Speculative Synchronization:

Speculation to Explicitly Parallel Applications

Applying Thread-Level

*

José F. Martinez' and Josep Torrellas
Department of Computer Science
University of lllinois at Urbana-Champaign
Urbana, IL 61801 USA

http://iacoma.cs.uiuc.edu

ABSTRACT

Barriers, locks, and flags are synchronizing operation®lyidsed
by programmers and parallelizing compilers to produce -feee
parallel programs. Often times, these operations are glaobop-
timally, either because of conservative assumptions attm@upro-
gram, or merely for code simplicity.

We proposeSpeculative Synchronization, which applies the phi-
losophy behind Thread-Level Speculation (TLS) to expiciar-
allel applications. Speculative threads execute pasteabturriers,
busy locks, and unset flags instead of waiting. The propoaedt h
ware checks for conflicting accesses and, if a violation tected,
the offending speculative thread is rolled back to the symwization
point and restarted on the fly. TLS’s principle of always kegmp
safethread is key to our proposal: in any speculative barrier, lock, or
flag, the existence of one or more safe threads at all timesgtees
forward progress, even in the presence of access conflisfzeaula-
tive buffer overflow. Our proposal requires simple hardwanel no
programming effort. Furthermore, it can coexist with camtenal
synchronization at run time.

We use simulations to evaluate 5 compiler- and hand-ptizate
applications. Our results show a reduction in the time lostyn-
chronization of 34% on average, and a reduction in overaljam
execution time of 7.4% on average.

1 INTRODUCTION

Proper synchronization between threads is crucial to thecbex-
ecution of parallel programs. Popular synchronizationrapens
used by programmers and parallelizing compilers includeidra,
locks, and flags. For example, parallelizing compilersagfly use
global barriers to separate sections of parallel code. Alsagram-
mers frequently use locks and barriers in the form of M4 ma{2@]
or OpenMP directives [5] to ensure that codes are race-free.

*This work was supported in part by the National Science Fatiod un-
der grants CCR-9970488, EIA-0081307, EIA-0072102, and €©HE1357;
by DARPA under grant F30602-01-C-0078; and by gifts from |Blktel,
and Hewlett-Packard.

tJog F. Martnez is currently with the Computer Systems Laboratory,
Cornell University, Ithaca, NY 14853 USA.

Permission to make digital or hard copies of all or part o thiork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage tvat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquires prior specific
permission and/or a fee.

ASPLOS X 10/02 San Jose, CA, USA

(©) 2002 ACM ISBN 1-58113-574-2/02/0010.$5.00

Often times, synchronization operations are placed cweaser
tively. This happens when the programmer or the compilenoan
determine whether code sections will be race-free at rue.tiffor
example, data may be accessed through a hashing functiore whe
conflicts are only occasional. Conservative synchrormizathay
also be used for simplicity, if disambiguation is possihié¢tequires
an effort that the programmer or the compiler cannot affafdfor-
tunately, conservative synchronization may come at a pedace
cost when it stalls threads unnecessarily. In these casesjould
like threads to execute the synchronized code withouiistall

Recent research in Thread-Level Speculation (TLS) hasgsex
mechanisms for optimistically executing nonanalyzabteateodes
in parallel (e.g. [4, 10, 12, 19, 23, 31]). Under TLS, spesiap-
port checks for cross-thread dependence violations atim, &ind
forces offending speculative threads to squash and restarte fly.
At all times, there is at least ormfe thread. While speculative
threads venture into unsafe program sections, the safadrexe-
cutes code nonspeculatively. As a result, even if all thegjpéve
work is useless, forward progress is guaranteed by the edad.

In this paper, we propos®eculative Synchronization, which ap-
plies the philosophy behind TLS &xplicitly parallel (rather than
serial) applications. Speculative threads go past actvedss, busy
locks, and unset flags instead of waiting. The hardware racsiior
conflicting accesses. If a violation is detected, the offiegdpecu-
lative thread is rolled back to the synchronization poird estarted
on the fly.

TLS’s principle of always keeping a safe thread is key to aor p
posal. In any speculative barrier, lock, or flag, the existeof one
or more safe threads at all times guarantees forward pregesen
in the presence of access conflicts and speculative buftflow.
This fact, plus the support for speculative barriers andsflagts our
proposal apart from lock-free optimistic synchronizatsmhemes of
similar hardware simplicity, such as Transactional Men{@6j and
Speculative Lock Elision [27]. In these schemes, which apy
ply to critical sections, the speculative mechanism byfithges not
guarantee forward progress (Section 7).

Speculative Synchronization requires simple hardwaree loih
per line and some simple logic in the caches, plus supporefyis-
ter checkpointing. Moreover, by retargeting high-leveigyroniza-
tion constructs to use this hardware (e.g. M4 macros or OfenM
directives), Speculative Synchronization can be madeparent to
programmers and parallelizing compilers. Finally, Spatiué Syn-
chronization is fully compatible with conventional synchization
and can coexist with it at run time.

Overall, our evaluation of 5 compiler- and hand-paralktizap-
plications shows promising results: the time lost to synofgation
is reduced by 34% on average, while the overall program di@tu
time is reduced by 7.4% on average.

This paper is organized as follows: Section 2 outlines the co

cept of Speculative Synchronization; Section 3 descritsesriple-
mentation and Section 4 its software interface; Section€sqmts
the evaluation environment and Section 6 the evaluatietf;tSec-
tion 7 compares our approach to two relevant lock-free oigtim
synchronization schemes, and proposes Adaptive Spai&gin-
chronization; finally, Section 8 describes other relatedkwo

2 CONCEPT
2.1 Thread-Level Speculation

TLS extracts speculative threads from serial code and gstiem
for execution in parallel with a safe thread. Speculativedkds ven-
ture into unsafe program sections. The goal is to extracligdism

from the code.

its rollback to the synchronization point. No ordering égiamong
speculative threads; thus, if two speculative threadseissunflict-
ing accesses, one of them is squashed and rolled back tonhe sy
chronization point. Overall, since safe threads can makgrpss
regardless of the success of speculative threads, penficeria the
worst case is still in the order of conventional synchroticra

Speculative threads keep their memory state in cachesthatil
become safe. When a speculative thread becomes satenrtits
(i.e., makes visible) its memory state to the system. Theunir
stances under which a speculative thread becomes safe loiife
tween locks, flags, and barriers; we explain this next. Bnilthe
cache of a speculative thread is about to overflow, the thséalts
and waits to becomes safe.

In the following, we limit our discussion to deadlock-frearal-
lel codes; codes that can deadlock at run time are out of @pesc

TLS is aware of the order in which such program sections wouldFurthermore, without loss of generality, we assume a releas-

run in a single-threaded execution. Consequently, threaelsas-
signed epoch numbers, where the lowest one corresponds safi
thread. As threads execute, the hardware checks for dnosaet de-
pendence violations. For example, if a thread reads a \laraix,
later on, another thread with a lower epoch number writes itye
dependence has been violated. In this case, the offendaupre

sistency model. Adapting to stricter models is trivial. Mover,
Speculative Sychronization remains equally relevant @s¢hmod-
els because barriers, locks, and flags are widely used iasdic

2.3 Speculative Locks

thread is squashed and restarted on the fly. In many TLS sgstemAmong the threads competing for a speculative lock, theaéviays

name dependences never cause squashes.

Speculative threads keep their unsafe memory state inrsuffe
many TLS proposals, processor caches fulfill this role. Hraad is
squashed, its memory state is discarded. If, instead, alihttead’s
predecessors complete successfully, the thread becofieeSsan,
it can merge its memory state with that of the system.

one safe thread—the lock owner. All other contenders ventuo
the critical section speculatively. Figuréa) shows an example of
a speculative lock with five threads. Threddfound the lock free
and acquired it, becoming the owner. Threds, therefore, safe.
ThreadsB, C, and E found the lock busy and proceeded into the
critical section speculatively. Thredd has not yet reached the ac-

When the memory state of a speculative thread is about te overuire point and is safe.

flow its buffer, the thread simply stalls. It will either rase execu-
tion when all its predecessors complete successfully,starefrom
the beginning if it gets squashed before then. However, #fie s
thread never gets squashed due to dependences or buffépaver
Therefore, forward progress of the application is guarasite

2.2 Speculative Synchronization
Speculative Sychronization applies TLS’s concepexpbicitly par-

The existence of a lock owner has implications. The final out-
come has to be consistent with that of a conventional lockhirchv
the lock owner executes the critical section atomicaifore any
of the speculative threads. (In a conventional lock, theslagive
threads would be waiting at the acquire point.) On the onel hituis
implies that it is correct for speculative threads to conswalues
produced by the lock owner. On the other hand, speculatieatis
cannot commit while the owner is in the critical section. te fig-
ure, threadsB and E have completed the critical section and are

allel (rather than serial) codes. The goal is to enable extra gencu executing code past the release poiahdC is still inside the criti-

rency in the presence of conservatively placed synchrtinizand,
sometimes, even when data access conflicts between threads d
ist. To attack the problem, we limit the scope of TLS's corisep
two ways. First, we do not support any ordering amspegul ative
threads; instead, we use a single epoch number for all of tiseT+
ond, in addition to true dependences, we trigger a squashvelren
name dependences are violated across threads. These tit& lim
tions simplify the hardware substantially.

