
18-742

Parallel Computer Architecture

Lecture 17: Interconnection Networks I

Chris Fallin

Carnegie Mellon University

in turn based on Onur Mutlu’s 18-742 lecture slides from Spring 2010.

Material based on Michael Papamichael’s 18-742 lecture slides from Spring 2011,

Readings: Interconnection Networks
 Required

 Dally, “Virtual-Channel Flow Control,” ISCA 1990.
 Mullins et al., “Low-Latency Virtual-Channel Routers for On-

Chip Networks,” ISCA 2004.
 Moscibroda and Mutlu, “A Case for Bufferless Routing in On-

Chip Networks,” ISCA 2009.
 Wentzlaff et al., “On-Chip Interconnection Architecture of the

Tile Processor,” IEEE Micro 2007.
 Patel et al., “Processor-Memory Interconnections for

Multiprocessors,” ISCA 1979.

 Recommended
 Fallin et al., “CHIPPER: A Low-complexity Bufferless Deflection

Router,” HPCA 2011.
 Fallin et al., “MinBD: Minimally-Buffered Deflection Routing for

On-Chip Interconnect,” NOCS 2012.
 Tobias Bjerregaard, Shankar Mahadevan, “A Survey of

Research and Practices of Network-on-Chip”, ACM Computing
Surveys (CSUR) 2006.

2

Agenda

 Interconnection networks
 Introduction and Terminology

 Topology

 Buffering and Flow control

3

Where is a Network Used?

 To connect components

 Many examples

 Processors and processors

 Processors and memories (banks)

 Processors and caches (banks)

 Caches and caches

 I/O devices

4

Interconnection network

Interconnection Network Basics

 Topology

 Specifies way switches are wired

 Affects routing, reliability, throughput, latency, building ease

 Routing (algorithm)

 How does a message get from source to destination

 Static or adaptive

 Buffering and Flow Control

 What do we store within the network?

 Entire packets, parts of packets, etc?

 How do we throttle during oversubscription?

 Tightly coupled with routing strategy

 5

Terminology

 Network interface

 Module that connects endpoints (e.g. processors) to network.

 Decouples computation/communication

 Links

 Bundle of wires that carries a signal

 Switch/router

 Connects fixed number of input channels to fixed number of
output channels

 Channel

 A single logical connection between routers/switches

6

Some Terminology

 Node

 A router/switch within a network

 Message

 Unit of transfer for network’s clients (processors, memory)

 Packet

 Unit of transfer for network

 Flit

 Flow control digit

 Unit of flow control within network

7

Some More Terminology
 Direct or Indirect Networks

 Endpoints sit “inside” (direct) or “outside” (indirect) the network

 E.g. mesh is direct; every node is both endpoint and switch

8

1

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

1

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

Router (switch), Radix of 2 (2 inputs, 2 outputs)

Abbreviation: Radix-ary

These routers are 2-ary

Indirect Direct

Agenda

 Interconnection networks
 Introduction and Terminology

 Topology

 Buffering and Flow control

9

Properties of a Topology/Network

 Regular or Irregular

 Regular if topology is regular graph (e.g. ring, mesh).

 Routing Distance

 number of links/hops along route

 Diameter

 maximum routing distance

 Average Distance

 Average number of hops across all valid routes

10

Properties of a Topology/Network

 Bisection Bandwidth

 Often used to describe network performance

 Cut network in half and sum bandwidth of links severed

 (Min # channels spanning two halves) * (BW of each channel)

 Meaningful only for recursive topologies

 Can be misleading, because does not account for switch and
routing efficiency

 Blocking vs. Non-Blocking

 If connecting any permutation of sources & destinations is
possible, network is non-blocking; otherwise network is blocking.

 Rearrangeable non-blocking: Same as non-blocking but might
require rearranging connections when switching from one
permutation to another.

 11

Topology

 Bus

 Crossbar

 Ring

 Tree

 Omega

 Hypercube

 Mesh

 Torus

 Butterfly

 …

12

Bus

+ Simple

+ Cost effective for a small number of nodes

+ Easy to implement coherence (snooping)

- Not scalable to large number of nodes (limited bandwidth,
electrical loading  reduced frequency)

- High contention

13

MemoryMemoryMemoryMemory

Proc

cache

Proc

cache

Proc

cache

Proc

cache

Crossbar

 Every node connected to every other (non-blocking)

 Good for small number of nodes

+ Low latency and high throughput

- Expensive

- Not scalable  O(N2) cost

- Difficult to arbitrate

Used in core-to-cache-bank

networks in

- IBM POWER5

- Sun Niagara I/II

 14

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Sun UltraSPARC T2 Core-to-Cache Crossbar

