
18-742
Parallel Computer Architecture

Lecture 11: Caching in Multi-Core Systems

Prof. Onur Mutlu and Gennady Pekhimenko
Carnegie Mellon University

Fall 2012, 10/01/2012

Review: Multi-core Issues in Caching
• How does the cache hierarchy change in a multi-core

system?
• Private cache: Cache belongs to one core
• Shared cache: Cache is shared by multiple cores

2

CORE 0 CORE 1 CORE 2 CORE 3

 L2
CACHE

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

 L2
CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

 L2
CACHE

Outline
• Multi-cores and Caching: Review
• Utility-based partitioning
• Cache compression

– Frequent value
– Frequent pattern
– Base-Delta-Immediate

• Main memory compression
– IBM MXT
– Linearly Compressed Pages (LCP)

 3

Review: Shared Caches Between Cores
• Advantages:

– Dynamic partitioning of available cache space
• No fragmentation due to static partitioning

– Easier to maintain coherence
– Shared data and locks do not ping pong between caches

• Disadvantages

– Cores incur conflict misses due to other cores’ accesses
• Misses due to inter-core interference
• Some cores can destroy the hit rate of other cores

– What kind of access patterns could cause this?

– Guaranteeing a minimum level of service (or fairness) to each
core is harder (how much space, how much bandwidth?)

– High bandwidth harder to obtain (N cores  N ports?)

4

Shared Caches: How to Share?
• Free-for-all sharing

– Placement/replacement policies are the same as a single core
system (usually LRU or pseudo-LRU)

– Not thread/application aware
– An incoming block evicts a block regardless of which threads

the blocks belong to

• Problems
– A cache-unfriendly application can destroy the performance

of a cache friendly application
– Not all applications benefit equally from the same amount of

cache: free-for-all might prioritize those that do not benefit
– Reduced performance, reduced fairness

5

Problem with Shared Caches

6

L2 $

L1 $

……

Processor Core 1

L1 $

Processor Core 2 ←t1

Problem with Shared Caches

7

L1 $

Processor Core 1

L1 $

Processor Core 2

L2 $

……

t2→

Problem with Shared Caches

8

L1 $

L2 $

……

Processor Core 1 Processor Core 2 ←t1

L1 $

t2→

t2’s throughput is significantly reduced due to unfair cache sharing.

Controlled Cache Sharing
• Utility based cache partitioning

– Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-
Performance, Runtime Mechanism to Partition Shared Caches,” MICRO 2006.

– Suh et al., “A New Memory Monitoring Scheme for Memory-Aware Scheduling
and Partitioning,” HPCA 2002.

• Fair cache partitioning

– Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture,” PACT 2004.

• Shared/private mixed cache mechanisms

– Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in CMPs,”
HPCA 2009.

9

Utility Based Shared Cache Partitioning
• Goal: Maximize system throughput
• Observation: Not all threads/applications benefit equally from caching
 simple LRU replacement not good for system throughput

• Idea: Allocate more cache space to applications that obtain the most
benefit from more space

• The high-level idea can be applied to other shared resources as well.

• Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead,

High-Performance, Runtime Mechanism to Partition Shared Caches,”
MICRO 2006.

• Suh et al., “A New Memory Monitoring Scheme for Memory-Aware
Scheduling and Partitioning,” HPCA 2002.

10

Utility Based Cache Partitioning (I)

11

 Utility Ua
b = Misses with a ways – Misses with b ways

Low Utility

High Utility

Saturating Utility

Num ways from 16-way 1MB L2

M
iss

es
 p

er
 1

00
0

in
st

ru
ct

io
ns

Utility Based Cache Partitioning (II)

12

M
iss

es
 p

er
 1

00
0

in
st

ru
ct

io
ns

 (M
PK

I)

equake
vpr

LRU

UTIL

Idea: Give more cache to the application that
benefits more from cache

Utility Based Cache Partitioning (III)

13

Three components:

 Utility Monitors (UMON) per core

 Partitioning Algorithm (PA)

 Replacement support to enforce partitions

I$

D$
Core1

I$

D$
Core2 Shared

L2 cache

Main Memory

UMON1 UMON2 PA

Cache Capacity

• How to get more cache without making it
physically larger?

