
18-742  

Parallel Computer Architecture 

Lecture 17: Interconnection Networks I 

 

 

Chris Fallin 

Carnegie Mellon University 

 

 

 

 
in turn based on Onur Mutlu’s 18-742 lecture slides from Spring 2010.  

Material based on Michael Papamichael’s 18-742 lecture slides from Spring 2011, 



Readings: Interconnection Networks 
 Required 

 Dally, “Virtual-Channel Flow Control,” ISCA 1990. 
 Mullins et al., “Low-Latency Virtual-Channel Routers for On-

Chip Networks,” ISCA 2004. 
 Moscibroda and Mutlu, “A Case for Bufferless Routing in On-

Chip Networks,” ISCA 2009. 
 Wentzlaff et al., “On-Chip Interconnection Architecture of the 

Tile Processor,” IEEE Micro 2007. 
 Patel et al., “Processor-Memory Interconnections for 

Multiprocessors,” ISCA 1979. 
 

 Recommended 
 Fallin et al., “CHIPPER: A Low-complexity Bufferless Deflection 

Router,” HPCA 2011. 
 Fallin et al., “MinBD: Minimally-Buffered Deflection Routing for 

On-Chip Interconnect,” NOCS 2012.  
 Tobias Bjerregaard, Shankar Mahadevan, “A Survey of 

Research and Practices of Network-on-Chip”, ACM Computing 
Surveys (CSUR) 2006. 
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Agenda 

 Interconnection networks 
 Introduction and Terminology 

 Topology 

 Buffering and Flow control 
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Where is a Network Used? 

 To connect components 

 

 Many examples 

 Processors and processors 

 Processors and memories (banks) 

 Processors and caches (banks) 

 Caches and caches 

 I/O devices 
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Interconnection network 



Interconnection Network Basics 

 Topology 

 Specifies way switches are wired 

 Affects routing, reliability, throughput, latency, building ease 

 

 Routing (algorithm) 

 How does a message get from source to destination 

 Static or adaptive  

 

 Buffering and Flow Control 

 What do we store within the network? 

 Entire packets, parts of packets, etc? 

 How do we throttle during oversubscription? 

 Tightly coupled with routing strategy 
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Terminology  

 Network interface 

 Module that connects endpoints (e.g. processors) to network.  

 Decouples computation/communication 

 

 Links 

 Bundle of wires that carries a signal 

 

 Switch/router 

 Connects fixed number of input channels to fixed number of 
output channels 

 

 Channel 

 A single logical connection between routers/switches 
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Some Terminology 

 Node 

 A router/switch within a network 

 

 Message 

 Unit of transfer for network’s clients (processors, memory) 

 

 Packet 

 Unit of transfer for network  

 

 Flit 

 Flow control digit 

 Unit of flow control within network 
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Some More Terminology 
 Direct or Indirect Networks 

 Endpoints sit “inside” (direct) or “outside” (indirect) the network 

 E.g. mesh is direct; every node is both endpoint and switch 
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Agenda 

 Interconnection networks 
 Introduction and Terminology 

 Topology 

 Buffering and Flow control 
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Properties of a Topology/Network 

 Regular or Irregular 

 Regular if topology is regular graph (e.g. ring, mesh). 

 

 Routing Distance  

 number of links/hops along route  

 

 Diameter  

 maximum routing distance 

 

 Average Distance 

 Average number of hops across all valid routes 
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Properties of a Topology/Network 

 Bisection Bandwidth 

 Often used to describe network performance 

 Cut network in half and sum bandwidth of links severed 

 (Min # channels spanning two halves) * (BW of each channel) 

 Meaningful only for recursive topologies 

 Can be misleading, because does not account for switch and 
routing efficiency 

 

 Blocking vs. Non-Blocking 

 If connecting any permutation of sources & destinations is 
possible, network is non-blocking; otherwise network is blocking. 

 Rearrangeable non-blocking: Same as non-blocking but might 
require rearranging connections when switching from one 
permutation to another. 
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Topology 

 Bus 

 Crossbar 

 Ring 

 Tree 

 Omega 

 Hypercube 

 Mesh 

 Torus 

 Butterfly 

 … 
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Bus 

+ Simple 

+ Cost effective for a small number of nodes 

+ Easy to implement coherence (snooping) 

- Not scalable to large number of nodes (limited bandwidth, 
electrical loading  reduced frequency) 

- High contention 
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Crossbar 

 Every node connected to every other (non-blocking) 

 Good for small number of nodes 

+ Low latency and high throughput 

- Expensive 

- Not scalable  O(N2) cost 

- Difficult to arbitrate 

 

Used in core-to-cache-bank 

networks in 

- IBM POWER5 

- Sun Niagara I/II 
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Sun UltraSPARC T2 Core-to-Cache Crossbar 

