TELE UNTVERSTTY ©F

SANVIDIA. T [X A S

AT AUSTIN

A Variable Warp-Size
Architecture

Timothy G. Rogers
Daniel R. Johnson
Mike O’Connor
Stephen W. Keckler

Contemporary GPU

» Massively Multithreaded

» 10,000’s of threads concurrently executing on 10’s of

Streaming Multiprocessors (SM)

GPU
MemCtrll = |MemCtrl
L2S

SM

Interconnect

SM SM
MemCtrll |MemCtrl
L25 125
2 A Variable Warp-Size Architecture Tim Rogers

Contemporary

Streaming Multiprocessor (SM)

» |,000’s of schedulable threads

» Amortize front end and memory overheads by grouping

threads into warps.

Size of the warp is fixed based on the architecture

treaming Multiprocessor N
rontenc

L1 I-Cache

Warp
Control Logic

Decode

N

Warp Datapat

gl ____MemoryUnit N~

A Variable Warp-Size Architecture

GPU
MemCtrl MemCtrl
12S
SM
connect
SM SM
MemCtrl MemCtrl
125 125
Tim Rogers

Contemporary GPU Software

» Regular structured computation
» Predictable access and control flow patterns

» Can take advantage of HW amortization for increased
performance and energy efficiency

Execute Efficiently
on a GPU Today

Graphics
Shaders

Matrix
Multiply

4 A Variable Warp-Size Architecture Tim Rogers

Forward-Looking GPU Software

» Still Massively Parallel
» Less Structured

Memory access and control flow patterns are less predictable

Less efficient on
today’s GPU

Molecular
Dynamics

Raytracing

Execute efficiently
on a GPU today

Object
lassification
Graphics
Shaders

Matrix
Multiply

A Variable Warp-Size Architecture Tim Rogers

Divergence: Source of Inefficiency

» Regular hardware that amortizes front end and overhead

» Irregular software with many different control flow paths
and less predicable memory accesses.

Branch Divergence Memory Divergence

Load R1, 0O (R2)

32- Wide

32- Wide

Instruction may wait
for 32 cache lines

Main Memory

6 A Variable Warp-Size Architecture Tim Rogers

[rregular “Divergent” Applications:
Perform better with a smaller warp size

Branch Divergence Memory Divergence
####@%## Load R1, 0 (R2)
if () o
| Il

Each instruction waits
on fewer accesses

Allows more
threads to
proceed
concurrentl

Increased

Main Memory

function unit
utilization

7 A Variable Warp-Size Architecture Tim Rogers

Negative effects of smaller warp size

» Less front end amortization

Increase in fetch/decode energy

» Negative performance effects

Scheduling skew increases pressure on the memory system

8 A Variable Warp-Size Architecture Tim Rogers

Regular “Convergent” Applications:
Perform better with a wider warp

GPU memory coalescing Smaller warps: Less coalescing

Load R1, 0(R2)

4 32- Wide F
LT
One memory system request
can service all 32 threads

8 redundant memory accesses -
no longer occurring together

\\ 1Y

Main Memory

Main Memory

9 A Variable Warp-Size Architecture Tim Rogers

Performance vs. Warp Size

» 165 Applications

——Warp Size 4 {

== ="
N A O ©

IPC normalized to warp size 32
©c o O O
O N M O © B

Application

Convergent Warp-Size Insensitive
Applications Applications

10 A Variable Warp-Size Architecture

Divergent
Applications

Tim Rogers

Goals

» Convergent Applications
Maintain wide-warp performance

Maintain front end efficiency

» Warp Size Insensitive Applications

Maintain front end efficiency

» Divergent Applications

Gain small warp performance

Set the warp size based on
the executing application

Il A Variable Warp-Size Architecture Tim Rogers

Sliced Datapath + Ganged Scheduling

» Split the SM datapath into narrow slices.

Extensively studied 4-thread slices

» Gang slice execution to gain efficiencies of wider warp.
Slices share an L1
I-Cache and Memory Unit m
Frontend execute |
L1 I-Cache independently

Slice Warp Da , Slice
Slice Datapath Slice Datapath

Slice Slice

12 A Variable Warp-Size Architecture Tim Rogers

Initial operation

» Slices begin execution in ganged mode

Mirrors the baseline 32-wide warp system

» Question:When to break the gang!?
Instructions are fetched
and decoded once

Ganging
Unit

Ganging unit
drives the slices

Frontend

Slice Datapath Slice Datapath

Slice Slice

Front esee Front

Memory Unit

13 A Variable Warp-Size Architecture Tim Rogers

Breaking Gangs on Control Flow Divergence

» PCs common to more than one slice form a new gang

» Slices that follow a unique PC in the gang are transferred
to independent control

Observes different .
PCs from each slice Unique PCs: no
Frontend longer controlled by
L1 I-Cache ganging unit