• Idea: Data compression for on chip-caches

14

Base-Delta-Immediate
Compression:

 Practical Data Compression
 for On-Chip Caches

Gennady Pekhimenko
Vivek Seshadri
Onur Mutlu , Todd C. Mowry

Phillip B. Gibbons*
 Michael A. Kozuch*

 *

Executive Summary
• Off-chip memory latency is high

– Large caches can help, but at significant cost
• Compressing data in cache enables larger cache at low

cost
• Problem: Decompression is on the execution critical path
• Goal: Design a new compression scheme that has
 1. low decompression latency, 2. low cost, 3. high compression ratio
• Observation: Many cache lines have low dynamic range

data
• Key Idea: Encode cachelines as a base + multiple differences
• Solution: Base-Delta-Immediate compression with low

decompression latency and high compression ratio
– Outperforms three state-of-the-art compression mechanisms

16

Motivation for Cache Compression
Significant redundancy in data:

17

0x00000000

How can we exploit this redundancy?
– Cache compression helps
– Provides effect of a larger cache without

making it physically larger

0x0000000B 0x00000003 0x00000004 …

Background on Cache Compression

• Key requirements:
– Fast (low decompression latency)
– Simple (avoid complex hardware changes)
– Effective (good compression ratio)

18

CPU
L2

Cache
Uncompressed Compressed Decompression Uncompressed

L1
Cache

Hit

Zero Value Compression

• Advantages:
– Low decompression latency
– Low complexity

• Disadvantages:
– Low average compression ratio

19

Shortcomings of Prior Work

20

Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero   

Frequent Value Compression
• Idea: encode cache lines based on frequently

occurring values
• Advantages:

– Good compression ratio

• Disadvantages:
– Needs profiling
– High decompression latency
– High complexity

21

Shortcomings of Prior Work

22

Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero   
Frequent Value   

Frequent Pattern Compression
• Idea: encode cache lines based on frequently

occurring patterns, e.g., half word is zero
• Advantages:

– Good compression ratio

• Disadvantages:
– High decompression latency (5-8 cycles)
– High complexity (for some designs)

23

Shortcomings of Prior Work

24

Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero   
Frequent Value   
Frequent Pattern  / 

Shortcomings of Prior Work

25

Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero   
Frequent Value   
Frequent Pattern  / 
Our proposal:
BΔI   

Outline

• Motivation & Background
• Key Idea & Our Mechanism
• Evaluation
• Conclusion

26

Key Data Patterns in Real Applications

27

0x00000000 0x00000000 0x00000000 0x00000000 …

0x000000FF 0x000000FF 0x000000FF 0x000000FF …

0x00000000 0x0000000B 0x00000003 0x00000004 …

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 …

Zero Values: initialization, sparse matrices, NULL pointers

Repeated Values: common initial values, adjacent pixels

Narrow Values: small values stored in a big data type

Other Patterns: pointers to the same memory region

How Common Are These Patterns?

0%

20%

40%

60%

80%

100%

 l
ib

qu
an

tu
m

 l

bm

 m
cf

 t

pc
h1

7

 s
je

ng

 o
m

ne
tp

p

 t
pc

h2

 s
ph

in
x3

 x

al
an

cb
m

k

 b
zip

2

 t
pc

h6

 l
es

lie
3d

 a

pa
ch

e

 g
ro

m
ac

s
 a

st
ar

 g

ob
m

k

 s
op

le
x

 g

cc

 h
m

m
er

 w

rf

 h
26

4r
ef

 z

eu
sm

p

 c
ac

tu
sA

DM

 G
em

sF
DT

D

Av
er

ag
e

Ca
ch

e
Co

ve
ra

ge
 (%

)

Zero
Repeated Values
Other Patterns

28

SPEC2006, databases, web workloads, 2MB L2 cache
“Other Patterns” include Narrow Values

43% of the cache lines belong to key patterns

Key Data Patterns in Real Applications

29

0x00000000 0x00000000 0x00000000 0x00000000 …

0x000000FF 0x000000FF 0x000000FF 0x000000FF …

0x00000000 0x0000000B 0x00000003 0x00000004 …

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 …

Zero Values: initialization, sparse matrices, NULL pointers

Repeated Values: common initial values, adjacent pixels

Narrow Values: small values stored in a big data type

Other Patterns: pointers to the same memory region

Low Dynamic Range:

Differences between values are significantly
smaller than the values themselves

32-byte Uncompressed Cache Line

Key Idea: Base+Delta (B+Δ) Encoding

30

0xC04039C0 0xC04039C8 0xC04039D0 … 0xC04039F8

4 bytes

0xC04039C0
Base

0x00

1 byte

0x08

1 byte

0x10

1 byte

… 0x38 12-byte
Compressed Cache Line

20 bytes saved  Fast Decompression:
vector addition

 Simple Hardware:
 arithmetic and comparison

 Effective: good compression ratio

B+Δ: Compression Ratio

Good average compression ratio (1.40)

 31
But some benchmarks have low compression ratio

SPEC2006, databases, web workloads, L2 2MB cache

Can We Do Better?

