
Gaining Insights into Multicore Cache Partitioning:

Bridging the Gap between Simulation and Real Systems

Jiang Lin1, Qingda Lu2, Xiaoning Ding2, Zhao Zhang1, Xiaodong Zhang2 and P. Sadayappan2

1Dept. of Electrical and Computer Engineering

Iowa State University

Ames, IA 50011

{linj,zzhang}@iastate.edu

2 Dept. of Computer Science and Engineering

The Ohio State University

Columbus, OH 43210

{luq,dingxn,zhang,saday}@cse.ohio-state.edu

Abstract

Cache partitioning and sharing is critical to the effective

utilization of multicore processors. However, almost all ex-

isting studies have been evaluated by simulation that often

has several limitations, such as excessive simulation time,

absence of OS activities and proneness to simulation inac-

curacy. To address these issues, we have taken an efficient

software approach to supporting both static and dynamic

cache partitioning in OS through memory address map-

ping. We have comprehensively evaluated several represen-

tative cache partitioning schemes with different optimiza-

tion objectives, including performance, fairness, and qual-

ity of service (QoS). Our software approach makes it possi-

ble to run the SPEC CPU2006 benchmark suite to comple-

tion. Besides confirming important conclusions from previ-

ous work, we are able to gain several insights from whole-

program executions, which are infeasible from simulation.

For example, giving up some cache space in one program

to help another one may improve the performance of both

programs for certain workloads due to reduced contention

for memory bandwidth. Our evaluation of previously pro-

posed fairness metrics is also significantly different from a

simulation-based study.

The contributions of this study are threefold. (1) To

the best of our knowledge, this is a highly comprehen-

sive execution- and measurement-based study on multicore

cache partitioning. This paper not only confirms important

conclusions from simulation-based studies, but also pro-

vides new insights into dynamic behaviors and interaction

effects. (2) Our approach provides a unique and efficient

option for evaluating multicore cache partitioning. The im-

plemented software layer can be used as a tool in multi-

core performance evaluation and hardware design. (3) The

proposed schemes can be further refined for OS kernels to

improve performance.

1. Introduction

Cache partitioning and sharing is critical to the effec-

tive utilization of multicore processors. Cache partition-

ing usually refers to the partitioning of shared L2 or L3

caches among a set of programming threads running simul-

taneously on different cores. Most commercial multicore

processors today still use cache designs from uniproces-

sors, which do not consider the interference among multiple

cores. Meanwhile, a number of cache partitioning methods

have been proposed with different optimization objectives,

including performance [17, 11, 5, 2], fairness [8, 2, 12], and

QoS (Quality of Service) [6, 10, 12].

Most existing studies, including the above cited ones,

were evaluated by simulation. Although simulation is flexi-

ble, it possesses several limitations in evaluating cache par-

titioning schemes. The most serious one is the slow sim-

ulation speed – it is infeasible to run large, complex and

dynamic real-world programs to completion on a cycle-

accurate simulator. A typical simulation-based study may

only simulate a few billion instructions for a program,

which is equivalent to about one second of execution on a

real machine. The complex structure and dynamic behav-

ior of concurrently running programs can hardly be repre-

sented by such a short execution. Furthermore, the effect

of operating systems can hardly be evaluated in simulation-

based studies because the full impact cannot be observed in

a short simulation time. This limitation may not be the most

serious concern for microprocessor design, but is becoming

increasingly relevant to system architecture design. In ad-

dition, careful measurements on real machines are reliable,

while evaluations on simulators are prone to inaccuracy and

coding errors.

Our Objectives and Approach To address these limi-

tations, we present an execution- and measurement-based

study attempting to answer the following questions of con-

cern: (1) Can we confirm the conclusions made by the

simulation-based studies on cache partitioning and sharing

367978-1-4244-2070-4/08/$25.00 ©2008 IEEE

in a runtime environment? (2) Can we provide additional

insights and new findings that simulation-based studies are

not able to? (3) Can we make a case for our software ap-

proach as an important option for performance evaluation

of multicore cache designs?

In order to answer these questions, we first implement an

efficient software layer for cache partitioning and sharing in

the operating system through virtual-physical address map-

ping. Specifically, we have modified the Linux kernel for

IA-32 processors to limit the memory allocation for each

thread by controlling its page colors. This flexible cache

partitioning mechanism supports static and dynamic parti-

tioning policies. It is worth noting that page coloring may

increase I/O accesses, e.g. page swapping or file I/O, which

may distort the performance results. We avoided this prob-

lem by carefully selecting the workloads and used a ma-

chine with large memory. According to the research liter-

ature in the public domain, no previous study has imple-

mented dynamic cache partitioning on a real multicore ma-

chine. With static policies, this mechanism has virtually

zero run-time overhead and is non-intrusive because it only

changes the memory allocation and deallocation. With dy-

namic policies, by employing optimizations such as lazy

page migration, on average it only incurs a 2% runtime

overhead. We then conducted comprehensive experiments

and detailed analysis of cache partitioning using a physi-

cal dual-core server. Being able to execute SPEC CPU2006

workloads to completion and collect detailed measurements

with performance counters, we have evaluated static and dy-

namic policies with various metrics.

Novelty and Limitation of Our Work The novelty of this

study is the proposed experimental methodology that en-

ables the examination of existing and future cache partition-

ing policies on real systems by using a software partitioning

mechanism to emulate a hardware partitioning mechanism.

Many hardware cache partitioning schemes have been pro-

posed and new schemes are being studied, but none has yet

been adopted in commodity processors and thus not tested

on real machines. Our software approach is not intended to

replace those hardware schemes; instead, our mostly confir-

matory results may help them get adopted in real machines.

In addition, our evaluation also provides new findings that

are very difficult to obtain by simulator due to intolerably

long simulation time. A potential concern of this methodol-

ogy is how closely a software implementation may emulate

a hardware mechanism. Indeed, software cannot emulate

all hardware mechanisms; however, the emulation is close

to the hardware mechanisms for most existing and practi-

cal hardware-based policies. We discuss it in detail in Sec-

tion 3.

As a measurement-based study, this work does have a

limitation: our experiments are limited by the hardware

platform we are using. All experiments are done on two-

core processors with little flexibility in cache set associativ-

ity, replacement policy, and cache block size1. Neverthe-

less, we can study hours of real-world program execution,

while practically a cycle-accurate simulator only simulates

seconds of execution. We believe that for a large L2 cache

shared by complex programs, one must use sufficiently long

execution to fully verify the effectiveness of a cache parti-

tioning policy. As in many cases, measurement and simula-

tion have their own strengths and weaknesses and therefore

can well complement to each other.