Under Speculative Sychronization, threads are allowedgéz-s
ulatively execute past active barriers, busy locks, anceufiags.
Under conventional synchronization, such threads wouldvai-
ing; now they are allowed to execute unsafe code. Howeveryev
lock, flag, and barrier has one or masafe threads: in a lock, the
lock owner is safe; in a flag, the producer is safe; in a bartier
lagging threads are safe. Safe threads cannot get squashk&dl o
due to speculation. Therefore, forward progress of theiegipbn is
guaranteed.

A synchronized region is concurrently executed by safe geds
ulative threads, and the hardware checks for cross-threperd
dence violations. As in TLS, as long as dependences are oot vi
lated, threads are allowed to proceed. Access conflictsdmtwafe
and speculative threads are not violations if they hagpeorder,
i.e. the access from the safe thread happens before thesdones
the speculative one. Amyut-of-order conflict between a safe and a
speculative thread causes the squashing of the specutatas and

cal section. All three threads remain speculative as lond as/ns
the lock.

o

Ll

: ©

o —ACQUIRE — @ @
: W © T BARRER -
8 - RELEASE* K\G)]
0:\/ I\B/\‘ K\E/)

(@) (b)

Figure 1:Example of a speculative lodl) and barrier(b).
Dashed and solid circles denote speculative and safe thread
respectively.

Eventually, the lock owner (thread) completes the critical sec-
tion and releases the lock. At this point, the speculativedtis that
have also completed the critical section (thre&dand E) can im-
mediately become safe and commit their speculative memnatg.s

1The fact thatB and E have completed the critical section is remembered
by the hardware. We describe the implementation in dett.la

They do sowithout acquiring the lock. This is race-free because
these threads have completely executed the critical seatid did
not have conflicts with the owner or other threads. On therdthed,
the speculative threads still inside the critical sectiomly threadC

in our case) compete for ownership of the lock. One of them ac-

quires the lock, also becoming safe and committing its dptiva
memory state. The losers remain speculative.

The action after the release is semantically equivalertiédal-
lowing scenario under a conventional lock: after the redeagthe
owner, all the speculative threads past the release pairtby one
in some nondeterministic order, execute the critical sectitom-
ically; then, one of the threads competing for the lock aeepui
ownership and enters the critical section. In Figu¢a)1this cor-
responds to a conventional lock whose critical sectioraeigdrsed in
(A,B,E,C)or(A,E,B,C) order.

2.4 Speculative Flags and Barriers

Flags and barriers are one-to-many and many-to-many syniza-
tion operations, respectively. Flags are variables preduzy one
thread and consumed by others. Under conventional synizaon
tion, consumers test the flag and proceed through only wheen it
flects permission from the producer. Under Speculative Bygic
nization, a flag whose value would normally stall consumegats,
instead allows them to proceed speculatively. Such threadsin
speculative until the right flag value is produced, at whiompthey
all become safe and commit their state. Forward progressasag-
teed by the producer thread remaining safe throughout.

Conceptually, barriers are equivalent to flags where the pro

ducer is the last thread to arrive. Under Speculative Syoriha-
tion, threads arriving to a barrier become speculative adicue
(threads7 andI in Figure Ib)). Threads moving toward the barrier
remain safe (thread® and H) and, therefore, guarantee forward
progress. When the last thread reaches the barrier, aluiae
threads become safe and commit their state.

3 IMPLEMENTATION

Speculative Synchronization is supported with simple Ware: that
we describe in this section. In the following, we start byatiésng
the main hardware module. After that, we explain in detaivho
it works for single and multiple locks first, and then for flagsd
barriers.

3.1 Speculative Synchronization Unit

The main module that we use to support Speculative Synchaeni
tion is the Speculative Synchronization Unit (SSU). The SSU con-
sists of some storage and some control logic that we add taittee
hierarchy of each processor in a shared memory multiproceshe
SSU physically resides in the on-chip controller of the laz@che
hierarchy, typically L1+L2 (Figure 2). Its function is toftifad from
the processor the operations on one synchronization \rarisd that
the processor can move ahead and execute code speculatively

The SSU provides space for one extra cache line at the L1, leve

which holds the synchronization variable under specutatidhis
extra cache line is accessible by local and remote requdetgever,
only the SSU can allocate it. The local cache hierarchy (I2L#L
Figure 2) is used as the buffer for speculative data. Tordjsiish
data accessed speculatively from the rest, the SSU keepSpece

P-Tag

P

L1
S |

L2
|

Figure 2: The shaded areas show the Speculative Synchro-
nization Unit (SSU) in a two-level cache hierarchy. The SSU
consists of a Speculative (S) bit in each conventional line i
the caches, an Acquire (A) and a Release (R) bit, an extra
cache line, and some logic.

Logic

Acquire and Release bits are set if the SSU has a pendingracqui
and release operation, respectively, on the synchropizatiriable.
Speculative, Acquire, and Release bits may only be set iB®id is
active, i.e. it is handling a synchronization variable. \Whiee SSU
is idle, all these bits remain at zero.

Overall, we can see that the SSU storage requirements are mod
est. For a 32KB L1 cache and a 1MB L2 cache with 64B lines, the
SSU needs about 2KB of storage.

3.2 Supporting Speculative Locks

To describe how the SSU works for locks, we examine lock refjue
lock acquire, lock release, access conflict, cache overtiodex-
posed SSU operation.

3.2.1 Lock Request

While we can use different primitives to implement a lock ac-
quire operation, without loss of generality, in this papez wse
Test&Test&Set (T&T&S). Figure 3 shows a T&T&S loop on lock
locl. In the example and in the rest of the paper, a zero value means
that the lock is free.

L: 1d $1,lo0cl ; S1
bnz $1,L . S2
t& $1,locl ; S3
bnz $1,L 4

Figure 3:Example of Test&Test&Set operation.

When a processor reaches an acquire, it invokes a libragepro
dure (Section 4) that issues a request to the SSU with theasldf
the lock. At this point, SSU and processor proceed indepethdas
follows:

SSU Side

The SSU sets its Acquire and Release bits, fetches the lo@Ebla
into its extra cache line, and initiates a T&T&S loop on it tb-o
tain lock ownership (Figure 3). If the lock is busy, the SSliépe

ulative bit per line in the local cache hierarchy. The Speculatite bi spinning locally on it until the lock is updated externallydaa co-

for a line is set when the line is read or written speculayiveines
whose Speculative bit is set cannot be displaced beyondotia |
cache hierarchy.

The SSU also has two state bits callsatjuire andRelease. The

herence message is received. (In practice, the SSU needtoatip
“spin"—since it sits in the cache controller, it can simphaivfor
the coherence message before retrying.)

Processor Side

As in TLS, in order to allow quick rollback of squashed thread
we need to checkpoint the architectural register stateeab#yin-
ning of the speculative section. We envision this to be doitle &
checkpoint mark or instruction that backs up the architedtegis-
ter map [35], or the actual architectural register vati@he check-
point instruction is included in the library procedure fazqaire
(Section 4), right after the request to the SSU. No flushinghef
pipeline is needed.

The processor continues execution into the critical sactibem-
ory system accesses by the processor after the acquire gnagpno
order are deemed speculative by the SSU for as long as theirdcqu
bit is set. The SSU must be able to distinguish these accésses
those that precede the acquire in program order. One caatserv
method to ensure this is to insert a memory fence prior togoer
ing the checkpoint. Unfortunately, such an approach, wioleect,
would have too high a performance cost.

3.2.3 Lock Release

The processor executes a release store to the synchromnizetii-
able when all the memory operations inside the criticalieadtave
completed® Under Speculative Synchronization, if the lock has al-
ready been acquired by the SSU and, therefore, the SSU idhdie
release store completes normally. If, instead, the SSUllisrging
to acquire ownership for that lock, the SSU intercepts tHease
store and takes notice by clearing its Release bit. Thislegdbe
SSU to remember that the critical section has been fullyeesthy
the speculative thread. We call this evBatease While Specul ative.
Then, the SSU keeps spinning for ownership because the Aeclojitii
is still set. Note that the execution of the speculativedtris not
disrupted.

