
Thread Cluster Memory Scheduling:
Exploiting Differences in Memory Access Behavior

Yoongu Kim Michael Papamichael Onur Mutlu Mor Harchol-Balter
yoonguk@ece.cmu.edu papamix@cs.cmu.edu onur@cmu.edu harchol@cs.cmu.edu

Carnegie Mellon University

Abstract
In a modern chip-multiprocessor system, memory is

a shared resource among multiple concurrently executing
threads. The memory scheduling algorithm should resolve
memory contention by arbitrating memory access in such a
way that competing threads progress at a relatively fast and
even pace, resulting in high system throughput and fairness.
Previously proposed memory scheduling algorithms are pre-
dominantly optimized for only one of these objectives: no
scheduling algorithm provides the best system throughput and
best fairness at the same time.

This paper presents a new memory scheduling algorithm
that addresses system throughput and fairness separately with
the goal of achieving the best of both. The main idea is to
divide threads into two separate clusters and employ differ-
ent memory request scheduling policies in each cluster. Our
proposal, Thread Cluster Memory scheduling (TCM), dynam-
ically groups threads with similar memory access behavior
into either the latency-sensitive (memory-non-intensive) or
the bandwidth-sensitive (memory-intensive) cluster. TCM in-
troduces three major ideas for prioritization: 1) we prioritize
the latency-sensitive cluster over the bandwidth-sensitive clus-
ter to improve system throughput; 2) we introduce a “nice-
ness” metric that captures a thread’s propensity to interfere
with other threads; 3) we use niceness to periodically shuf-
fle the priority order of the threads in the bandwidth-sensitive
cluster to provide fair access to each thread in a way that re-
duces inter-thread interference. On the one hand, prioritizing
memory-non-intensive threads significantly improves system
throughput without degrading fairness, because such “light”
threads only use a small fraction of the total available mem-
ory bandwidth. On the other hand, shuffling the priority order
of memory-intensive threads improves fairness because it en-
sures no thread is disproportionately slowed down or starved.

We evaluate TCM on a wide variety of multiprogrammed
workloads and compare its performance to four previously pro-
posed scheduling algorithms, finding that TCM achieves both
the best system throughput and fairness. Averaged over 96
workloads on a 24-core system with 4 memory channels, TCM
improves system throughput and reduces maximum slowdown
by 4.6%/38.6% compared to ATLAS (previous work provid-
ing the best system throughput) and 7.6%/4.6% compared to
PAR-BS (previous work providing the best fairness).

1. Introduction
High latency of off-chip memory accesses has long been

a critical bottleneck in thread performance. This has
been further exacerbated in chip-multiprocessors where
memory is shared among concurrently executing threads;
when a thread accesses memory, it contends with other
threads and, as a result, can be slowed down compared
to when it has the memory entirely to itself. Inter-thread
memory contention, if not properly managed, can have
devastating effects on individual thread performance as
well as overall system throughput, leading to system un-
derutilization and potentially thread starvation [11].

The effectiveness of a memory scheduling algorithm is
commonly evaluated based on two objectives: fairness
[16, 13, 14] and system throughput [14, 13, 5]. On the
one hand, no single thread should be disproportionately

slowed down, while on the other hand, the throughput of
the overall system should remain high. Intuitively, fair-
ness and high system throughput ensure that all threads
progress at a relatively even and fast pace.

Previously proposed memory scheduling algorithms
are biased towards either fairness or system throughput.
In one extreme, by trying to equalize the amount of band-
width each thread receives, some notion of fairness can
be achieved, but at a large expense to system throughput
[16]. In the opposite extreme, by strictly prioritizing cer-
tain favorable (memory-non-intensive) threads over all
other threads, system throughput can be increased, but
at a large expense to fairness [5]. As a result, such rela-
tively single-faceted approaches cannot provide the high-
est fairness and system throughput at the same time.

Our new scheduling algorithm exploits differences in
threads’ memory access behavior to optimize for both
system throughput and fairness, based on several key
observations. First, prior studies have demonstrated
the system throughput benefits of prioritizing “light”
(i.e., memory-non-intensive) threads over “heavy” (i.e.,
memory-intensive) threads [5, 14, 26]. Memory-non-
intensive threads only seldom generate memory requests
and have greater potential for making fast progress in the
processor. Therefore, to maximize system throughput, it
is clear that a memory scheduling algorithm should pri-
oritize memory-non-intensive threads. Doing so also does
not degrade fairness because light threads rarely interfere
with heavy threads.

Second, we observe that unfairness problems usually
stem from interference among memory-intensive threads.
The most memory-intensive threads become vulnerable
to starvation when less memory-intensive threads are
statically prioritized over them (e.g., by forming a prior-
ity order based on a metric that corresponds to memory
intensity, as done in [5]). As a result, the most memory-
intensive threads can experience disproportionately large
slowdowns which lead to unfairness.

Third, we observe that periodically shuffling the pri-
ority order among memory-intensive threads allows each
thread a chance to gain prioritized access to the mem-
ory banks, thereby reducing unfairness. However, how to
best perform the shuffling is not obvious. We find that
shuffling in a symmetric manner, which gives each thread
equal possibility to be at all priority levels, causes unfair-
ness because not all threads are equal in terms of their
propensity to interfere with others; some threads are
more likely to slow down other threads. Hence, thread
priority order should be shuffled such that threads with
higher propensity to interfere with others have a smaller
chance of being at higher priority.

Finally, as previous work has shown, it is desirable
that scheduling decisions are made in a synchronized
manner across all banks [5, 14, 12], so that concurrent
requests of each thread are serviced in parallel, without
being serialized due to interference from other threads.

1

Overview of Mechanism. Based on the above ob-
servations, we propose Thread Cluster Memory schedul-
ing (TCM), an algorithm that detects and exploits differ-
ences in memory access behavior across threads. TCM
dynamically groups threads into two clusters based on
their memory intensity: a latency-sensitive cluster com-
prising memory-non-intensive threads and a bandwidth-
sensitive cluster comprising memory-intensive threads.

Threads in the latency-sensitive cluster are always
prioritized over threads in the bandwidth-sensitive clus-
ter to maximize system throughput. To ensure that no
thread is disproportionately slowed down, TCM period-
ically shuffles the priority order among threads in the
bandwidth-sensitive cluster.

TCM’s intelligent shuffling algorithm ensures that
threads that are likely to slow down others spend less
time at higher priority levels, thereby reducing the prob-
ability of large slowdowns. By having a sufficiently long
shuffling period and performing shuffling in a synchro-
nized manner across all banks, threads are able to ex-
ploit both row-buffer locality and bank-level parallelism.
Combined, these mechanisms allow TCM to outperform
any previously proposed memory scheduler in terms of
both fairness and system throughput.

Contributions. In this paper, we make the following
contributions:

• We introduce the notion of thread clusters for mem-
ory scheduling, which are groups of threads with sim-
ilar memory intensity. We show that by dynamically
dividing threads into two separate clusters (latency-
sensitive and bandwidth-sensitive), a memory schedul-
ing algorithm can satisfy the disparate memory needs
of both clusters simultaneously. We propose a simple,
dynamic clustering algorithm that serves this purpose.

• We show that threads in different clusters should be
treated differently to maximize both system through-
put and fairness. We observe that prioritizing latency-
sensitive threads leads to high system throughput,
while periodically perturbing the prioritization order
among bandwidth-sensitive threads is critical for fair-
ness.

• We propose a new metric for characterizing a thread’s
memory access behavior, called niceness, which re-
flects a thread’s susceptibility to interference from
other threads. We observe that threads with high row-
buffer locality are less nice to others, whereas threads
with high bank-level parallelism are nicer, and monitor
these metrics to compute thread niceness.