• Uncompressible cache line (with a single base):

• Key idea:
 Use more bases, e.g., two instead of one
• Pro:

– More cache lines can be compressed
• Cons:

– Unclear how to find these bases efficiently
– Higher overhead (due to additional bases)

32

0x00000000 0x09A40178 0x0000000B 0x09A4A838 …

B+Δ with Multiple Arbitrary Bases

33

1

1.2

1.4

1.6

1.8

2

2.2

GeoMean

Co
m

pr
es

si
on

 R
at

io
 1 2 3 4 8 10 16

 2 bases – the best option based on evaluations

How to Find Two Bases Efficiently?
1. First base - first element in the cache line

2. Second base - implicit base of 0

Advantages over 2 arbitrary bases:
– Better compression ratio
– Simpler compression logic

34

 Base+Delta part

 Immediate part

Base-Delta-Immediate (BΔI) Compression

B+Δ (with two arbitrary bases) vs. BΔI

35

Average compression ratio is close, but BΔI is simpler

BΔI Implementation
• Decompressor Design

– Low latency

• Compressor Design
– Low cost and complexity

• BΔI Cache Organization
– Modest complexity

36

Δ0 B0

BΔI Decompressor Design

37

Δ1 Δ2 Δ3

Compressed Cache Line

V0 V1 V2 V3

+ +

Uncompressed Cache Line

+ +

B0 Δ0

B0 B0 B0 B0

Δ1 Δ2 Δ3

V0
V1 V2 V3

Vector addition

BΔI Compressor Design

38

32-byte Uncompressed Cache Line

8-byte B0
1-byte Δ

CU

8-byte B0
2-byte Δ

CU

8-byte B0
4-byte Δ

CU

4-byte B0
1-byte Δ

CU

4-byte B0
2-byte Δ

CU

2-byte B0
1-byte Δ

CU

Zero
CU

Rep.
Values

CU

Compression Selection Logic (based on compr. size)

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

Compression Flag
& Compressed

Cache Line

CFlag &
CCL

Compressed Cache Line

BΔI Compression Unit: 8-byte B0 1-byte Δ

39

32-byte Uncompressed Cache Line

V0 V1 V2 V3

8 bytes

- - - -

B0=

V0

V0 B0 B0 B0 B0

V0 V1 V2 V3

Δ0 Δ1 Δ2 Δ3

Within 1-byte
range?

Within 1-byte
range?

Within 1-byte
range?

Within 1-byte
range?

Is every element within 1-byte range?

Δ0 B0 Δ1 Δ2 Δ3 B0 Δ0 Δ1 Δ2 Δ3

Yes No

BΔI Cache Organization

40

Tag0 Tag1

… …

… …

Tag Storage:
Set0

Set1

Way0 Way1

Data0

…

…

Set0

Set1

Way0 Way1

…

Data1

…

32 bytes Data Storage:
Conventional 2-way cache with 32-byte cache lines

BΔI: 4-way cache with 8-byte segmented data

Tag0 Tag1

… …

… …

Tag Storage:

Way0 Way1 Way2 Way3

… …

Tag2 Tag3

… …

Set0

Set1

Twice as many tags

C - Compr. encoding bits C

Set0

Set1

… … … … … … … …

S0 S0 S1 S2 S3 S4 S5 S6 S7

… … … … … … … …

8 bytes

Tags map to multiple adjacent segments 2.3% overhead for 2 MB cache

Qualitative Comparison with Prior Work
• Zero-based designs

– ZCA [Dusser+, ICS’09]: zero-content augmented cache
– ZVC [Islam+, PACT’09]: zero-value cancelling
– Limited applicability (only zero values)

• FVC [Yang+, MICRO’00]: frequent value compression
– High decompression latency and complexity