Major Findings and Contributions Our experimental

results confirm several important conclusions from prior

work: (1) Cache partitioning has a significant performance

impact in runtime execution. In our experiments, signif-

icant performance improvement (up to 47%) is observed

with most workloads. (2) Dynamic partitioning can adapt

to a program’s time-varying phase behavior [11]. In most

cases, our best dynamic partitioning scheme outperforms

the best static partition. (3) QoS can be achieved for all

tested workloads if a reasonable QoS target is set.

We have two new insights that are unlikely to obtain

from simulation. First, an application may be more sen-

sitive to main memory latencies than its allocated cache

space. By giving more cache space to its co-scheduled ap-

plication, this application’s memory latency can be reduced

because of the reduced memory bandwidth contention. In

such a way, both co-scheduled programs can have perfor-

mance improvement, either from memory latency reduction

or increased cache capacity. Simulation-based studies are

likely to ignore this scenario because the main memory sub-

system is usually not modeled in detail. Second, the strong

correlations between fairness metrics and the fairness tar-

get, as reported in a simulation-based study [8], do not hold

in our experiments. We believe that the major reason is the

difference in program execution length: Our experiments

complete trillions of instructions while the simulation-based

experiments only complete less than one billion instructions

per program. This discrepancy shows that whole program

execution is crucial to gaining accurate insights.

The contributions of this study are threefold: (1) To

the best of our knowledge, this is the most comprehensive

execution- and measure-based study for multicore cache

partitioning. This paper not only confirms some conclu-

sions from simulation-based studies, but also provides new

insights into dynamic execution and interaction effects. (2)

Our approach provides a unique and efficient option for per-

formance evaluation of multicore processors, which can be

a useful tool for researchers with common interests. (3) The

proposed schemes can also be further refined for OS kernels

1We did not use recent quad-core processors because their cache is stat-

ically partitioned into two halves, each of which shared by two cores. In

other words, they are equivalent to our platform for the purpose of studying

cache partitioning.

368

Metric Formula

Throughput (IPCs)
Pn

i=1
(IPCscheme[i])

Average Weighted Speedup [21] 1

n

Pn
i=1

(IPCscheme[i]/IPCbase[i])

SMT Speedup [14]
Pn

i=1
(IPCscheme[i]/IPCbase[i])

Fair Speedup [2] n/
Pn

i=1
(IPCbase[i]/IPCscheme[i])

Table 1: Comparing different performance evaluation metrics.

to improve system performance.

2. Adopted Evaluation Metrics in Our Study

Cache Partitioning for Multi-core Processors Inter-

thread interference with an uncontrolled cache sharing

model is known to cause some serious problems, such as

performance degradation and unfairness. A cache partition-

ing scheme can address these problems by judiciously par-

titioning the cache resources among running programs. In

general, a cache partitioning scheme consists of two interde-

pendent parts, mechanism and policy. A partitioning mech-

anism enforces cache partitions as well as provides inputs

needed by the decision making of a partitioning policy. In

almost all previous studies, the cache partitioning mecha-

nism requires special hardware support and therefore has to

be evaluated by simulation. For example, many prior pro-

posals use way partitioning as a basic partitioning mecha-

nism on set-associative caches. Cache resources are allo-

cated to programs in units of ways with additional hard-

ware. Basic measurement support can be provided using

hardware performance counters. However, many previous

studies also introduce special monitoring hardwares such as

the UMON sampling mechanism in [11].

A partitioning policy decides the amount of cache re-

sources allocated to each program with an optimization ob-

jective. An objective is to maximize or minimize an evalu-

ation metric of performance, QoS or fairness, while a pol-

icy metric is used to drive a cache partitioning policy and

ideally it should be identical to the evaluation metric [5].

However, it is not always possible to use evaluation met-

rics as the policy metrics. For example, many evaluation

metrics are weighted against baseline measurements that

are only available through offline profiling. In practice, on-

line observable metrics, such as cache miss rates, are em-

ployed as proxies for evaluation metrics, such as average

weighted speedup. Driven by its policy metric, a cache par-

titioning policy decides a program’s cache quota either stat-

ically through offline analysis or dynamically based on on-

line measurements. A dynamic partitioning policy works in

an iterative fashion between a program’s execution epochs.

At the end of an epoch, measurements are collected or pre-

dicted by the partitioning mechanism and the policy then

recalculates the cache partition and enforces it in the next

epoch.

Performance Metrics in Cache Partitioning Table 1

summarizes four commonly used performance evaluation

Metric Xi

FM1 Missesbase[i]/Missesscheme[i]
FM2 Missesscheme[i]
FM3 MissRatebase[i]/MissRatescheme[i]
FM4 MissRatescheme[i]
FM5 MissRatescheme[i] − MissRatebase[i]

Table 2: Comparing different fairness policy metrics. All metrics

are calculated as
P

i

P

j
|Xi − Xj |

metrics. Throughput represents absolute IPC numbers. Av-

erage weighted speedup is the speedups of programs over

their execution with a baseline scheme – a shared L2 cache

in this study. SMT speedup is the sum of program speedups

over their executions on a dedicated L2 cache, and fair

speedup is the harmonic mean of the speedups over a base-

line scheme, which in this study uses a shared cache. Fair

speedup evaluates fairness in addition to performance [2].

Weighted speedup, SMT speedup and fair speedup cannot

be calculated as online statistics and therefore cannot be the

direct targets of dynamic partitioning policies. In this study,

in addition to throughput, we employ two performance pol-

icy metrics with both static and dynamic policies: combined

miss rates, which summarizes miss rates; and combined

misses, which summarizes the number of cache misses.

Both have been chosen by previous studies [18, 11] and can

be observed online with hardware performance counters.

Fairness Metrics Ideally, to achieve fairness, the

slowdown (speedup) of each co-scheduled program should

be identical after cache partitioning. Even though such a

perfect fairness is not always achievable, program slow-

downs should be as close as possible. This translates to

minimizing the fairness evaluation metric (FM0) [8] calcu-

lated as follows:

FM0 =
∑

i

∑

j
|Mi − Mj |,

where Mi = IPCbase[i]/IPCscheme[i] (1)

We also use policy metrics FM1∼FM5 from [8] and sum-

marize them in Table 2. These fairness metrics are based on

miss rates or the number of misses, which take the form of
∑

i

∑

j |Xi − Xj | as FM0. In our study, all the weighted

fairness metrics (FM0, FM1 and FM3) are relative to single

core executions with a dedicated L2 cache.

To see how well a fairness policy metric correlates with

a fairness evaluation metric, we compute the statistical cor-

relation [15] between them by Equation (2).

Corr(FMi, FM0) = Cov(FMi, FM0)/(σ(FMi)σ(FM0)),

where Cov(FMi, FM0) = E(FMiFM0) − E(FMi)E(FM0)
(2)

In (2), σ(FMi) and E(FMi) denote the standard devia-

tion and expected value of FMi respectively. Under a policy

driven by the policy metric, we obtain data points for both

the policy metric and the evaluation metric by running a

369

workload with different cache partitionings. The value of

Corr(FMi, FM0) ranges between −1 to 1 and a value of 1
indicates a perfect correlation between two metrics.

