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Review: Multi-core Issues in Caching 
• How does the cache hierarchy change in a multi-core 

system? 
• Private cache: Cache belongs to one core 
• Shared cache: Cache is shared by multiple cores 
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Outline  
• Multi-cores and Caching: Review 
• Utility-based partitioning 
• Cache compression 

– Frequent value 
– Frequent pattern 
– Base-Delta-Immediate 

• Main memory compression 
– IBM MXT  
– Linearly Compressed Pages (LCP) 

 
 3 



Review: Shared Caches Between Cores 
• Advantages: 

– Dynamic partitioning of available cache space 
• No fragmentation due to static partitioning 

– Easier to maintain coherence 
– Shared data and locks do not ping pong between caches 

 
• Disadvantages 

– Cores incur conflict misses due to other cores’ accesses 
• Misses due to inter-core interference 
• Some cores can destroy the hit rate of other cores 

– What kind of access patterns could cause this? 

– Guaranteeing a minimum level of service (or fairness) to each 
core is harder (how much space, how much bandwidth?) 

– High bandwidth harder to obtain (N cores  N ports?) 
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Shared Caches: How to Share? 
• Free-for-all sharing 

– Placement/replacement policies are the same as a single core 
system (usually LRU or pseudo-LRU) 

– Not thread/application aware 
– An incoming block evicts a block regardless of which threads 

the blocks belong to 
 

• Problems 
– A cache-unfriendly application can destroy the performance 

of a cache friendly application 
– Not all applications benefit equally from the same amount of 

cache: free-for-all might prioritize those that do not benefit 
– Reduced performance, reduced fairness 
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Problem with Shared Caches 
 

6 

L2 $ 

L1 $ 

…… 

Processor Core 1 

L1 $ 

Processor Core 2 ←t1 



Problem with Shared Caches 
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Problem with Shared Caches 
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Controlled Cache Sharing 
• Utility based cache partitioning 

– Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-
Performance, Runtime Mechanism to Partition Shared Caches,” MICRO 2006. 

– Suh et al., “A New Memory Monitoring Scheme for Memory-Aware Scheduling 
and Partitioning,” HPCA 2002. 

 
• Fair cache partitioning 

– Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor 
Architecture,” PACT 2004. 

 
• Shared/private mixed cache mechanisms 

– Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in CMPs,” 
HPCA 2009. 
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Utility Based Shared Cache Partitioning 
• Goal: Maximize system throughput 
• Observation: Not all threads/applications benefit equally from caching 
 simple LRU replacement not good for system throughput 

• Idea: Allocate more cache space to applications that obtain the most 
benefit from more space 
 

• The high-level idea can be applied to other shared resources as well. 

 
• Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, 

High-Performance, Runtime Mechanism to Partition Shared Caches,” 
MICRO 2006. 

• Suh et al., “A New Memory Monitoring Scheme for Memory-Aware 
Scheduling and Partitioning,” HPCA 2002. 
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Utility Based Cache Partitioning (I) 
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Utility Based Cache Partitioning (II) 
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Utility Based Cache Partitioning (III) 
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Three components: 

 Utility Monitors (UMON) per core 

 Partitioning Algorithm (PA) 

 Replacement support to enforce partitions 
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Cache Capacity 

• How to get more cache without making it 
physically larger? 
 

• Idea: Data compression for on chip-caches 
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Executive Summary 
• Off-chip memory latency is high 

– Large caches can help, but at significant cost  
• Compressing data in cache enables larger cache at low 

cost 
• Problem: Decompression is on the execution critical path  
• Goal: Design a new compression scheme that has  
  1. low decompression latency,  2. low cost, 3. high compression ratio   
• Observation: Many cache lines have low dynamic range 

data 
• Key Idea: Encode cachelines as a base + multiple differences 
• Solution: Base-Delta-Immediate compression with low 

decompression latency and high compression ratio  
– Outperforms three state-of-the-art compression mechanisms  
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Motivation for Cache Compression 
Significant redundancy in data: 
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0x00000000 

