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Reminder: Review Assignments 

 Due: Sunday, September 30, 11:59pm. 

 

 Mutlu, “Some Ideas and Principles for Achieving Higher System 
Energy Efficiency,” NSF Position Paper and Presentation 2012. 

 

 Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 
2011. 

 

 Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism 
to Address Both Cache Pollution and Thrashing,” PACT 2012. 

 

 Pekhimenko et al., “Linearly Compressed Pages: A Main Memory 
Compression Framework with Low Complexity and Low Latency,” 
CMU SAFARI Technical Report 2012. 
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Feedback on Project Proposals 

 In your email 

 

 General feedback points 

 Concrete mechanisms, even if not fully right, is a good place 
to start testing your ideas 
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Last Lecture 

 Asymmetry in Memory Scheduling 

 

 Wrap up Asymmetry 

 

 Multithreading 

 Fine-grained 

 Coarse-grained 
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Today 

 More Multithreading 
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More Multithreading 
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Readings: Multithreading 
 Required 

 Spracklen and Abraham, “Chip Multithreading: Opportunities and 
Challenges,” HPCA Industrial Session, 2005.  

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE 
Micro 2004. 

 Tullsen et al., “Exploiting choice: instruction fetch and issue on an 
implementable simultaneous multithreading processor,” ISCA 1996. 

 Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy for 
SMT Processors,” HPCA 2007. 

 

 Recommended 

 Hirata et al., “An Elementary Processor Architecture with Simultaneous 
Instruction Issuing from Multiple Threads,” ISCA 1992 

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978. 

 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,” 
MICRO 2006. 

 Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,” ISCA 
1990. 
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Review: Fine-grained vs. Coarse-grained MT 

 Fine-grained advantages 

+ Simpler to implement, can eliminate dependency checking, 
branch prediction logic completely 

+ Switching need not have any performance overhead (i.e. dead 
cycles) 

 + Coarse-grained requires a pipeline flush or a lot of hardware   
  to save pipeline state  

   Higher performance overhead with deep pipelines and  

     large windows 

 

 Disadvantages 

- Low single thread performance: each thread gets 1/Nth of the 
bandwidth of the pipeline 
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IBM RS64-IV 

 4-way superscalar, in-order, 5-stage pipeline 

 Two hardware contexts 

 On an L2 cache miss 

 Flush pipeline 

 Switch to the other thread 

 

 Considerations 

 Memory latency vs. thread switch overhead 

 Short pipeline, in-order execution (small instruction window) 
reduces the overhead of switching 
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Intel Montecito 
 McNairy and Bhatia, “Montecito: A Dual-Core, Dual-Thread Itanium 

Processor,” IEEE Micro 2005. 

 

 

 

 

 

 

 Thread switch on 

 L3 cache miss/data return 

 Timeout – for fairness 

 Switch hint instruction 

 ALAT invalidation – synchronization fault 

 Transition to low power mode 

 <2% area overhead due to CGMT 
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Fairness in Coarse-grained Multithreading 

 Resource sharing in space and time always causes fairness 
considerations 

 Fairness: how much progress each thread makes  

 

 In CGMT, the time allocated to each thread affects both 
fairness and system throughput 

 When do we switch? 

 For how long do we switch? 

 When do we switch back? 

 How does the hardware scheduler interact with the software 
scheduler for fairness? 

 What is the switching overhead vs. benefit?  

 Where do we store the contexts? 
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Fairness in Coarse-grained Multithreading 

 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,” 
MICRO 2006. 

 How can you solve the below problem? 
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Fairness vs. Throughput 

 Switch not only on miss, but also on data return 

 

 Problem: Switching has performance overhead 

 Pipeline and window flush 

 Reduced locality and increased resource contention (frequent 
switches increase resource contention and reduce locality) 

 

 One possible solution 

 Estimate the slowdown of each thread compared to when run 
alone 

 Enforce switching when slowdowns become significantly 
unbalanced  

 Gabor et al., “Fairness and Throughput in Switch on Event 
Multithreading,” MICRO 2006. 
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Thread Switching Urgency in Montecito 

 Thread urgency levels 

 0-7 

 

 Nominal level 5: active progress 

 After timeout: set to 7 

 After ext. interrupt: set to 6 

 

 Reduce urgency level for each 
blocking operation 

 L3 miss 

 

 Switch if urgency of foreground 
lower than that of background 
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Simultaneous Multithreading 

 Fine-grained and coarse-grained multithreading can start 
execution of instructions from only a single thread at a 
given cycle 

 Execution unit (or pipeline stage) utilization can be low if 
there are not enough instructions from a thread to 
“dispatch” in one cycle 

 In a machine with multiple execution units (i.e., superscalar) 
 

 Idea: Dispatch instructions from multiple threads in the 
same cycle (to keep multiple execution units utilized)  
 Hirata et al., “An Elementary Processor Architecture with Simultaneous 

Instruction Issuing from Multiple Threads,” ISCA 1992. 