Slice
Slice Datapath

Slice
Slice Datapath

Memory Unit

14 A Variable Warp-Size Architecture Tim Rogers

Breaking Gangs on Memory Divergence

» Latency of accesses from each slice can differ

» Evaluated several heuristics on breaking the gang when
this occurs

Frontend

Slice Datapath

o000 Front

,H'ts Memory Unit Goes to
in LI memory

15 A Variable Warp-Size Architecture Tim Rogers

Gang Reformation

» Performed opportunistically

Ganging unit checks for gangs or independent slices at the
same PC

Forms them into a gang

Slice Datapath

L - More details in the
paper

16 A Variable Warp-Size Architecture Tim Rogers

Methodology

» In House, Cycle-Level Streaming Multiprocessor Model
| In-order core
64KB LI Data cache
|28KB L2 Data Cache (One SM’s worth)
48KB Shared Memory
Texture memory unit
Limited BW memory system
Greedy-Then-Oldest (GTO) Issue Scheduler

17 A Variable Warp-Size Architecture Tim Rogers

Configurations

» Warp Size 32 (WS 32)
» Warp Size 4 (WS 4)

» Inelastic Variable Warp Sizing (I-VWVS)

Gangs break on control flow divergence

Are not reformed

» Elastic Variable Warp Sizing (E-VWYS)

Like I-VWVS, except gangs are opportunistically reformed

Paper Explores Many

» Studied 5 applications from each catej More Configurations

18 A Variable Warp-Size Architecture Tim Rogers

Divergent Application Performance

E-VWS

OI-VWS

OWS 4

mWS 32

18

AIQ-NV3INH

Buioeiifey

1syisse|olqo

solsAydawes

Gunybi

Divergent Applications

Tim Rogers

A Variable Warp-Size Architecture

19

Divergent Application Fetch Overhead

E-VWS: Break
+ Reform

BWS 32 oWS 4 OI-VWS SE-VWS

Avg. Fetches Per Cycle
O R, N W d 01 O N
|

BN BN By BN -

CoMD

2>
2
O
>
<

Lighting

Raytracing —
7
_]

GamePhysics
ObjClassifier

Divergent Applications

Used as a proxy for
energy consumption

20 A Variable Warp-Size Architecture Tim Rogers

E-VWS: Break
+ Reform

E-VWS

OI-VWS

OWS 4

mWS 32

Convergent Application Performance

8

Z< 9zIs duem o] pazijew.iou Dd|

N
—i

0
0.6

Convergent Applicatio

Tim Rogers

A Variable Warp-Size Architecture

21

Avg. Fetches Per Cycle

Convergent/Insensitive Application Fetch

Overhead ‘ E-VWS: Break
+ Reform
9 BWS32 @DWS4 oOl-VWS E-VWS IA—
8 - - - o ‘
. B _
6 _ _
) p]
4 //
3 //
: Vi H
1 . S
o N BN BN BN mirs BN BN ey wies @S MOEN WSS
s © & » &k 2 T ¥ % § 5 B
5 £ = £ H = £ = £ T 2 O
@© c < X S g <
S Q = I
= @) © D
= LL
Warp-Size Insensitive Applications Convergent Applications

22 A Variable Warp-Size Architecture Tim Rogers

165 Application Performance

1.8 .
~ o-Warp Size 4
e o |-VWS
§1.4
S
o 1.2
o©
81
£
5 0.8
& 0.6

Application
Convergent Warp-Size Insensitive Divergent
Applications Applications Applications

23 A Variable Warp-Size Architecture

Tim Rogers

Related Work

Compaction/Formation

Subdivision/Multipath

Increase
Thread Level
Parallelism

Decrease
Thread Level
Parallelism

Improve Decreased
Function Unit Function Unit
Utilization Utilization

Variable Warp Sizing

Increase
Thread Level
Parallelism

Improve
Function Unit
Utilization

VWS Estimate:
5% for 4-wide slices
2.5% for 8-wide slices

24 A Variable Warp-Size Architecture Tim Rogers

Conclusion

» Explored space surrounding warp size and perfromance

» Vary the size of the warp to meet the depends of the
workload

35% performance improvement on diversent apps
P P g PP

No performance degradation on convergent apps

» Narrow slices with ganged execution

Improves both SIMD efficiency and thread-level parallelism

25 A Variable Warp-Size Architecture Tim Rogers

Managing DRAM Latency Divergence
in Irregular GPGPU Applications

Niladrish Chatterjee
AMDT

Mike O’Connor

UTAH ARCH

Gabriel H. Loh
THE UNIVERSITY OF Nuwan Jayasena
< .
T E\?ﬁl 1?\ S Rajeev

Balasubramonian

Irregular GPGPU Applications

e Conventional GPGPU workloads access vector or matrix-based data
structures

* Predictable strides, large data parallelism

* Emerging Irregular Workloads
* Pointer-based data-structures & data-dependent memory accesses
* Memory Latency Divergence on SIMT platforms