• Based on the proposed notion of niceness, we in-
troduce a shuffling algorithm, called insertion shuf-
fle, which periodically perturbs the priority order-
ing of threads in the bandwidth-sensitive cluster in
a way that minimizes inter-thread interference by en-
suring nicer threads are prioritized more often over
others. This reduces unfairness within the bandwidth-
sensitive cluster.

• We compare TCM against four previously proposed
memory scheduling algorithms and show that it out-
performs all existing memory schedulers in terms
of both fairness (maximum slowdown) and system
throughput (weighted speedup) for a 24-core system
where the results are averaged across 96 workloads of
varying levels of memory intensity. Compared to AT-

LAS [5], the best previous algorithm in terms of system
throughput, TCM improves system throughput and
reduces maximum slowdown by 4.6%/38.6%. Com-
pared to PAR-BS [14], the best previous algorithm in
terms of fairness, TCM improves system throughput
and reduces maximum slowdown by 7.6%/4.6%.

• We show that TCM is configurable and can be tuned to
smoothly and robustly transition between fairness and
system throughput goals, something which previous
schedulers, optimized for a single goal, are unable to
do.

2. Background and Motivation
2.1. Defining Memory Access Behavior

TCM defines a thread’s memory access behavior using
three components as identified by previous work: mem-
ory intensity [5], bank-level parallelism [14], and row-
buffer locality [19].

Memory intensity is the frequency at which a thread
misses in the last-level cache and generates memory re-
quests. It is measured in the unit of (cache) misses per
thousand instructions or MPKI.

Memory is not a monolithic resource but consists of
multiple memory banks that can be accessed in parallel.
It is the existence of multiple memory banks and their
particular internal organization that give rise to bank-
level parallelism and row-buffer locality, respectively.

Bank-level parallelism (BLP) of a thread is the average
number of banks to which there are outstanding memory
requests, when the thread has at least one outstanding
request. In the extreme case where a thread concurrently
accesses all banks at all times, its bank-level parallelism
would be equal to the total number of banks in the mem-
ory subsystem.

A memory bank is internally organized as a two-
dimensional structure consisting of rows and columns.
The column is the smallest addressable unit of memory
and multiple columns make up a single row. When a
thread accesses a particular column within a particular
row, the memory bank places that row in a small internal
memory called the row-buffer. If a subsequent memory
request accesses the same row that is in the row-buffer, it
can be serviced much more quickly; this is called a row-
buffer hit. The row-buffer locality (RBL) of a thread is
the average hit-rate of the row-buffer across all banks.

2.2. Latency- vs. Bandwidth-Sensitive Threads
From a memory intensity perspective, we classify

threads into one of two distinct groups: latency-sensitive
or bandwidth-sensitive. Latency-sensitive threads spend
most of their time at the processor and issue memory
requests sparsely. Even though the number of gener-
ated memory requests is low, the performance of latency-
sensitive threads is very sensitive to the latency of the
memory subsystem; every additional cycle spent waiting
on memory is a wasted cycle that could have been spent
on computation. Bandwidth-sensitive threads experience
frequent cache misses and thus spend a large portion of
their time waiting on pending memory requests. There-
fore, their rate of progress is greatly affected by the
throughput of the memory subsystem. Even if a memory
request is quickly serviced, subsequent memory requests
will once again stall execution.

2

2.3. Our Goal: Best of both System Throughput
and Fairness

A multiprogrammed workload can consist of a di-
verse mix of threads including those which are latency-
sensitive or bandwidth-sensitive. A well-designed mem-
ory scheduling algorithm should strive to maximize over-
all system throughput, but at the same time bound
the worst case slowdown experienced by any one of the
threads. These two goals are often conflicting and form
a trade-off between system throughput and fairness.

Intuitively, latency-sensitive threads (which can-
not tolerate high memory latencies) should be priori-
tized over others to improve system throughput, while
bandwidth-sensitive threads (which can tolerate high
memory latencies) should be scheduled in a fairness-
aware manner to limit the amount of slowdown they ex-
perience. Applying a single memory scheduling policy
across all threads, an approach commonly taken by ex-
isting memory scheduling algorithms, cannot address the
disparate needs of different threads. Therefore, existing
algorithms are unable to decouple the system throughput
and fairness goals and achieve them simultaneously.

To illustrate this problem, Figure 1 compares the
unfairness (maximum thread slowdown compared to
when run alone on the system) and system through-
put (weighted speedup) of four state-of-the-art memory
scheduling algorithms (FR-FCFS [19], STFM [13], PAR-
BS [14], and ATLAS [5]) averaged over 96 workloads.1

8.0 8.2 8.4 8.6 8.8 9.0
System throughput

2

4

6

8

10

12

14

16

M
ax

im
um

 s
lo

w
do

w
n

---High
er

Pe
rfo

rm
an

ce

an
d F

air
ne

ss

FRFCFS
STFM
PAR_BS
ATLAS

Figure 1. Performance and fairness of state-of-the-art scheduling
algorithms. Lower right corner is the ideal operation point.

An ideal memory scheduling algorithm would be
placed towards the lower (better fairness) right (better
system throughput) part of the plot in Figure 1. Un-
fortunately, no previous scheduling algorithm achieves
the best fairness and the best system throughput at the
same time. While PAR-BS provides the best fairness,
it has 2.9% lower system throughput than the highest-
performance algorithm, ATLAS. On the other hand, AT-
LAS provides the highest system throughput but its max-
imum slowdown is 55.3% higher than the most fair algo-
rithm, PAR-BS. Hence, existing scheduling algorithms
are good at either system throughput or fairness, but
not both. Our goal in this paper is to design a mem-
ory scheduling algorithm that achieves the best of both
worlds: highest system throughput and highest fairness
at the same time.

1Our evaluation methodology and baseline system configuration
are described in Section 6.

2.4. Varying Susceptibility of Bandwidth-
Sensitive Threads to Interference

We motivate the importance of differentiating between
threads’ memory access behavior by showing that not all
bandwidth-sensitive threads are equal in their vulnerabil-
ity to interference. To illustrate this point, we ran exper-
iments with two bandwidth-sensitive threads that were
specifically constructed to have the same memory inten-
sity, but very different bank-level parallelism and row-
buffer locality. As shown in Table 1, the random-access
thread has low row-buffer locality and high bank-level
parallelism, while the streaming thread has low bank-level
parallelism and high row-buffer locality.

Memory access behavior
Memory
intensity

Bank-level
parallelism

Row-buffer
locality

Random-
access

High
(100 MPKI)

High
(72.7% of max.)

Low
(0.1%)

Streaming
High

(100 MPKI)
Low

(0.3% of max.)
High
(99%)

Table 1. Two examples of bandwidth-sensitive threads: random-
access vs. streaming

Which of the two threads is more prone to large slow-
downs when run together? Figure 2 shows the slow-
down experienced by these two threads for two different
scheduling policies: one where the random-access thread
is strictly prioritized over the streaming thread and one
where the streaming thread is strictly prioritized over the
random-access thread. Clearly, as shown in Figure 2(b),
the random-access thread is more susceptible to being
slowed down since it experiences a slowdown of more
than 11x when it is deprioritized, which is greater than
the slowdown of the streaming thread when it is deprior-
itized.

random-access streaming0
2
4
6
8

10
12
14

Sl
ow

do
w
n

(a) Strictly prioritizing random-
access thread

random-access streaming0
2
4
6
8

10
12
14

Sl
ow

do
w
n

(b) Strictly prioritizing stream-
ing thread

Figure 2. Effect of prioritization choices between the random-
access thread and the streaming thread

This is due to two reasons. First, the streaming thread
generates a steady stream of requests to a bank at a given
time, leading to temporary denial of service to any thread
that accesses the same bank. Second, a thread with high
bank-level parallelism is more susceptible to memory in-
terference from another thread since a bank conflict leads
to the loss of bank-level parallelism, resulting in the se-
rialization of otherwise parallel requests. Therefore, all
else being the same, a scheduling algorithm should fa-
vor the thread with higher bank-level parallelism when
distributing the memory bandwidth among bandwidth-
sensitive threads. We will use this insight to develop a
new memory scheduling algorithm that intelligently pri-
oritizes between bandwidth-sensitive threads.

