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Designing QoS-Aware Memory Systems: Approaches 

 Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] 

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 

ISCA’11, Top Picks ’12] 

 QoS-aware caches 
 

 Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping 

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

 QoS-aware thread scheduling to cores 
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Memory Channel Partitioning 

 

 

 

 

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda,  

"Reducing Memory Interference in Multicore Systems via  
Application-Aware Memory Channel Partitioning” 

 44th International Symposium on Microarchitecture (MICRO),  
Porto Alegre, Brazil, December 2011. Slides (pptx)  

MCP Micro 2011 Talk 3 

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/subramanian_micro11_talk.pptx
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Goal:  
Mitigate  

Inter-Application Interference  

Previous Approach: 
Application-Aware Memory 

Request Scheduling 

Our First Approach: 
Application-Aware Memory 

Channel Partitioning 

Our Second Approach: 
Integrated Memory 

Partitioning and Scheduling 



Background: Main Memory 
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 FR-FCFS memory scheduling policy [Zuravleff et al., US Patent ‘97; Rixner et al., ISCA ‘00] 

 Row-buffer hit first 

 Oldest request first 

 Unaware of inter-application interference 

 

 Channel 
Memory 

Controller 

Bank 0 Bank 1 Bank 2 Bank 3 

Row 
Buffer 



Previous Approach 
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Previous Approach: 
Application-Aware Memory 

Request Scheduling 

Our First Approach: 
Application-Aware Memory 

Channel Partitioning 

Our Second Approach: 
Integrated Memory 

Partitioning and Scheduling 

Previous Approach: 
Application-Aware Memory 

Request Scheduling 

Goal:  
Mitigate  

Inter-Application Interference  



Application-Aware Memory Request Scheduling 

 Monitor application memory access 
characteristics 

 

 Rank applications based on memory access 
characteristics 

 

 Prioritize requests at the memory controller, 
based on ranking 
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An Example: Thread Cluster Memory Scheduling 

Figure: Kim et al., MICRO 2010 
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Application-Aware Memory Request Scheduling 
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Advantages 

 Reduces interference between applications by  

 request reordering 

 Improves system performance 

Disadvantages 

 Requires modifications to memory scheduling logic for 

 Ranking 

 Prioritization 

 Cannot completely eliminate interference by request 

reordering  



Our Approach 
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Previous Approach: 
Application-Aware Memory 

Request Scheduling 

Our First Approach: 
Application-Aware Memory 

Channel Partitioning 

Our Second Approach: 
Integrated Memory 

Partitioning and Scheduling 

Our First Approach: 
Application-Aware Memory 

Channel Partitioning 

Goal:  
Mitigate  

Inter-Application Interference  



Observation: Modern Systems Have Multiple Channels 

A new degree of freedom 

Mapping data across multiple channels 
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Data Mapping in Current Systems 
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Partitioning Channels Between Applications 
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Overview: Memory Channel Partitioning (MCP)  

 Goal 

 Eliminate harmful interference between applications 

 

 Basic Idea 

 Map the data of badly-interfering applications to different 
channels 

 

 Key Principles 

 Separate low and high memory-intensity applications 

 Separate low and high row-buffer locality applications 
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Key Insight 1: Separate by Memory Intensity 

High memory-intensity applications interfere with low 
memory-intensity applications in shared memory channels 
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Key Insight 2: Separate by Row-Buffer Locality 
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High row-buffer locality applications interfere with low  

row-buffer locality applications in shared memory channels 
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Memory Channel Partitioning (MCP) Mechanism 

1. Profile applications 

2. Classify applications into groups 

3. Partition channels between application groups 

4. Assign a preferred channel to each application 

5. Allocate application pages to preferred channel 
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1. Profile Applications 
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 Hardware counters collect application memory 
access characteristics 

 

 Memory access characteristics 

 Memory intensity: 

 Last level cache Misses Per Kilo Instruction (MPKI) 