QoS Metrics We consider cases where hard QoS con-

straints are never violated. If every program in a workload

has its own QoS requirement, it is possible that we cannot

keep all of them. Therefore in this study we only guarantee

QoS for a given program of a workload. This is different

from prior work [2] in which QoS summarizes the behavior

of an entire workload. The QoS evaluation metric used in

this study is defined by Equation (3).

QoS =

{

1(IPCscheme[i]/IPCbase[i] ≥ Threshold)
0(IPCscheme[i]/IPCbase[i] < Threshold)

(3)

In our study, we assume that baseline IPC is profiled offline

from dual-core execution of homogeneous workload with

half of the cache capacity allocated to each program. For

a given program i, maximizing our QoS metric essentially

bounds IPCscheme[i] within Threshold in (3). To guarantee

QoS, we raise the specified threshold in a policy metric to

approach a QoS evaluation metric with a low threshold.

3. OS-based Cache Partitioning Mechanism

Instead of using simulation, our unique approach is to

use an OS-based cache partitioning mechanism to emulate

a hardware mechanism; and then evaluate the cache policies

on top of the software mechanism.

3.1. Static OS-based Cache Partitioning

A static cache partitioning policy predetermines the

amount of cache blocks allocated to each program at the

beginning of its execution. Our partitioning mechanism is

based on a well accepted OS technique called page color-

ing [20], which works as follows. A physical address con-

tains several common bits between the cache index and the

physical page number. These bits are referred to as page

color. A physically addressed cache is therefore divided

into non-intersecting regions by page color, and pages in

the same color are mapped to the same cache region. We as-

sign different page colors to different processes, thus, cache

space is partitioned between cores for running programs.

By limiting the physical memory pages within a subset of

colors, the OS can limit the cache used by a given process

to cache regions of those colors. In our experiments, the

Intel dual-core Xeon processor has a 4MB, 16-way set as-

sociative L2 cache and the page size is set to 4KB. There-

fore, We can break the L2 cache to 64 colors (cache size /

page size / cache associativity). Although a hardware mech-

anism may support a finer granularity of cache allocation,

we have found that most proposed policies [18, 8, 12] work

at a coarse granularity at this level. Therefore, the coarse

granularity is practically not a limitation in our study.

Our implementation is in Linux kernel 2.6.20.3. The ker-

nel uses a buddy system to maintain free memory: free

physical memory pages are organized into multiple free

lists, where the kth list contains memory chunks of size of

2k pages. We have modified the code to divide each free list

into multiple lists, each linking free pages with the same

color. When a page fault occurs to the process, the kernel

searches for free pages in the free lists with allocated colors

in a round-robin fashion. When pages are freed, they are

added to a list of its color. The modification has negligible

code space and run-time overhead.

3.2. Dynamic OS-based Cache Partitioning

Many proposed cache partitioning policies adjust cache

quotas among processes dynamically. To support such poli-

cies, we extend the basic color-based partitioning mecha-

nism to support page recoloring.

Figure 1: Page recoloring.

Page Recoloring Procedure When a decision is made to

increase the cache resource of a given process, i.e. increas-

ing the number of colors used by the process, the kernel will

enforce the decision by re-arranging the virtual-physical

memory mapping of the process. As shown in Figure 1,

if the number of colors used is m, then all virtual memory

pages, if not paged out, are mapped onto physical memory

pages of those colors. When the number of colors increases

to m + 1, the kernel assigns one more color to the process

and move roughly one of every m + 1 of the existing pages

to the new color. This process involves allocating physical

pages of the new color, copying the memory contents and

freeing the old pages. When a decision is made to reduce

cache resources, the kernel will also recolor a fraction of

virtual memory pages accordingly.

Optimizations to Reduce Runtime Overhead Although

the performance overhead of remapping virtual pages is

non-negligible, it has little impact on our major research

goal of evaluating existing cache partitioning policies. We

can measure the run-time overhead and exclude it from the

total execution time, so as to emulate a hardware cache par-

titioning mechanism that does not involve moving memory

pages. Nevertheless, we want to make the implementation

as efficient as possible.

370

To reduce the overall overhead, one option is to lower

the frequency of cache allocation adjustment. The ques-

tion is how frequently a dynamic cache partitioning policy

needs to adjust the allocation. Using experiments, we find

that an epoch can be as long as several seconds without af-

fecting the accuracy of evaluation significantly. Addition-

ally, we use a lazy method for page migration: content of

a recolored page is moved only when it is accessed. In the

implementation, all pages of a process are linked in two ar-

rays of page lists, one indexed by their current color and

one by their target color. When a color is reclaimed from

a process, the affected pages are those on the same page

list in the first array with index equal to the color, so we

do not need to linearly search the virtual address space. To

remap these pages, we change their target color (and their

location in the data structure). The kernel clears the page’s

present bit so that a page fault will occur when the page is

accessed. At that time, the accessed virtual page is phys-

ically remapped and its current color is changed to match

the target color. The performance improvement is signifi-

cant because in most programs only a small subset of those

recolored pages are accessed during an epoch. If a page is

re-colored multiple times before it is accessed, its content

will be only moved once. With the optimization and use

of a five-second epoch length, the average overhead of dy-

namic partitioning is reduced to 2% of the total execution

time. The highest migration overhead we observed is 7%.

3.3. Restrictions of Our Approach

There are two restrictions on our OS-based approach.

First, a hardware mechanism may allocate cache blocks at

a fine granularity; and it may reallocate cache blocks at a

relatively high frequency. However, we believe that for the

purpose of evaluation and for most programs, those are not

major issues. Almost all existing hardware-based policies

are coarse-grain; for example, changing the target cache al-

location in unit of 1/16 of the total cache size. The software

cache allocation can be as fine as 1/64 of the total cache size

on our machine (1/16 is actually used for simplicity). In

addition, although a hardware mechanism can dynamically

reallocate cache at a high frequency, e.g. every tens of mil-

liseconds, the phase changes of many programs are much

less frequent in practice. Most SPEC programs, for exam-

ple, have phase changes every tens to hundreds of seconds.

Our dynamic software mechanism can re-allocate cache ev-

ery few seconds with small overhead, which is sufficient for

this type of workloads. The second restriction is on how to

handle the page migration overhead by our approach. Our

answer is that the overhead can be measured and excluded

for the purpose of evaluating a hardware-based scheme.