• Pattern-based compression designs
– FPC [Alameldeen+, ISCA’04]: frequent pattern compression

• High decompression latency (5 cycles) and complexity
– C-pack [Chen+, T-VLSI Systems’10]: practical implementation of

FPC-like algorithm
• High decompression latency (8 cycles)

41

Outline

• Motivation & Background
• Key Idea & Our Mechanism
• Evaluation
• Conclusion

42

Methodology
• Simulator

– x86 event-driven simulator based on Simics
[Magnusson+, Computer’02]

• Workloads
– SPEC2006 benchmarks, TPC, Apache web server
– 1 – 4 core simulations for 1 billion representative

instructions
• System Parameters

– L1/L2/L3 cache latencies from CACTI [Thoziyoor+, ISCA’08]

– 4GHz, x86 in-order core, 512kB - 16MB L2, simple
memory model (300-cycle latency for row-misses)

43

Compression Ratio: BΔI vs. Prior Work

BΔI achieves the highest compression ratio

44

1
1.2
1.4
1.6
1.8

2
2.2

 l
bm

 w

rf

 h
m

m
er

 s

ph
in

x3

 t
pc

h1
7

 l

ib
qu

an
tu

m

 l
es

lie
3d

 g

ro
m

ac
s

 s
je

ng

 m
cf

 h

26
4r

ef

 t
pc

h2

 o
m

ne
tp

p

 a
pa

ch
e

 b

zip
2

 x

al
an

cb
m

k

 a
st

ar

 t
pc

h6

 c
ac

tu
sA

DM

 g
cc

 s

op
le

x

 g
ob

m
k

 z

eu
sm

p

 G
em

sF
DT

D

G
eo

M
ea

n Co
m

pr
es

si
on

 R
at

io

ZCA FVC FPC BΔI
1.53

SPEC2006, databases, web workloads, 2MB L2

Single-Core: IPC and MPKI

45

0.9
1

1.1
1.2
1.3
1.4
1.5

N
or

m
al

ize
d

IP
C

L2 cache size

Baseline (no compr.)
BΔI

8.1%
5.2%

5.1%
4.9%

5.6%
3.6%

0
0.2
0.4
0.6
0.8

1

N
or

m
al

ize
d

M
PK

I
L2 cache size

Baseline (no compr.)
BΔI
16%

24%
21%

13%
19% 14%

BΔI achieves the performance of a 2X-size cache
Performance improves due to the decrease in MPKI

Single-Core: Effect on Cache Capacity

BΔI achieves performance close to the upper bound
 46

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1

 l
ib

qu
an

tu
m

 s
je

ng

 w
rf

 G
em

sF
DT

D

 c
ac

tu
sA

DM

 g
cc

 h
m

m
er

 t
pc

h6

 l
bm

 z
eu

sm
p

 l
es

lie
3d

 g
ob

m
k

 h
26

4r
ef

 s
ph

in
x3

 a
pa

ch
e

 g
ro

m
ac

s

 t
pc

h1
7

 t
pc

h2

 o
m

ne
tp

p

 m
cf

 x
al

an
cb

m
k

 s
op

le
x

 b
zip

2

 a
st

ar

Ge
oM

ea
n

N
or

m
al

ize
d

IP
C

512kB-2way
512kB-4way-BΔI
1MB-4way
1MB-8way-BΔI
2MB-8way
2MB-16way-BΔI
4MB-16way

1.3%
1.7%

2.3%

Fixed L2 cache latency

Multi-Core Workloads
• Application classification based on

Compressibility: effective cache size increase
(Low Compr. (LC) < 1.40, High Compr. (HC) >= 1.40)

Sensitivity: performance gain with more cache
(Low Sens. (LS) < 1.10, High Sens. (HS) >= 1.10; 512kB -> 2MB)

• Three classes of applications:
– LCLS, HCLS, HCHS, no LCHS applications

• For 2-core - random mixes of each possible class pairs
(20 each, 120 total workloads)

47

Multi-Core Workloads

48

Multi-Core: Weighted Speedup

BΔI performance improvement is the highest (9.5%)