 Row-buffer locality: 

 Row-buffer Hit Rate (RBH) - percentage of 

accesses that hit in the row buffer 



2. Classify Applications 
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3. Partition Channels Among Groups: Step 1 
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3. Partition Channels Among Groups: Step 2 
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4. Assign Preferred Channel to Application 
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 Assign each application a preferred channel from 
its group’s allocated channels 

 Distribute applications to channels such that 
group’s bandwidth demand is balanced across its 
channels 

 

 

 
 



5. Allocate Page to Preferred Channel 

 Enforce channel preferences                    
computed in the previous step 

 

 On a page fault, the operating system 

 allocates page to preferred channel if free page 
available in preferred channel 

 if free page not available, replacement policy tries to 
allocate page to preferred channel 

 if it fails, allocate page to another channel 
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Interval Based Operation 
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time 

Current Interval Next Interval 

1. Profile applications 

2. Classify applications into groups 

3. Partition channels between groups 

4. Assign preferred channel to applications 

5. Enforce channel preferences 



Integrating Partitioning and Scheduling 
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Previous Approach: 
Application-Aware Memory 

Request Scheduling 

Our First Approach: 
Application-Aware Memory 

Channel Partitioning 

Our Second Approach: 
Integrated Memory 

Partitioning and Scheduling 

Goal:  
Mitigate  

Inter-Application Interference  



Observations 

 

 Applications with very low memory-intensity rarely 
access memory                                                         
 Dedicating channels to them results in precious 
memory bandwidth waste 

 

 They have the most potential to keep their cores busy  
 We would really like to prioritize them 

 

 They interfere minimally with other applications            
 Prioritizing them does not hurt others 
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Integrated Memory Partitioning and Scheduling (IMPS) 

 

 Always prioritize very low memory-intensity 
applications in the memory scheduler 

 

 

 Use memory channel partitioning to mitigate 
interference between other applications 
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Hardware Cost 

 Memory Channel Partitioning (MCP) 

 Only profiling counters in hardware 

 No modifications to memory scheduling logic 

 1.5 KB storage cost for a 24-core, 4-channel system 

 

 Integrated Memory Partitioning and Scheduling (IMPS) 

 A single bit per request 

 Scheduler prioritizes based on this single bit 
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Methodology 

 Simulation Model 

 24 cores, 4 channels, 4 banks/channel 

 Core Model 

 Out-of-order, 128-entry instruction window 

 512 KB L2 cache/core 

 Memory Model – DDR2 

 

 Workloads 

 240 SPEC CPU 2006 multiprogrammed workloads  
(categorized based on memory intensity) 

 

 Metrics 

 System Performance 
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Previous Work on Memory Scheduling 

 FR-FCFS [Zuravleff et al., US Patent 1997, Rixner et al., ISCA 2000] 

 Prioritizes row-buffer hits and older requests 

 Application-unaware 

 

 

 ATLAS [Kim et al., HPCA 2010] 

 Prioritizes applications  with low memory-intensity 

 

 

 TCM [Kim et al., MICRO 2010] 

 Always prioritizes low memory-intensity applications 

 Shuffles request priorities of high memory-intensity applications 
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Comparison to Previous Scheduling Policies 
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IMPS improves performance regardless of scheduling policy 
Highest improvement over FRFCFS as IMPS designed for FRFCFS  

Interaction with Memory Scheduling 

Averaged over 240 workloads 



Summary 

 Uncontrolled inter-application interference in main memory 
degrades system performance 

 

 Application-aware memory channel partitioning (MCP) 

 Separates the data of badly-interfering applications              
to different channels, eliminating interference  

 

 Integrated memory partitioning and scheduling (IMPS) 

 Prioritizes very low memory-intensity applications in scheduler 

 Handles other applications’ interference by partitioning 

 

 MCP/IMPS provide better performance than application-
aware memory request scheduling at lower hardware cost 
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Designing QoS-Aware Memory Systems: Approaches 

 Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] 

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 

ISCA’11, Top Picks ’12] 

 QoS-aware caches 
 

 Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping 

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

 QoS-aware thread scheduling to cores 
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Fairness via Source Throttling 

 

 

 

 

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt, 
"Fairness via Source Throttling: A Configurable and High-Performance  

Fairness Substrate for Multi-Core Memory Systems"  
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS),  

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)  

FST ASPLOS 2010 Talk 35 

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
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http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/ebrahimi_asplos10_talk.pdf
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The Problem with “Smart Resources” 
 

 Independent interference control mechanisms in 
caches, interconnect, and memory can contradict 
each other 

 

 Explicitly coordinating mechanisms for different 
resources requires complex implementation 

 

 How do we enable fair sharing of the entire 
memory system by controlling interference in a 
coordinated manner? 
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An Alternative Approach: Source Throttling 

 Manage inter-thread interference at the cores, not at the 
shared resources 
 

 Dynamically estimate unfairness in the memory system  

 Feed back this information into a controller 

 Throttle cores’ memory access rates accordingly 

 Whom to throttle and by how much depends on performance 
target (throughput, fairness, per-thread QoS, etc) 

 E.g., if unfairness > system-software-specified target then 
throttle down core causing unfairness &  
throttle up core that was unfairly treated 

 

 Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12. 
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Fairness via Source Throttling (FST) 

 Two components (interval-based) 

 

 Run-time unfairness evaluation (in hardware) 

 Dynamically estimates the unfairness in the memory system 

 Estimates which application is slowing down which other 

 

 Dynamic request throttling (hardware/software) 

 Adjusts how aggressively each core makes requests to the 
shared resources 

 Throttles down request rates of cores causing unfairness 

 Limit miss buffers, limit injection rate 
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Estimating System Unfairness 

 
 Unfairness =  

 

 

 Slowdown of application i =  

 

 How can            be estimated in shared mode? 

 

             is the number of extra cycles it takes  
application i to execute due to interference 

 

   
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Tracking Inter-Core Interference 

  

44 

0 0 0 0 

Interference per core 

bit vector 

Core # 0 1 2 3 

Core 0 Core 1 Core 2 Core 3 

Bank 0 Bank 1 Bank 2 Bank 7 
... 

Memory Controller 

Shared Cache 

Three interference sources: 
1. Shared Cache 
2. DRAM bus and bank 
3. DRAM row-buffers 

FST hardware 

 

Bank 2 

Row 



Row A 

Tracking DRAM Row-Buffer Interference 
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Tracking Inter-Core Interference 
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Runtime 

Unfairness 

Evaluation 

Dynamic 

Request Throttling 

1- Estimating system unfairness  
2- Find app. with the highest 
slowdown (App-slowest) 
3- Find app. causing most 
interference for App-slowest  
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if (Unfairness Estimate >Target)  
{ 
 1-Throttle down App-interfering 
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} 
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Fairness via Source Throttling (FST) 
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Tracking Inter-Core Interference 

 To identify App-interfering, for each core i 

 FST separately tracks interference caused by each core j 
( j ≠ i ) 
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Fairness via Source Throttling (FST) 

  

49 

Runtime 

Unfairness 

Evaluation 

Dynamic 

Request Throttling 

1- Estimating system unfairness  

2- Find app. with the highest slowdown 

(App-slowest) 

3- Find app. causing most interference 

for App-slowest  

(App-interfering) 

if (Unfairness Estimate >Target)  

{ 

 1-Throttle down App-interfering 

 2-Throttle up App-slowest 

} 

FST 

Unfairness Estimate 

App-slowest 

App-interfering 



Dynamic Request Throttling 

 
 Goal: Adjust how aggressively each core makes requests to 

the shared memory system  

 

 Mechanisms: 

 Miss Status Holding Register (MSHR) quota 

 Controls the number of concurrent requests accessing shared 
resources from each application 

