
18-742 Fall 2012

Parallel Computer Architecture

Lecture 10: Multithreading II

Prof. Onur Mutlu

Carnegie Mellon University

9/28/2012

Reminder: Review Assignments

 Due: Sunday, September 30, 11:59pm.

 Mutlu, “Some Ideas and Principles for Achieving Higher System
Energy Efficiency,” NSF Position Paper and Presentation 2012.

 Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO
2011.

 Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism
to Address Both Cache Pollution and Thrashing,” PACT 2012.

 Pekhimenko et al., “Linearly Compressed Pages: A Main Memory
Compression Framework with Low Complexity and Low Latency,”
CMU SAFARI Technical Report 2012.

 2

Feedback on Project Proposals

 In your email

 General feedback points

 Concrete mechanisms, even if not fully right, is a good place
to start testing your ideas

3

Last Lecture

 Asymmetry in Memory Scheduling

 Wrap up Asymmetry

 Multithreading

 Fine-grained

 Coarse-grained

4

Today

 More Multithreading

5

More Multithreading

6

Readings: Multithreading
 Required

 Spracklen and Abraham, “Chip Multithreading: Opportunities and
Challenges,” HPCA Industrial Session, 2005.

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

 Tullsen et al., “Exploiting choice: instruction fetch and issue on an
implementable simultaneous multithreading processor,” ISCA 1996.

 Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy for
SMT Processors,” HPCA 2007.

 Recommended

 Hirata et al., “An Elementary Processor Architecture with Simultaneous
Instruction Issuing from Multiple Threads,” ISCA 1992

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,”
MICRO 2006.

 Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,” ISCA
1990.

7

Review: Fine-grained vs. Coarse-grained MT

 Fine-grained advantages

+ Simpler to implement, can eliminate dependency checking,
branch prediction logic completely

+ Switching need not have any performance overhead (i.e. dead
cycles)

 + Coarse-grained requires a pipeline flush or a lot of hardware
 to save pipeline state

  Higher performance overhead with deep pipelines and

 large windows

 Disadvantages

- Low single thread performance: each thread gets 1/Nth of the
bandwidth of the pipeline

 8

IBM RS64-IV

 4-way superscalar, in-order, 5-stage pipeline

 Two hardware contexts

 On an L2 cache miss

 Flush pipeline

 Switch to the other thread

 Considerations

 Memory latency vs. thread switch overhead

 Short pipeline, in-order execution (small instruction window)
reduces the overhead of switching

9

Intel Montecito
 McNairy and Bhatia, “Montecito: A Dual-Core, Dual-Thread Itanium

Processor,” IEEE Micro 2005.

 Thread switch on

 L3 cache miss/data return

 Timeout – for fairness

 Switch hint instruction

 ALAT invalidation – synchronization fault

 Transition to low power mode

 <2% area overhead due to CGMT

10

Fairness in Coarse-grained Multithreading

 Resource sharing in space and time always causes fairness
considerations

 Fairness: how much progress each thread makes

 In CGMT, the time allocated to each thread affects both
fairness and system throughput

 When do we switch?

 For how long do we switch?

 When do we switch back?

 How does the hardware scheduler interact with the software
scheduler for fairness?

 What is the switching overhead vs. benefit?

 Where do we store the contexts?

11

Fairness in Coarse-grained Multithreading

 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,”
MICRO 2006.

 How can you solve the below problem?

12

Fairness vs. Throughput

 Switch not only on miss, but also on data return

 Problem: Switching has performance overhead

 Pipeline and window flush

 Reduced locality and increased resource contention (frequent
switches increase resource contention and reduce locality)

 One possible solution

 Estimate the slowdown of each thread compared to when run
alone

 Enforce switching when slowdowns become significantly
unbalanced

 Gabor et al., “Fairness and Throughput in Switch on Event
Multithreading,” MICRO 2006.

 13

Thread Switching Urgency in Montecito

 Thread urgency levels

 0-7

 Nominal level 5: active progress

 After timeout: set to 7

 After ext. interrupt: set to 6

 Reduce urgency level for each
blocking operation

 L3 miss

 Switch if urgency of foreground
lower than that of background

14

Simultaneous Multithreading

 Fine-grained and coarse-grained multithreading can start
execution of instructions from only a single thread at a
given cycle

 Execution unit (or pipeline stage) utilization can be low if
there are not enough instructions from a thread to
“dispatch” in one cycle

 In a machine with multiple execution units (i.e., superscalar)

 Idea: Dispatch instructions from multiple threads in the
same cycle (to keep multiple execution units utilized)
 Hirata et al., “An Elementary Processor Architecture with Simultaneous

Instruction Issuing from Multiple Threads,” ISCA 1992.