 Yamamoto et al., “Performance Estimation of Multistreamed, Superscalar 
Processors,” HICSS 1994. 

 Tullsen et al., “Simultaneous Multithreading: Maximizing On-Chip 
Parallelism,” ISCA 1995. 
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Functional Unit Utilization 

 

 

 

 

 

 

 Data dependencies reduce functional unit utilization in 
pipelined processors 
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Time 



Functional Unit Utilization in Superscalar 

 

 

 

 

 

 

 

 

 

 

 Functional unit utilization becomes lower in superscalar, 
OoO machines. Finding 4 instructions in parallel is not 
always possible 
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Time 



Predicated Execution 

 

 

 

 

 

 

 

 

 

 

 Idea: Convert control dependencies into data dependencies 

 Improves FU utilization, but some results are thrown away 

18 

Time 



Chip Multiprocessor 

 

 

 

 

 

 

 

 

 
 

 Idea: Partition functional units across cores 

 Still limited FU utilization within a single thread; limited 
single-thread performance 

19 

Time 



Fine-grained Multithreading 

 

 

 

 

 

 

 

 

 

 

 Still low utilization due to intra-thread dependencies 

 Single thread performance suffers 
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Time 



Simultaneous Multithreading 

 

 

 

 

 

 

 

 

 

 

 Idea: Utilize functional units with independent operations 
from the same or different threads 
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Horizontal vs. Vertical Waste 

 

 

 

 

 

 

 

 

 

 

 Why is there horizontal and vertical waste? 

 How do you reduce each? 
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Simultaneous Multithreading 

 Reduces both horizontal and vertical waste 

 Required hardware 

 The ability to dispatch instructions from multiple threads 
simultaneously into different functional units 

 

 Superscalar, OoO processors already have this machinery 

 Dynamic instruction scheduler searches the scheduling 
window to wake up and select ready instructions 

 As long as dependencies are correctly tracked (via renaming 
and memory disambiguation), scheduler can be thread-
agnostic 
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Basic Superscalar OoO Pipeline 
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SMT Pipeline 

 Physical register file needs to become larger. Why? 
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Changes to Pipeline for SMT 

 Replicated resources 

 Program counter 

 Register map 

 Return address stack 

 Global history register 
 

 Shared resources 

 Register file (size increased) 

 Instruction queue (scheduler) 

 First and second level caches 

 Translation lookaside buffers 

 Branch predictor 

 

 26 



Changes to OoO+SS Pipeline for SMT 

27 

Tullsen et al., “Exploiting Choice: Instruction Fetch and Issue on an Implementable 
Simultaneous Multithreading Processor,” ISCA 1996. 
 



SMT Scalability 

 Diminishing returns from more threads. Why? 

 

28 



SMT Design Considerations 

 Fetch and prioritization policies 

 Which thread to fetch from? 
 

 Shared resource allocation policies 

 How to prevent starvation? 

 How to maximize throughput? 

 How to provide fairness/QoS? 

 Free-for-all vs. partitioned 
 

 How to measure performance 

 Is total IPC across all threads the right metric? 
 

 How to select threads to co-schedule  

 Snavely and Tullsen, “Symbiotic Jobscheduling for a 
Simultaneous Multithreading Processor,” ASPLOS 2000. 
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Which Thread to Fetch From? 

 (Somewhat) Static policies 

 Round-robin 

 8 instructions from one thread 

 4 instructions from two threads 

 2 instructions from four threads 

 … 

 

 Dynamic policies 

 Favor threads with minimal in-flight branches 

 Favor threads with minimal outstanding misses 

 Favor threads with minimal in-flight instructions 

 … 
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Which Instruction to Select/Dispatch? 

 Can be thread agnostic. 

 Why? 
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SMT Fetch Policies (I)  

 Round robin: Fetch from a different thread each cycle 

 Does not work well in practice. Why? 

 

 Instructions from slow threads hog the pipeline and block 
the instruction window  

 E.g., a thread with long-latency cache miss (L2 miss) fills up 
the window with its instructions 

 Once window is full, no other thread can issue and execute 
instructions and the entire core stalls 
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SMT Fetch Policies (II) 

 ICOUNT: Fetch from thread with the least instructions in 
the earlier pipeline stages (before execution) 

 

 

 

 

 

 

 

 

 

 Why does this improve throughput? 
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SMT ICOUNT Fetch Policy 

 Favors faster threads that have few instructions waiting 

 

 Advantages over round robin 

+ Allows faster threads to make more progress (before threads 
with long-latency instructions block the window fast) 

 + Higher IPC throughput 

 

 Disadvantages over round robin 

- Is this fair? 