4. Dynamic Cache Partitioning Policies for

Performance, Fairness and QoS

In this section, we describe the dynamic cache partition-

ing policies used in our study. All policies adjust the cache

partitioning periodically at the end of each epoch. We limit

our discussions to the two-core platform used in our experi-

ments. Static partitioning policies are not discussed because

our focus there is to evaluate how well a policy metric, if

performed with ideal profiling, matches an evaluation met-

ric. The policy design and implementation is not our con-

cern.

Dynamic Partitioning Policy for Performance The pol-

icy uses Algorithm 4.1 to dynamically adjust cache parti-

tioning. Four policy metrics can be used to drive the algo-

rithm: throughput (IPCs), combined miss rate, combined

misses and fair speedup. We do not consider the non-

convexity problem [18] in this study, although the algorithm

may be extended to vary the distances of change to address

this issue. We did not find that problem in our experiments,

which is expected because the unit size of cache allocation

is large (256KB). After all, our current algorithm is de-

signed to evaluate the impact of cache partitioning but not

to handle the worst case. Previous studies use new hardware

mechanisms to collect special statistics such as marginal

gains [18] or cache miss rate curves [11]. Our algorithm

works differently and performance counters available on the

processor are sufficient.

Algorithm 4.1: DYNA-PART-FOR-PERF (policy metrics M)

Partition the cache initially as n
2

: n
2

, where n is the total number of colors

while Programs are running

do

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

Run one epoch for current partition p0 : p1

Try one epoch for each of the two neighboring partitionings:

(p0 − u) : (p1 + u) and (p0 + u) : (p1 − u)
Compare M measurements from

p0 : p1, (p0 − u) : (p1 + u) and (p0 + u) : (p1 − u)
Choose next partition with the best M measurement from

p0 : p1, (p0 − u) : (p1 + u) and (p0 + u) : (p1 − u)

Dynamic Partitioning Policy for Fairness We adopt the

methodology for evaluating fairness proposed in a recent

study [8]. The evaluation metric is referred to as FM0

(Fairness Metric Zero) and five policy metrics, referred to

as FM1 to FM5, are proposed (see Section 2). We adopt

their algorithms and implement two dynamic policies based

on FM0 and FM4. FM0 is designed to equalize the rela-

tive progress of all programs using their baseline execution

as the reference point, i.e. to equalize the ratio of the cur-

rent, cumulative IPC over the baseline IPC. Policy metric

FM4 is designed to equalize the cache miss rates. We skip

the other metrics to simplify our experiments. This algo-

rithm works in repetitive cycles of two steps: repartitioning

and rollback. The repartitioning step tentatively adjusts the

cache partitioning if FM4 difference between two running

371

programs exceeds Trepartition, which is a percentage. In the

rollback step, the repartitioning decision is committed if the

process with more cache allocation has a miss rate reduc-

tion of at least Trollback. Further details of the algorithm can

be found in [8]. Trepartition and Trollback are set as 2% and

0.5% respectively, which we found worked well in our ex-

periments.

Dynamic Partitioning Policy for QoS Considerations

The QoS requirement in this study is formulated as fol-

lows. For a two-core workload of two programs, the first

program is the target program and the second program is

the partner program. The QoS guarantee is to ensure that

the performance of the target program is no less than X% of

a baseline execution of homogeneous workload on a dual-

core processor with half of the cache capacity allocated

for each program, and meanwhile the performance target is

to maximize the performance of the partner program. We

assume that the IPC in the baseline execution is known.

Prior work [10, 7] uses new hardware support including

both capacity and bandwidth sharing for QoS in multicores.

Our OS-based implementation can control cache partition-

ing but not bandwidth partitioning. Instead, it uses cache

partitioning to counter the effect of cache sharing. Algo-

rithm 4.2 shows the design details.

Algorithm 4.2: DYNA-PART-FOR-QOS (target program’s baseline IPC)

Partition the cache initially as n
2

: n
2

, where n is the total number of colors

while target program is running

do

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

Wait until end of current epoch

Compute the target program’s accumulated IPC

if the accumulated IPC is less than the baseline IPC

by certain percentage (2% in this study)

then

8

>

>

>

<

>

>

>

:

if the cache allocation to the target program does not

exceed the maximum

then Use partitioning (p0 + u) : (p1 − u) for next

epoch, (p0 + u) for the target program

else stall the partner program

if the accumulated IPC is greater than the baseline IPC

then

8

>

>

<

>

>

:

if the partner program is stopped

then resume the partner program

else Use partitioning (p0 − u) : (p1 + u) for next

epoch, (p0 − u) for the target program

5. Experimental Methodology

Hardware and Software Platform We conducted our

experiments on a Dell PowerEdge 1950 machine. It has two

dual-core, 3.0GHz Intel Xeon 5160 processors and 8GB

Fully Buffered DIMM (FB-DIMM) main memory. Each

Xeon 5160 processor has a shared, 4MB, 16-way set asso-

ciative L2 cache. Each core has a private 32KB instruc-

tion cache and a private 32KB data cache. The machine has

four 2GB 667MT FB-DIMMs. We use default configura-

tion of the processor, which disables next line prefetch but

enables hardware prefetch. The snoop filter in the chipset

was turned on. We ran benchmarks only on one of the two

processors by setting processor affinities for programs.

We use Red Hat Enterprise Linux 4.0 with kernel linux-

2.6.20.3. Execution performance results were collected by

pfmon using perfmon kernel interface and libpfm li-

brary [4]. We divided physical pages into 64 colors. The

cache allocation granularity was actually 4 colors bundled

together, as it simplified the experiment and we found that

it made little difference in the results. When a page needed

to be re-colored, a lazy recoloring policy was used as dis-

cussed in Section 3. We protected the page by clearing the

present bit and setting re-color bit (an unused bit in original

linux kernel) in the page table entry corresponding to the

page. After that, any access to the page would generate a

page fault. In the page fault handler, if the re-color bit was

set, page was re-colored.

Workloads We selected the SPEC CPU2006 benchmark

suite [16] and compiled them with Intel C++ Compiler 9.1

and Intel FORTRAN Compiler 9.1 for IA32. We selected

programs and constructed workloads as follows. First, all

29 programs were classified to four categories. By varying

the number of colors that a benchmark uses, we were able to

measure the execution time of each program for each pos-

sible cache size. To simplify the experiment, we grouped

four colors into super color. For simplicity, we use color

to refer to super color hereafter. We ran each benchmark

with both four colors (super colors) and sixteen colors (su-

per colors). Our page-level cache partitioning mechanism

partitioned physical memory as well. To avoid page thrash-

ing, we allocated at least two colors (super colors) to each

program in our evaluation. Consequently, each program had

at least one eighth of total physical memory (1GB) which is

larger than memory footprint of any program from SPEC

CPU2006 on our experimental machine. This ensures that

I/O overhead does not increase for page coloring, which

was confirmed in the experiments. As shown in Table 3,

six programs had more than 20% performance slowdown

when using only four colors (1MB cache), compared with

using all sixteen colors (4MB). We referred to them as “red”

application as they were sensitive to the L2 cache size. It is

predicted that the working set of a red application can be

fit into 4MB cache but not 1MB cache. Nine programs had

a performance slowdown between 5% and 20%; they were

referred to as “yellow” programs. The remaining fourteen

programs were further divided into two classes by using

the number of L2 cache accesses obtained by performance

counter. Programs with more than fourteen L2 cache ac-

cesses per 1000 processor cycles were referred to as “green”

programs and the rest were referred to as “black” programs;

the number fourteen is an arbitrary threshold.