4.5%
3.4%

4.3%

10.9%

16.5%
18.0%

9.5%

0.95

1.00

1.05

1.10

1.15

1.20

LCLS - LCLS LCLS - HCLS HCLS - HCLS LCLS - HCHS HCLS - HCHS HCHS - HCHS

Low Sensitivity High Sensitivity GeoMean

N
or

m
al

ize
d

W
ei

gh
te

d
Sp

ee
du

p ZCA FVC FPC BΔI

If at least one application is sensitive, then the
performance improves 49

Other Results in Paper

• Sensitivity study of having more than 2X tags
– Up to 1.98 average compression ratio

• Effect on bandwidth consumption
– 2.31X decrease on average

• Detailed quantitative comparison with prior work
• Cost analysis of the proposed changes

– 2.3% L2 cache area increase

50

Conclusion
• A new Base-Delta-Immediate compression mechanism
• Key insight: many cache lines can be efficiently

represented using base + delta encoding
• Key properties:

– Low latency decompression
– Simple hardware implementation
– High compression ratio with high coverage

• Improves cache hit ratio and performance of both single-
core and multi-core workloads
– Outperforms state-of-the-art cache compression techniques:

FVC and FPC

51

Linearly Compressed Pages:
 A Main Memory Compression

Framework with
Low Complexity and Low Latency

Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim,
Hongyi Xin, Onur Mutlu, Phillip B. Gibbons*,

 Michael A. Kozuch*, Todd C. Mowry

Executive Summary

53

 Main memory is a limited shared resource
 Observation: Significant data redundancy
 Idea: Compress data in main memory
 Problem: How to avoid latency increase?
 Solution: Linearly Compressed Pages (LCP):
 fixed-size cache line granularity compression
 1. Increases capacity (69% on average)
 2. Decreases bandwidth consumption (46%)
 3. Improves overall performance (9.5%)

Challenges in Main Memory Compression

54

1. Address Computation

2. Mapping and Fragmentation

3. Physically Tagged Caches

L0 L1 L2 . . . LN-1

Cache Line (64B)

Address Offset 0 64 128 (N-1)*64

L0 L1 L2 . . . LN-1 Compressed
Page

0 ? ? ? Address Offset

Uncompressed
Page

Address Computation

55

Mapping and Fragmentation

56

Virtual Page
(4kB)

Physical Page
(? kB) Fragmentation

Virtual
Address

Physical
Address

Physically Tagged Caches

57

Core

TLB

tag
tag
tag

Physical
Address

data
data
data

Virtual
Address

Critical Path
Address Translation

L2 Cache
Lines

Shortcomings of Prior Work

58

Compression
Mechanisms

Access
Latency

Decompression
Latency

Complexity Compression
Ratio

IBM MXT
[IBM J.R.D. ’01]    

Shortcomings of Prior Work

59

Compression
Mechanisms

Access
Latency

Decompression
Latency

Complexity Compression
Ratio

IBM MXT
[IBM J.R.D. ’01]    
Robust Main
Memory
Compression
[ISCA’05]









Shortcomings of Prior Work

60

Compression
Mechanisms

Access
Latency

Decompression
Latency

Complexity Compression
Ratio

IBM MXT
[IBM J.R.D. ’01]    
Robust Main
Memory
Compression
[ISCA’05]









LCP:
Our Proposal









Linearly Compressed Pages (LCP): Key Idea

61

64B 64B 64B 64B . . .

. . . M E

Metadata
(64B):
?
(compressible)

Exception
Storage

4:1 Compression

64B

Uncompressed Page (4kB: 64*64B)

Compressed
Data
(1kB)

LCP Overview

62

• Page Table entry extension
– compression type and size
– extended physical base address

• Operating System management support
– 4 memory pools (512B, 1kB, 2kB, 4kB)

• Changes to cache tagging logic
– physical page base address + cache line index
 (within a page)

• Handling page overflows
• Compression algorithms: BDI [PACT’12] , FPC [ISCA’04]

LCP Optimizations

63

• Metadata cache
– Avoids additional requests to metadata

• Memory bandwidth reduction:

• Zero pages and zero cache lines
– Handled separately in TLB (1-bit) and in metadata
 (1-bit per cache line)

• Integration with cache compression
– BDI and FPC

64B 64B 64B 64B
 1 transfer
instead of 4

Methodology
• Simulator

– x86 event-driven simulators
• Simics-based [Magnusson+, Computer’02] for CPU
• Multi2Sim [Ubal+, PACT’12] for GPU