 Yamamoto et al., “Performance Estimation of Multistreamed, Superscalar
Processors,” HICSS 1994.

 Tullsen et al., “Simultaneous Multithreading: Maximizing On-Chip
Parallelism,” ISCA 1995.

 15

Functional Unit Utilization

 Data dependencies reduce functional unit utilization in
pipelined processors

16

Time

Functional Unit Utilization in Superscalar

 Functional unit utilization becomes lower in superscalar,
OoO machines. Finding 4 instructions in parallel is not
always possible

17

Time

Predicated Execution

 Idea: Convert control dependencies into data dependencies

 Improves FU utilization, but some results are thrown away

18

Time

Chip Multiprocessor

 Idea: Partition functional units across cores

 Still limited FU utilization within a single thread; limited
single-thread performance

19

Time

Fine-grained Multithreading

 Still low utilization due to intra-thread dependencies

 Single thread performance suffers

20

Time

Simultaneous Multithreading

 Idea: Utilize functional units with independent operations
from the same or different threads

21

Time

Horizontal vs. Vertical Waste

 Why is there horizontal and vertical waste?

 How do you reduce each?
22 Slide from Joel Emer

Simultaneous Multithreading

 Reduces both horizontal and vertical waste

 Required hardware

 The ability to dispatch instructions from multiple threads
simultaneously into different functional units

 Superscalar, OoO processors already have this machinery

 Dynamic instruction scheduler searches the scheduling
window to wake up and select ready instructions

 As long as dependencies are correctly tracked (via renaming
and memory disambiguation), scheduler can be thread-
agnostic

23

Basic Superscalar OoO Pipeline

24

Fetch Decode

/Map

Queue Reg

Read

Execute Dcache/

Store

Buffer

Reg

Write

Retire

PC

Icache

Register

Map

Dcache
Regs Regs

Thread-

blind

SMT Pipeline

 Physical register file needs to become larger. Why?

25

Fetch Decode

/Map

Queue Reg

Read

Execute Dcache/

Store

Buffer

Reg

Write

Retire

Icache

Dcache

PC

Register

Map

Regs Regs

Changes to Pipeline for SMT

 Replicated resources

 Program counter

 Register map

 Return address stack

 Global history register

 Shared resources

 Register file (size increased)

 Instruction queue (scheduler)

 First and second level caches

 Translation lookaside buffers

 Branch predictor

 26

Changes to OoO+SS Pipeline for SMT

27

Tullsen et al., “Exploiting Choice: Instruction Fetch and Issue on an Implementable
Simultaneous Multithreading Processor,” ISCA 1996.

SMT Scalability

 Diminishing returns from more threads. Why?

28

SMT Design Considerations

 Fetch and prioritization policies

 Which thread to fetch from?

 Shared resource allocation policies

 How to prevent starvation?

 How to maximize throughput?

 How to provide fairness/QoS?

 Free-for-all vs. partitioned

 How to measure performance

 Is total IPC across all threads the right metric?

 How to select threads to co-schedule

 Snavely and Tullsen, “Symbiotic Jobscheduling for a
Simultaneous Multithreading Processor,” ASPLOS 2000.

29

Which Thread to Fetch From?

 (Somewhat) Static policies

 Round-robin

 8 instructions from one thread

 4 instructions from two threads

 2 instructions from four threads

 …

 Dynamic policies

 Favor threads with minimal in-flight branches

 Favor threads with minimal outstanding misses

 Favor threads with minimal in-flight instructions

 …

30

Which Instruction to Select/Dispatch?

 Can be thread agnostic.

 Why?

31

SMT Fetch Policies (I)

 Round robin: Fetch from a different thread each cycle

 Does not work well in practice. Why?

 Instructions from slow threads hog the pipeline and block
the instruction window

 E.g., a thread with long-latency cache miss (L2 miss) fills up
the window with its instructions

 Once window is full, no other thread can issue and execute
instructions and the entire core stalls

32

SMT Fetch Policies (II)

 ICOUNT: Fetch from thread with the least instructions in
the earlier pipeline stages (before execution)

 Why does this improve throughput?