We then constructed the workloads as follows. The red

programs had intensive cache accesses and they also de-

manded a large cache size. The green programs accessed

L2 cache extensively but were insensitive to L2 cache size.

Their working sets could be too large to fit into a 4MB cache

372

Class Slowdown(1M/4M) L2 access rate Benchmarks

Red > 20% average: 13.7 per 1K cycle 401.bzip2 429.mcf 471.omnetpp 473.astar 482.sphinx3 483.xalancbmk

Yellow > 5% average: 13.4 per 1K cycle
403.gcc 437.leslie3d 450.soplex 459.GemsFDTD 465.tonto 470.lbm

(400.perlbench 436.cactusADM 464.h264ref)

Green ≤ 5% ≥ 14 per 1K cycle 410.bwaves 434.zeusmp 435.gromacs 453.povray 462.libquantum 481.wrf

Black ≤ 5% < 14 per 1K cycle
416.gamess 433.milc 444.namd 445.gobmk 447.dealII 456.hmmer

458.sjeng 454.calculix

Table 3: Benchmark classification.

Combinations Workload Benchmarks Wo. Benchmarks Wo. Benchmarks

Red + Red RR1 401.bzip2 473.astar RR2 429.mcf 482.sphinx3 RR3 471.omnetpp 483.xalancbmk

Red + Yellow
RY1 401.bzip2 403.gcc RY2 429.mcf 437.leslie3d RY3 471.omnetpp 450.soplex

RY4 473.astar 459.GemsFDTD RY5 482.sphinx3 465.tonto RY6 483.xalancbmk 470.lbm

Red + Green
RG1 401.bzip2 410.bwaves RG2 429.mcf 434.zeusmp RG3 471.omnetpp 435.gromacs

RG4 473.astar 453.povray RG5 482.sphinx3 462.libquantum RG6 483.xalancbmk 481.wrf

Yellow + Yellow YY1 403.gcc 459.GemsFDTD YY2 437.leslie3d 465.tonto YY3 450.soplex 470.lbm

Yellow + Green
YG1 403.gcc 410 .bwaves YG2 437.leslie3d 434.zeusmp YG3 450.soplex 435.gromacs

YG4 459.GemsFDTD 453.povray YG5 465.tonto 462.libquantum YG6 470.lbm 481.wrf

Green + Green GG1 410.bwaves 453.povray GG2 434.zeusmp 462.libquantum GG3 435.gromacs 481.wrf

Table 4: Workload mixes.

or small enough to fit into a 1MB cache. Intuitively, when

a red program is co-scheduled with a green program, we

should give the red program a larger cache capacity since

it benefits more from an increased cache quota than the

green program. Yellow programs were included because

they are moderately affected by cache performance. Those

black programs were not interesting for this study because

their performance are not sensitive to the shared cache per-

formance. We constructed 27 workloads using six red, six

yellow and six green programs. The workloads are shown

in Table 4. Some programs had more than one reference in-

put; we ran all inputs and considered them as a single run.

Each workload consisted of two runs from two programs. If

one run finished earlier, we re-ran it until every run finished

once. Only statistics for the first run were used to compute

performance, fairness and QoS.

6. Evaluation Results

6.1. Cache Partitioning for Performance

Evaluation Approach The design of our policies was

adapted from previous hardware-based studies [18, 11], and

we implemented both static and dynamic policies. The three

static policies were evaluated using an offline approach: we

tested all possible cache partitionings for each program and

collected the data for each evaluation metric and data for

each policy metric. Then, we decided the choice of cache

partitioning according to each policy and compare it with

the optimal choice. As for dynamic policies, for simplic-

ity we only present results with a dynamic policy using the

total misses as the policy metric.

Performance Impact of Static Policies For each type of

workloads, Figure 2 shows the average improvement with

the best static partitioning of each workload over the shared

cache. The difference is most significant in the RG-type

Figure 2: Performance of optimal partitioning for four evaluation

metrics.

workloads, where the throughput is improved by more than

20%. Cache partitioning is also beneficial to the other work-

loads, where the average improvement ranges from 2% to

10%. RG-type workloads are most sensitive to cache par-

titioning because both programs in a workload are memory

intensive, while the R-type program is sensitive to cache

capacity and the G-type program is insensitive. We have

detailed analysis below to show that the G-type program

may have better performance in two-core execution even if

it receives less cache capacity. Therefore, allocating more

cache space to the R-type program improves the overall per-

formance significantly. Among all evaluation metrics, the

improvement on throughput is the most significant. This

is because the other metrics, while a consideration of with

the overall instruction throughput, have the effect to balance

performance of all programs. A point worth mentioning is

that our experiments were conducted on a dual-core proces-

sor. We believe that the performance improvement by cache

partitioning will increase as additional cores are added on

real machines.

Table 5 shows the average weighted speedup of all RG-

type (one R-type program plus one G-type program) and

373

Partition 2:14 3:13 4:12 5:11 6:10 7:9 8:8 9:7 10:6 11:5 12:4 13:3 14:2

RG1 0.89 0.95 1.00 1.06 1.11 1.17 1.23 1.28 1.33 1.37 1.41 1.45 1.47

RG2 0.85 0.89 0.91 0.94 0.95 0.97 0.99 1.00 1.01 1.01 1.02 1.03 1.03

RG3 0.91 0.92 0.94 0.96 0.97 0.98 0.99 1.00 1.00 1.00 1.01 1.01 0.96

RG4 0.85 1.06 1.08 1.10 1.11 1.13 1.12 1.14 1.14 1.10 1.17 1.17 1.18

RG5 0.94 0.93 0.93 0.95 0.98 1.01 1.05 1.11 1.14 1.19 1.24 1.30 1.37

RG6 0.91 0.95 0.97 0.99 1.01 1.03 1.04 1.06 1.07 1.09 1.09 1.11 1.11

RR1 0.86 0.89 0.91 0.93 0.95 0.97 0.99 1.01 1.01 1.01 1.02 1.01 0.98

RR2 1.05 1.05 1.03 1.02 1.01 1.01 0.98 0.97 0.99 0.95 0.97 1.00 1.01

RR3 1.00 1.01 1.01 1.02 1.02 1.02 1.02 1.01 1.01 1.00 0.98 0.97 0.93

Table 5: The average weighted speedups of all selected RG- and RR-type workloads for all cache partitionings experimented. We have raw

data for all selected workloads, all evaluation metrics and all partitionings (not shown).