• Workloads
– SPEC2006 benchmarks, TPC, Apache web server,

GPGPU applications

• System Parameters
– L1/L2/L3 cache latencies from CACTI [Thoziyoor+, ISCA’08]

– 512kB - 16MB L2, simple memory model

64

Compression Ratio Comparison

65

1.30
1.59 1.62 1.69

2.31
2.60

1

1.5

2

2.5

3

3.5

Co
m

pr
es

si
on

 R
at

io

GeoMean

Zero Page FPC
LCP (BDI) LCP (BDI+FPC-fixed)
MXT LZ

SPEC2006, databases, web workloads, 2MB L2 cache

LCP-based frameworks achieve competitive
average compression ratios with prior work

Bandwidth Consumption Decrease

66

SPEC2006, databases, web workloads, 2MB L2 cache

0.92 0.89

0.57 0.63 0.54 0.55 0.54

0
0.2
0.4
0.6
0.8

1
1.2

GeoMean N
or

m
al

ize
d

BP
KI

FPC-cache BDI-cache
FPC-memory (None, LCP-BDI)
(FPC, FPC) (BDI, LCP-BDI)
(BDI, LCP-BDI+FPC-fixed)

LCP frameworks significantly reduce bandwidth (46%)

B
et

te
r

Performance Improvement

67

Cores LCP-BDI (BDI, LCP-BDI) (BDI, LCP-BDI+FPC-fixed)

1 6.1% 9.5% 9.3%

2 13.9% 23.7% 23.6%

4 10.7% 22.6% 22.5%

LCP frameworks significantly improve performance

Conclusion
• A new main memory compression framework

called LCP(Linearly Compressed Pages)
– Key idea: fixed size for compressed cache lines within

a page and fixed compression algorithm per page

• LCP evaluation:
– Increases capacity (69% on average)
– Decreases bandwidth consumption (46%)
– Improves overall performance (9.5%)
– Decreases energy of the off-chip bus (37%)

68

	18-742 �Parallel Computer Architecture�Lecture 11: Caching in Multi-Core Systems
	Review: Multi-core Issues in Caching
	Outline	
	Review: Shared Caches Between Cores
	Shared Caches: How to Share?
	Problem with Shared Caches
	Problem with Shared Caches
	Problem with Shared Caches
	Controlled Cache Sharing
	Utility Based Shared Cache Partitioning
	Utility Based Cache Partitioning (I)
	Utility Based Cache Partitioning (II)
	Utility Based Cache Partitioning (III)
	Cache Capacity
	Base-Delta-Immediate Compression:� Practical Data Compression � for On-Chip Caches
	Executive Summary
	Motivation for Cache Compression
	Background on Cache Compression
	Zero Value Compression
	Shortcomings of Prior Work
	Frequent Value Compression
	Shortcomings of Prior Work
	Frequent Pattern Compression
	Shortcomings of Prior Work
	Shortcomings of Prior Work
	Outline
	Key Data Patterns in Real Applications
	How Common Are These Patterns?
	Key Data Patterns in Real Applications
	Key Idea: Base+Delta (B+Δ) Encoding
	B+Δ: Compression Ratio
	Can We Do Better?
	B+Δ with Multiple Arbitrary Bases
	How to Find Two Bases Efficiently?
	B+Δ (with two arbitrary bases) vs. BΔI
	BΔI Implementation
	BΔI Decompressor Design
	BΔI Compressor Design
	BΔI Compression Unit: 8-byte B0 1-byte Δ
	BΔI Cache Organization
	Qualitative Comparison with Prior Work
	Outline
	Methodology
	Compression Ratio: BΔI vs. Prior Work
	Single-Core: IPC and MPKI
	Single-Core: Effect on Cache Capacity
	Multi-Core Workloads
	Multi-Core Workloads
	Multi-Core: Weighted Speedup
	Other Results in Paper
	Conclusion
	Linearly Compressed Pages:� A Main Memory Compression Framework with �Low Complexity and Low Latency
	Executive Summary
	Challenges in Main Memory Compression
	Address Computation
	Mapping and Fragmentation
	Physically Tagged Caches
	Shortcomings of Prior Work
	Shortcomings of Prior Work
	Shortcomings of Prior Work
	Linearly Compressed Pages (LCP): Key Idea
	LCP Overview
	LCP Optimizations
	Methodology
	Compression Ratio Comparison
	Bandwidth Consumption Decrease
	Performance Improvement
	Conclusion