33 Slide from Joel Emer

SMT ICOUNT Fetch Policy

 Favors faster threads that have few instructions waiting

 Advantages over round robin

+ Allows faster threads to make more progress (before threads
with long-latency instructions block the window fast)

 + Higher IPC throughput

 Disadvantages over round robin

- Is this fair?

- Prone to short-term starvation: Need additional methods to
ensure starvation freedom

34

Some Results on Fetch Policy

35

Handling Long Latency Loads

 Long-latency (L2/L3 miss) loads are a problem in a single-threaded
processor

 Block instruction/scheduling windows and cause the processor to stall

 In SMT, a long-latency load instruction can block the window for ALL
threads

 i.e. reduce the memory latency tolerance benefits of SMT

 Brown and Tullsen, “Handling Long-latency Loads in a Simultaneous
Multithreading Processor,” MICRO 2001.

36

Proposed Solutions to Long-Latency Loads

 Idea: Flush the thread that incurs an L2 cache miss

 Brown and Tullsen, “Handling Long-latency Loads in a Simultaneous Multithreading
Processor,” MICRO 2001.

 Idea: Predict load miss on fetch and do not insert following instructions from
that thread into the scheduler

 El-Moursy and Albonesi, “Front-End Policies for Improved Issue Efficiency in SMT
Processors,” HPCA 2003.

 Idea: Partition the shared resources among threads so that a thread’s long-
latency load does not affect another

 Raasch and Reinhardt, “The Impact of Resource Partitioning on SMT Processors,”
PACT 2003.

 Idea: Predict if (and how much) a thread has MLP when it incurs a cache miss;
flush the thread after its MLP is exploited

 Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy for SMT
Processors,” HPCA 2007.

37

MLP-Aware Fetch Policies

38

Eyerman and Eeckhout, “A Memory-Level
Parallelism Aware Fetch Policy for SMT
Processors,” HPCA 2007.

More Results …

39

Runahead Threads

 Idea: Use runahead execution on a long-latency load

+ Improves both single thread and multi-thread performance

 Ramirez et al., “Runahead Threads to Improve SMT
Performance,” HPCA 2008.

40

Doing Even Better

 Predict whether runahead will do well

 If so, runahead on thread until runahead becomes useless

 Else, exploit and flush thread

 Ramirez et al., “Efficient Runahead Threads,” PACT 2010.

 Van Craeynest et al., “MLP-Aware Runahead Threads in a
Simultaneous Multithreading Processor,” HiPEAC 2009.

41

Commercial SMT Implementations

 Intel Pentium 4 (Hyperthreading)

 IBM POWER5

 Intel Nehalem

 …

42

SMT in IBM POWER5

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

43

IBM POWER5 HW Thread Priority Support

 Adjust decode cycles
dedicated to thread based
on priority level

 Why?

 A thread is in a spin loop
waiting for a lock

 A thread has no
immediate work to do and
is waiting in an idle loop

 One application is more
important than another

44

IBM POWER5 Thread Throttling

 Throttle under two conditions:

 Resource-balancing logic detects the point at which a thread
reaches a threshold of load misses in the L2 cache and
translation misses in the TLB.

 Resource-balancing logic detects that one thread is beginning
to use too many GCT (i.e., reorder buffer) entries.

 Throttling mechanisms:

 Reduce the priority of the thread

 Inhibit the instruction decoding of the thread until the
congestion clears

 Flush all of the thread’s instructions that are waiting for
dispatch and stop the thread from decoding additional
instructions until the congestion clears

45

Intel Pentium 4 Hyperthreading

46

Intel Pentium 4 Hyperthreading

 Long latency load handling

 Multi-level scheduling window

 More partitioned structures

 I-TLB

 Instruction Queues

 Store buffer

 Reorder buffer

 5% area overhead due to SMT

 Marr et al., “Hyper-Threading Technology Architecture and
Microarchitecture,” Intel Technology Journal 2002.

47

Other Uses of Multithreading

Now that We Have MT Hardware …

 … what else can we use it for?

 Redundant execution to tolerate soft (and hard?) errors

 Implicit parallelization: thread level speculation

 Slipstream processors

 Leader-follower architectures

 Helper threading

 Prefetching

 Branch prediction

 Exception handling
49