 High bandwidth
interface between 8
cores and 8 L2
banks & NCU

 4-stage pipeline:
req, arbitration,
selection,
transmission

 2-deep queue for
each src/dest pair
to hold data
transfer request

15

Buffered Crossbar

16

Output

Arbiter

Output

Arbiter

Output

Arbiter

Output

Arbiter

Flow

Control

Flow

Control

Flow

Control

Flow

Control

NI

NI

NI

NI

Buffered

Crossbar

0

1

2

3

NI

NI

NI

NI

Bufferless

Crossbar

0

1

2

3

+ Simpler
arbitration/
scheduling

+ Efficient
support for
variable-size
packets

- Requires
N2 buffers

Ring

+ Cheap: O(N) cost

- High latency: O(N)

- Not easy to scale

 - Bisection bandwidth remains constant

 - But, hierarchy/multi-ring designs can address scalability

Used in Intel Larrabee, IBM Cell

17

M

P

RING

S

M

P

S

M

P

S

Mesh

 O(N) cost

 Average latency: O(sqrt(N))

 Easy to layout on-chip: regular and equal-length links

 Path diversity: many ways to get from one node to another

 Used in Tilera 100-core

 And many on-chip network

 prototypes

18

Torus

 Mesh is not symmetric on edges: performance very
sensitive to placement of task on edge vs. middle

 Torus avoids this problem

+ Higher path diversity (and bisection bandwidth) than mesh

- Higher cost

- Harder to lay out on-chip

 - Unequal link lengths

19

Torus, continued

 Weave nodes to make inter-node latencies ~constant

20

S
M P

S
M P

S
M P

S
M P

S
M P

S
M P

S
M P

S
M P

Planar, hierarchical topology

Latency: O(logN)

Good for local traffic

+ Cheap: O(N) cost

+Easy to Layout

- Root can become a bottleneck

 Fat trees avoid this problem (CM-5)

Trees

21

Fat Tree

CM-5 Fat Tree

 Fat tree based on 4x2 switches

 Randomized routing on the way up

 Combining, multicast, reduction operators supported in
hardware

 Thinking Machines Corp., “The Connection Machine CM-5
Technical Summary,” Jan. 1992.

22

Hypercube

 Latency: O(logN)

 Radix: O(logN)

 #links: O(NlogN)

+ Low latency

- Hard to lay out in 2D/3D

23

00

00

01

01

01

00

00

01

00

11

00

10

01

10

01

11

10

00

11

01

11

00

10

01

10

11

10

10

11

10

11

11

Caltech Cosmic Cube

 64-node message passing
machine

 Seitz, “The Cosmic Cube,”
CACM 1985.

24

Multistage Logarithmic Networks

 Idea: Indirect networks with multiple layers of switches
between terminals

 Cost: O(NlogN), Latency: O(logN)

 Many variations (Omega, Butterfly, Benes, Banyan, …)

 Omega Network:

25

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

Omega Net w or k

Q: Blocking or

non-blocking?

conflict

Delta Network

 Single path from source to
destination

 Does not support all possible
permutations

 Proposed to replace costly
crossbars as processor-memory
interconnect

 Janak H. Patel ,“Processor-
Memory Interconnections for
Multiprocessors,” ISCA 1979.

26

8x8 Delta network

Omega Network

 Single path from source to
destination

 All stages are the same

 Used in NYU
Ultracomputer

 Gottlieb et al. “The NYU
Ultracomputer-designing a
MIMD, shared-memory
parallel machine,” ISCA
1982.

27

Combining Operations in the Network

 Idea: Combine multiple operations on a shared memory
location

 Example: Omega network switches combine fetch-and-add
operations in NYU Ultracomputer

 Fetch-and-add(M, I): return M, replace M with M+I

 Common when parallel processors modify a shared variable,
e.g. obtain a chunk of the array

 Combining reduces synchronization latency

28

Butterfly

 Equivalent to Omega Network

 Indirect

 Used in BBN Butterfly

 Conflicts can cause tree saturation

 Randomization of route selection helps

29

1

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

1

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

Agenda

 Interconnection networks
 Introduction and Terminology

 Topology

 Buffering and Flow control

30

Circuit vs. Packet Switching

 Circuit switch sets up full path

 Establish route then send data

 (no one else can use those links)

 faster and higher bandwidth

 setting up and bringing down links slow

 Packet switching routes per packet

 Route each packet individually (possibly via different paths)

 if link is free can use

 potentially slower --- must dynamically switch

 no setup, bring down time

31

Packet Switched Networks: Packet Format

 Header

 routing and control information

 Payload

 carries data (non HW specific information)

 can be further divided (framing, protocol stacks…)

 Error Code

 generally at tail of packet so it can be generated on the way
out

32

Header Payload Error Code

Handling Contention

 Two packets trying to use the same link at the same time

 What do you do?