3

3. Mechanism

3.1. Overview of TCM

Clustering Threads. To accommodate the dis-
parate memory needs of concurrently executing threads
sharing the memory, TCM dynamically groups threads
into two clusters based on their memory intensity: a
latency-sensitive cluster containing lower memory inten-
sity threads and a bandwidth-sensitive cluster containing
higher memory intensity threads. By employing different
scheduling policies within each cluster, TCM is able to
decouple the system throughput and fairness goals and
optimize for each one separately.

Prioritizing the Latency-Sensitive Cluster.
Memory requests from threads in the latency-sensitive
cluster are always strictly prioritized over requests
from threads in the bandwidth-sensitive cluster. As
shown previously [5, 14, 26], prioritizing latency-sensitive
threads (which access memory infrequently) increases
overall system throughput, because they have greater
potential for making progress. Servicing memory re-
quests from such “light” threads allows them to con-
tinue with their computation. To avoid starvation is-
sues and ensure sufficient bandwidth is left over for the
bandwidth-sensitive cluster, TCM limits the number of
threads placed in the latency-sensitive cluster, such that
they consume only a small fraction of the total memory
bandwidth.

Different Clusters, Different Policies. To achieve
high system throughput and to minimize unfairness,
TCM employs a different scheduling policy for each clus-
ter. The policy for the latency-sensitive cluster is geared
towards high performance and low latency, since threads
in that cluster have the greatest potential for making fast
progress if their memory requests are serviced promptly.
By contrast, the policy for the bandwidth-sensitive clus-
ter is geared towards maximizing fairness, since threads
in that cluster have heavy memory bandwidth demand
and are susceptible to detrimental slowdowns if not given
a sufficient share of the memory bandwidth.

Within the latency-sensitive cluster, TCM enforces a
strict priority, with the least memory-intensive thread re-
ceiving the highest priority. Such a policy ensures that
requests from threads spending most of their time at the
processor (i.e., accessing memory infrequently), are al-
ways promptly serviced; this allows them to quickly re-
sume their computation and ultimately make large con-
tributions to overall system throughput.

Within the bandwidth-sensitive cluster, threads share
the remaining memory bandwidth, so that no thread is
disproportionately slowed down or, even worse, starved.
TCM accomplishes this by periodically shuffling the pri-
ority ordering among the threads in the bandwidth-
sensitive cluster. To minimize thread slowdown, TCM in-
troduces a new shuffling algorithm, called insertion shuf-
fle, that tries to reduce the amount of inter-thread inter-
ference and at the same time maximize row-buffer local-
ity and bank-level parallelism. To monitor inter-thread
interference, we introduce a new composite metric, called
niceness, which captures both a thread’s propensity to
cause interference and its susceptibility to interference.
TCM monitors the niceness values of threads and adapts
its shuffling decisions to ensure that nice threads are more

likely to receive higher priority. Niceness and the effects
of shuffling algorithms for the bandwidth-sensitive clus-
ter are discussed in Section 3.3.

3.2. Grouping Threads into Two Clusters

TCM periodically ranks all threads based on their
memory intensity at fixed-length time intervals called
quanta. The least memory-intensive threads are placed
in the latency-sensitive cluster while the remaining
threads are placed in the bandwidth-sensitive cluster.
Throughout each quantum TCM monitors the memory
bandwidth usage of each thread in terms of the memory
service time it has received: summed across all banks in
the memory subsystem, a thread’s memory service time
is defined to be the number of cycles that the banks were
kept busy servicing its requests. The total memory band-
width usage is defined to be the sum of each thread’s
memory bandwidth usage across all threads.

TCM groups threads into two clusters at the begin-
ning of every quantum by using a parameter called Clus-
terThresh to specify the amount of bandwidth to be con-
sumed by the latency-sensitive cluster (as a fraction of
the previous quantum’s total memory bandwidth usage).
Our experimental results show that for a system with
N threads, a ClusterThresh value ranging from 2/N to
6/N, i.e., forming the latency-sensitive cluster such that
it consumes 2/N to 6/N of the total memory bandwidth
usage can provide a smooth transition between different
good performance-fairness trade-off points. A thorough
analysis of the effect of different ClusterThresh values is
presented in Section 7.1.

Grouping of threads into clusters happens in a syn-
chronized manner across all memory controllers to bet-
ter exploit bank-level parallelism [5, 14]. In order for
all memory controllers to agree upon the same thread
clustering, they periodically exchange information, every
quantum. The length of our time quantum is set to one
million cycles, which, based on experimental results, is
short enough to detect phase changes in the memory be-
havior of threads and long enough to minimize the com-
munication overhead of synchronizing multiple memory
controllers. Algorithm 1 shows the pseudocode for the
thread clustering algorithm used by TCM.

3.3. Bandwidth-Sensitive Cluster: Fairly
Sharing the Memory

Bandwidth-sensitive threads should fairly share mem-
ory bandwidth to ensure no single thread is dispropor-
tionately slowed down. To achieve this, the thread prior-
ity order for the bandwidth-sensitive cluster needs to be
periodically shuffled. As mentioned earlier, to preserve
bank-level parallelism, this shuffling needs to happen in a
synchronized manner across all memory banks, such that
at any point in time all banks agree on a global thread
priority order.

The Problem with Round-Robin. Shuffling
the priority order in a round-robin fashion among
bandwidth-sensitive threads would appear to be a simple
solution to this problem, but our experiments revealed
two problems. The first problem is that a round-robin
shuffling algorithm is oblivious to inter-thread interfer-
ence: it is not aware of which threads are more likely

4

Algorithm 1 Clustering Algorithm
Initialization:
LatencyCluster ← ∅; BandwidthCluster ← ∅
Unclassified ← {threadi : 1 ≤ i ≤ Nthreads}
SumBW ← 0

Per-thread parameters:
·MPKI i: Misses per kiloinstruction of threadi

· BWusagei: BW used by threadi during previous quantum

Clustering: (beginning of quantum)
TotalBWusage ←

∑
i BWusagei

while Unclassified 6= ∅ do
j = arg min

i
MPKI i //find thread with lowest MPKI

SumBW ← SumBW + BWusagej
if SumBW ≤ ClusterThresh · TotalBWusage then

Unclassified ← Unclassified − {threadj}
LatencyCluster ← LatencyCluster ∪ {threadj}

else
break

end if
end while

BandwidthCluster ← Unclassified

Algorithm 2 Insertion Shuffling Algorithm
Definition:
·N : number of threads in bandwidth-sensitive cluster
· threads[N]: array of bandwidth-sensitive threads;

we define a thread’s rank as its position in the array
(Nth position occupied by highest ranked thread)

· incSort(i, j): sort subarray threads[i..j] in inc. niceness
· decSort(i, j): sort subarray threads[i..j] in dec. niceness

Initialization: (beginning of quantum)
incSort(1, N) //nicest thread is highest ranked

Shuffling: (throughout quantum)
while true do

//each iteration occurs every ShuffleInterval
for i = N to 1 do

decSort(i, N)
end for
//each iteration occurs every ShuffleInterval
for i = 1 to N do

incSort(1, i)
end for

end while

to slow down others. The second problem is more sub-
tle and is tied to the way memory banks handle thread
priorities: when choosing which memory request to ser-
vice next, each bank first considers the requests from the
highest priority thread according to the current priority
order. If that thread has no requests, then the next high-
est priority thread is considered and so forth. As a result,
a thread does not have to be necessarily at the top prior-
ity position to get some of its requests serviced. In other
words, memory service “leaks” from highest priority lev-
els to lower ones. In fact, in our experiments we often
encountered cases where memory service was “leaked” all
the way to the fifth or sixth highest priority thread in a
24-thread system.