How can we exploit this redundancy? 
– Cache compression  helps 
– Provides effect of a larger cache without 

making it physically larger 
 

0x0000000B 0x00000003 0x00000004 … 



Background on Cache Compression 

• Key requirements: 
– Fast (low decompression latency) 
– Simple (avoid complex hardware changes) 
– Effective (good compression ratio) 
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Zero Value Compression 

• Advantages: 
– Low decompression latency 
– Low complexity 

 

• Disadvantages: 
– Low average compression ratio 
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Shortcomings of Prior Work 
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Frequent Value Compression 
• Idea: encode cache lines based on frequently 

occurring values  
• Advantages: 

– Good compression ratio 

• Disadvantages: 
– Needs profiling 
– High decompression latency 
– High complexity 
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Shortcomings of Prior Work 
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Frequent Pattern Compression 
• Idea: encode cache lines based on frequently 

occurring patterns, e.g., half word is zero  
• Advantages: 

– Good compression ratio 

• Disadvantages: 
– High decompression latency (5-8 cycles) 
– High complexity (for some designs) 
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Shortcomings of Prior Work 
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Shortcomings of Prior Work 
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Outline 

• Motivation & Background 
• Key Idea & Our Mechanism 
• Evaluation 
• Conclusion  
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Key Data Patterns in Real Applications 
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0x00000000 0x00000000 0x00000000 0x00000000 … 

0x000000FF 0x000000FF 0x000000FF 0x000000FF … 

0x00000000 0x0000000B 0x00000003 0x00000004 … 

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 … 

Zero Values: initialization,  sparse matrices, NULL pointers 

Repeated Values: common initial values, adjacent pixels 

Narrow Values: small values stored in a big data type 

Other Patterns: pointers to the same memory region 



How Common Are These Patterns? 
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SPEC2006, databases, web workloads, 2MB L2 cache 
“Other Patterns” include Narrow Values 

 
 
 

 

43% of the cache lines belong to key patterns 
 



Key Data Patterns in Real Applications 
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0x00000000 0x00000000 0x00000000 0x00000000 … 

0x000000FF 0x000000FF 0x000000FF 0x000000FF … 

0x00000000 0x0000000B 0x00000003 0x00000004 … 

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 … 

Zero Values: initialization,  sparse matrices, NULL pointers 

Repeated Values: common initial values, adjacent pixels 

Narrow Values: small values stored in a big data type 

Other Patterns: pointers to the same memory region 

Low Dynamic Range: 
  

Differences between values are significantly 
smaller than the values themselves 

 



32-byte Uncompressed Cache Line 
 

 
 

Key Idea: Base+Delta (B+Δ) Encoding 
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0xC04039C0 0xC04039C8 0xC04039D0 … 0xC04039F8 

4 bytes 

0xC04039C0 
Base 

 
 

 
 

0x00 

1 byte 

0x08 

1 byte 

0x10 

1 byte 

… 0x38 12-byte  
Compressed Cache Line 

20 bytes saved  Fast Decompression: 
vector addition 

 Simple Hardware:  
    arithmetic and comparison 

 Effective: good compression ratio 



B+Δ: Compression Ratio 

Good average compression ratio (1.40) 
 

 31 
But some benchmarks have low compression ratio 
 

SPEC2006, databases, web workloads, L2 2MB cache 
 

 
 

 



Can We Do Better? 
 