 Buffer one

 Drop one

 Misroute one (deflection)

 Assume buffering for now

34

Flow Control Methods

 Circuit switching

 Store and forward (Packet based)

 Virtual Cut Through (Packet based)

 Wormhole (Flit based)

35

Circuit Switching Revisited

 Resource allocation granularity is high

 Idea: Pre-allocate resources across multiple switches for a
given “flow”

 Need to send a probe to set up the path for pre-allocation

+ No need for buffering

+ No contention (flow’s performance is isolated)

+ Can handle arbitrary message sizes

- Lower link utilization: two flows cannot use the same link

- Handshake overhead to set up a “circuit”

36

Store and Forward Flow Control

 Packet based flow control

 Store and Forward

 Packet copied entirely into network router before moving to
the next node

 Flow control unit is the entire packet

 Leads to high per-packet latency

 Requires buffering for entire packet in each node

37

Can we do better?

S

D

Cut through Flow Control

 Another form of packet based flow control

 Start forwarding as soon as header is received and
resources (buffer, channel, etc) allocated

 Dramatic reduction in latency

 Still allocate buffers and channel bandwidth for full packets

 What if packets are large?

38

S

D

Cut through Flow Control

 What to do if output port is blocked?

 Lets the tail continue when the head is blocked, absorbing
the whole message into a single switch.

 Requires a buffer large enough to hold the largest packet.

 Degenerates to store-and-forward with high contention

 Can we do better?

39

Wormhole Flow Control

 Packets broken into (potentially)
smaller flits (buffer/bw allocation unit)

 Flits are sent across the fabric in a
wormhole fashion

 Body follows head, tail follows body

 Pipelined

 If head blocked, rest of packet stops

 Routing (src/dest) information only in
head

 How does body/tail know where to go?

 Latency almost independent of distance
for long messages

40

H

B

B

T

Wormhole Flow Control

 Advantages over “store and forward” flow control

+ Lower latency

+ More efficient buffer utilization

 Limitations

- Suffers from head of line blocking

 - If head flit cannot move due to contention, another worm
cannot proceed even though links may be idle

41

1 2

1 2 1

2

Switching Fabric Input Queues Outputs

1

2

1

2
HOL Blocking

Idle!

Head of Line Blocking

 A worm can be before another in the router input buffer

 Due to FIFO nature, the second worm cannot be scheduled
even though it may need to access another output port

42

Head of Line Blocking

43

Blocked by other
packets

Channel idle but
red packet blocked

behind blue

Buffer full: blue
cannot proceed

Red holds this channel:
channel remains idle
until read proceeds

Virtual Channel Flow Control

 Idea: Multiplex multiple channels over one physical channel

 Divide up the input buffer into multiple buffers sharing a
single physical channel

 Dally, “Virtual Channel Flow Control,” ISCA 1990.

44

Virtual Channel Flow Control

 Idea: Multiplex multiple channels over one physical channel

 Divide up the input buffer into multiple buffers sharing a
single physical channel

 Dally, “Virtual Channel Flow Control,” ISCA 1990.

45

Virtual Channel Flow Control

46

Blocked by other
packets

Buffer full: blue
cannot proceed

A Modern Virtual Channel Based Router

47

Other Uses of Virtual Channels

 Deadlock avoidance

 Enforcing switching to a different set of virtual channels on
some “turns” can break the cyclic dependency of resources

 Enforce order on VCs

 Escape VCs: Have at least one VC that uses deadlock-free
routing. Ensure each flit has fair access to that VC.

 Protocol level deadlock: Ensure address and data packets use
different VCs  prevent cycles due to intermixing of different

packet classes

 Prioritization of traffic classes

 Some virtual channels can have higher priority than others

48

Communicating Buffer Availability

 Credit-based flow control

 Upstream knows how many buffers are downstream

 Downstream passes back credits to upstream

 Significant upstream signaling (esp. for small flits)

 On/Off (XON/XOFF) flow control

 Downstream has on/off signal to upstream

 Ack/Nack flow control

 Upstream optimistically sends downstream

 Buffer cannot be deallocated until ACK/NACK received

 Inefficiently utilizes buffer space

49

Credit-based Flow Control

 Round-trip credit delay:

 Time between when buffer empties and when next flit can be
processed from that buffer entry

 Significant throughput degradation if there are few buffers

 Important to size buffers to tolerate credit turn-around

50

Node 1 Node 2

Flit departs

router

t1

Process
t2

t3

Process
t4

t5

Credit round

trip delay

On/Off (XON/XOFF) Flow Control

 Downstream has on/off signal to upstream

51

Proces

s

Node 1 Node 2
t1

t2

Foffthreshold
reached

Proces

s

t3
t4

t5

t6

t7

t8

Foffset to
prevent flits

arriving before
t4 from

overflowing

Fonthreshold
reached

Fonset so that
Node 2 does
not run out of
flits between

t5 and t8