 Request injection frequency 

 Controls how often memory requests are issued to the last level 
cache from the MSHRs 
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Dynamic Request Throttling 

 
 Throttling level assigned to each core determines both 

MSHR quota and request injection rate 
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Throttling level MSHR quota Request Injection Rate 

100% 128 Every cycle 

50% 64 Every other cycle 

25% 32 Once every 4 cycles 

10% 12 Once every 10 cycles 

5% 6 Once every 20 cycles 

4% 5 Once every 25 cycles 

3% 3 Once every 30 cycles 

2% 2 Once every 50 cycles Total # of 

MSHRs: 128 



FST at Work 
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Time 
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Runtime Unfairness 
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⎪

 
⎧

 

⎩
 



System Software Support 

 
 Different fairness objectives can be configured by       

system software 

 Estimated Unfairness > Target Unfairness 

 Keep maximum slowdown in check 

 Estimated Max Slowdown < Target Max Slowdown 

 Keep slowdown of particular applications in check to achieve a 
particular performance target 

 Estimated Slowdown(i) < Target Slowdown(i) 

 

 Support for thread priorities 

 Weighted Slowdown(i) =  
        Estimated Slowdown(i) x Weight(i) 
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FST Hardware Cost 

 Total storage cost required for 4 cores is ~12KB 

 

 FST does not require any structures or logic that are on the 
processor’s critical path 
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FST Evaluation Methodology 

 x86 cycle accurate simulator 

 Baseline processor configuration 

 Per-core 

 4-wide issue, out-of-order, 256 entry ROB 

 Shared (4-core system) 

 128 MSHRs  

 2 MB, 16-way L2 cache 

 Main Memory 

 DDR3 1333 MHz 

 Latency of 15ns per command (tRP, tRCD, CL) 

 8B wide core to memory bus 
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FST: System Unfairness Results 
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44.4% 

36% 



FST: System Performance Results 
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25.6

% 

14% 
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Source Throttling Results: Takeaways 

 Source throttling alone provides better performance than a 
combination of “smart” memory scheduling and fair caching 

 Decisions made at the memory scheduler and the cache 
sometimes contradict each other 

 

 Neither source throttling alone nor “smart resources” alone 
provides the best performance 

 

 Combined approaches are even more powerful  

 Source throttling and resource-based interference control 
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FST ASPLOS 2010 Talk 

//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/ebrahimi_asplos10_talk.pdf


Summary: Memory QoS Approaches and Techniques 

 Approaches: Smart vs. dumb resources 

 Smart resources: QoS-aware memory scheduling 

 Dumb resources: Source throttling; channel partitioning 

 Both approaches are effective in reducing interference 

 No single best approach for all workloads 
 

 Techniques: Request scheduling, source throttling, memory 
partitioning 

 All approaches are effective in reducing interference 

 Can be applied at different levels: hardware vs. software 

 No single best technique for all workloads 
 

 Combined approaches and techniques are the most powerful 

 Integrated Memory Channel Partitioning and Scheduling [MICRO’11] 
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Smart Resources vs. Source Throttling 

 Advantages of “smart resources” 
 Each resource is designed to be as efficient as possible    

more efficient design using custom techniques for each resource  

 No need for estimating interference across the entire system 
(to feed a throttling algorithm). 

 Does not lose throughput by possibly overthrottling  

 

 Advantages of source throttling 

 Prevents overloading of any or all resources (if employed well) 

 Can keep each resource simple; no need to redesign each resource  

 Provides prioritization of threads in the entire memory system;    

 instead of per resource  

 Eliminates conflicting decision making between resources   
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QoS Work So Far 

 Major Goals 

 System performance 

 Fairness 

 

 New challenge in today’s clouds, clusters 

 Need for guarantees on performance 

 Need for accurate performance prediction 

 

 Fairness via Source Throttling 

 A step in the direction of performance (slowdown) prediction 

 But, slowdown estimates not very accurate 
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MISE: Providing Performance Predictability  

in Shared Main Memory Systems  
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Unpredictable Slowdowns 

(Core 0)  (Core 1) 

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service  
in multi-core systems,” USENIX Security 2007. 
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Need for Predictable Performance 

 Billing in a cloud 

 Billing by time? 