Warp-aware memory scheduling to reduce DRAM latency
divergence

UTAH ARCH

sC
27 2014

SIMT Execution Overview

Warps
THREADS
SIMT C - -
ore _ - -
- - .
SIMT Core - - - Lockstep execution
-~ e T I Warp stalled on memory access
SIMT Core " warp2 ™ "
L Warp2 | T Memory Partition
—| Warp3 | E Memory
R Controller
' —/ WarpN | C :
J (0 H
SIMDiLanes . .
IIII“" I N Memory Partition
- I E Memory
w ‘ C Controller D]D]3
’ L1 ‘ Port T Channel)

UTAH ARCH

SC
28 2014

Memory Latency Divergence

SIMD Lanes (32)

Load Inst! ! !

* Coalescer has limited efficacy
in irregular workloads

* Partial hitsin L1 and L2
* 15t source of latency divergence

* DRAM requests can have
varied latencies

* Warp stalled for last request

* DRAM Latency Divergence

sC
29 2014

GPU Memory Controller (GMC)

* Optimized for high throughput

* Harvest channel and bank parallelism
* Address mapping to spread cache-lines across channels and banks.

* Achieve high row-buffer hit rate
* Deep queuing
» Aggressive reordering of requests for row-hit batching

* Not cognizant of the need to service requests from a warp together
* Interleave requests from different warps leading to latency divergence

UTAH ARCH

sC
30 2014

Warp-Aware Scheduling

Stall Cyclestall C S .
> H_ﬂ
SV A Stall Cycles 1
. H

\
I |

e " ' |

| Reduced Average Memory Stall Time
Baseline
aMC N - N - W - W

Scheduling |

|
| |
ENWSWSWws : | ;| ;| - |

31 2014

]I

- o v == P

UTAH ARCH

Impact of DRAM Latency Divergence

: m Perfect Coalescing W Zero Latency Dlvergence
QO 5
a
T 4
D
N
© 3
=
|
O 2
spmv sad cfd kmeans nw PVC sssp sp average

If tfh @.lbrmg %ﬂwfnqr@@@@trpémgrwbsxwﬁwbment.
perfect sequence from the DRAM —

~40% improvement.

UTAH ARCH

SC
32 2014

Key Idea

* Form batches of requests from each warp
* warp-group

* Schedule all requests from a warp-group together

* Scheduling algorithm arbitrates between warp-groups to minimize
average stall-time of warps

Controller Design

O O
head Queu Rank 1 Bank 1

\ @_ Rank 1 Bank2

H —

Transaction ° 5 Command|-I0o.
Scheduler Rank 2 Bank 1 " |scheduler| GDDR5

! 5 Channel
i o i
§ Rank N Bank M i

__4___q> b |

2 : i
I\Nrite QUE%I e

UTAH ARCH

SC
34 2014

Controller Design

ORI
head Queu Rank 1 Bank 1
o
Batchin § Rank 1 Bank
onit | | | &
©) o . _|command |10,
Trahsactioh - ! Rank 2 Bank 1 Scheduler g:DRS |
Scheduler - i SRS
Rank N Bank M
L@ -
|Write Queue

UTAH ARCH

e
35 2014

Warp-Group Scheduling : Single Channel

Pending Warp-Groups * Each Warp-Group assigned a
TR D priority
Row E = I = L % | * Reflects completion time of
Queuing hit/miss # of reqs i] ii C i i C] E last request
delay in status of in warp- ! ! | e !
cmd reds group E ‘oo C | * Higher Priority to
anenes ; Tt * Few requests

~——

e High spatial locality
* Lightly loaded banks

Transaction
Scheduler * Priorities updated dynamically

Warp-group
priority table

* Transaction Scheduler picks warp-
group with lowest run-time

Pick warp-group * Shortest-job-first based on

with lowest actual service time
runtime

UTAH ARCH

SC
36 2014

WG-scheduling

GMC
Baseline

Pt
-
-
-
-
-
-
-
.-
-
-
-
-
-
-
-
-
-
-
-

Latency Divergence

n Bandwidth Utilization

sC
37 2014

Multiple Memory Controllers

* Channel level parallelism
* Warp’s requests sent to multiple memory channels
* Independent scheduling at each controller

» Subset of warp’s requests can be delayed at one or few memory
controllers

* Coordinate scheduling between controllers
* Prioritize warp-group that has already been serviced at other controllers

* Coordination message broadcast to other controllers on completion of a
warp-group.