RR-type (two R-type programs) workloads, respectively,

for all cache partitionings from 2:14 to 14:2. We have raw

data for all workloads, all evaluation metrics and all parti-

tionings, but only present this set of data due to space limita-

tions. Average weighted speedup here is the average of the

speedups of each program over their execution on a base-

line configuration that uses a shared L2 cache. Therefore,

each number in Table 5 represents the relative performance

of a cache partitioning over the shared cache. Overall, the

RG-type workloads have the most significant improvements

and the RR-type workloads have the smallest ones. This is

expected because R-type programs are sensitive to cache ca-

pacity and G-type programs are insensitive. RR-type work-

loads are relatively insensitive to cache allocation because

both programs demand large cache capacity.

We have the following observations. First, cache par-

titioning does make significant performance improvement

to RG-type workloads. For example, workload RG1

(of 401.bzip2 and 410.bwaves) has the largest average

weighted speedup (47% improvement) at 14:2 partitioning

over shared cache. The 14:2 partitioning is 20% better than

the 8:8 even partitioning (typical hardware private partition-

ing) and 65% better than the worst 2:14 partitioning. The

best partitioning for workload RG5 is 14:2 and it is 37%,

30% and 46% better than the shared cache, the even par-

titioning and the worst case 3:13 partitioning. Second, the

even partitioning is usually better than uncontrolled cache

management. Additionally, for RG-type workloads, it is

usually the case, but not always, that giving the R-type

program the maximum cache capacity will yield the best

performance. Finally, RR-type workloads are generally in-

sensitive to cache partitioning, although the performance of

each individual program is sensitive to the partitioning as

we observed in the raw data (not shown).

We also have an interesting finding after looking

into individual workloads in more detail. Figure 3(a)

shows the normalized speedups of programs 401.bzip2 and

410.bwaves in workload RG1. Surprisingly, shifting more

cache capacity from 410.bwaves to 401.bzip2 improves the

performance of both programs. This is counter-intuitive

because the performance of 410.bwaves should drop with

less cache capacity. Here is our explanation: when de-

(a) Normalized IPC

(b) Misses Per 1000 Cycles

Figure 3: Workload RG1 under all possible static partitions

creasing 401.bzip2’s cache allocation, its cache miss rate

increases significantly and so does the memory bandwidth

utilization. Because of the queuing delay at the memory

controller, the cache miss penalty increases for both pro-

grams, which degrades the performance of 410.bwaves even

though its cache miss rate drops. To confirm it, Figure 3(b)

shows the cache miss rate of the two programs for all parti-

tionings: The miss rate of 401.bzip2 decreases sharply with

increasing capacity and that of 410.bwaves remains almost

constant. Program 410.bwaves has a relative high cache

miss rate, and therefore its performance is sensitive to the

cache miss penalty. Therefore, the performance of both pro-

grams is improved when more cache capacity is allocated to

401.bzip2. We have the same observation in two other RG-

type workloads and one YG-type workload, namely RG4,

RG5 and YG5.

A Comparison of Policy Metrics and Evaluation Met-

rics Figure 4 compares the best cache partitioning under

each policy metric with the best partitioning under evalua-

374

Figure 4: Comparison of the performance of static OS-based cache

partitioning by the three policy metrics (sum of IPC, combined

miss rate, and combined misses) with the optimal performance by

evaluation metrics normalized SMT speedup.

tion metric normalized SMT speedup2. To simplify the dis-

cussion, it only shows the average improvements of the par-

titioning policies over the shared cache for each workload

type. We have the following observations. First, all three

policy metrics are good indications of the performance un-

der the four evaluation metrics. They are close to the best

partitioning under each metric in most cases. Second, the

average performance improvement by using a policy metric

is sensitive to the type of workload. The RG-type work-

loads have the highest improvements under all evaluation

metrics by using any of the three policy metrics. By com-

parison, the RR-type workloads have smallest improvement

by any policy metric and under any evaluation metric. Fi-

nally, the three policy metrics are very comparable to all

evaluation metrics. For the evaluation metric throughput,

sum of IPC is the best policy metric overall because both

metrics are based on the combined instruction throughput.

We also found that combined miss rates are slightly better

than combined misses as a policy metric, although the latter

one was used in several recent studies.

Results of Dynamic Policy It is expected that dynamic

schemes would generally outperform static ones. How-

ever, note that the previous results of static partitioning as-

sume complete profiling results while dynamic partitioning

here starts with no knowledge of the workload. Figure 5

compares the average weighted speedups by using com-

bined miss rates as the policy metric. Due to space lim-

itations, we only present this policy metric and only with

the evaluation metric of average weighted speedup. We

have the following observations. First, the dynamic policy,

which does not have any pre-knowledge about a workload,

is very comparable to the static policy with ideal profiling

input. It outperforms the static policy for some workloads

and under-performs for some others. For RG-type work-

loads, static policy slightly outperforms the dynamic one

because it always allocates most cache capacity to the R-

2We also have data for other three evaluation metrics. Due to space

limitations, we do not show them in the figure.

type program. The dynamic policy has a disadvantage for

not sticking to the best partitioning. When compared with

the shared cache, the dynamic policy improves the perfor-

mance for many workloads (by up to 39%). Occasionally

it degrades the performance but only slightly. Note that

even the best static partitioning may occasionally degrade

the performance slightly.

To analyze the behavior of the dynamic policy, we look

into workloads RG1 and YY2 for more details. For work-

load RG1 consisting of 401.bzip2 and 410.bwaves, the best

static partitioning is 14:2, which is predicted correctly by

the static partitioning policy. The dynamic policy swings

between 13:3 and 14:2, therefore it uses the suboptimal 13:3

partitioning for a large fraction of time. Additionally, it

also takes some time to reach the optimal 14:2 partitioning.

Workload YY2 is an example that favors the dynamic par-

titioning. Its second program 465.tonto has alternative high

IPC phases with low cache miss rate and low IPC phases

with high cache miss rate. The dynamic policy responds

to the phase changes and therefore outperforms the static

partitioning.

6.2. Fairness of Cache Partitioning Policies

Evaluation Approach We first collected the fairness

statistics by using static partitionings. Then, as discussed in

Section 2, we have implemented two dynamic partitioning

policies that targets metrics FM0 and FM4, respectively. We

want to answer the following questions: (1) Are there strong

correlations between policy metrics FM1-FM5 with evalua-

tion metric FM0 on real machines? A previous simulation-

based study [8] has reported strong correlations from those

policies except FM2. (2) What would happen if profiling

data for FM0 is available and the data is used to decide

cache partitioning?