• Uncompressible cache line (with a single base):  
     

 
• Key idea:  
    Use more bases, e.g., two instead of one 
• Pro:  

– More cache lines can be compressed 
• Cons: 

– Unclear how to find these bases efficiently 
– Higher overhead (due to additional bases) 
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0x00000000 0x09A40178 0x0000000B 0x09A4A838 … 



B+Δ with Multiple Arbitrary Bases 
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How to Find Two Bases Efficiently? 
1. First base - first element in the cache line 

 
 

2. Second base - implicit base of 0  
 
 

Advantages over 2 arbitrary bases: 
– Better compression ratio 
– Simpler compression logic 
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 Base+Delta part 

 Immediate part 

Base-Delta-Immediate (BΔI) Compression 



B+Δ (with two arbitrary bases) vs. BΔI 
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Average compression ratio is close, but BΔI is simpler 



BΔI Implementation 
• Decompressor Design 

– Low latency 
 

• Compressor Design 
– Low cost and complexity 

 

• BΔI Cache Organization 
– Modest complexity 
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Δ0 B0 

BΔI Decompressor Design 
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BΔI Compressor Design 
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BΔI Compression Unit: 8-byte B0 1-byte Δ  
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32-byte Uncompressed Cache Line 
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BΔI Cache Organization 
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… … 

… … 

Tag Storage: 
Set0 
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32 bytes Data Storage: 
Conventional 2-way cache with 32-byte cache lines 

BΔI: 4-way cache with 8-byte segmented data 
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8 bytes 

Tags map to multiple adjacent segments 2.3% overhead for 2 MB cache 



Qualitative Comparison with Prior Work 
• Zero-based designs 

– ZCA [Dusser+, ICS’09]: zero-content augmented cache 
– ZVC [Islam+, PACT’09]: zero-value cancelling 
– Limited applicability (only zero values) 

• FVC [Yang+, MICRO’00]: frequent value compression 
– High decompression latency and complexity 

• Pattern-based compression designs 
– FPC [Alameldeen+, ISCA’04]: frequent pattern compression 

• High decompression latency (5 cycles) and complexity 
– C-pack [Chen+, T-VLSI Systems’10]: practical implementation of 

FPC-like algorithm 
• High decompression latency (8 cycles) 
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Outline 

• Motivation & Background 
• Key Idea & Our Mechanism 
• Evaluation 
• Conclusion  
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Methodology 
• Simulator 

–  x86 event-driven simulator based on Simics 
[Magnusson+, Computer’02] 

• Workloads 
– SPEC2006 benchmarks, TPC, Apache web server 
– 1 – 4 core simulations for 1 billion representative 

instructions 
• System Parameters 

– L1/L2/L3 cache latencies from CACTI [Thoziyoor+, ISCA’08] 

– 4GHz, x86 in-order core, 512kB - 16MB L2, simple 
memory model (300-cycle latency for row-misses) 
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Compression Ratio: BΔI vs. Prior Work  

BΔI achieves the highest compression ratio 
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Single-Core: IPC and MPKI 
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Single-Core: Effect on Cache Capacity 

BΔI achieves performance close to the upper bound 
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Multi-Core Workloads 
• Application classification based on  

Compressibility: effective cache size increase 
(Low Compr. (LC) < 1.40, High Compr. (HC) >= 1.40) 

Sensitivity: performance gain with more cache  
(Low Sens. (LS) < 1.10, High Sens. (HS) >= 1.10; 512kB -> 2MB) 
  

• Three classes of applications: 
– LCLS, HCLS, HCHS,  no LCHS applications 

 

• For 2-core - random mixes of each possible class pairs  
(20 each, 120 total workloads) 
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Multi-Core Workloads  

48 



Multi-Core: Weighted Speedup 

BΔI performance improvement is the highest (9.5%) 
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Other Results in Paper 

 

• Sensitivity study of having more than 2X tags 
– Up to 1.98 average compression ratio 

• Effect on bandwidth consumption 
– 2.31X decrease on average 

• Detailed quantitative comparison with prior work 
• Cost analysis of the proposed changes 

– 2.3% L2 cache area increase 
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Conclusion 
• A new Base-Delta-Immediate compression mechanism  
• Key insight: many cache lines can be efficiently 

represented using base + delta encoding 
• Key properties: 

– Low latency decompression  
– Simple hardware implementation 
– High compression ratio with high coverage  