This memory service “leakage” effect is the second rea-
son the simple round-robin algorithm performs poorly.
In particular, the problem with round-robin is that a
thread always maintains its relative position with respect
to other threads. This means “lucky” threads scheduled
behind “leaky” threads will consistently receive more ser-
vice than other threads that are scheduled behind “non-
leaky” threads, resulting in unfairness. This problem be-
comes more evident if one considers the different mem-
ory access behavior of threads. For instance, a stream-
ing thread that exhibits high row-buffer locality and low
bank-level parallelism will severely leak memory service
time at all memory banks except for the single bank it is
currently accessing.

Thread Niceness and Insertion Shuffle. To alle-
viate the problems stemming from memory service “leak-
age” and to minimize inter-thread interference, TCM em-
ploys a new shuffling algorithm, called insertion shuffle2,
that reduces memory interference and increases fairness
by exploiting heterogeneity in the bank-level parallelism
and row-buffer locality among different threads.

We introduce a new metric, called niceness, that cap-

2The name is derived from the similarity to the insertion sort
algorithm. Each intermediate state during an insertion sort corre-
sponds to one of the permutations in insertion shuffle.

tures a thread’s propensity to cause interference and its
susceptibility to interference. A thread with high row-
buffer locality is likely to make consecutive accesses to
a small number of banks and cause them to be con-
gested. Under such circumstances, another thread with
high bank-level parallelism becomes vulnerable to mem-
ory interference since it is subject to transient high loads
at any of the many banks it is concurrently accessing.
Hence, a thread with high bank-level parallelism is fragile
(more likely to be interfered by others), whereas one with
high row-buffer locality is hostile (more likely to cause
interference to others), as we have empirically demon-
strated in Section 2.4. We define a thread’s niceness to
increase with the relative fragility of a thread and to de-
crease with its relative hostility. Within the bandwidth-
sensitive cluster, if thread i has the bthi highest bank-level
parallelism and the rthi highest row-buffer locality, we for-
mally define its niceness as follows: Nicenessi ≡ bi − ri

Every quantum, threads are sorted based on their
niceness value to yield a ranking, where the nicest thread
receives the highest rank. Subsequently, every ShuffleIn-
terval cycles, the insertion shuffle algorithm perturbs this
ranking in a way that reduces the time during which the
least nice threads are prioritized over the nicest threads,
ultimately resulting in less interference. Figure 3 visual-
izes successive permutations of the priority order for both
the round-robin and the insertion shuffle algorithms for
four threads. It is interesting to note that in the case of
insertion shuffle, the least nice thread spends most of its
time at the lowest priority position, while the remaining
nicer threads are at higher priorities and are thus able
to synergistically leak their memory service time among
themselves. Algorithm 2 shows the pseudocode for the
insertion shuffle algorithm. Note that the pseudocode
does not reflect the actual hardware implementation—
the implementation is simple because the permutation is
regular.

Handling Threads with Similar Behavior. If
the bandwidth-sensitive cluster consists of homogeneous

5

(a) Round-robin shuffle (b) Insertion shuffle

Figure 3. Visualizing two shuffling algorithms

threads with very similar memory behavior, TCM dis-
ables insertion shuffle and falls back to random shuffle to
prevent unfair treatment of threads based on marginal
differences in niceness values. To do this, TCM inspects
whether threads exhibit a sufficient amount of diver-
sity in memory access behavior before applying insertion
shuffling. First, TCM calculates the largest difference be-
tween any two threads in terms of bank-level parallelism
(max ∆BLP) and row-buffer locality (max ∆RBL). Sec-
ond, if both values exceed a certain fraction (ShuffleAlgo-
Thresh) of their maximum attainable values, then inser-
tion shuffling is applied. Specifically, max ∆BLP must
exceed ShuffleAlgoThresh × NumBanks and max ∆RBL
must exceed ShuffleAlgoThresh. In our experiments we
set ShuffleAlgoThresh to be 0.1, which intuitively means
that TCM falls back to random shuffling if BLP and RBL
differ by less than 10% across all threads in the system.

Random Shuffling. When random shuffling is em-
ployed, a random permutation of threads is generated
every shuffling interval which serves as the thread rank-
ing for the next shuffling interval. In contrast to inser-
tion shuffling, random shuffling is oblivious to thread
niceness and does not follow a predetermined shuffling
pattern. Random shuffling is also different from round-
robin in that it does not preserve the relative position of
threads across shuffles, thereby preventing cases where a
nice thread remains stuck behind a highly interfering or
malicious thread.

The major advantage of random shuffling over inser-
tion shuffling is the significantly lower implementation
complexity; it does not require the monitoring of BLP
and RBL or the calculation of niceness values for each
thread. However, random shuffling pays the penalty of
increased unfairness, since it is unable to successfully
minimize the interference among heterogeneous threads
with large differences in niceness, as we empirically show
in Section 7.3. TCM can be forced to always em-
ploy random shuffling by setting ShuffleAlgoThresh to 1.
Section 7.5 provides sensitivity results for ShuffleAlgo-
Thresh; Section 7.3 evaluates the effect of different shuf-
fling algorithms.

3.4. Monitoring Memory Access Behavior of
Threads

To implement TCM, the L2 cache and memory con-
troller collect statistics for each thread by continu-
ously monitoring its memory intensity, row-buffer local-
ity (RBL), and bank-level parallelism (BLP) over time. If
there are multiple memory controllers, this information is

sent to a centralized meta-controller at the end of a quan-
tum, similarly to what is done in ATLAS [5]. The meta-
controller aggregates the information, computes thread
clusters and ranks as described previously, and commu-
nicates them to each of the memory controllers to ensure
that the thread prioritization order is the same in all
controllers.

Memory intensity. A thread’s L2 MPKI (L2 cache
misses per kiloinstruction) is computed at the L2 cache
controller and serves as the measure of memory intensity.

Row-buffer locality. Each memory controller esti-
mates the inherent row-buffer locality of a thread. Do-
ing so requires the memory controller to keep track of
a shadow row-buffer index [11] for each thread for each
bank, which keeps track of the row that would have been
open in that bank if the thread were running alone on
the system. RBL is simply calculated as the number of
shadow row-buffer hits divided by the number of accesses
during a quantum.

Bank-level parallelism. Each memory controller
counts the number of banks that have at least one
memory request from a thread as an estimate of the
thread’s instantaneous BLP had it been running alone.
Throughout a quantum, each controller takes samples of
a thread’s instantaneous BLP and computes the average
BLP for that thread, which is sent to the meta-controller
at the end of the quantum. The meta-controller then
computes the average BLP for each thread across all
memory controllers.

3.5. Summary: Thread Cluster Memory
Scheduling (TCM) Prioritization Rules

Algorithm 3 summarizes how TCM prioritizes mem-
ory requests from threads. When requests from multi-
ple threads compete to access a bank, the higher ranked
thread (where ranking depends on the thread cluster)
is prioritized as we have described previously. If two re-
quests share the same priority, row-buffer hit requests are
favored. All else being equal, older requests are favored.

3.6. System Software Support
Thread Weights. TCM supports thread weights (or

priorities) as assigned by the operating system, such that
threads with larger weights are prioritized in the memory.
Unlike previous scheduling algorithms, TCM prioritizes a
thread based on its weight while also striving to preserve
the performance of other threads. Given a thread with
a very large thread weight, blindly prioritizing it over
all other threads without regard to both its and others’

6

Algorithm 3 TCM: Request prioritization

1. Highest-rank first: Requests from higher ranked threads are prioritized.
− Latency-sensitive threads are ranked higher than bandwidth-sensitive threads (Section 3.1).
− Within latency-sensitive cluster: lower-MPKI threads are ranked higher than others (Section 3.1).
− Within bandwidth-sensitive cluster: rank order is determined by insertion shuffling (Section 3.3).