UTAH ARCH

sC
38 2014

Warp-Group Scheduling : Multi-Channel

Queuing
delay in
cmd
queues

UTAH ARCH

Row
hit/miss
status of

reqgs

Priority Table

1

Status of
Warp-group
in other
channels

Pending Warp-Groups

1 \/ 1 ! \

I 1! 1 I 1

3 B R
Il

of regs I)
in warp- , & e ! ;e !
group A
' IIII :k IIII : ["k [::] :

\ J

Periodic messages

to other channels

about completed
warp-groups

Transaction
Scheduler

Pick warp-group
with lowest
runtime

SC
39 2014

WG-M Scheduling

GMC
Baseline

Pt
-
-
-
-
-
-
-
.-
-
-
-
-
-
-
-
-
-
-
-

Latency Divergence

n Bandwidth Utilization

sC
40 2014

Bandwidth-Aware Warp-Group Scheduling

* Warp-group scheduling negatively affects bandwidth utilization
* Reduced row-hit rate

* Conflicting objectives
* Issue row-miss request from current warp-group
* Issue row-hit requests to maintain bus utilization

* Activate and Precharge idle cycles
* Hidden by row-hits in other banks

* Delay row-miss request to find the right slot

UTAH ARCH

sC
41 2014

Bandwidth-Aware Warp-Group Scheduling

* The minimum number of row-hits needed in other banks to overlap
(tRTP+tRP+tRCD)

e Determined by GDDR timing parameters
* Minimum efficient row burst (MERB)

e Stored in a ROM looked up by Transaction Scheduler

* More banks with pending row-hits
e smaller MERB

e Schedule row-miss after MERB row-hits have been issued to bank

e N

UTAH ARCH

sC
42 2014

WG-Bw Scheduling

GMC
Baseline

Pt
-
-
-
-
-
-
-
.-
-
-
-
-
-
-
-
-
-
-
-

—————

Latency Divergence

n Bandwidth Utilization

sC
43 2014

Warp-Aware Write Draining

e Writes drained in batches
e starts at High_Watermark

 Can stall small warp-groups

* When WQ reaches a threshold (lower than High_Watermark)
 Drain singleton warp-groups only

* Reduce write-induced latency

e N

UTAH ARCH

sC
44 2014

WG-scheduling

GMC
Baseline

Pt
-
-
-
-
-
-
-
.-
-
-
-
-
-
-
-
-
-
-
-

—————

Latency Divergence

Bandwidth Utilization

UTAH ARCH

sC
45 2014

Methodology

* GPGPUSIim v3.1 : Cycle Accurate GPGPU simulator

SM Cores 30

Max Threads/Core 1024

Warp Size 32 Threads/warp
L1/L2 32KB / 128 KB
DRAM 6Gbps GDDR5
DRAM Channels Banks 6 Channels

16 Banks/channel

e USIMM v1.3 : Cycle Accurate DRAM Simulator
* modified to model GMC-baseline & GDDR5 timings

* Irregular and Regular workloads from Parboil, Rodinia, Lonestar, and MARS.

UTAH ARCH

Performance Improvement

1T Restored
Reduced Latency Bandwidth
Divergence Utjli7a
1696

8%

6%

4%

BASELINE

2%

IPC NORMALIZED TO

0%

WG-Bw WG-W

WG WG-M

47 2014

Impact on Regular Workloads

» Effective coalescing
* High spatial locality in warp-group

* WG scheduling works similar to GMC-baseline
* No performance loss

* WG-Bw and WG-W provide

* Minor benefits

e N

UTAH ARCH

sC
48 2014

Energy Impact of Reduced Row Hit-Rate

* Scheduling Row-misses over Row-
hits
* Reduces the row-buffer hit rate 16%

* |In GDDRS5, power consumption
dominated by 1/0O.

* Increase in DRAM power negligible
compared to execution speed-up
* Net improvement in system energy

UTAH ARCH

49

pl/bit

40

30

20

10

GDDRS5 Energy/bit

Baseline
ml/0
H Column

HDLL

é-ll
)
w
s :

B Row
Control

B Background

SC
2014

Conclusions

* Irregular applications place new demands on the GPU’s memory
system

* Memory scheduling can alleviate the issues caused by latency
divergence

 Carefully orchestrating the scheduling of commands can help regain
the bandwidth lost by warp-aware scheduling

* Future techniques must also include the cache-hierarchy in reducing
latency divergence

UTA ARCH

Thanks !

SC
51 2014

Backup Slides

SC
52 2014

Performance Improvement : IPC

1.2

1.15

1.
1.05
0

spmv sad cfd kmeans nw sSSsp sp average

e

Normalized IPC

0

©

UTAH ARCH

SC
53 2014

Average Warp Stall Latency

1800
1600
1400
1200
1000
80
60
40
20

Effective DRAM Stall

=
-
>
o
>
=
0
o

mGMC WG mWG-M »WG-Bw mRWG-W
spmv sad cfd kmeans nw sssp sp average

SC
54 2014

DRAM Latency Divergence

EGMC WG BEWG-M "WG-Bw mWG-W
700

600
500
400
300

200

| ‘ il | i‘ il Ill:
AT
SS

spmv sad bfs cfd kmeans nw PVC sssp sp average

Latency Divergence (cycles)