In general, when the SSU reads that the lock has been freed ex-
ternally, before attempting the T&S operation, it checlesRelease
bit. If the Release bit is still set, the SSU issues the T&Safen
to compete for the lock, as described in Section 3.2.2. $tgiad, the

Instead, we use processor hints similar to the way ASI addresbit is clear, the SSU knows that the local thread has goneigira
tags extend memory addresses issued by SPARC processtrs [3Release While Speculative operation and, therefore, hapleted

In our case, we only need a single bit, which we call Enecessor

all memory operations prior to the release. As a result, t8&J S

Tag, or P-Tag bit. The P-Tag bit is issued by the processor alongcan aggressivelgretend that ownership is acquired and released in-

with every memory address, and is fed into the SSU (Figur©gy.
checkpointing instruction is enhanced to also reverse tiad>bit
of all memory operations that follow it iprogram order. This way,
the processor can immediately proceed to the critical secind
the SSU can still determine which memory accesses are bafare
which are after the checkpoint in program order. The SSU Hets
the Speculative bit only for lines whose accesses have lzeged
appropriately by the P-Tag bit. Note that this mechanisnsduos
impose any restriction in the order in which the processsuas
accesses to memory.

With this support, cache lines accessed speculatively ar&ed
without affecting performance. Note that when a threadqrerf a
first speculative access to a line that is dirty in any caaheuding
its own, the coherence protocol must write back the line toorg.

stantly. Therefore, the Acquire bit is cleared, all the Spaiive bits
are flash-cleared, and the SSU becomes idle. In this casthrdeel
has become safe without ever performing the T&S operatidns T
is the action taken by threadsand E in the example of Section 2.3
after threadA releases the lock.

As indicated in Section 2.3, this optimization is race-fsigce:
(1) the Release bit in the speculative thread is cleared afirdy all
memory operations in the critical section have completethauit
conflict, and (2) a free lock value indicates that the presitack
owner has completed the critical section as well. If, at thetthe
speculative thread is about to become safe, an incomingidati®n
is in flight from a third processor for a line marked specwiatitwo
things can happen: If the invalidation arrives before thecsitative
thread has committed, the thread is squashed. This is Sotapt

This is necessary to keep a safe copy of the line in main memonbut correct. Alternatively, if the thread has already cortted, the

It also enables the conventional Dirty bit in the caches taded in
combination with the Speculative bit to mark cache lines tHeve
been speculatively written.

At any time, if the thread is squashed (Section 3.2.4), tbegs-
sor completes any nonspeculative work, flushes the pipdlimgh-
invalidates all dirty cache lines with the Speculative l&t, lash-
clears all Speculative bits, and restores the checkpoirggister
state. To perform the flash-invalidate and flash-clear djmers, we
need special hardware that does each of them in at most a taescy
More details are given in Section 3.2.4.

3.2.2 Lock Acquire

The SSU keeps “spinning” on the lock variable until it read=eo.

At this point, it attempts a T&S operation (statem88in Figure 3).

If the operation fails, the SSU goes back to the spin-testvaver, if

the T&S succeeds, the local processor becomes the lock oWimier
is the case for threaff' in the example of Section 2.3 after thredd
releases the lock. In this case, the SSU completes actimsats the
Acquire bit and flash-clears all Speculative bits, effesl§ivturning

the thread safe and committing all cached values. At thistptie

SSU becomes idle. Other SSUs trying to acquire the lock w#br
that the lock is owned.

invalidation is serviced conventionally.

3.2.4 Access Conflict

The underlying cache coherence protocol naturally detectess
conflicts. Such conflicts manifest in a thread receiving atereal
invalidation to a cached line, or an external read to a digghed
line.

If such external messages are received by lines not markecLiSp
lative, they are serviced normally. In particular, messagehe lock
owner or to any other safe thread never result in squashes sbne
of their cache lines is marked Speculative. Note that thgimaior
thread of such a message could be speculative; in this casmrb
mally servicing the request, we are effectively supporiimgrder
conflicts from a safe to a speculative thread without squuagshi

On the other hand, if a speculative thread receives an ettern
message for a line marked Speculative, the conflict is resoby
squashing the receiving thread. The originator thread nessalfe or
speculative. If the former, aout-of-order conflict has taken place,
and thus the squash is warranfedf the latter, we squash the re-
ceiving thread, since our proposal does not define an ordesea
speculative threads. In any case, the originator is newsastted.

Once triggered, the squash mechanism proceeds as folldves: T

There is one exception to this mechanism when, at the time th&SU flash-invalidates all dirty cache lines with the Spetixgabit

lock is freed by the owner, the speculative thread has ajreath-
pleted its critical section. We address this case next.

2Backing up architectural register values could be done imradful of
cycles and would free up potentially valuable renamingstegs.

30f course, by this time, under both conventional and Spéwal&Syn-
chronization, the processor may have executed code pagtldzse point.

4More sophisticated hardware could disambiguate out-déoname de-
pendences, and potentially avoid the squash. As indicat8edtion 2.2, we
choose not to support it for simplicity.

set, flash-clears all Speculative bits and, if the speaddliread had
past the release point, it sets the Release bit again. Iti@udihe

SSuU forces the processor to restore its checkpointed eggitstte. In
this way, the thread quickly rolls back to the acquire pairite flash
invalidation is simply a flash clear of the Valid bit, qualdiwith the

Speculative and Dirty bits (NAND gating). Finally, note thee do

not invalidate cache lines that have been speculatively be& not

modified, since they are coherent with main memory.

If the squash was triggered by an external read to a dirtywspec
lative line in the cache, the node replies without supplying data.
The coherence protocol then regards the state for that dahas
stale, and supplies a clean copy from memory to the requéster
is similar to the case in conventional MESI protocols whermde
is queried by the directory for a clean line in state Exclaghat was
silently displaced from the cache.

3.2.5 Cache Overflow

Cache lines whose Speculative bit is set cannot be displamgzhd
the local cache hierarchy, because they record past speelda-
cesses. Moreover, if their Dirty bit is also set, their daansafe.
If a replacement becomes necessary at the outermost levbeof
local cache hierarchy, the cache controller tries to sedecache
line not marked speculative. If no evictable candidate isfh the
node stalls until the thread is granted ownership of the tack is
squashed. Stalling does not jeopardize forward progrexs there
always exists a lock owner. The lock owner will eventuallieese

the lock, and the node whose SSU then gains ownership (and a

speculative thread that had gone through a Release Whileugpe
tive operation on that lock) will be able to handle cache dotsfl
without stalling. Safe threads do not have lines markeddpdce
and, therefore, replace cache lines on misses as usual.

3.2.6 Exposed SSU

of the lock, the line is marked speculative in the cache.dfltitk is
busy, the thread spins on it locally. If itis free, the threéakes it and
proceeds to the critical section; however, the modificatiiaime lock
is contained in the local cache hierarchy, since this is adptve
access. The lock is treated as any other speculative data.

There are two possible final outcomes to this situation. @n th
one hand, the thread could get squashed. This will occueittis a
conflict with another thread on any cached line marked spdival
including the one that contains the second lock variabédfitin this
case, the squash procedure will roll back the thread to theisecof
the first lock (the one handled by the SSU). As usual, all ugxiat
to speculative data will be discarded. This includes anyusiagive
update to the second lock variable.

On the other hand, the SSU may complete action on the first lock
and render the thread safe. As always, this commits all $ately
accessed data—including the second lock itself. If theatthnwas
originally spinning on this second lock, it will continue td so
safely. Otherwise, any action taken speculatively by theat on
the second lock (acquire and possibly release) will now carton
the rest of the system. This is correct because, if any otiread
had tried to manipulate the second lock, it would have tiigdea
squash.

Finally, there is a special case when the second acquiretigeto
same lock variable as the one already being handled by the IBSU
this case, the SSU holds the request until the thread becsafeor
until it completes execution of the first critical sectiom@ethe SSU
clears the Release bit), whichever is first. If the formee 865U

n(,yompletes action as usual and then accepts the new acquireste

If the latter (case of Release While Speculative in Secti@rB83, the
SSU simply sets again the Release bit and accepts the acquire
quest. This way, the SSU effectively merges the two criseaitions
into a single one. In this case, a second checkpoint is népeed.
When the thread eventually commits, it will do so for botHicll
sections at once. On the other hand, if the thread gets sedaith

At times it may be best not to allow threads to speculate beéyon will roll back to the first (checkpointed) acquire.

a certain point. This can happen, for example, if a certatess
is known to be irreversible (e.g. 1/0) or to cause conflicts.tHis
case, the programmer or parallelizing compiler can for@espec-
ulative thread tospin-wait on the SSU state until it becomes idle
(Section 4). Thus, the thread will wait until it either becesrsafe or
gets squashed. Naturally, if the SSU is already idle, norspgwill
take place. We call this actiaxposing the SSU to the local thread.
In general, although we envision Speculative Synchroitimab be
transparent to the programmer and the compiler in pradyicl
cases (Section 4), it is important to provide a mechanismntHer
software to have this capability.

3.3 Supporting Multiple Locks

Speculative threads may meet a second acquire point. Tinilsaga
pen if there are nested locks or several consecutive dri@zions.
One approach for these two cases is to expose the SSU to #aelthr
prior to attempting the second acquire. However, a moreesgiye
approach can avoid unnecessary stalls.