2. Row-hit first: Row-buffer hit requests are prioritized over others.

3. Oldest first: Older requests are prioritized over others.

memory access behavior would lead to destruction of the
performance of all other threads and, as a result, severely
degrade system throughput and fairness.

TCM solves this problem by honoring thread weights
within the context of thread clusters. For example,
even if the operating system assigns a large weight to
a bandwidth-sensitive thread, TCM does not priori-
tize it over the latency-sensitive threads because doing
so would significantly degrade the performance of all
latency-sensitive threads without significantly improving
the performance of the higher-weight thread (as latency-
sensitive threads rarely interfere with it).

To enforce thread weights within the latency-sensitive
cluster, TCM scales down each thread’s MPKI by its
weight. Thus, a thread with a larger weight is more likely
to be ranked higher than other latency-sensitive threads
because its scaled MPKI appears to be low. Within the
bandwidth-sensitive cluster, TCM implements weighted
shuffling where the time a thread spends at the highest
priority level is proportional to its weight.

Fairness/Performance Trade-off Knob. TCM’s
ClusterThresh is exposed to the system software such
that the system software can select a value that favors
its desired metric. We discuss the effect of ClusterThresh
on fairness and performance in Section 7.1.

3.7. Multithreaded Workloads
Multithreaded applications can be broadly categorized

into two types: those whose threads execute mostly in-
dependent of each other and those whose threads require
frequent synchronization. Since the first type of multi-
threaded applications resemble, to a certain extent, mul-
tiprogrammed workloads, they are expected to perform
well under TCM. In contrast, the execution time of the
second type of multithreaded applications is determined
by slow-running critical threads [22, 1, 2]. For such ap-
plications, TCM can be extended to incorporate the no-
tion of thread criticality to properly identify and priori-
tize critical threads. Furthermore, we envision TCM to
be applicable to composite workloads that consist of an
assortment of different applications (e.g., multiple mul-
tithreaded applications), by reducing inter-application
memory interference.

4. Implementation and Hardware Cost
TCM requires hardware support to 1) monitor

threads’ memory access behavior and 2) schedule mem-
ory requests as described. Table 2 shows the major hard-
ware storage cost incurred in each memory controller to
monitor threads’ memory access behavior. The required
additional storage cost within a controller on our base-
line 24-core system is less than 4 Kbits. (If pure random
shuffling is employed, it is less than 0.5 Kbits.) TCM
requires additional logic to rank threads by aggregating

monitored thread metrics. Both ranking and aggregation
logic are utilized only at the end of each quantum and
are not on the critical path of the processor. Ranking
can be implemented using priority encoders, as was done
in ATLAS [5].

At the end of every quantum, a central meta-controller
(similar to ATLAS [5]) gathers data from every memory
controller to cluster threads and to calculate niceness.
Subsequently, the central meta-controller broadcasts the
results to all the memory controllers so that they can
make consistent scheduling decisions throughout the next
quantum. At any given point in time, each memory con-
troller prioritizes threads according to their ranking (Al-
gorithm 3). Even though the ranking of the bandwidth-
sensitive cluster is shuffled, it is consistent for all memory
controllers since shuffling is deterministic and occurs at
regular time intervals.

The meta-controller exists only to reduce hardware
complexity by consolidating parts of the processing logic
at a single location rather than replicating it across sepa-
rate memory controllers. Although the meta-controller is
centralized, it is unlikely to impact scalability since only
small amounts of data (4 bytes per hardware context per
controller) are exchanged infrequently (once every million
cycles). Furthermore, the communication is not latency
critical because the previous ranking can be used in the
controllers while the next ranking is being computed or
transferred.

5. Related Work: Comparison with
Other Memory Schedulers

We describe related work on memory scheduling and
qualitatively compare TCM to several previous designs.
Section 7 compares TCM quantitatively with four state-
of-the-art schedulers [19, 13, 14, 5].

Thread-Unaware Memory Schedulers. Memory
controller designs that do not distinguish between dif-
ferent threads [28, 19, 25, 9, 3, 20, 15] have been ex-
amined within the context of single-threaded, vector, or
streaming architectures. The FR-FCFS scheduling pol-
icy [19] that prioritizes row-hit requests over other re-
quests is commonly employed in existing processors. Re-
cent work [24] explored reducing the cost of the FR-FCFS
design for accelerators. The goal of these policies is to
maximize DRAM throughput. Thread-unaware schedul-
ing policies have been shown to be low-performance and
prone to starvation when multiple competing threads
share the memory controller in general-purpose multi-
core/multithreaded systems [11, 16, 18, 4, 13, 14, 5].

Thread-Aware Memory Schedulers. Recent
work designed thread-aware memory schedulers with
the goal of improving fairness and providing QoS. Fair
queueing memory schedulers [16, 18] adapted variants
of the fair queueing algorithm from computer networks

7

Memory intensity
Storage Function Size (bits)
MPKI-counter

A thread’s cache misses per kilo-instruction Nthread · log2 MPKImax = 240
(monitored by processor)

Bank-level parallelism
Storage Function Size (bits)
Load-counter Number of outstanding thread requests to a bank Nthread · Nbank · log2 Queuemax = 576
BLP-counter Number of banks for which load-counter > 0 Nthread · log2 Nbank = 48
BLPaverage Average value of load-counter Nthread · log2 Nbank = 48

Row-buffer locality
Storage Function Size (bits)
Shadow row-buffer index Index of a thread’s last accessed row Nthread · Nbank · log2 Nrows = 1344
Shadow row-buffer hits Number of row-buffer hits if a thread were running alone Nthread · Nbank · log2 Countmax = 1536

Table 2. Storage required for monitoring threads’ memory access behavior

Processor pipeline 128-entry instruction window
Fetch/Exec/Commit width 3 instructions per cycle in each core; only 1 can be a memory operation
L1 Caches 32 K-byte per core, 4-way set associative, 32-byte block size
L2 Caches 512 K-byte per core, 8-way set associative, 32-byte block size
DRAM controller (on-chip) 128-entry request buffer, 64-entry write data buffer, reads prioritized over writes
DRAM chip parameters Micron DDR2-800 timing parameters (see [10])

tCL=15ns, tRCD=15ns, tRP =15ns, BL/2=10ns; 4 banks, 2K-byte row-buffer per bank
DIMM configuration Single-rank, 8 DRAM chips put together on a DIMM
Round-trip L2 miss latency For a 32-byte cache block

uncontended: row-buffer hit: 40ns (200 cycles), closed: 60ns (300 cycles), conflict: 80ns (400 cycles)
Cores and DRAM controllers 24 cores, 4 independent DRAM controllers (1 controller has 6.4 GB/s peak DRAM bandwidth)

Table 3. Baseline CMP and memory system configuration

to build a memory scheduler that provides QoS to each
thread. Stall-time fair memory scheduler (STFM) [13]
uses heuristics to estimate the slowdown of each thread,
compared to when it is run alone, and prioritizes the
thread that has been slowed down the most. These al-
gorithms aim to maximize fairness, although they can
also lead throughput improvements by improving system
utilization.

Parallelism-aware batch scheduling (PAR-BS) [14]
aims to achieve a balance between fairness and through-
put. To avoid unfairness, PAR-BS groups memory re-
quests into batches and prioritizes older batches over
younger ones. To improve system throughput, PAR-BS
prioritizes less-intensive threads over others to exploit
bank-level parallelism. As we will show in Section 7,
PAR-BS’s batching policy implicitly penalizes memory-
non-intensive threads because memory-intensive threads
usually insert many more requests into a batch, lead-
ing to long delays for memory-non-intensive threads and
hence relatively low system throughput.

ATLAS [5] aims to maximize system throughput by
prioritizing threads that have attained the least service
from the memory controllers. However, as shown in [5],
this increase in system throughput comes at the cost of
fairness because the most memory-intensive threads re-
ceive the lowest priority and incur very high slowdowns.