• Improves cache hit ratio and performance of both single-
core and multi-core workloads 
– Outperforms state-of-the-art cache compression techniques: 

FVC and FPC 
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Linearly Compressed Pages: 
 A Main Memory Compression 

Framework with  
Low Complexity and Low Latency  

Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, 
Hongyi Xin, Onur Mutlu, Phillip B. Gibbons*,  

 Michael A. Kozuch*, Todd C. Mowry  
 

 
 



Executive Summary 
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 Main memory is a limited shared resource 
  Observation: Significant data redundancy 
  Idea: Compress data in main memory 
  Problem: How to avoid latency increase? 
  Solution: Linearly Compressed Pages (LCP): 
     fixed-size cache line granularity compression 
   1. Increases capacity (69% on average) 
   2. Decreases bandwidth consumption (46%) 
   3. Improves overall performance (9.5%) 
 



Challenges in Main Memory Compression 
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1. Address Computation 
 

2. Mapping and Fragmentation 
 

3. Physically Tagged Caches 
 



L0 L1 L2 . . . LN-1 

Cache Line (64B)  

Address Offset 0 64 128 (N-1)*64 

L0 L1 L2 . . . LN-1 Compressed 
Page  

0 ? ? ? Address Offset 

Uncompressed 
Page  

Address Computation 

55 



Mapping and Fragmentation 
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Physically Tagged Caches 

57 

Core 

TLB 

tag 
tag 
tag 

Physical 
Address 

data 
data 
data 

Virtual 
Address 

Critical Path 
Address Translation 

L2 Cache 
Lines 



Shortcomings of Prior Work 
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Shortcomings of Prior Work 
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Shortcomings of Prior Work 
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Linearly Compressed Pages (LCP): Key Idea 
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LCP Overview 
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• Page Table entry extension 
– compression type and size  
– extended  physical base address 

• Operating System management support 
– 4 memory pools (512B, 1kB, 2kB, 4kB) 

• Changes to cache tagging logic 
– physical page base address + cache line index  
    (within a page)  

• Handling page overflows 
• Compression algorithms: BDI [PACT’12] , FPC [ISCA’04] 

 



LCP Optimizations 
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• Metadata cache 
– Avoids additional requests to metadata 

• Memory bandwidth reduction: 
 
 

• Zero pages and zero cache lines 
– Handled separately in TLB (1-bit) and in metadata  
    (1-bit per cache line) 

• Integration with cache compression 
– BDI and FPC 

64B 64B 64B 64B 
 1 transfer  
instead of 4 



Methodology 
• Simulator 

–  x86 event-driven simulators  
• Simics-based [Magnusson+, Computer’02]  for CPU 
• Multi2Sim  [Ubal+, PACT’12] for GPU  

• Workloads 
– SPEC2006 benchmarks, TPC, Apache web server, 

GPGPU applications 

• System Parameters 
– L1/L2/L3 cache latencies from CACTI [Thoziyoor+, ISCA’08] 

– 512kB - 16MB L2, simple memory model 
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Compression Ratio Comparison 
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Bandwidth Consumption Decrease 
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SPEC2006, databases, web workloads, 2MB L2 cache 
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Cores LCP-BDI (BDI, LCP-BDI) (BDI, LCP-BDI+FPC-fixed) 

1 6.1% 9.5% 9.3% 

2 13.9% 23.7% 23.6% 

4 10.7% 22.6% 22.5% 

LCP frameworks significantly improve performance 



Conclusion 
• A new main memory compression framework 

called LCP(Linearly Compressed Pages) 
– Key idea: fixed size for compressed cache lines within 

a page and fixed compression algorithm per page 
 

• LCP evaluation: 
–  Increases capacity (69% on average) 
–  Decreases bandwidth consumption (46%) 
–  Improves overall performance (9.5%) 
–  Decreases energy of the off-chip bus (37%)  
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