Upon receiving a lock acquire request from the processarti@e
3.2.1), the SSU checks its Acquire bit. If it is clear, the SSldle

3.4 Speculative Flags and Barriers

To implement speculative flags, we leverage the ReleaseeWhil
Speculative support in speculative locks (Section 3.R@&all that,

in such a scenario, the SSU of the speculative thread is gittie
Release bit clear, and spinning until the lock is set by thaesvto
the free value. When the lock is set to the free value, theudptaee
thread becomes safe immediately, without the SSU ever ipeffo
ing T&S (since the Release bit is clear). This mechanism texac
matches the desired behavior of a thread that speculatxelgutes
past an unset flag.

Consequently, on a speculative flag read, the SSU acts pxeactl
in the case of a speculative lock request, except that tresRebit is
kept clear to allow Test but not T&S. The processor is allotzego
past the unset flag speculatively. Naturally, unlike in acsipaive
lock, in the event of a squash, the Release bit is not set bakk.
explain later in Section 4 that, as part of a speculative ftagiest,
the thread supplies the “pass” value of the flag to the SSU.

Itis possible that a thread speculating past a flag may trgdess
the same flag again. The SSU handles this situation by singhtls h

and can service the request as usual. If the SSU is busy, we firéng up such an access, until the speculative thread eithembes

consider the more general case where the acquire request & f
lock variable different from the one currently being hartiby the
SSU. In this case, the SSU rejects the request, no checkppist
done, and the speculative thread itself handles the seocchdising
ordinary T&T&S code. No additional support is required.
Handling the second lock using ordinary T&T&S code is catrec

because, since the thread is speculative, accesses todkaatiable
are also considered speculative. Upon the thread readengaine

safe or gets squashed.

Barriers are often implemented using locks and flags agri#itexd
in Figure 4 [13]. Since the SSU can implement both specudativ
locks and flags, support for speculative barriers comesréar. f

Under conventional synchronization, a thread arrivindyetar a
barrier updates barrier counteount and waits spinning on state-
mentS2. The counter update is in a critical section protected by
lock c. Under Speculative Synchronization, it is inadvisable dor

local _f = !local _f;
I ock(c);)
count++; // increment count

if(count==total) { // last one
count = 0; // reset count
f =1local _f; // toggle (S1)
unl ock(c);

else { // not |ast one

unl ock(c);
while(§ ?= local _f); // spin (S2)

Figure 4:Example of bit-reversal barrier code.

thread to enter this critical section while its SSU is busyss a sec-
ond thread arriving at the barrier will surely cause condlich both
the lock and the counter, forcing a rollback of the first thiréat is
still speculative—all the way to the synchronization pdiaindled
by its SSU. Even if the thread arrives at the barrier in a stites
the critical section is so small that it is preferable to reeghe SSU
for the upcoming flag spin in stateme®. Consequently, threads
execute this critical section conventionally and speeutatt the flag.
To support this behavior, our library code for barriers (8at4)
exposes the SSU to the thread before attempting to acgsoethat
speculative threads have a chance to become safe and cdmeinit t
work. Then, conventional synchronization is used to aegaind

3.6 Summary

The proposed implementation of Speculative Synchrorinalias
three key characteristics:

1. It supports speculative execution of barriers, flags,laokss in a
unified manner.

2. One or more safe threads exist at all times. Safe threadseaer
squashed due to access conflicts or stalled due to cacheowwerfl
Thus, the performance in the worst case is typically in tineesarder
as conventional synchronization. Furthermore, all ineorebnflicts
from safe threads to speculative threads are tolerated.

3. It is compatible with conventional synchronization: deg code
that uses conventional synchronization can be run simedtasly
with Speculative Synchronization code in the same program.

The implementation also has several additional good aspect
First, the hardware required is simple. Second, under ¢ condi-
tions (Release While Speculative case), speculativedkrean com-
mit the execution of a critical section without ever haviogtquire
the lock. Third, conflicting accesses are detected on tharfig,of-
fending threads are squashed and eagerly restarted. Foorntimit
and squash operations take approximately constant timepiective
of the amount of speculative data or the number of proces$ors
nally, situations involving multiple locks are handledrtsparently,

releasec. Finally, when the thread reaches the flag spin (statementithout unnecessarily stalling, and at no extra cost.

), itissues a speculative flag request and proceeds pasattierb
speculatively. Later on, as the last thread arrives andésgge flag
(statemengl), all other threads become safe and commit.

3.5 Other Issues

There are a few other related issues that we briefly consider:
Support for Multiprogramming. In a multiprogrammed environ-

4 SOFTWARE INTERFACE

Explicit high-level synchronization constructs, e.g. Méaros and
OpenMP directives, are widely used by programmers and lpéral
ing compilers to produce parallel code. These synchroiozaipn-
structs provide an opportunity to enable Speculative Syordha-
tion transparently. Specifically, we retarget such comttrto en-

ment, the operating system may preempt some of the threaats of capsulate calls to SSU library procedures. Such librargedares

application. When a speculative thread is preempted, gusshed
and the local SSU is freed up. Any new thread that runs on tleat p
cessor can use the SSU. When the first thread is finally reatde:d
somewhere, it resumes from the synchronization point. @mther
hand, safe threads are handled as in a conventional systgrar-i
ticular, they are never squashed in a context switch. Binsihce
Speculative Synchronization is esentially a lock-basetrigue, it
may exhibit convoying under certain scheduling conditioe ad-
dress this issue in Section 7.

Exception Handling. When a speculative thread suffers an excep-

access the SSU via a set of memory-mapped registers. The SSU
library comprises three procedures:

ssu_lock(addr) requests a lock acquire operation on variadxdelr.

If the SSU accepts the request, the processor performs steegi
checkpoint (Section 3.2.1) and the SSU initiates the lockiae. In
this case, the procedure returns a nonzero value. If, idstka SSU
rejects the request, typically because the SSU is alreagly With
another variable, the procedure returns a zero.

tion, there is no easy way of knowing whether the cause was leg SU-Spin(addr,value) requests a spin operation on varialslédr,

imate; it could be due to consuming incorrect values spégalg
Consequently, the speculative thread is rolled back incales.

wherevalue is the “pass” value. If the SSU accepts the request, the
processor performs a register checkpoint and the SSU tisstitne

False Sharing. Since our implementation uses the memory line spin. As before, the procedure returns a nonzero value.l&isnas

as the unit of coherence, false sharing may cause threadtsegia
However, our implementation will benefit from the many eixigt
techniques that reduce false sharing. Any such technicateréh
quires per-word state in the caches will also require pemrv&pec-
ulative bits.

Other Synchronization Primitives. While our discussion has as-

types of synchronization primitives. For example, it cosigbport
scalable primitives such as queue-based locks—in this, esssh
SSU would spin on its own location in the queue, until the eont

is flipped by the predecessor SSU in the queue. In generdh, eag,

synchronization primitive may have different operatioaald per-
formance implications. Further analysis of this issue & shbject
of future work.

before, if the SSU rejects the request, the procedure remaero.

ssu_idlg() returns zero if the SSU is busy, or a nonzero value if it is
idle and therefore available.

These library procedures are enough to build macros foruspec
lative locks, flags, and barriers. Consider Table 1, whiahwshan

eerxample of conventional M4 macros on the left side. The raidhé

shows the corresponding speculative M4 macros. The twaogrofi
macros are very similar. The differences are shown in batd.fa

The speculative lockgs.LOCK) and speculative spirs&.SPIN)
acros first try to utilize the SSU, but they revert to the aartional
macros (ock, sPIN) if the request is rejected. The conventional
macro for barriersgARRIER) uses the typical bit-reversal code. The
speculative versiorsc_BARRIER), first calls a new macro to expose
the SSU §sExPOsE. The SSU is exposed to guarantee safe state
before continuing (Section 3.4). Then, the counter is ugdiasing
conventional locking. Finally, the spin is attempted usimg SSU.

|Conventional M4 Macros (Existing) | Speculative M4 Macros (Proposed) | Processor 1GHz
. : Issue 4-issue dynamic, 128-entry ROB
LOCK(SS_LOCK(. .)
| ogk§$1) 1) Tt s(su{_l ock($1)) ALU 3 integer, 2 floating point
LOCK($1)}’) LD/ST - 2 units, 16 LD, 16 ST
UNLOCK(" { S5 UNLOCK(* { Branch Prediction 2048-entry 2-bit saturating counter
L _ A Branch Penalty 7 cycles
unl ?Ck(m)) UNLOO(FM)}) Memory CC-NUMA, MESI protocol
SPINCL sSSP i n(sL g2 L1 Cache 1GHz, 16KB, 64B lines, 2-way
while($1 = $2);}") T E s T %2 L2 Cache 500MHz, 256(64)KB, 64B lines, 8-way
— Memory Bus 250MHz, split transaction, 16B width
SS_EXPOSE(" { . Main Memory 100MHz SDRAM, interleaved, 60ns row m
while(!ssuidie()):}') CacheRT: L1,L2 2ns, 12ns
BAgRI lEFE {] SL11[PI D) ssgaAlRfR{ ER(i { SL11(PD Mem. RT: Local, Neighbor |95ns, 175ns
LIf[PID = !$1.1f[PID]; 1LIf[PID] = !$1.1f[PID]; :
' ’ Network Hypercube, VCT routing
g3 1ock) PoR b 0ck) Router 250MHz, pipelined
if($1.¢c == NUWPROO) { $1. c+t: Pin-to—Pin Latency 16ns
$1.c = 0; i f($1.c == NUMPROO) { Endpoint (un)Marshaling |16ns
$1.f = $1.If[PID; $l.c = O; : :
UNLOCK($1. | ock) $1.f = $1.1f[PID; [Configuration [16(64) processors |
} else { UNLOCK($1. | ock)
gs:_%(lssfl. '$(l’c:‘¥ [PIO]) } E‘Jll\li&:i(($l | ock) Table 2: Architecture modeled in the simulations. In the ta-
1330) ’ SS_SPIN($1.f,$1.1f[PI D]) ble, RT stands for minimum round trip latency from the pro-
1) cessor. The number of processors and the L2 cache size in

parentheses correspond to the SPLASH-2 applications.
Table 1:Example M4 macros for conventional synchroniza-

tion operations and their corresponding speculative ofiles. 5.2 Applications Executed
barrier code uses the typical bit-reversal technique. Tifie d We use five parallel applications from three suites that ftiffer-
ferences are shown in bold face. ent characteristics. They are: one compiler-paralleli@BECp95