Ipek et al. [4] leverage machine learning techniques
to implement memory scheduling policies that maximize
DRAM throughput. Zhu and Zhang [27] describe mem-
ory scheduling optimizations for SMT processors to im-
prove DRAM throughput. Neither of these consider fair-
ness or system throughput in the presence of competing
threads. Lee et al. [6] describe a mechanism to adap-
tively prioritize between prefetch and demand requests in
a memory scheduler; their mechanism can be combined
with ours.

Comparison with TCM. Overall, previous thread-
aware memory scheduling algorithms have three major
shortcomings, which we address in TCM. First, they
are mainly biased towards either fairness or system
throughput—no previous algorithm achieves the best
system throughput and fairness at the same time. We
will show that TCM achieves this by employing multiple
different prioritization algorithms, each tailored for sys-
tem throughput or fairness. Second, previous algorithms
do not provide a knob that allows a smooth and grad-
ual trade-off between system throughput and fairness.
TCM’s ability to group threads into two clusters with dif-
ferent policies optimized for fairness or system through-
put allows it to trade off between fairness and system
throughput by varying the clustering threshold. Third,
previous algorithms do not distinguish different threads’
propensity for causing interference to others. As a result,
they cannot customize their prioritization policies to the
specific needs/behavior of different threads. TCM, by
tracking memory access characteristics of threads, deter-
mines a prioritization order that favors threads that are
likely to cause less interference to others, leading to im-
provements in fairness and system throughput.

6. Methodology and Metrics
We evaluate TCM using an in-house cycle-level x86

CMP simulator the front-end of which is based on Pin [7].
The memory subsystem is modeled using DDR2 tim-
ing parameters [10], which were verified using DRAM-
Sim [23] and measurements from real hardware. Table
3 shows the major DRAM and processor parameters in
the baseline configuration. Unless stated otherwise, we
assume a 24-core CMP with 4 memory controllers.

Workloads. We use the SPEC CPU2006 benchmarks
for evaluation. We compiled each benchmark using gcc
4.1.2 with -O3 optimizations and chose a representative
simulation phase using PinPoints [17]. From these bench-
marks, we formed multiprogrammed workloads of vary-
ing memory intensity, which were run for 100 million cy-
cles.

8

Benchmark MPKI RBL BLP # Benchmark MPKI RBL BLP

1 429.mcf 97.38 42.41% 6.20 14 464.h264ref 2.30 90.34% 1.19
2 462.libquantum 50.00 99.22% 1.05 15 435.gromacs 0.98 89.25% 1.54
3 437.leslie3d 49.35 91.18% 1.51 16 445.gobmk 0.77 65.76% 1.52
4 450.soplex 46.70 88.84% 1.79 17 458.sjeng 0.39 12.47% 1.57
5 470.lbm 43.52 95.17% 2.82 18 403.gcc 0.34 70.92% 1.96
6 459.GemsFDTD 31.79 56.22% 3.15 19 447.dealII 0.21 86.83% 1.22
7 482.sphinx3 24.94 84.78% 2.24 20 481.wrf 0.21 92.34% 1.23
8 483.xalancbmk 22.95 72.01% 2.35 21 444.namd 0.19 93.05% 1.16
9 471.omnetpp 21.63 45.71% 4.37 22 400.perlbench 0.12 81.59% 1.66
10 436.cactusADM 12.01 19.05% 1.43 23 454.calculix 0.10 88.71% 1.20
11 473.astar 9.26 75.24% 1.61 24 465.tonto 0.03 88.60% 1.81
12 456.hmmer 5.66 34.42% 1.25 25 453.povray 0.01 87.22% 1.43
13 401.bzip2 3.98 71.44% 1.87

Table 4. Individual benchmark characteristics (MPKI: Misses per kiloinstruction, RBL: Row-buffer locality, BLP: Bank-level parallelism).

Workload Memory-intensive benchmarks Memory-non-intensive benchmarks

A
calculix(3), dealII, gcc, gromacs(2), mcf, soplex(2), lbm(2), leslie, sphinx3,
namd, perl, povray, sjeng, tonto xalancbmk, omnetpp, astar, hmmer(2)

B
gcc(2), gobmk(3), namd(2), bzip(2), cactusADM(3), GemsFDTD,
perl(3), sjeng, wrf h264ref(2), hmmer, libquantum(2), sphinx3

C
calculix(2), dealII(2), gromacs(2), namd, GemsFDTD(2), libquantum(3), cactusADM,
perl(2), povray, tonto, wrf astar, omnetpp, bzip, soplex(3)

D
calculix, dealII, gcc, gromacs, perl, omnetpp, bzip2(2), h264ref, cactusADM, astar,
povray(2), sjeng(2), tonto(3) soplex, lbm(2), leslie, xalancbmk(2)

Table 5. Four representative workloads (figure in parentheses is the number of instances spawned)

We classify benchmarks based on their memory inten-
sity; benchmarks with an average MPKI greater than one
are labeled as memory-intensive, while all other bench-
marks are labeled as memory-non-intensive. The mem-
ory intensity of a workload is defined as the fraction
of memory-intensive benchmarks in that workload. Un-
less stated otherwise, results are for workloads that are
50% memory-intensive (i.e., consisting of 50% memory-
intensive benchmarks). For each memory intensity cat-
egory (50%, 75% and 100%), we simulate 32 multipro-
grammed workloads, for a total of 96 workloads.

Evaluation Metrics. We measure system through-
put using weighted speedup [21] and fairness using max-
imum slowdown. We also report harmonic speedup [8],
which measures a balance of fairness and throughput.

Weighted Speedup =
∑
i

IPCshared
i

IPCalone
i

Harmonic Speedup =
N∑

i

IPCalone
i

IPCshare
i

Maximum Slowdown = max
i

IPCalone
i

IPCshared
i

Parameters of Evaluated Schemes. Unless stated
otherwise, we use a BatchCap of 5 for PAR-BS [14],
a QuantumLength of 10M cycles and HistoryWeight of
0.875 for ATLAS [5] and a FairnessThreshold of 1.1 and
IntervalLength of 224 for STFM [13]. FR-FCFS [19] has
no parameters. For TCM we set ClusterThresh to 4/24,
ShuffleInterval to 800, and ShuffleAlgoThresh to 0.1.

7. Results
We compare TCM’s performance against four pre-

viously proposed memory scheduling algorithms, FR-
FCFS [19], STFM [13], PAR-BS [14] (best previous al-
gorithm for fairness) and ATLAS [5] (best previous algo-
rithm for system throughput). Figure 4 shows where each
scheduling algorithms lies with regard to fairness and
system throughput, averaged across all 96 workloads of

varying memory intensity. The lower right part of the fig-
ure corresponds to better fairness (lower maximum slow-
down) and better system throughput (higher weighted
speedup). TCM achieves the best system throughput
and the best fairness, outperforming every algorithm
with regard to weighted speedup, maximum slowdown,
and harmonic speedup (the last shown in Fig. 6(b)).3

8 8.5 9 9.5 10
Weighted speedup

6

8

10

12

14

16

M
ax

im
um

 s
lo

w
do

w
n

FRFCFS
STFM
PAR_BS
ATLAS
TCM

Figure 4. Performance and fairness of TCM vs. other algorithms
across all 96 workloads

Compared to ATLAS, the highest-performance pre-
vious algorithm, TCM provides significantly better fair-
ness (38.6% lower maximum slowdown) and better sys-
tem throughput (4.6% higher weighted speedup). AT-
LAS suffers from unfairness because it is a strict priority-
based scheduling algorithm where the thread with the
lowest priority can access memory only when no other
threads have outstanding memory requests to the same
bank. As a result, the most deprioritized threads (those
which are the most memory-intensive) become vulnera-
ble to starvation and large slowdowns. TCM avoids this
problem by using shuffling to ensure that no memory-
intensive thread is disproportionately deprioritized.