We use hardware performance counters to collect the

cache miss, cache access and IPC data and then use Equa-

tion (2) to quantify the correlation. As done in [8], for each

workload we use n static cache partitionings to get the data

series, where n = 13 is the number of selected static cache

partitionings.

Fairness of Static Cache Partitioning The first five

columns of table 6 show the average fairness, measured by

the evaluation metric FM0, of the static partitionings se-

lected by the five static fairness policies. The first column

represents an upper bound on the fairness that a static pol-

icy can achieve. The number in bold type indicates the best

static policy on average for a given type workloads. Our

major finding is that that none of the five policies can ap-

proach the fairness of the best static partitioning. This will

be discussed in more detail as we present the metric corre-

lations. The static policies driven by FM2 and FM4, which

equalize the number of cache misses and cache miss rates,

respectively, are not as good as the other three policies. This

375

Figure 5: Performance comparison of static and dynamic partitioning polices which use combined miss rates as policy metrics.

Policy Static-Best Static-FM1 Static-FM2 Static-FM3 Static-FM4 Static-FM5 Dynamic-Best Dynamic-FM4

RR 0.015 0.281 0.260 0.281 0.348 0.202 0.015 0.204

RY 0.071 0.284 0.481 0.291 0.359 0.214 0.041 0.242

RG 0.025 0.119 0.195 0.119 0.162 0.075 0.037 0.225

YY 0.093 0.168 0.713 0.168 0.465 0.190 0.055 0.276

YG 0.115 0.217 0.349 0.226 0.204 0.174 0.056 0.185

GG 0.008 0.038 0.097 0.038 0.097 0.037 0.011 0.054

Table 6: Fairness of the static and dynamic partitioning polices. Lower value mean less difference in program slowdown and better fairness.

is consistent with the previous study [8] and is expected be-

cause FM2 and FM4 do not use any profiled IPC data from

single-core execution, on which the evaluation metric FM0

is defined. Between the two, FM4 is better than FM2. Ad-

ditionally, the policy driven by FM5 achieves the best fair-

ness overall. Finally, the RR-, RY-and YY-type workloads

are more difficult targets for fairness than the others because

in those workloads both programs are sensitive to L2 cache

capacity.

Correlations Between the Policy Metrics and the

Evaluation Metrics Figure 6 shows the quantified cor-

relations (see Section 2) between FM1, FM2, FM4, FM5

and the evaluation metric FM0. A number close to 1.0 in-

dicates a strong correlation. FM2 is not included because

it has been shown to have a poor correlation with FM0 [8],

and it is confirmed by our data. In contrast to the previous

study, we found that none of the policies had a consistently

strong correlation with FM0. Overall FM5 has a stronger

correlation with FM0 than the other three policies metrics

for RY-, RG-, YY- and YG-type workloads. However, it is

the worst one for RR- and GG-type workloads.

There are three reasons why our findings are different

from simulation results . First of all, our workloads are

based on SPEC CPU2006 benchmark suite, while the previ-

ous study uses SPEC CPU2000 plus mst from Olden and a

tree-related program. Most importantly, we are able to run

the SPEC programs with the reference data input, while the

previous study run their SPEC programs with the test data

input. We believe that the use of test input was due to the

simulation time limitation. Second, most runs in our exper-

iments complete trillions of instructions (micro-ops on Intel

processor) for a single program, while the previous study

only completes less than one billion instructions on average.

Additionally, our hardware platform has 4MB L2 cache per

processor compared with 512KB L2 cache in the previous

study, which may also contribute to the difference. After

all, our results indicate that better understanding is needed

in the study of fairness policy metrics.

Fairness by Dynamic Cache Partitioning We intend to

study whether a dynamic partitioning policy may improve

fairness over the corresponding static policy. First, we have

implemented a dynamic policy that directly targets the eval-

uation metric FM0. It assumes the pre-knowledge of single-

core IPC of each program, and uses it to adjust the cache

partitioning at the end of each epoch. Specifically, if a pro-

gram is relatively slow in its progress, i.e. its ratio of the

current IPC (calculated from the program’s start) over the

single-core IPC is lower than that of the other program, then

it will receive one more color for the next epoch. We have

also implemented a dynamic partitioning policy based on

the FM4 metric. To simplify our experiments, we did not

include the other policy metrics in the experiments. The

right part of Table 6 shows the performance of the dynamic

policies. As it shows, the dynamic policy driven by FM0

achieves almost ideal fairness. Note that the policy does

require the profiling data for single-core execution and we

assume the data are available. The dynamic policy driven

by FM4 outperforms the static one for all types of work-

loads except the RG type. The exception is possible if

one program in the workload always makes relatively faster

progress than the other one with any possible partitioning,

and therefore the partitioning that mostly counters the im-

balance should always be used.

6.3. QoS of Cache Partitioning

Evaluation Approach In our experiment, the QoS

threshold is set to 95% (see Section 2). Note that during

multicore execution the performance of the target program

will be affected by not only the cache capacity used by the

partner program but also by its usage of L2 cache and mem-

ory bandwidth. We assume that the L2 cache controller and

376

Figure 6: Correlation between fairness policy metrics (FM1, FM3, FM4 and FM5) and fairness evaluation metrics (FM0). FM2 is not

shown because it has poor correlation with FM0.

memory controller use some fair access scheduling, which

is true in our hardware platform. To counter the effect of

bandwidth sharing, the target program may need to have

more than half of the cache capacity, and in the worst case

the partner program may have to be stopped temporarily.

Evaluation Results Figure 7 shows the performance of

the target programs, the partner programs and the overall

performance of all workloads. The target program is al-

ways the first program in the program pair. The perfor-

mance of the target and partner program is given by the

IPC of each program normalized to its baseline IPC. The

baseline IPC is profiled offline from dual-core execution of

homogeneous workload with half of the cache capacity al-

located for each program. The overall performance is given

by the throughput (combined IPC) normalized by that of

the performance-oriented dynamic policy. The IPCs are

collected when the target program completes its first run.

Figure 7(a) shows the performance with static cache capac-

ity partitioning (8:8). By static capacity partitioning only,

without bandwidth partitioning, twelve target programs do

not meet the 95% QoS requirement. The normalized per-

formance of the target program, 429.mcf, of RY2 is only

67%. On average for all workloads, it achieves 95% of the

throughput of the performance-oriented policy. With dy-

namic cache partitioning policy designed for QoS, as shown

in the figure 7(b), all target programs meet the 95% QoS

requirement. The normalized performance of target pro-

gram ranges from 96% to 188%, and the average is 113%.

The normalized performance of the partner program ranges

from 69% to 171%, and the average is 95%. Furthermore,

the QoS-oriented policy does sacrifice a fraction of per-

formance to meet the QoS requirement. On average for

all workloads, it achieves 90% of the throughput of the

performance-oriented policy.