 More interference  Longer runtime  Pay more 

 Knowledge of slowdown enables smarter billing 

 

 Server consolidation 

 Multiple applications consolidated on a server 

 Need to provide bounded performance 
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Towards a Predictable Performance Substrate 

Memory Interference-induced Slowdown Estimation (MISE) 
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Outline 

 Introduction and Motivation 

 Slowdown Estimation Model 

 Comparison to Prior Work 

 An Application of Our Model 
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Key Observation 1 

For a memory bound application,   
Performance α Request service rate 
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time Request Buffer 

Request Buffer time 

Request Buffer time 

Run Alone 

Run along with another application 

When given highest priority 

Key Observation 2 



Key Observation 2 

Alone Request Service Rate of an application can be measured 
by giving the application highest priority in accessing 

memory  

 

Highest priority  Little interference 

 



Key Observation 3 

 Memory-bound applications 

 Spend significant time stalling for memory 

 

 Non-memory-bound applications 

 Spend significant time in compute phase 

 Compute phase length unchanged by request service rate 
variation 

 

SRSR

ARSR
  ) - (1 Slowdown  

α – fraction of time in memory phase 



Interval Based Implementation 

 Divide execution time into intervals 

 

 Slowdown is estimated at end of each interval 

 
 To estimate slowdown: Measure/estimate three major 

components at the end of each interval 

 Alone Request Service Rate (ARSR) 

 Shared Request Service Rate (SRSR) 

 Memory Phase Fraction ( α ) 

 



Measuring SRSR and α 

 Shared Request Service Rate (SRSR) 

 Per-core counter to track number of requests serviced of each 
core 

 At the end of each interval, measure 

 

 

 

 Memory Phase Fraction (α) 

 Count number of stall cycles at the core 

 Compute fraction of cycles stalled for memory 

 

 

 

 

Length Interval

Serviced Requests ofNumber 
  SRSR 



ARSR Estimation Mechanism 

 Divide each interval into shorter epochs 

 At the beginning of each epoch 

 Randomly pick a highest priority application 

 Probability of picking an application is proportional to 
its bandwidth allocation 

 At the end of an interval, for each application, estimate  

 

CyclesEpoch Priority High  ofNumber 

RequestsEpoch Priority High  ofNumber 
ARSR

           





Tackling Inaccuracy in ARSR Estimation 

 When an application has highest priority 

 Little Interference 

 Not Zero Interference 

 

Request Buffer time 

Interference 

Cycles 



Tackling Inaccuracy in ARSR Estimation 

 Solution: Factor out interference cycles 

 A cycle is an interference cycle 

 if a request from the highest priority application is waiting 
in the request buffer and 

 another application’s request was issued previously 

 

Cycles ceInterferen - CyclesEpoch Priority High  ofNumber 

RequestsEpoch Priority High  ofNumber 
ARSR

           





Putting it all Together 

 Divide execution time into intervals 

 

 Measure/estimate three major components at the end 
of each interval 

 Alone Request Service Rate (ARSR) 

 Shared Request Service Rate (SRSR) 

 Memory Phase Fraction ( α ) 

 

 Estimate slowdown as 
SRSR

ARSR
  ) - (1 Slowdown  



MISE Hardware Cost 

 Total storage cost required for 4 cores is ~96 bytes 

 

 Simple changes to memory scheduler 
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Outline 

 Introduction and Motivation 

 Slowdown Estimation Model 

 Comparison to Prior Work 

 An Application of Our Model 

 

 