The programmer can enable Speculative Synchronizatioimy s @pplication (APPLU); two Olden [3] codes annotated for para
ply using these macros instead of the conventional oneswige, l€lization (Bisort and MST); and two hand-parallelized $¥JH-
parallelizing compilers can be trivially enhanced to getercode 2 [34] applications (Ocean and Barnes). These applicatiyns
with Speculative Synchronization. Indeed, a compilatiaiteh can ~ chronize using locks and barriers. In particular, APPLU &nsbrt
be used to generate code with speculative macros (typicatijers) ~ are barrier-only g:odes, while all ot_he_rs use both Iock_s @tﬂlér&
rather than with conventional ones. Table 3 summarizes the characteristics of these applitatio

In summary, Speculative Synchronization has a clean, lefins ~ The parallel APPLU code was generated by Polaris, a state-of
ware interface for both programmers and parallelizing cibenp ~ the-art parallelizing compiler [2]. The Olden codes arenper-
Legacy codes can run because conventional synchronizatitillt ~ based applications that operate on graphs and trees. Té@nao-

fully functional. In fact, both types of synchronizationnceoexist ~ tated so that the compiler or the programmer can easily letire
at run time in a program. them. We follow these annotations faithfully. The SPLASIdgDIi-

cations are fine-tuned, hand-parallelized codes. Barnes hash-
ing to synchronize over a limited number of locks. In our expe
5 EVALUATION ENVIRONMENT ments, we use two configurations of Barnes with a differemtiner
of hashed locks: one with 512 locks (Barnes-Coarse) and dthe w
2048 locks (Barnes-Fine). The code in the original suitedasnBs-
Fine.

We execute the SPLASH-2 applications on 64 processors becau
these applications scale particularly well; the rest ofgpplications
5.1 Architecture Modeled are executed on 16 processors because they are less schliathe

) .))) conventional synchronization, the average efficiency efghrallel
We use an execution-driven simulation framework [18] to #ldd execution of these applications for the chosen numbers afese
detail a CC-NUMA multiprocessor with 16 or 64 nodes. Thesyst o5 js 49%. In all cases, we warm up the cache hierarchy defor
uses the release memory consistency model and a cache mohiere siarting to collect execution statistics. Finally, we slate all the
protocol along the lines of DASH [21]. Each node has one moce applications to completion except for APPLU, where we reiine

sor and a two-level hierarchy of write-back caches. The @ssor ymper of iterations because they all exhibit a similar bira
is a 4-issue out-of-order superscalar with register renggribranch

prediction, and nonblocking memory operations. The cadhess

are kept small to capture the behavior that real-size inpta dould 6 EVALUATION
exhibit on actual machines, as suggested in [34]; largeneaizes
would generally favor Speculative Synchronization beeaigsver
overflow-induced stalls would occur. Shared data pageslaceg
round-robin in the memory modules, while private data paaes
allocated locally. Table 2 lists the main parameters of tichitec-
ture. All traffic and resource contention are modeled in idlete@ept
for contention at the network routers, where a constantydslas- 6.1 QOverall Effectiveness

sumed. We conservatively assess a 15-cycle penalty forckphimnt) o o
of architectural registers. Figure 5 shows the execution time of the applications onBire

andSpec systems. The bars are normalizedBase and broken down
into five categoriesUseful is the time spent in computation that is
ultimately profitable. It includes processor busy time, &l as stall

To evaluate Speculative Synchronization, we use simulatilsiven
by several parallel applications. In this section, we desahe ma-
chine architecture modeled and the applications executed.

In this section, we evaluate the applications under comnveatsyn-
chronization and Speculative Synchronizati®age and Spec, re-
spectively). We first assess the overall effectiveness etGjative
Synchronization, and then analyze the factors that car#ito it.

| Application | Description | Parallelization] Data Size | ProcessorsBarriers/Locks
APPLU LU factorization Compiler Reference 16 Yes/No
Bisort Bitonic sort Annotations | 16K nodes 16 Yes/No
MST Minimum spanning tree Annotations | 512 nodes 16 Yes/Yes
Ocean Ocean simulation Hand 258x258 64 Yes/Yes
Barnes—Fine _ b Yes/Yes(2048
Barnes-Coarse N-body problem Hand 16K particles 64 Yes/Yes(512)
Table 3:Applications used in the experiments.
Barnes Barnes
APPLU Bisort MST Ocean Fine Coarse Average
100 100 100 100 100 [}.%)0 102] 100 §§ Overhead
100} gy 94.3 .. g’ o e mg52 . =2r98.4 Bag - &
S -ls g soe 84.9 93.1 92.6 | [l Squashed
_g 80 Rz e B sync
% 60 —| Useful (Speculative
'% 40 [] Useful (Safe)
@ 20
o w v w o w o w v w v w o w o
0 (] 0 (] 0 (] 0 (] 0 (O] 0 (]) (]
© Q. © Q. © Q. © Q. © Q. © Q. © Q.
a o a o a o a 0 a o a o a 0

Figure 5: Execution time of the applications under conventiorizdsg) and speculative3pec) synchronization. Bars are
normalized toBase. Ocean and Barnes run with 64 processors, while the othdicapipns run with 16 processors. Barnes-
Coarse also shows in brackets the execution times norrdatizBarnes-Fine'8ase.

due to memory and pipeline hazards. It is subdivided logeful

involve invalidating cache lines modified speculativelyheTresult

Safe and Useful Speculative, depending on whether execution was may be the negative effect of destroying locality that wagioally

safe or speculative, respectively. Of courdeeful Speculative only

present in the caches. This is the effect observed in MSTeim g

appears irfpec. Sync is the time spent spinning at synchronization eral, it is hard to predict whether the effect will be constive or
points. Squashed is the time wasted by speculative threads on exe-destructive.

cution that gets ultimately squashed. Finallyerhead is the time
taken to handle squash operations, including draining thegssor
pipeline and load/store buffers, and restoring the praméssheck-
pointed register state.

Focusing on the non-useful execution, we see that it is harge
composed of residual synchronization and squashed eredirtie;
the overhead of the squash mechani€ivwethead) accounts for lit-
tle. Residual sychronization is due tey@eculative thread bumping

UnderBase, applications spend on average 19.4% of their timeinto a barrier (case of exposed SSU in Section 3.4), or intock |

spinning at synchronization points. Naturally, the impakSpec-
ulative Synchronization is largely bounded by this figure.ptac-
tice, Speculative Synchronization reduces the originathyoniza-
tion time by an average of 34%, if we combine the residual Bymc
nization time §ync), the squashed execution timgggashed), and

that is busy (case of multiple locks, Section 3.3). Bothdweal syn-
chronization and squashed execution time represent aveasther
improvement of Speculative Synchronization. Residualckyor
nization is relatively large in both Barnes-Fine and BarGesrse;
squashed execution time is sizable in Ocean and MST. These tw

the squash overhea@®verhead) of Spec. As a result, the average categories are discussed in Section 6.2 in detail.

execution time of the applications in Figure 5 decreases.#%07
Across applications, the reduction in execution time rangem a
small value in Barnes-Fine to a significant 15% in MST.

The fraction of the code executed speculatively is the subsef

Finally, the numbers in brackets on top of the Barnes-Cdaase
show the execution time of this application normalized toriga-
Fine'sBase. We can see that Barnes-CoaBase takes 10% longer
to execute than Barnes-FiBase. This is largely due to the coarser

ful Speculative plus Squashed. The combined size of these two synchronization. However, if we apply Speculative Synclration

categories is necessarily small in applications withdiglynchro-
nization, such as APPLU. On the other hand, frequent symitae
tion provides an opportunity to speculate more; this is thgecfor
MST and, to a lesser extent, Ocean, wheseful Speculative plus
Sguashed account for about 50% and 22% of the toSpec time,
respectively. On average for all applications, about hathis time
proves to be usefulyseful Speculative).