=
-
>
o
>
=
0
o

SC
55 2014

Bandwidth Utilization

HGMC WG-M B WG-Bw
80%

70%
60%

50%

40%

30%

20%

10% I
0%

spmv sad bfs c¢fd kmeans nw PVC SS sssp sp average

Sustained Bandwidth

UTAH ARCH

SC
56 2014

Memory Controller Microarchitecture

1
Read Queue P

. Bank 1 5
©; — s
—> Warp Sorter | e— :
. Transaction| | B&n :
SM id|Warp Id|Score|R : :
p [***°I™| scheduler |—+— mE
: @ :
! @ i >
¢ : Bank 1 ;
Bank Table @_ | 5
B ; .
Bank| warp 1|Rowi|Rowzle o/ 27K |Warp 2 ee ‘|l BankN
Id score N -

Write Queue @

— &

Command}—T0
Scheduler| GDDR5

Channel

UTAH ARCH

57

SC
2014

Warp-Group Scheduling

* Every batch assigned a priority-score
» completion time of the longest request

* Higher priority to warp groups with
* Few requests
* High spatial locality
* Lightly loaded banks

* Priorities updated after each warp-group scheduling

* Warp-group with lowest service time selected
» Shortest-job-first based on actual service time, not number of requests

UTAH ARCH

sC
58 2014

Priority-Based Cache Allocation
in Throughput Processors

Dong Li*", Minsoo Rhu™$", Daniel R. Johnson$, Mike O’Connor?', Mattan
Erez', Doug Burger*, Donald S. Fussell’ and Stephen W. Keckler$*

THE UNIVERSITY OF § y

"TEXAS

— AT AUSTIN — nVIDIA®

*First authors Li and Rhu have made equal contributions to this work and are listed alphabetically

:
BT Microsoft

Introduction

* Graphics Processing Units (GPUs)
* General purpose throughput processors
* Massive thread hierarchy, warp=32 threads

 Challenge:
* Small caches + many threads = contention + cache thrashing

* Prior work: throttling thread level parallelism (TLP)
* Problem 1: under-utilized system resources
* Problem 2: unexplored cache efficiency

Motivation: Case Study (CoMD)

Throttling improves Observation 1: Observation 2:
performance Resource under-utilized Unexplored cache
efficiency
16 Speedup 04 DRAM BW Utilization 0.6 cache Miss Rate
1.4 0.5
0.3 o
1.2 0.4
1
0.8 0.2 0.3
0.6 0.2 ——
0.4 0.1
]| <= i =TI 4T
0 o ==l o Wit
1 2 4 6 8 10 14 18 1 2 4 6 8 10 14 18 1 2 4 6 8 10 14 18
Warps # Warps # Warps

B Best Throttled] max TLP (default)

61

Motivation

* Throttling

* Tradeoff between cache
efficiency and parallelism.

* # Active Warps = # Warps
Allocating Cache
* |dea

* Decoupling cache efficiency
from parallelism

Warps Allocating Cache

Baseline
77
Y 4
V 4
Y 4
V4
V 4
,/
7
iz
o
AN
V4
V 4
V 4
,/
Unexplored
V 4
34
>

Active Warps

Our Proposal: Priority Based
Cache Allocation (PCAL)

Regular
Threads —

StanBaselpaation

~ Regular threads: threads have all capabilities,
operate as usual (full access to the L1 cache)

64

TLP reducéd PoTithpeditdi pgrformance

» Regular threads: threads have all capabilities,
operate as usual (full access to the L1 cache)

Regular _|
Threads

» Throttled threads: throttled (not runnable)

Throttled B
Threads

65

PrapesedbSekudi omefEAL

Regular » Regular threads: threads have all capabilities,
Threads { operate as usual (full access to the L1 cache)

- Non-polluting threads: runnable, but prevented

I

Non-
polluting —
Threads | from polluting L1 cache
T:;f;;'jf- » Throttled threads: throttled (not runnable)

66

Regular
Threads
Non-

polluting —
Threads

Throttled B
Threads

==

Priority
Token Bit

Pragesedpbiolietairntabiekcess

Warp n-1

> Tokens grant capabilities or privileges to some

threads

» Threads with tokens are allowed to allocate and
evict L1 cache lines

> Threads without tokens can read and write, but
not allocate or evict, L1 cache lines

67

Proposectsattdinter SpaticiBiCAL

Regular
Threads

Non-

polluting — 0 Warp 3

Threads

Throttled _
Threads

— Warp n-1

|
Priority Scheduler

Token Status Bits
Bit

Token Assignment

Warp Scheduler

HW implementation: simplicity
Scheduler manages per-warp token bits
Token bits sent with memory requests

Policies: token assignment

Assign at warp launch, release at
termination

Re-assigned to oldest token-less warp

Parameters supplied by software prior
to kernel launch

68

Warps Allocating Cache
(#Tokens)