 High bandwidth 
interface between 8 
cores and 8 L2 
banks & NCU 

 

 4-stage pipeline: 
req, arbitration, 
selection, 
transmission 

 

 2-deep queue for 
each src/dest pair 
to hold data 
transfer request 
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Buffered Crossbar 

16 

Output 

Arbiter 

Output 

Arbiter 

Output 

Arbiter 

Output 

Arbiter 

Flow 

Control 

Flow 

Control 

Flow 

Control 

Flow 

Control 

NI 

NI 

NI 

NI 

Buffered 

Crossbar 

0 

1 

2 

3 

NI 

NI 

NI 

NI 

Bufferless 

Crossbar 

0 

1 

2 

3 

+ Simpler 
arbitration/ 
scheduling 

 

+ Efficient 
support for 
variable-size 
packets 
 

-  Requires  
N2 buffers 

 

 

 

 



Ring 

+ Cheap: O(N) cost 

- High latency: O(N) 

- Not easy to scale 

   - Bisection bandwidth remains constant 

   - But, hierarchy/multi-ring designs can address scalability 

 

Used in Intel Larrabee, IBM Cell 
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Mesh 

 O(N) cost 

 Average latency: O(sqrt(N)) 

 Easy to layout on-chip: regular and equal-length links 

 Path diversity: many ways to get from one node to another 

 

 Used in Tilera 100-core 

 And many on-chip network 

   prototypes 
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Torus 

 Mesh is not symmetric on edges: performance very 
sensitive to placement of task on edge vs. middle 

 Torus avoids this problem 

+ Higher path diversity (and bisection bandwidth) than mesh 

- Higher cost 

- Harder to lay out on-chip 

  - Unequal link lengths 
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Torus, continued 

 Weave nodes to make inter-node latencies ~constant 
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Planar, hierarchical topology 

Latency: O(logN) 

Good for local traffic 

+ Cheap: O(N) cost 

+Easy to Layout 

- Root can become a bottleneck 

  Fat trees avoid this problem (CM-5) 

 

Trees 
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CM-5 Fat Tree 

 Fat tree based on 4x2 switches 

 Randomized routing on the way up 

 Combining, multicast, reduction operators supported in 
hardware 

 Thinking Machines Corp., “The Connection Machine CM-5 
Technical Summary,” Jan. 1992. 
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Hypercube 

 

 

 

 

 Latency: O(logN) 

 Radix: O(logN) 

 #links: O(NlogN) 

+ Low latency 

- Hard to lay out in 2D/3D 
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Caltech Cosmic Cube 

 64-node message passing 
machine 

 

 Seitz, “The Cosmic Cube,” 
CACM 1985. 
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Multistage Logarithmic Networks 

 Idea: Indirect networks with multiple layers of switches 
between terminals 

 Cost: O(NlogN), Latency: O(logN) 

 Many variations (Omega, Butterfly, Benes, Banyan, …) 

 Omega Network: 
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Delta Network 

 Single path from source to 
destination 
 

 Does not support all possible 
permutations 

 

 Proposed to replace costly 
crossbars as processor-memory 
interconnect 
 

 Janak H. Patel ,“Processor-
Memory Interconnections for 
Multiprocessors,” ISCA 1979. 
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Omega Network 

 Single path from source to 
destination 

 

 All stages are the same 

 

 Used in NYU 
Ultracomputer 

 

 Gottlieb et al. “The NYU 
Ultracomputer-designing a 
MIMD, shared-memory 
parallel machine,” ISCA 
1982. 
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Combining Operations in the Network 

 Idea: Combine multiple operations on a shared memory 
location 

 Example: Omega network switches combine fetch-and-add 
operations in NYU Ultracomputer 

 Fetch-and-add(M, I): return M, replace M with M+I 

 Common when parallel processors modify a shared variable, 
e.g. obtain a chunk of the array  

 Combining reduces synchronization latency 
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Butterfly 

 Equivalent to Omega Network 

 Indirect 

 Used in BBN Butterfly  

 Conflicts can cause tree saturation 

 Randomization of route selection helps 
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Agenda 

 Interconnection networks 
 Introduction and Terminology 

 Topology 

 Buffering and Flow control 
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Circuit vs. Packet Switching 

 Circuit switch sets up full path 

 Establish route then send data 

 (no one else can use those links) 

 faster and higher bandwidth 

 setting up and bringing down links slow 

 

 Packet switching routes per packet 

 Route each packet individually (possibly via different paths) 

 if link is free can use 

 potentially slower --- must dynamically switch 

 no setup, bring down time 
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Packet Switched Networks: Packet Format 

 Header 

 routing and control information 

 Payload 

 carries data (non HW specific information) 

 can be further divided (framing, protocol stacks…) 

 Error Code 

 generally at tail of packet so it can be generated on the way 
out 
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Handling Contention 

 

 

 

 

 

 

 Two packets trying to use the same link at the same time 

 What do you do? 