3The performance of TCM as shown here is for just a single
operating point. As we will show in Section 7.1, TCM provides the
flexibility of smoothly transitioning along a wide range of different
performance-fairness trade-off points.

9

Compared to PAR-BS, the most fair previous al-
gorithm, TCM provides significantly better system
throughput (7.6% higher weighted speedup) and better
fairness (4.6% lower maximum slowdown). PAR-BS suf-
fers from relatively low system throughput since mem-
ory requests from memory-intensive threads can block
those from memory-non-intensive threads. PAR-BS pe-
riodically forms batches of memory requests and strictly
prioritizes older batches. Batch formation implicitly fa-
vors memory-intensive threads because such threads have
more requests that can be included in the batch. As a
result, memory-non-intensive threads are slowed down
because their requests (which arrive infrequently) have
to wait for the previous batch of requests—mostly full
of memory-intensive threads’ requests—to be serviced.
TCM avoids this problem by ensuring that memory-
non-intensive threads are always strictly prioritized over
memory-intensive ones.

TCM outperforms STFM in weighted speedup by
11.1% and in maximum slowdown by 23.5%. TCM
also outperforms the thread-unaware FR-FCFS in both
system throughput (12.4%) and maximum slowdown
(50.1%). We conclude that TCM provides the best fair-
ness and system performance across all examined previ-
ous scheduling algorithms.

Individual Workloads. Figure 5 shows individual
results for four, randomly selected, representative work-
loads described in Table 5. We find that the performance
and fairness improvements of TCM over all other algo-
rithms are consistent across different workloads.

A B C D AVG
Workloads

10

11

12

13

14

15

16

W
ei

gh
te

d
sp

ee
du

p

FRFCFS
STFM
PAR_BS
ATLAS
TCM

(a) Weighted speedup for individual workloads

A B C D AVG
Workloads

0

5

10

15

20

M
ax

im
um

 s
lo

w
do

w
n

FRFCFS
STFM
PAR_BS
ATLAS
TCM

(b) Maximum slowdown for individual workloads

Figure 5. TCM vs. other algorithms for 4 sample workloads and
averaged across 32 workloads

7.1. Trading off between Performance and
Fairness

To study the robustness of each memory scheduler,
as well as the ability to adapt to different performance
and fairness goals, we varied the most salient configura-
tion parameters of each scheduler. We evaluated ATLAS
for a QuantumLength ranging from 1K (conservative) to
20M cycles (aggressive), PAR-BS for a BatchCap rang-

ing from 1 (conservative) to 10 (aggressive), STFM for
a FairnessThreshold ranging from 1 (conservative) to 5
(aggressive), and FR-FCFS (has no parameters). Finally,
for TCM, we vary the ClusterThresh from 2/24 to 6/24
in 1/24 increments. The performance and fairness results
are shown in Figure 6. The lower right and upper right
parts of Figures 6(a) and 6(b) respectively, correspond
to better operating points in terms of both performance
and fairness.

In contrast to previous memory scheduling algorithms,
TCM exposes a smooth continuum between system
throughput and fairness. By adjusting the clustering
threshold between latency- and bandwidth-sensitive clus-
ters, system throughput and fairness can be gently traded
off for one another. As a result, TCM has a wide range of
balanced operating points that provide both high system
throughput and fairness. None of the previously pro-
posed algorithms provide nearly the same degree of flex-
ibility as TCM. For example, ATLAS always remains bi-
ased towards system throughput (i.e., its maximum slow-
down changes by little), regardless of its QuantumLength
setting. Similarly, PAR-BS remains biased towards fair-
ness (i.e., its weighted speedup changes by little).

For TCM, an aggressive (large) ClusterThresh value
provides more bandwidth for the latency-sensitive clus-
ter and allows relatively “lighter” threads among the
bandwidth-sensitive cluster to move into the latency-
sensitive cluster. As a result, system throughput is im-
proved since the “lighter” threads are prioritized over
the “heavier” threads. But the remaining threads in the
bandwidth-sensitive cluster now compete for a smaller
fraction of the memory bandwidth and experience larger
slowdowns, leading to higher unfairness. In contrast, a
conservative (small) ClusterThresh value provides only a
small fraction of the memory bandwidth for the latency-
sensitive cluster so that most threads are included in the
bandwidth-sensitive cluster and, as a result, take turns
sharing the memory. We conclude that TCM provides an
effective knob for trading off between fairness and per-
formance, enabling operation at different desirable oper-
ating points depending on system requirements.

7.2. Effect of Workload Memory Intensity

Figure 7 compares the performance of TCM to previ-
ously proposed scheduling algorithms for four sets of 32
workloads that are 25%, 50%, 75% and 100% memory-
intensive. (We include 25%-intensity workloads for com-
pleteness, even though memory is not a large bottle-
neck for them.) TCM’s relative advantage over PAR-BS
and ATLAS becomes greater as the workload becomes
more memory-intensive and memory becomes more heav-
ily contended. When all the threads in the workload
are memory-intensive, TCM provides 7.4% and 10.1%
increase in weighted speedup and 5.8% and 48.6% de-
crease in maximum slowdown compared to PAR-BS and
ATLAS. TCM provides higher gains for very memory-
intensive workloads because previous algorithms are ei-
ther unable to prioritize less memory-intensive threads
(due to batching policy in PAR-BS) or cause severe de-
prioritization of the most memory-intensive threads (due
to strict ranking in ATLAS) in such heavily contended
systems.

10

12 13 14 15 16
Weighted speedup

2

4

6

8

10

12

M
ax

im
um

 s
lo

w
do

w
n

2

24

3

24

4

24

5

24

6

24

FRFCFS
STFM
PAR_BS
ATLAS
TCM

(a) Maximum slowdown vs. Weighted speedup

12 13 14 15 16
Weighted speedup

0.25

0.30

0.35

0.40

0.45

0.50

Ha
rm

on
ic

 s
pe

ed
up

2

24

3

24
4

24
5

24
6

24

FRFCFS
STFM
PAR_BS
ATLAS
TCM

(b) Harmonic speedup vs. Weighted speedup

Figure 6. Performance-Fairness trade-off as algorithmic parameters are varied (for 32 50%-intensity workloads)

25% 50% 75% 100%
Fraction of memory-intensive benchmarks in a workload

0

5

10

15

20

Sy
st

em
 th

ro
ug

hp
ut

FRFCFS
STFM
PAR_BS
ATLAS
TCM

(a) System throughput

25% 50% 75% 100%
Fraction of memory-intensive benchmarks in a workload

0

5

10

15

20

M
ax

im
um

 s
lo

w
do

w
n

FRFCFS
STFM
PAR_BS
ATLAS
TCM

(b) Unfairness

Figure 7. Performance and fairness of TCM and previous algorithms for different workload mixes

7.3. Effect of Shuffling Algorithm

In Table 6, we compare the fairness of four shuffling
algorithms (round-robin, random, insertion, and TCM)
when evaluated across 32 workloads. We focus on fair-
ness, because the goal of shuffling is to limit unfairness
among bandwidth-sensitive threads. Of the four shuffling
algorithms, round-robin shuffle is the most unfair (high-
est average maximum slowdown) since it is vulnerable
to disadvantageous thread rankings where a nice thread
becomes stuck behind less nice threads (Section 3.3).

Shuffling algorithm
Round-robin Random Insertion TCM

MS Average 5.58 5.13 4.96 4.84
MS Variance 1.61 1.53 1.45 0.85

Table 6. Average and variance of maximum slowdown (MS)
across 32 workloads for four shuffling algorithms

Although random shuffle and insertion shuffle pro-
vide higher fairness (low average maximum slowdown),
their effectiveness is not consistent but rather fluctuates
across different workloads (high variance in maximum
slowdown). As described in Section 3.3, this is because
random shuffle and insertion shuffle are each geared to-
wards particular types of workloads, homogeneous and
heterogeneous workloads, respectively.