Two Optimization Strategies
to exploit the 2-D (#Warps, #Tokens) search space

Baseline
A + 1. Increasing TLP (ITLP)
< &\/" * Adding non-polluting warps
,&‘,\3&/ Resource * Without hurting regular warps
«*ogo%‘:__tin_dgr—utilized
&«Q e ITLP
N e 2. Maintaining TLP (MTLP)
/’, i Unexplored . Rec_zlgce #Token to increase the
e + cache efficiency efficiency
34 ® mTLP * Without decreasing TLP
>

Active Warps (#Warps)

Proposed Solution: Dynamic PCAL

* Decide parameters at run time
* Choose MTLP/ITLP based on resource usage performance counter
* For MTLP: search #Tokens in parallel
* For ITLP: search #Warps in sequential

* Please refer to our paper for more details

Evaluation

Simulation: GPGPU-Sim
Open source academic simulator, configured similar to Fermi (full-
chip)

Benchmarks
Open source GPGPU suites: Parboil, Rodinia, LonestarGPU. etc
Selected benchmark subset shows sensitivity to cache size

MTLP Example (CoMD)
MTLP: reducing #Tokens, keeping #Warps =6

18 Speedup 03 Cache Miss Rate 03 Cache Miss Rate
16 (Regular warps) (all warps)
14
1.2 0.2 0.2
1
0.8
0.6 0.1 0.1
0.4
B | e B | e C e
0 0 0
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Tokens # Tokens # Tokens

B PCAL with MTLP [Best Throttled

72

1.6

1.2

0.8

04

ITLP Example (Similarity-Score)

ITLP: increasing #Warps, keeping #Tokens=2
Speedup

08 11 Miss Rate 03
(Regular Warps)

0.6

0.4

B PCAL with ITLP

0.2
0.1
0
4 6 8
Warps

B Best Throttled

DRAM BW Utilization

73

PCAL Results Summary

» Baseline: best throttled results
» Performance improvement: Static-PCAL: 17%, Dynamic-PCAL: 11%

74

Conclusion

Existing throttling approach may lead to two problems:

Resources underutilization
Unexplored cache efficiency

We propose PCAL, a simple mechanism to rebalance

cache efficiency and parallelism
ITLP: increases parallelism without hurting regular warps
MTLP: alleviates cache thrashing while maintaining parallelism

Throughput improvement over best throttled results

Static PCAL: 17%
Dynamic PCAL: 11%

Questions

=5

53
ZF
g

Ei

@A NVIDIA

UNLOCKING BANDWIDTH FOR GPUS
IN CC-NUMA SYSTEMS

Neha Agarwal*
David Nellans

Mike O’Connor
Stephen W. Keckler
Thomas F. Wenisch*
NVIDIA

University of Michigan®

(Major part of this work was done when Neha Agarwal was an int
HPCA-2015

EVOLVING GPU MEMORY SYSTEM

200 GB/s

CUDA 1.0-5.x CUDA 6.0+: Current

\ywwerg DDR4
80 GB/s

Future

cudaMemcpy Unified virtual memory

Roadmap

Programmer controlled Run-time controlled
copying to GPU copying - Better
memory productivity

NicHiGaN HPCA-2015

>
CPU-GPU cache-coherent

high BW interconnect
How to best exploit full BW

while maintaining
programmability?

GANVIDIA.

DESIGN GOALS & OPPORTUNITIES

> Simple programming model:

> No need for explicit data copying

N
8
|
|
|
|
|
|
|
|
|
|
|

» Exploit full DDR + GDDR BW
» Additional 30% BW via NVLink

(0]
o

_—
(7]
N
2]
O
-
L
whd
"'g
3
©
c
5]
(aa]
E
o
l—

Legacy CUDA) NVLink
UVM PCE cc.Numa pw Tareet

» Crucial to BW sensitive GPU apps

Design intelligent dynamic page migration policies
to achieve both these goals

HPCA-2015

<NVIDIA

BANDWIDTH UTILIZATION

N
© ®

NVLink

GPU

N
o

80 GB/s

o

200 GB/s 80
GB/s

DDR4
(T

(0]
o

—_
2
)
e
S
c
whd
i)
3
©
c
©
)
E
o
=

|

» Coherence-based accesses, no page migration

0" 9% of Migrated Pages to GPU Memory 100

M ~ Wastes GPU memory BW

MICHIGAN HPCA-2015

ANVIDIA.

BANDWIDTH UTILIZATION

N
© ®

NVLink

GPU

N
o

80 GB/s GPU Memory BW

o

200 GB/s 80
GB/s

(0]
o

—_
2
)
e
S
c
whd
i)
3
o©
c
©
)
E
o
=

DDR4
0

» Static Oracle: Place data in the ratio of memory bandwidths [AsPLOS’15]

it

0" 9% of Migrated Pages to GPU Memory 100

M Dynamic migration can exploit the full system memory BW

MICHIGAN HPCA-2015

ANVIDIA.