Ideally, the total useful time in an application should rémon-
stant as we go froBase (Useful Safeonly) to Spec (Useful Safe plus

(Barnes-Coarsé&pec), its execution time comes down to only 2%
longer than Barnes-Firgase. This shows that Speculative Synchro-
nization can indeed compensate for conservative syncratian.

6.2 Contributing Factors

We now focus on the time lost to synchronization and relatest-o
heads. We compare the synchronization tim8ase with the time
lost to residual synchronization, squashed computatiod sguash

Useful Speculative). In practice, however, we see that the total use-gyerhead irfpec. The results are shown in Figure 6. We break down

ful time changes slightly. The reason is constructive otrdesive
memory effects by speculative computation. On the one hepet-
ulative execution that gets ultimately squashed can harpdkitive
effect of prefetching useful clean data into the cachess Ththe
effect observed in APPLU and Bisort. On the other hand, dipss

synchronization time into barrieBérrier Sync) and lock Lock
Sync) time—there are no speculative flags sein these codes. We
break down the time lost to squashed computation into thaée-c
gories, depending on the reason for the squashe Data, False

Barnes Barnes
APPLU Bisort MST Ocean Fine Coarse Average]
Overhead

6.4% 12.2% 46.2% 14.8% 15.4% 21.5% 19.4%
;\5100*' o i)) o o o R A . Squash (2nd Lock
;:); 80 | 7] squash (False Dat
o 60— - [| squash (True Datz
% 40 - Lock Sync
E 20 . . Barrier Sync
=

0l

[oR
n

o
n

o

o
n n

Figure 6: Factors contributing to synchronization time and relatedrbeads for théBase and Spec systems. The results
are normalized td3ase. Ocean and Barnes run with 64 processors, while the othéicafipns run with 16 processors. The
percentages at the top of the bars reflect the fraction ofrepmization inBase.

Data, and2nd Lock. True Data and False Data are computation

squashed due to conflicts induced by same-word accessealsed f

data sharing, respectively. Recall that the Speculatiteedye kept
on a per-line basis and, therefore, false sharing causdsoter2nd
Lock is computation squashed due to a speculative thread camdlict
in a second synchronization variable. Such a variable isssarily
a lock, since the SSU is exposed on barriers (Section 3.4).

Figure 6 shows that, in general, the synchronization timhese
applications irBase is dominated by barriers—in fact, APPLU and
Bisort synchronize exclusively through barriers. Nevel#iss, MST
and Barnes-Coarse exhibit significant lock activity. Thigkes it
important to attack synchronization due to both locks arrdérs.

As shown in Figure 6, Speculative Synchronization signifite
reduces the contribution of both lock and barriers. Stile $pec
bars show some residual synchronization time. This is chbge
speculative threads stalling at a second synchronizatémt.pThe
large majority of this residual synchronization time is spim bar-
riers, which can never be crossed by threads that are alrgaehyr
ulative (exposed SSU). In Bisort, for example, residuatibatime
appears at the top part of a tree. As processors move towardo,
the number of processors with work to do decreases. Idlegssmrs
start synchronizing at every level, with nothing to do butvait for
others. As they cross one barrier speculatively, they imately
bump into the next one, where they stall. In Barnes, spedgalat
threads also stall at barriers. However, contention on tlek&d is
significantly reduced. Often times, by the time a lock isaskd by
its owner, several speculative threads have already cdetptbeir
critical sections concurrently (Release While SpecugtiBection
3.2.3). At that point, they all commit without competing fibre
lock. This reduce&ock Sync time (Figure 6).

Speculative bits. We have to be careful, however, not to pert
formance in other ways. For example, while data padding ieac
may reduce false sharing, it may also give up spatial locpli¢sent

in the application.

True Sharing. A more sophisticated Speculative Synchronization
protocol can reduce the cases where same-word conflicte caus
squashes. For example, out-of-order WAR and WAW conflicezine
not cause squashes if the system supports multiple versf@ngari-
able across processors. Many systems for TLS incorporatesfof
multiple version support. The cost is more hardware supgpodta
more complicated protocol.

2nd-Lock Squash. To avoid second-lock squashes, we can expose
the SSU before each lock as in barriers, so that a specutatiead
waits to become safe. Then, it can use its SSU to enter the sec-
ond lock speculatively. This avoids second-lock squashdseaex-
pense of disallowing a processor to speculate simultamgusiul-

tiple critical sections. For our particular applicatiottsis approach
causes most of thend Lock time to to simply mutate into residual
synchronization. In fact, the overall execution time iglstly higher.
Residual Synchronization. To minimize residual synchronization,
we can design a more sophisticated SSU that handles mudpple
ulative epochs with multiple sets of Speculative bits. diecitally,

this support can also solve the problem2oid Lock. This multi-
epoch support, which complicates the SSU in a nontrivial,wey
sembles that of TLS.

Interestingly, by adding all these enhancements to Spigeila
Synchronization, namely support for multiple epochs, ipldtdata
versions, and per-word speculative state, we would obtalystem
that comes close to current proposals for TLS. Understanttie
full interaction between Speculative Synchronization @h8 is the

Focusing on the squash time, we see that only Ocean and MST esubject of our current research.

hibit a relatively large fraction of squashed work. In Ocgéie main
source of squashes is false sharifgl¢e Data). In MST, the main
contributors to the squash time are same-word access deiflice

Data) and access conflicts on second-lock variab®m®l (Lock), in

that order. It is important to devise techniques to miningii¢hese
sources of squashes. We address this issue next.

6.3 Eliminating Remaining Overheads
The main four overheads that remain in Spec bars of Figure 6 can

7 ADAPTIVE SPECULATIVE
SYNCHRONIZATION

There are a few proposals for hardware lock-free optimgstitchro-
nization in critical sections. These schemes have some fgmd
tures that complement those of Speculative Synchronizaliothis
section, we describe two such schemes that have similanased
simplicity as ours; Section 8 describes other related worken,
we outline an adaptive scheme that extends Speculativeh8ync

be attacked with changes to the SSU and the system. We examifgation to capture the positive aspects of lock-free symization,

each case in turn.

while preserving all the advantages of our original solutid/e call

False Sharing. In general, techniques that reduce false sharing inhe scheme\daptive Specul ative Synchronization.

shared memory multiprocessors also benefit Speculativelgn
nization. Some of these techniques would require keepingvped

i \ Speculative Synchronization |
Characteristic ™ SLE ‘ Basic ‘ Adaptive ‘
Applicability Critical sections Locks Locks, flags, barriers
Commit without lock acquire Yes Yes (if successful) Release While Speculative (RWSgs (if no conflicts/overflow or if RWS
Convoying No No (if successful) Possible No (if no conflicts/overflow)
Safe thread No Yes As needed
; Grab lock, Safe thread: not affected
Action on overflow Not handled |s4,ash all contenders Speculative thread: compete until acquire; then continue
Action_on conflict inside ; Receiver is safe: continue
critical section Squash Squash receiver Receiver is speculative: squash receiver
Squashes in critical path Possible No
Programming effort Yes [No No
On-the—fly rollback No \ Yes Yes

Table 4:Comparing the speculative mechanisms of TM and SLE to SpteelSynchronizationReceiver denotes a thread
that receives a coherence message due to an access cositlettime critical section.

7.1 Lock-Free Optimistic Synchronization
7.1.1 Transactional Memory

Herlihy and Moss’s Transactional Memory (TM for short) [18D-
poses lock-free optimistic synchronization in criticacsens via
special transactional instructions and support in the eddkrar-
chy to hold speculative data. In general, TM requires thatcide
be written in a lock-free manner [15]. All threads executitical
sections speculatively, and the coherence protocol hafectcon-
flicts. The code can check whether conflicts have been flaggeal f
thread. If so, the thread discards all changes and jumpstoatie
beginning of the critical section. If at the time a thread pbetes the
critical secion no conflicts have been flagged, the threadcammit.

7.1.2 Speculative Lock Elision

Concurrently to our work [25], Rajwar and Goodman proposecsp
ulative Lock Elision (SLE) [27]. SLE dynamically convertsck-
based into lock-free codes, by removing acquire and relepsea-
tions in the instruction stream from the processor pipeliAs in
TM, all threads execute critical sections speculatively.E Slso
leverages the coherence protocol to detect conflicts. Cmedpa
TM, SLE presents some important advantages: SLE requirpsaio
gramming effort, since codes are lock-based and the elisiecha-
nism is transparent; SLE can fall back to conventional sywmiza-
tion if needed (see discussion below); lastly, SLE featarethe-fly
thread rollback and restart (as in Speculative Synchraioiza

7.1.3 Discussion

We limit our discussion to speculation in critical sectipsiaice nei-
ther TM nor SLE supports speculation on barriers or flags.o&&A
free proposals, TM and SLE allow, under the right conditjdgo®x-
ecute critical sections without the need to secure a locKpecula-
tive Synchronization, this behavior is possible after ag@sé While
Speculative operation (Section 3.2.3). Still, SpecuéaBynchro-
nization requires one thread to grab and own the lock in eaery
tive critical section. As a result, speculative threads tmvest for

ence message due to an access conflict inside the criticébrsec
is squashed. As a result, repetitive conflicts may causedisréo
livelock unless special action is taken. Specifically, TMe® on
software-level adaptive backoff to increase the probihif even-
tual success. In SLE, after a certain number of failed retio@e of
the speculative threads abandons lock-free mode and hypéic-
quires the lock. Unfortunately, SLE and lock-based syneization
are mutually exclusive; therefore, once a thread expligitabs the
lock, all other threads in that critical section get squashed start
spinning on the (now busy) lock.