 Buffer one 

 Drop one 

 Misroute one (deflection) 

 Assume buffering for now 
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Flow Control Methods 

 Circuit switching 

 

 Store and forward (Packet based) 

 

 Virtual Cut Through (Packet based) 

 

 Wormhole (Flit based) 
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Circuit Switching Revisited 

 Resource allocation granularity is high 

 

 Idea: Pre-allocate resources across multiple switches for a 
given “flow” 

 Need to send a probe to set up the path for pre-allocation 

 

+ No need for buffering 

+ No contention (flow’s performance is isolated) 

+ Can handle arbitrary message sizes 

- Lower link utilization: two flows cannot use the same link 

- Handshake overhead to set up a “circuit” 
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Store and Forward Flow Control 

 Packet based flow control 

 Store and Forward 

 Packet copied entirely into network router before moving to 
the next node 

 Flow control unit is the entire packet 

 Leads to high per-packet latency 

 Requires buffering for entire packet in each node 
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Cut through Flow Control 

 Another form of packet based flow control 

 Start forwarding as soon as header is received and 
resources (buffer, channel, etc) allocated 

 Dramatic reduction in latency 

 Still allocate buffers and channel bandwidth for full packets 

 

 

 

 

 

 

 What if packets are large? 
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Cut through Flow Control 

 What to do if output port is blocked? 

 Lets the tail continue when the head is blocked, absorbing 
the whole message into a single switch.  

 Requires a buffer large enough to hold the largest packet. 

 Degenerates to store-and-forward with high contention 

 

 Can we do better? 
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Wormhole Flow Control 

 Packets broken into (potentially) 
smaller flits (buffer/bw allocation unit) 

 Flits are sent across the fabric in a 
wormhole fashion 

 Body follows head, tail follows body 

 Pipelined 

 If head blocked, rest of packet stops 

 Routing (src/dest) information only in 
head 

 

 How does body/tail know where to go? 

 Latency almost independent of distance 
for long messages 
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Wormhole Flow Control 

 Advantages over “store and forward” flow control 

+ Lower latency 

+ More efficient buffer utilization 

 Limitations 

- Suffers from head of line blocking 

   - If head flit cannot move due to contention, another worm 
cannot proceed even though links may be idle  
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Head of Line Blocking 

 A worm can be before another in the router input buffer 

 Due to FIFO nature, the second worm cannot be scheduled 
even though it may need to access another output port  
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Head of Line Blocking 
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Virtual Channel Flow Control 

 Idea: Multiplex multiple channels over one physical channel 

 Divide up the input buffer into multiple buffers sharing a 
single physical channel 

 Dally, “Virtual Channel Flow Control,” ISCA 1990. 
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Virtual Channel Flow Control 

 Idea: Multiplex multiple channels over one physical channel 

 Divide up the input buffer into multiple buffers sharing a 
single physical channel 

 Dally, “Virtual Channel Flow Control,” ISCA 1990. 
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Virtual Channel Flow Control 
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A Modern Virtual Channel Based Router 
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Other Uses of Virtual Channels 

 Deadlock avoidance 

 Enforcing switching to a different set of virtual channels on 
some “turns” can break the cyclic dependency of resources 

 Enforce order on VCs 

 Escape VCs: Have at least one VC that uses deadlock-free 
routing. Ensure each flit has fair access to that VC.  

 Protocol level deadlock: Ensure address and data packets use 
different VCs  prevent cycles due to intermixing of different 

packet classes 

 

 Prioritization of traffic classes 

 Some virtual channels can have higher priority than others 
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Communicating Buffer Availability 

 Credit-based flow control 

 Upstream knows how many buffers are downstream 

 Downstream passes back credits to upstream 

 Significant upstream signaling (esp. for small flits) 

 

 On/Off (XON/XOFF) flow control 

 Downstream has on/off signal to upstream 

 

 Ack/Nack flow control 

 Upstream optimistically sends downstream 

 Buffer cannot be deallocated until ACK/NACK received 

 Inefficiently utilizes buffer space 
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Credit-based Flow Control 
 

 

 

 

 

 

 

 

 Round-trip credit delay:  

 Time between when buffer empties and when next flit can be 
processed from that buffer entry 

 Significant throughput degradation if there are few buffers 

 Important to size buffers to tolerate credit turn-around 
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On/Off (XON/XOFF) Flow Control 

 Downstream has on/off signal to upstream 
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