- Prone to short-term starvation: Need additional methods to 
ensure starvation freedom 
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Some Results on Fetch Policy 
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Handling Long Latency Loads 

 Long-latency (L2/L3 miss) loads are a problem in a single-threaded 
processor 

 Block instruction/scheduling windows and cause the processor to stall 

 In SMT, a long-latency load instruction can block the window for ALL 
threads 

 i.e. reduce the memory latency tolerance benefits of SMT 

 Brown and Tullsen, “Handling Long-latency Loads in a Simultaneous 
Multithreading Processor,” MICRO 2001. 
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Proposed Solutions to Long-Latency Loads 

 Idea: Flush the thread that incurs an L2 cache miss 

 Brown and Tullsen, “Handling Long-latency Loads in a Simultaneous Multithreading 
Processor,” MICRO 2001. 

 

 Idea: Predict load miss on fetch and do not insert following instructions from 
that thread into the scheduler 

 El-Moursy and Albonesi, “Front-End Policies for Improved Issue Efficiency in SMT 
Processors,” HPCA 2003. 

 

 Idea: Partition the shared resources among threads so that a thread’s long-
latency load does not affect another 

 Raasch and Reinhardt, “The Impact of Resource Partitioning on SMT Processors,” 
PACT 2003. 

 

 Idea: Predict if (and how much) a thread has MLP when it incurs a cache miss; 
flush the thread after its MLP is exploited 

 Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy for SMT 
Processors,” HPCA 2007. 
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MLP-Aware Fetch Policies 

38 

Eyerman and Eeckhout, “A Memory-Level 
Parallelism Aware Fetch Policy for SMT 
Processors,” HPCA 2007. 

 



More Results … 
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Runahead Threads 

 Idea: Use runahead execution on a long-latency load 

+ Improves both single thread and multi-thread performance  

 Ramirez et al., “Runahead Threads to Improve SMT 
Performance,” HPCA 2008. 
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Doing Even Better 

 Predict whether runahead will do well 

 If so, runahead on thread until runahead becomes useless 

 Else, exploit and flush thread 

 

 Ramirez et al., “Efficient Runahead Threads,” PACT 2010. 

 Van Craeynest et al., “MLP-Aware Runahead Threads in a 
Simultaneous Multithreading Processor,” HiPEAC 2009. 
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Commercial SMT Implementations 

 Intel Pentium 4 (Hyperthreading) 

 IBM POWER5 

 Intel Nehalem 

 … 
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SMT in IBM POWER5 

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE 
Micro 2004. 
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IBM POWER5 HW Thread Priority Support 

 Adjust decode cycles 
dedicated to thread based 
on priority level 

 

 Why? 

 A thread is in a spin loop 
waiting for a lock 

 A thread has no 
immediate work to do and 
is waiting in an idle loop 

 One application is more 
important than another 

44 



IBM POWER5 Thread Throttling 

 Throttle under two conditions: 

 Resource-balancing logic detects the point at which a thread 
reaches a threshold of load misses in the L2 cache and 
translation misses in the TLB.  

 Resource-balancing logic detects that one thread is beginning 
to use too many GCT (i.e., reorder buffer) entries. 

 

 Throttling mechanisms: 

 Reduce the priority of the thread 

 Inhibit the instruction decoding of the thread until the 
congestion clears 

 Flush all of the thread’s instructions that are waiting for 
dispatch and stop the thread from decoding additional 
instructions until the congestion clears 
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Intel Pentium 4 Hyperthreading 
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Intel Pentium 4 Hyperthreading 

 Long latency load handling 

 Multi-level scheduling window 

 

 More partitioned structures 

 I-TLB 

 Instruction Queues 

 Store buffer 

 Reorder buffer 

 

 5% area overhead due to SMT 

 

 Marr et al., “Hyper-Threading Technology Architecture and 
Microarchitecture,” Intel Technology Journal 2002. 
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Other Uses of Multithreading 

 

 

 

 

 



Now that We Have MT Hardware …  

 … what else can we use it for? 

 

 Redundant execution to tolerate soft (and hard?) errors 

 

 Implicit parallelization: thread level speculation 

 Slipstream processors 

 Leader-follower architectures 

 

 Helper threading  

 Prefetching 

 Branch prediction 

 

 Exception handling 
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