Another problem occurs if speculative threads overflow rthei
speculative buffers. In SLE, a speculative thread that muailo
overflow its speculative buffer can abandon lock-free maub ex-
plicitly acquire the lock. As before, all other threads imtleritical
section get squashed and start spinning on the (now budy) Tdd
does not provide a solution for the problem of overflow.

Meanwhile, in the presence of conflicts or overflow, the exise
of a lock owner at all times gives Speculative Synchronarativo
advantages. First, the lock owner can receive coherenceages
due to access conflicts inside the critical section withcettigg
squashed; in the meantime, speculative threads can allexeside
the critical section without being concerned about forwanahress,
which is guaranteed by the lock owner. The second advantage i
that any number of speculative threads that are about tdflower
their caches can stall, compete for the lock (which is heldhzy
owner) and, upon acquiring it, continue; no squashing oftargad
is involved.

The first four columns of Table 4 summarize this discussion. |
the table,Receiver denotes a thread that receives a coherence mes-
sage due to an access conflict inside the critical section.

7.2 Proposed Adaptive Extension

We now extend the SSU to also implement lock-free synchesniz
tion in critical sections, and thus show that an adaptivequal that
combines the best of both worlds is possible. The basic idaid
Adaptive Speculative Synchronization is to operate in &-vee

the lock to be freed by the owner before they can commit. Thismanner, but fall back to Speculative Synchronization bydpaing

makes Speculative Synchronization subject to convoyimgcon-
ventional locks, convoying occurs when a lock owner is preteth
by the scheduler, and other threads are left spinning foldble.
In Speculative Synchronization, preempting a lock ownevents
speculative threads from committing. A number of technigave
been proposed to avoid preempting a lock owner [6, 17, 24yeNe
theless, in general, convoying is a concern.

a lock owner if forward progress is compromised. Specutato
never disabled. Barriers and flags are still handled spteeha as
in our base mechanism.

Upon a speculative lock request, the SSU reads in the lodk var
able, but it does not try to secure ownership. Thereforehadlads
that access the critical section do so speculatively. Ehéémilar to
SLE, except that a thread can venture into the critical sectpecu-

On the other hand, TM and SLE share a shortcoming—in thdatively regardless of whether the lock is busy or free. As the spec-

presence of conflicts, their speculative mechanisms dombed a

ulative thread completes execution of the critical segtibe SSU

forward progress guarantee. Indeed, siatiethreads execute the tests the value of the lock. If free, the thread commits, {fvele
critical section speculativelgny such thread that receives a coher- style. If not, the SSU falls into Release While Speculativedm

(Section 3.2.3), and commits only when the lock is freed by th

of the speculative barrier itself. Their evaluation asssm&onser-

owner. At no time is an acquire operation attempted on th& loc vative consistency model, in-order processors, and a antisielay

variable.
If a speculative thread detects a conflict during the exeauitr
if the speculative thread is about to overflow its cache, 88 $ro-

model of processor and memory operations.
Gupta’s Fuzzy Barrier [11] attacks barrier imbalance byalec
pling barriers into two phases, moving between them noniooinil

ceeds to compete for the lock. There are two possible outsomecode originally after the barrier. This approach requirepehdence

to this situation. If the SSU secures ownership, the threzmbimes
safe, guaranteeing forward progress. If, instead, antithead owns
the lock, forward progress is guaranteed by that other thréa
this case, the speculative thread rolls back (case of coriflection
3.2.4) or stalls while its SSU keeps competing for lock ovgher
(case of cache overflow, Section 3.2.5).

Therefore, in the absence of conflicts or cache overflow, 8id S
implements lock-free Speculative Synchronization inicait sec-
tions. If conflicts or cache overflow do occur, SSUs smoothly f
back to the original lock-based Speculative SynchrororatNotice
that, even when the lock is grabbed by a thread, the otheadkre
(which are speculative) are allowed to continue. Overak, $SU
operates in lock-free mode except as needed, while presgetle
advantages of Speculative Synchronization. The last colohTa-
ble 4 summarizes Adaptive Speculative Synchronization.

8 RELATED WORK

Optimistic Concurrency Control (OCC) [20] sets the founalafor
optimistic synchronization, based on the notion of “apdow ver-
sus asking permission” [14]. Transactions execute witkgathro-
nizing, after which they undergo a validation phase, and ttoenmit
(if atomicity is preserved), or abort and restart.

Herlihy uses optimistic synchronization to construct ldme and
wait-free data objects [15]. While the technique may workl fer
small, simple structures, it is unclear how to deal effidiemtith
larger, complex objects with high copy overhead. Rinardsuses-
grain optimistic synchronization in compiler-driven pletzation
[29]. Still, conventional synchronization is necessarglemmulti-
ple, interdependent updates to different objects. In génepti-
mistic synchronization requires nontrivial programmirifpe.

Several hardware proposals exist for lock-free optimsgiechro-
nization. Two important proposals that relate closely ts@we Her-
lihy and Moss’s Transactional Memory [16] and Rajwar and Goo
man’s Speculative Lock Elision (SLE) [27]. We address these
tensively in Section 7.

Stone et al. [32] propose a hardware optimistic synchraditza
mechanism called Oklahoma Update. Speculative state itetim
to specialized reservation registers within the proces&mquests
for exclusive access to speculative data are deferred todhenit
phase, called Oklahoma Update, making such an operati@mnpot
tially slow and traffic-intensive. True conflicts at this gleaare re-
solved by buffering external requests (e.g. invalidatjpaad selec-
tively delaying responses. Progress is guaranteed onlgdtigh
such buffering is provided. Conflicts due to false sharingche
backoff mechanism to guarantee forward progress. Noneesfeth
problems affects our proposal.

information at compile time.

Gharachorloo et al. [8] propose allowing loads to executrsp
ulatively ahead of incomplete stores that precede themagram
order. They do not allow reordering of store operationsljairig
hardware exclusive prefetches instead. Speculation iteléhby the
maximum number of uncommitted instructions, and by the gsec
sor’s buffering capacity. The behavior of the branch prestic an
acquire loop may adversely affect the effectiveness of therse.

Pai et al. [26] first propose a synchronization buffer to @ffl@an
acquire loop, to improve the behavior of the branch prediict@3].
They also propose Fuzzy and Speculative Acquires to acliilese
grain synchronization, which require compiler support deritify
the (non)conflicting accesses in critical sections.

Gniady et al. [9] propose SC++, an aggressive implememtatio
of SC that allows reordering of load and store operations bBjnm
taining an in-order history queue of the speculativelyregtiinstruc-
tions. Consistency violations trigger a recovery procedhat uses
the history queue to reconstruct the state at the instmu@tidault.
The cost of this recovery grows with the amount of specudatiork,
and may result in slowdowns. SC++ is shown to match the perfor
mance of RC for “well-behaved applications.”

Rather than attacking reordering in general, we choosedoialp
ize on speculative execution of widely used synchronizapiomi-
tives, namely barriers, locks, and flags. This allows oudhare to
remain simple, yet effective. Our checkpoint/recovery hatsm,
combined with the cache support, allows us to retire a latgeber
of speculative instructions, and quickly roll back in theestvof a
misprediction—independently of the amount of speculatinek.
Furthermore, under the right conditions, speculative atisecan
commit a critical section without ever acquiring the asatem lock.

Gharachorloo and Gibbons [7] propose hardware that leesrag
the coherence protocol to detect violations of sequentiasistency.
Adve and Hill [1] use explicit synchronization to order centling
threads in a critical section, but leverage the coherenctopol to
achieve fine-grain synchronization of memory accessesy €he
ploy reserve buffers to selectively defer coherence messag con-
flicting addresses.

9 CONCLUSIONS

We have presentefpeculative Synchronization, which applies the
philosophy behind Thread-Level Speculation to explicfirallel
applications. Threads speculatively execute past actareidos,
busy locks, and unset flags instead of waiting. The hardwaeeks
for conflicting accesses and, if a violation is detected, dfiend-
ing speculative thread is rolled back to the synchronizapoint
and restarted on the fly. In any speculative barrier, locklagy, the

Building on SLE [27], Rajwar and Goodman recently proposeexistence of one or more safe threads at all times guaraftees

Transactional Lock Removal [28], to preserve lock-free dyvébr
even in the presence of conflicts. They use timestamps tonalyna
ically order threads, buffering external requests andcsieledy de-
laying responses on the fly based on this order. Special gessa
are used to avoid deadlocks. Enough buffering resources beus
provided to handle conflicts. Cache overflows are handledi®y d
abling the mechanism and falling back to conventional Ibaked
synchronization.