BANDWIDTH UTILIZATION

> 28
@ 0

NVLink)

M

R 80 GB/s § 20
2 0

3

O

cC

200 GB/s 80 QS
— 80

GB/s g

|—

GDDR5

Im

DDR4 l

» Excessive migration leads to under-utilization of DDR BW

0" 9% of Migrated Pages to GPU Memory 100

Migrate pages for optimal BW utilization

HPCA-2015

ANVIDIA.

Intellig@@ NIrB'BUﬂ-a@ Nﬁgration

~ Aggressively migrate pages upon First-Touch to GDDR memory
> Pre-fetch neighbors of touched pages to reduce TLB shootdowns

» Throttle page migrations when nearing peak BW

Dynamic page migration performs 1.95x better than no migration
Comes within 28% of the static oracle performance
6% better than Legacy CUDA

HPCA-2015

GANVIDIA.

OUTLINE

» Page Migration Techniques
» First-Touch page migration
> Range-Expansion to save TLB shootdowns

> BW balancing to stop excessive migrations

> Results & Conclusions

T HPCA-2015

GANVIDIA.

FIRST-TOUCH PAGE MIGRATION

> Naive: Migrate pages that are touched

O | |

1 -
1
HERE

CPU memory GPU memory

N

[

o

Q
2 .
&9
w-l-'
x O
*5.&0
_g.E
o
¥ =
O o
S
-cll-'
|—

> First-Touch migration approaches Legacy CUDA

First-Touch migration is cheap, no hardware counters required

HPCA-2015

UNTVERSITY OF
MICHIGAN

ANVIDIA.

PROBLEMS WITH FIRST-TOUCH MIGRATION

™ No overhead

N

\/ PA Skakd VA PA
Invalidate
V1 P2 P2 N ¥l =« P2

U

Throughput
[ERY

o Relatiye...

w

CPU TLB zGPU TLB
Migrate

2
Vi | CRU Dy

o

1T

> TLB shootdowns may negate benefits of page migration

How to migrate pages without incurring shootdown cost?

HPCA-2015

ANVIDIA.

PRE-FETCH TO AVOID TLB SHOOTDOWNS

» |Intuition: Hot virtual addresses
are clustered

> Pre-fetch pages before access by
the GPU

(%)
w
o
S
o
o
<
[
an
©
a
©
3
whd
A
>

20000

Hot pages, consume 80% BW
18000
16000

14000
12000
10000
8000
6000
4000

2000

0 Ma
X Page Hotness

No shootdown cost for pre-fetched pages

HPCA-2015

ANVIDIA.

MIGRATION USING RANGE-EXPANSION

@ No range expansion
CPU memory se &P

GPU

N EN Puu
ot fad

X Accessed, shootdown required

gratign

to No Mi
o

v
=
whd
o
0]
(a4
whed
=
o
£
on
-
o
| -
c
I—

% Pre-fetched, shootdown not required

» Pre-fetch pages in spatially contiguous range

HPCA-2015

ANVIDIA.

MIGRATION USING RANGE-EXPANSION

@ No range expansion @ Range:16

CPU memory GPU 2

EuEn
I\ * 7,
HEEE

X Accessed, shootdown required

gratign

to No Mi
O

v
=
whd
o
0]
(a4
whed
=
o
£
on
-
o
| -
c
I—

% Pre-fetched, shootdown not required

» Pre-fetch pages in spatially contiguous range

Range-Expansion hides TLB shootdown overhead

HPCA-2015

ANVIDIA.

REVISITING BANDWIDTH UTILIZATION

N
© ®

First-Touch Excessive
migration migration

—_
%
~
m
S
L
whd
2
3
o
c
4]
m
©
)
[

0" 9% of Migrated Pages to GPU Memory 100

> First-Touch + Range-Expansion aggressively unlocks GDDR BW

M How to avoid excessive page migrations?

HPCA-2015

ANVIDIA.

BANDWIDTH BALANCING

——First-Touch + Range Exp

Excessive ——> DDR under-subscribed
migrations

~
o

First-Touch
migrations >

GDDR under-subscribed

% of Accesses ffrom GPU

o

>
| &
(]
S
(]
=
>
o
O
(@]
-
(%)
()
on
[
o
o
(]
e
[
| -
20
=
Y
(o]
R

80 20 28
0 0
Total Bandwidth (GB/s)

Throttle migrations when nearing peak BW

HPCA-2015

ANVIDIA.

>
| &
(]
S
(]
=
>
o
O
(@]
-
(%)
()
on
[
o
o
(]
e
[
| -
20
=
Y
(o]
R

~
o

o

BANDWIDTH BALANCING

——First-Touch + Range Exp

Excessive m———>
migrations
First-Touch I

migrations >

GDDR under-subscribed

% of Accesses ftom GP

80 20 28
0 0
Total Bandwidth (GB/s)

Throttle migrations when nearing peak BW

HPCA-2015

Memory

ANVIDIA.