Previous Work on Slowdown Estimation 

 Major previous work on slowdown estimation 

 STFM (Mutlu+, MICRO 2007)  

 FST (Ebrahimi+, ASPLOS 2010) 

 

 Basic Idea: 

 Estimate slowdown as ratio of uninterfered to interfered 
memory stall cycles 

 Interfered stall cycles - easy to measure 

 Uninterfered stall cycles - estimated by factoring out stall 
cycles due to interference  

 

 



Two Major Advantages of MISE Over STFM 

 Advantage 1: 

 STFM tries to estimate uninterfered stall time in the presence 
of interference 

 MISE eliminates significant portion of interference by giving 
highest priority 

 

 Advantage 2: 

 STFM’s slowdown estimation mechanism is inaccurate for low 
intensity applications 

 MISE accounts for compute phase providing better accuracy 



Methodology 

 Configuration of our simulated system 

 4 cores 

 1 channel 

 DDR3 1066 DRAM  

 512 KB private cache/core 

 Data interleaving policy: row interleaving 

 Thread unaware memory scheduling policy 

 Workloads 

 300 multiprogrammed workloads 

 Built using SPEC CPU2006 benchmarks  

 



Quantitative Comparison 
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Outline 

 Introduction and Motivation 

 Slowdown Estimation Model 

 Comparison to Prior Work 

 An Application of Our Model 

 

 



Providing “Soft” Slowdown Guarantees 

 Goal 

 Ensure QoS-critical applications meet a prescribed 
slowdown bound 

 Maximize system performance for other applications 

 

 Basic Idea 

 Allocate just enough bandwidth to QoS-critical application 

 Assign remaining bandwidth to other applications 

 



Mechanism to Provide Soft QoS  

(For One QoS-Critical Application) 

 Estimate slowdown of QoS-critical application 

 

 

 At the end of each interval 

 If slowdown > bound B, increase bandwidth allocation 

 If slowdown < bound B, decrease bandwidth allocation 

 

 

 When slowdown bound not met 

 Notify the OS 



A Sample Workload 
QoS-Critical vs Non-QoS-Critical Application Performance 
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Lower slowdowns for non-QoS-critical applications QoS-Critical application’s slowdown decreases as 
the bound becomes tighter 



Effectiveness of MISE in Enforcing QoS 

Only for 2.2% of workloads is a violated bound predicted as met 

Predicted Right Predicted Wrong 

QoS Bound Met 78.8% 12.1% 

QoS Bound Not Met 6.9% 2.2% 



Performance of Non-QoS-Critical Applications 
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in Workload 
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Lower average slowdown when bound is loose  

MISE-QoS-3 has 10% lower average slowdown  
than Always Prioritize  



Case Study with Two QoS-Critical Applications 

 Two comparison points 

 Always prioritize both applications 

 Prioritize each application 50% of time 
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MISE-QoS can achieve a lower slowdown bound 
for both applications 

MISE-QoS provides much lower slowdowns for non-
QoS-critical applications  



Future Work 

 Exploiting slowdown information in software 

 Admission control 

 Migration policies 

 Billing policies 

 

 Building a comprehensive model 

 Performance predictability with other shared resources 

 Performance predictability in heterogeneous systems 



Summary 

 Problem 

 Memory interference slows down different applications to 
different degrees 

 Need to provide predictable performance in the presence of 
memory interference 

 Solution 

 New slowdown estimation model 

 Accurate slowdown estimates: 8.8% error 

 Our model enables better QoS-enforcement policies 

 We presented one application of our model 

 Providing soft “QoS” guarantees 

 
 

 

 

 

 

 

 



Research Topics in Main Memory Management 

 Abundant 

 

 Interference reduction via different techniques 

 Distributed memory controller management 

 Co-design with on-chip interconnects and caches 

 Reducing waste, minimizing energy, minimizing cost 

 Enabling new memory technologies 

 Die stacking 

 Non-volatile memory 

 Latency tolerance 
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