatch FPUOD
Instruction
translation lem]
Thread BXY
priority Shared- Read CRLJ write
reqister shared- shared-
mappers register files reqister files
[—_)Shared by two threads [[) Thread O resources [l Thread 1 resources

Data Data

translation | | cache
L2

cache

Figure 4. Power5 instruction data flow (BXU = branch execution unit and CRL = condition register logical execution unit).

43

IBM POWERS5 HW Thread Priority Support

Adjust decode cycles
dedicated to thread based
on priority level

Why?
A thread is in a spin loop
waiting for a lock

A thread has no
immediate work to do and
is waiting in an idle loop

One application is more
important than another

Single-thread mode

Instructions per cycle (IPC)

776 74
6 65 63
S5 54 52
4 43 41
23 33 32
21 22 21

4.7
3,6
2,5
1.4

=

7.2 70 11

6,1 0,1
1,0
Power
save
mode

Thread 0 priority, thread 1 priority

|OThread 0 IPC B Thread 1 IPG |

Figure 5. Effects of thread priority on performance.

44

IBM POWERS Thread Throttling

Throttle under two conditions:

o Resource-balancing logic detects the point at which a thread
reaches a threshold of load misses in the L2 cache and
translation misses in the TLB.

o Resource-balancing logic detects that one thread is beginning
to use too many GCT (i.e., reorder buffer) entries.

Throttling mechanisms:
o Reduce the priority of the thread

o Inhibit the instruction decoding of the thread until the
congestion clears

o Flush all of the thread’s instructions that are waiting for
dispatch and stop the thread from decoding additional
instructions until the congestion clears

45

Intel Pentitum 4 Hyperthreading

L2 Cache Uop
Acness Queue Decode QueueE Fill EQueue

Trace
Cache

Uop Register Register
Queue Rename Queue Sched Read Execute L1Cache Write Retire

8

Stnre

ﬁ‘%ﬁ E

**W

: : Re-Order
: Registers L1DCache “BQIStEFS i Buffer

46

Intel Pentitum 4 Hyperthreading

= Long latency load handling

o Multi-level scheduling window

B No Hyper-Threading B Hyper-Threading Enabled

1.4

= More partitioned structures 12
o I-TLB n.;
o Instruction Queues 0.6
o Store buffer 04
o Reorder buffer -

Webserver Webserver Server-side Java
Workload (1) Workload (2) workload

= 5% area overhead due to SMT

= Marr et al., “Hyper-Threading Technology Architecture and
Microarchitecture,” Intel Technology Journal 2002.

47

Other Uses of Multithreading

Now that We Have M'T Hardware ...

... what else can we use it for?
Redundant execution to tolerate soft (and hard?) errors

Implicit parallelization: thread level speculation
o Slipstream processors
o Leader-follower architectures

Helper threading
o Prefetching
a Branch prediction

Exception handling

49