In summary, without bandwidth partitioning, the static

cache capacity partitioning can not guarantee to meet the

QoS requirement. The results also indicate that L2 cache

and memory bandwidth partitioning as proposed in [7] is

needed to meet the QoS requirement. When such a band-

width partitioning mechanism is not available, our dynamic

cache partitioning policy can serve as an alternative ap-

proach to meet the QoS requirement of target programs and

let the partner programs utilize the rest of cache resources.

7. Related Work

Cache Partitioning for Multicore Processors Most mul-

ticore designs have chosen a shared last-level cache for sim-

ple cache coherence and for minimizing overall cache miss

rates and memory traffic. Most proposed approaches have

added cache partitioning support at the micro-architecture

level to improve multicore performance [9, 18, 11]. Sev-

eral studies highlighted the issues of QoS and fairness [6,

10, 8, 5, 2]. There have been several studies on OS-based

cache partitioning policies and their interaction with the

micro-architecture support [12, 3]. Our research is con-

ducted on a real system with a dual-core processor without

any additional hardware support. Our work evaluates mul-

ticore cache partitioning by running programs from SPEC

CPU2006 to completion, which is not feasible with the

above simulation-based studies.

Page Coloring Page coloring [20] is an extensively used

OS technique for improving cache and memory perfor-

mance [1]. Sherwood et al. [13] proposed compiler and

hardware approaches to eliminate conflict misses in phys-

ically addressed caches. To the best of our knowledge,

it is the first work proposing the use of page coloring in

multicore cache management. In their paper, only cache

miss rates for a 4-benchmark workload on a simulated mul-

ticore processor were presented. In comparison, our re-

coloring scheme is purely based on software and we are

able to conduct a comprehensive cache partitioning study

on a commodity multicore processor with the page coloring

scheme. A very recent study by Tam et al. [19] implemented

a software-based mechanism to support static cache parti-

tioning on multicore processors. Their work is based on

page coloring and thus shares several similarities with ours.

Our work differs significantly from [19] in the following

aspects: (1) In addition to static partitioning, our software

layer also supports dynamic partitioning policies with low

overhead. We have therefore been able to capture programs’

phase-changing behavior and draw important conclusions

regarding dynamic cache partitioning schemes. (2) We have

conducted one of the most comprehensive cache partition-

ing studies with different policies optimizing performance,

377

(a) Static cache capacity partitioning only

(b) Dynamic cache partitioning policy designed for QoS

Figure 7: Normalized performance

fairness and QoS objectives.

8. Conclusions and Future Directions

We have designed and implemented an OS-based cache

partitioning mechanism on multicore processors. Using this

mechanism, we have studied several representative cache

partitioning policies. The ability of running workloads to

completion has allowed us to confirm several key findings

from simulation-based studies. We have also gained new in-

sights that are unlikely to obtain by simulation-based stud-

ies.

Ongoing and future work is planned along several direc-

tions. First, we will refine our system implementation, to

further reduce dynamic cache partitioning overhead. Sec-

ond, we plan to make our software layer available for the

architecture community by adding an easy user interface.

Third, our software provides us with the ability to control

data locations in the shared cache. With a well defined

cache partitioning interface, we are conducting cache par-

titioning research at the compiler level, for both multipro-

gramming and multithreaded applications.

Acknowledgments

We thank the constructive comments from the anony-

mous referees. This research was supported in part by the

National Science Foundation under grants CCF-0541366,

CNS-0720609, CCF-0602152, CCF-072380 and CHE-

0121676.

References
[1] E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum, and M. S.

Lam. Compiler-directed page coloring for multiprocessors. In Proc.
ASPLOS’96, pages 244–255, 1996.

[2] J. Chang and G. S. Sohi. Cooperative cache partitioning for chip
multiprocessors. In Proc. ICS’07, 2007.

[3] S. Cho and L. Jin. Managing distributed, shared L2 caches through
OS-level page allocation. In Proc. MICRO’06, pages 455–468, 2006.

[4] Hewlett-Packed Development Company. Perfmon project. http:

//www.hpl.hp.com/research/linux/perfmon.
[5] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni. Communist,

utilitarian, and capitalist cache policies on CMPs: caches as a shared
resource. In Proc. PACT’06, pages 13–22, 2006.

[6] R. Iyer. CQoS: a framework for enabling qos in shared caches of
cmp platforms. In Proc. ICS’04, pages 257–266, 2004.

[7] R. Iyer, L. Zhao, F. Guo, Y. Solihin, S. Markineni, D. Newell, R. Il-
likkal, L. Hsu, and S. Reinhardt. QoS policy and architecture for
cache/memory in CMP platforms. In Proc. SIGMETRICS’07, 2007.

[8] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partition-
ing in a chip multiprocessor architecture. In Proc. PACT’04, pages
111–122, 2004.

[9] C. Liu, A. Sivasubramaniam, and M. Kandemir. Organizing the last
line of defense before hitting the memory wall for cmps. In Proc.
HPCA’04, page 176, 2004.

[10] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private caches. In
Proc. ISCA’07, 2007.

[11] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning:
A low-overhead, high-performance, runtime mechanism to partition
shared caches. In Proc. MICRO’06, pages 423–432, 2006.

[12] N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural sup-
port for operating system-driven CMP cache management. In Proc.
PACT’06, pages 2–12, 2006.

[13] T. Sherwood, B. Calder, and J. Emer. Reducing cache misses using
hardware and software page placement. In Proc. ICS’99, pages 155–
164, 1999.

[14] A. Snavely, D. M. Tullsen, and G. Voelker. Symbiotic jobscheduling
with priorities for a simultaneous multithreading processor. In Proc.
ASPLOS’02, pages 66–76, June 2002.

[15] G. W. Snedecor and W. G. Cochran. Statistical Methods, pages 172–
195. Iowa State University Press, sixth edition, 1967.

[16] Standard Performance Evaluation Corporation. SPEC CPU2006.
http://www.spec.org.

[17] G. E. Suh, S. Devadas, and L. Rudolph. A new memory monitor-
ing scheme for memory-aware scheduling and partitioning. In Proc.
HPCA’02, pages 117–128, 2002.

[18] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of
shared cache memory. The Journal of Supercomputing, 28(1):7–26,
2004.

[19] D. Tam, R. Azimi, L. Soares, and M. Stumm. Managing shared L2
caches on multicore systems in software. In WIOSCA’07, Jun. 2007.

[20] G. Taylor, P. Davies, and M. Farmwald. The TLB slice–a low-cost
high-speed address translation mechanism. In Proc. ISCA’90, pages
355–363, 1990.

[21] D. M. Tullsen and J. A. Brown. Handling long-latency loads in a
simultaneous multithreading processor. In Proc. MICRO’01, pages
318–327, 2001.

378