SIMULATION ENVIRONMENT

> Simulator: GPGPU-Sim 3.x

100 clks
additional
latency

80 GB/s

> Heterogeneous 2-level memory

> GDDR5 (200GB/s, 8-channels)

> DDR4 (80GB/s, 4-channels)
> GPU-CPU interconnect 2006B/s /0

> Latency: 100 GPU core cycles
> Workloads:

> Rodinia applications [Che’lISWC2009]

M > DoE mini apps [Villa’5C2014]

NicHiGaN HPCA-2015

GANVIDIA.

RESULTS

[Legacy CUDA M First-Touch + Range Exp + BW Balancing I Static Otdcle

to No Migration
w B~ U1 O

O N

()
2
)
L
Q
o
wfd
=
Q.
=
bo
>
o
S
N -
[

HPCA-2015

ANVIDIA.

RESULTS

[Legacy CUDA M First-Touch + Range Exp + BW Balancing I Static Otdcle

mﬂﬂﬁﬂﬂﬂ“
ODP «

First-Touch + Range-Expansion + BW Balancing outperforms
M Legacy CUDA

HPCA-2015

to No Migration
w B~ U1 O

O N

()
2
)
L
Q
o
wfd
=
Q.
=
bo
>
o
S
N -
[

ANVIDIA.

RESULTS

[Legacy CUDA M First-Touch + Range Exp + BW Balancing I Static Otdcle

to No Migration
w B~ U1 O

O N

()
2
)
L
Q
o
wfd
=
Q.
=
bo
>
o
S
N -
[

Streaming accesses, no-reuse after migration

HPCA-2015

ANVIDIA.

RESULTS

[Legacy CUDA M First-Touch + Range Exp + BW Balancing I Static Otdcle

mﬂﬂmﬂﬂﬂﬂ

Dynamic page migration performs 1.95x better than no migration
Comes within 28% of the static oracle performance
M 6% better than Legacy CUDA

HPCA-2015

to No Migration
w B~ U1 O

O N

()
2
)
L

Q
o
wfd

=

Q.
=

bo

>

o

S
N -
[

ANVIDIA.

CONCLUSIONS

> Developed migration policies without any programmer involvement
- First-Touch migration is cheap but has high TLB shootdowns
> First-Touch + Range-Expansion technique unlocks GDDR memory BW

» BW balancing maximizes BW utilization, throttles excessive migrations

These 3 complementary techniques effectively unlock full system BW

HPCA-2015

GANVIDIA.

THANK YOU

BB HPCA-2015

ANVIDIA.

EFFECTIVENESS OF RANGE-EXPANSION

Execution % Migrations Execution
Benchmark Overhead of Without Runtime
TLB Shootdown Shootdown Saved

Backprop

Pathfinder
Needle
Mummer

Bfs

Range-Expansion can save up to 45% TLB shootdowns

HPCA-2015

GANVIDIA.

DATA TRANSFER RATIO

DDR ORACLE ¥77 DDR Migration
== GDDR ORACLE /. GDDR Migration
DDR Demand GDDR Demand

a’\
2
"2'9..
(4
fo
=)
LMD
¥
- ®
O
c
on
CE
go
[T =)

thfinder [N

pa

mummer

xsbench

Performance is low when GDDR/DDR ratio is away from optimal

MICHIGAN HPCA-2015

ANVIDIA.

GPU WORKLOADS: BW SENSITIVITY

==backprop" -=rbfs" btree" =¢gaussian" =*heartwell"
hotspot" —+—kmeans" =—lava_MD" lud_cuda" =S=mummergpu
needle" pathfinder" sc_gpu" srad_v1" cns"
comd" minife" -®-xsbench"
3"

N

=

=
S
o
=
o0
S
o
S
£
=
2
N
o
7]
3

0.12x" 0.14x" 0.17x" 0.20x" 0.25x" 0.33x" 0.5x" 1x" 2x" 3x"
Aggregate'DRAM'Bandwidth,'1x=200GB/sec'

E—

1.2$

'99$ '80$ '60$ '40$ '20$ 0$ 208 40$ 60 805 100$
Additonal'DRAM'delay'in'GPU'core'cycles'

Throughput

- GPU workloads are highly BW sensitive

MICHIGAN HPCA-2015

ANVIDIA.

RESULTS

[Legacy CUDA [0 First-Touch Oracle

MMWWHWWWWMW

K4 ((\
& o \‘9
& & & & é,bb/

~ 0o

to No Migration
w

(V]
2
)
LU

()
(a'd
.

=

Q.
i -

oT0]

=

o

—
L
|—

o - N

5 o
R & éb“
&
A

Dynamic page migration performs 1.95x better than no migration
Comes within 28% of the static oracle performance
6% better than Legacy CUDA

HPCA-2015

ANVIDIA.