The TCM shuffling algorithm combines the strengths
of random shuffle and insertion shuffle by dynamically
switching back and forth between the two shuffling algo-
rithms, depending on the homogeneity or heterogeneity
in workload composition. As a result, it provides the
best fairness as well as the smallest variability in fairness
across workloads.

7.4. Operating System Thread Weights

TCM enforces thread weights assigned by the op-
erating system in a way that preserves high system
throughput and fairness. Figure 8 shows an example
where six different thread weights are applied to a het-
erogeneous workload comprising benchmarks of varying
memory intensity. Thread weights are assigned in the
worst possible manner for system throughput, i.e., higher
weights to more intensive threads. ATLAS blindly ad-
heres to thread weights and thus severely slows down
memory-non-intensive benchmarks due to interference.
In contrast, TCM provides comparable speedups for the
highest-weighted memory-intensive threads and, at the
same time, vastly accelerates the memory-non-intensive
threads. As a result, TCM increases system throughput
and reduces maximum slowdown by 82.8% and 44.2%,
respectively.

ATLAS TCM0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

du
p

gcc: weight-1
wrf: weight-2
GemsFDTD: weight-4
lbm: weight-8
libquantum: weight-16
mcf: weight-32

Figure 8. Performance of threads with different weights

7.5. Sensitivity Analysis

As shown in Table 7, the performance of TCM is ro-
bust against variations in algorithmic parameters. How-
ever, we do observe a small decrease in performance as

11

ShuffleAlgoThresh ShuffleInterval
0.05 0.07 0.10 500 600 700 800

TCM
System throughput 14.3 14.2 14.2 14.2 14.3 14.2 14.7
Maximum slowdown 5.5 5.7 5.9 6.0 5.4 5.9 5.5

Table 7. Sensitivity of TCM to algorithmic parameters (32 workloads)

Number of memory controllers Number of cores Cache size
1 2 4 8 16 4 8 16 24 32 512KB 1MB 2MB

Compared to
ATLAS

Sys. throughput 5% 2% 1% 2% 3% 0% 3% 2% 1% 1% 1% 3% 4%
Max. slowdown -50% -44% -30% -40% -53% -4% -30% -29% -30% -41% -30% -28% -29%

Table 8. Sensitivity of TCM to system configuration (32 workloads)

the ShuffleInterval value is decreased, due to the reduced
row-buffer locality. Table 8 compares the performance of
TCM against ATLAS (best previous scheduler in terms of
performance), as the configuration of the system is varied
(cache size, number of controllers and cores). TCM con-
sistently provides significantly better fairness and better
system throughput across all system configurations.

8. Conclusion
We presented Thread Cluster Memory scheduling

(TCM), a new approach to memory scheduling that pro-
vides the best system throughput and fairness. TCM
achieves this by dynamically grouping threads into two
clusters with different needs (latency- vs. bandwidth-
sensitive) and employing different scheduling policies
within each cluster: one tailored to maximize system
throughput, the other tailored to maximize fairness. To
our knowledge, TCM is the first memory scheduling algo-
rithm that employs multiple different scheduling policies
for different threads based on threads’ memory access
and interference characteristics.

Our experimental evaluations show that TCM pro-
vides better system throughput than the highest per-
forming previous algorithm and better fairness than the
most fair previous algorithm. TCM provides a control
knob that allows it to smoothly trade off between system
throughput and fairness over a wide range, which was
not possible in previous scheduling algorithms.

We conclude that TCM can be an effective memory
scheduling substrate for multi-core systems: one that
provides very high levels of performance and fairness, as
well as flexible mechanisms for smoothly transitioning
between these two goals.

Acknowledgments
We thank the anonymous reviewers and members of

CALCM (Computer Architecture Lab at Carnegie Mel-
lon) for valuable feedback. Yoongu Kim is supported by a
Ph.D. fellowship from KFAS (Korea Foundation for Ad-
vanced Studies). We gracefully acknowledge the support
of Gigascale Systems Research Center, Intel, and Cy-
Lab. This research was partially supported by an NSF
CAREER Award CCF-0953246.

References
[1] A. Bhattacharjee and M. Martonosi. Thread criticality pre-

dictors for dynamic performance, power, and resource man-
agement in chip multiprocessors. In ISCA-36, 2009.

[2] Q. Cai, J. González, R. Rakvic, G. Magklis, P. Chaparro, and
A. González. Meeting points: using thread criticality to adapt
multicore hardware to parallel regions. In PACT-17, 2008.

[3] I. Hur and C. Lin. Adaptive history-based memory schedulers.
In MICRO-37, 2004.

[4] E. İpek, O. Mutlu, J. F. Mart́ınez, and R. Caruana. Self-
optimizing memory controllers: A reinforcement learning ap-
proach. In ISCA-35, 2008.

[5] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A
scalable and high-performance scheduling algorithm for mul-
tiple memory controllers. In HPCA-16, 2010.

[6] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prefetch-
aware DRAM controllers. In MICRO-41, 2008.

[7] C.-K. Luk et al. Pin: Building customized program analysis
tools with dynamic instrumentation. In PLDI, 2005.

[8] K. Luo, J. Gummaraju, and M. Franklin. Balancing though-
put and fairness in smt processors. In ISPASS, 2001.

[9] S. A. McKee et al. Dynamic access ordering for streamed com-
putations. IEEE TC, 49(11):1255–1271, Nov. 2000.

[10] Micron. 1Gb DDR2 SDRAM: MT47H128M8HQ-25.
[11] T. Moscibroda and O. Mutlu. Memory performance attacks:

denial of memory service in multi-core systems. In USENIX
SECURITY, 2007.

[12] T. Moscibroda and O. Mutlu. Distributed order scheduling
and its application to multi-core DRAM controllers. In PODC,
2008.

[13] O. Mutlu and T. Moscibroda. Stall-time fair memory access
scheduling for chip multiprocessors. In MICRO-40, 2007.

[14] O. Mutlu and T. Moscibroda. Parallelism-aware batch
scheduling: Enhancing both performance and fairness of
shared DRAM systems. In ISCA-35, 2008.

[15] C. Natarajan et al. A study of performance impact of memory
controller features in multi-processor server environment. In
WMPI-3, 2004.

[16] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair
queuing memory systems. In MICRO-39, 2006.

[17] H. Patil et al. Pinpointing representative portions of large Intel
Itanium programs with dynamic instrumentation. In MICRO-
37, 2004.

[18] N. Rafique, W.-T. Lim, and M. Thottethodi. Effective man-
agement of DRAM bandwidth in multicore processors. In
PACT-16, 2007.

[19] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.
Owens. Memory access scheduling. In ISCA-27, 2000.

[20] J. Shao and B. T. Davis. A burst scheduling access reordering
mechanism. In HPCA-13, 2007.

[21] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a
simultaneous multithreading processor. In ASPLOS-IX, 2000.

[22] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt.
Accelerating critical section execution with asymmetric multi-
core architectures. In ASPLOS-14, 2009.

[23] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel,
and B. Jacob. Dramsim: a memory system simulator.
SIGARCH Comput. Archit. News, 33(4):100–107, 2005.

[24] G. L. Yuan, A. Bakhoda, and T. M. Aamodt. Complexity
effective memory access scheduling for many-core accelerator
architectures. In MICRO-42, 2009.

[25] L. Zhang et al. The impulse memory controller. IEEE TC,
50(11):1117–1132, Nov. 2001.

[26] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu. Memory access
scheduling schemes for systems with multi-core processors. In
ICPP, 2008.

[27] Z. Zhu and Z. Zhang. A performance comparison of DRAM
memory system optimizations for SMT processors. In HPCA-
11, 2005.

[28] W. K. Zuravleff and T. Robinson. Controller for a synchronous
DRAM that maximizes throughput by allowing memory re-
quests and commands to be issued out of order. U.S. Patent
Number 5,630,096, May 1997.

12