Sato et al. [30] address speculation across barriers. Tiseyss
how to modify caches and the coherence protocol to suppedusp
lation. However, they do not propose any concrete impleatant

ward progress, even in the presence of conflicts or specelatiffer
overflow. All in-order conflicts from safe to speculativeehds are
tolerated without causing squashes. Speculative Syniation re-
quires simple register checkpointing and cache hardwae, be
made transparent to programmers and parallelizing comspisnd
can coexist with conventional synchronization at run time.

For critical sections, we have extended our scheme into thaap
Speculative Synchronization, which captures the posésgects of
lock-free synchronization. Threads operate in a lock-fremner,
but the system falls back to Speculative Synchronizatioproguc-
ing a lock owner if forward progress is compromised.

We have evaluated 5 compiler- and hand-parallelized aqjdics
under Speculative Synchronization. The results are piiogtighe
time lost to synchronization is reduced by 34% on averagelewh
the overall execution time of the applications is reduced 46 on
average. We have also identified ways of further improvingcsp
lative Synchronization.

We are currently extending this work in several directions.[17]
Specifically, we are analyzing how the SSU best supportsrothe
types of synchronization primitives. We are also evalugaiuap-
tive Speculative Synchronization. Finally, we are analgzhe full
interaction between Speculative Synchronization and TLS.

[15]

[16]

(18]

ACKNOWLEDGMENTS

The authors would like to thank Sarita Adve, Marcelo Ciniayia
Jesis Garzaan, Jim Goodman, Milos Prvulovic, and the anonymous
reviewers for useful feedback. [20]

(19]

REFERENCES

[1] S. V. Adve and M. D. Hill. A unified formalization of four stred-
memory models|EEE Transactions on Parallel and Distributed Sys-
tems, 4(6):613-624, June 1993.

W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger
T. Lawrence, J. Lee, D. Padua, Y. Paek, B. Pottenger, L. Reerger,
and P. Tu. Advanced program restructuring for high-perfamoe com-
puters with Polaris|EEE Computer, 29(12):78-82, Dec. 1996.

M. C. Carlisle and A. Rogers. Software caching and corapoih mi-
gration in Olden. IrSymposium on Principles and Practice of Parallel
Programming, pages 29-38, Santa Barbara, CA, July 1995.

[21]

2] [22]

(23]

(3]
(24]

[4] M. Cintra, J. F. Marinez, and J. Torrellas. Architectural support for
scalable speculative parallelization in shared-memorifipracessors.
In International Symposium on Computer Architecture, pages 13-24,

Vancouver, Canada, June 2000.

L. Dagum and R. Menon. OpenMP: An industry-standard Aét f
shared-memory programmindEEE Computational Science and En-
gineering, 5(1):46-55, Jan.—Mar. 1998.

J. Edler, J. Lipkis, and E. Schonberg. Process managefoehighly
parallel UNIX systems. IfJSENIX Workshop on Unix and Supercom-
puters, San Francisco, CA, Sept. 1988.

K. Gharachorloo and P. B. Gibbons. Detecting violatiohsequential
consistency. Ir8ymposium on Parallel Algorithms and Architectures,
pages 316-326, Hilton Head, SC, July 1991.

K. Gharachorloo, A. Gupta, and J. Hennessy. Two techesqu
to enhance the performance of memory consistency models. In
International Conference on Parallel Processing, pages 1355-1364,

St. Charles, IL, Aug. 1991. [29]

C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC+ILP=R@?In-
ternational Symposium on Computer Architecture, pages 162-171, At-
lanta, GA, May 1999.

S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi.e8pative
versioning cache. Ihnternational Symposium on High-Performance
Computer Architecture, pages 195-205, Las Vegas, NV, Jan.—Feb.
1998.

R. Gupta. The Fuzzy Barrier: A mechanism for high-spegdchro-
nization of processors. Imternational Conference on Architectural
Support for Programming Languages and Operating Systems, pages
54-63, Boston, MA, Apr. 1989.

L. Hammond, M. Wiley, and K. Olukotun. Data speculatsupport for
a chip multiprocessor. Imnternational Conference on Architectural
Support for Programming Languages and Operating Systems, pages
58-69, San Jose, CA, Oct. 1998.

J. L. Hennessy and D. A. PattersoBomputer Architecture: A Quan-
titative Approach. Morgan Kaufmann, second edition, 1996.

(25]

[5] [26]
(6]
[27]
[7]
[28]
(8]

El
(30]
(20]

[31]
[11]
[32]
[12] -

(34]
(23]

[14] M. Herlihy. Apologizing versus asking permission: @pistic concur-
rency control for abstract data typeACM Transactions on Database

Systems, 15(1):96-124, Mar. 1990.

(35]

M. Herlihy. A methodology for implementing highly coagent
data objects. ACM Transactions on Parallel Languages and Systems,
15(5):745-770, Nov. 1993.

M. Herlihy and J. E. B. Moss. Transactional Memory: Aitelatural
support for lock-free data structures. linternational Symposium on
Computer Architecture, pages 289-300, San Diego, CA, May 1993.

L. I. Kontothanassis, R. W. Wisniewski, and M. L. Sco@chedule-
conscious synchronizatiotrACM Transactions on Computer Systems,
15(1):3-40, Feb. 1997.

V. Krishnan and J. Torrellas. A direct-execution framuek for fast and
accurate simulation of superscalar processorsIniernational Con-
ference on Parallel Architectures and Compilation Techniques, pages
286-293, Paris, France, Oct. 1998.

V. Krishnan and J. Torrellas. A chip-multiprocessorchitecture
with speculative multithreading.|EEE Transactions on Computers,
48(9):866-880, Sept. 1999.

H. T. Kung and J. T. Robinson. On optimistic methods famaurrency
control. ACM Transactions on Database Systems, 6(2):213-226, June
1981.

D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, anéiénnessy.
The directory-based cache coherence protocol for the DASKipno-
cessor. Innternational Symposium on Computer Architecture, pages
148-159, Seattle, WA, May 1990.

E. Lusk, R. Overbeek, et @Portable Programsfor Parallel Processors.
Holt, Rinehart, and Winston, Inc., New York, NY, 1996.

P. Marcuello and A. Goridez. Clustered speculative multithreaded
processors. Irinternational Conference on Supercomputing, pages
365-372, Rhodes, Greece, June 1999.

B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P. Markatdsrst-
class user-level threads. 8gmposium on Operating System Principles,
pages 110-121, Pacific Grove, CA, Oct. 1991.

J. F. Martnez and J. Torrellas. Speculative Locks for concurrent exe
cution of critical sections in shared-memory multiproecess InWork-
shop on Memory Performance I ssues, Gothenburg, Sweden, June 2001.

V. S. Pai, P. Ranganathan, S. V. Adve, and T. Harton. Aaluation
of memory consistency models for shared-memory systents R
processors. Iinternational Conference on Architectural Support for
Programming Languages and Operating Systems, pages 12—-23, Cam-
bridge, MA, Oct. 1996.

R. Rajwar and J. R. Goodman. Speculative Lock Elisionatting
highly concurrent multithreaded execution. limternational Sympo-
sium on Microarchitecture, pages 294-305, Austin, TX, Dec. 2001.

R. Rajwar and J. R. Goodman. Transactional lock-freecation of
lock-based codes. Imternational Conference on Architectural Sup-
port for Programming Languages and Operating Systems, San Jose,
CA, Oct. 2002.

M. C. Rinard. Effective fine-grain synchronization fautomatically
parallelized programs using optimistic synchronizatickCM Trans-
actions on Computer Systems, 17(4):337-371, Nov. 1999.

T. Sato, K. Ohno, and H. Nakashima. A mechanism for Sitiga
memory accesses following synchronizing operationsnter national
Parallel and Distributed Processing Symposium, pages 145-154, Can-
cun, Mexico, May 2000.

J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. Aakble
approach to thread-level speculation. liternational Symposium on
Computer Architecture, pages 1-12, Vancouver, Canada, June 2000.

J. M. Stone, H. S. Stone, P. Heidelberg, and J. TurektiMalreserva-
tions and the Oklahoma UpdateEEE Parallel and Distributed Tech-
nology, 1(4):58-71, Nov. 1993.

D. L. Weaver and T. Germond, editorShe SPARC Architecture Man-
ual. PTR Prentice Hall, 1994.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Guptahe T
SPLASH-2 programs: Characterization and methodologioakitier-
ations. Ininternational Symposium on Computer Architecture, pages
24-36, Santa Margherita Ligure, Italy, June 1995.

K. C. Yeager. The MIPS R10000 superscalar micropramesdcEE
Micro, 6(2):28—40, Apr. 1996.

