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Contemporary GPU

» Massively Multithreaded

» 10,000’s of threads concurrently executing on 10’s of

Streaming Multiprocessors (SM)

GPU
MemCtrll = |MemCtrl
L2S

SM

Interconnect

SM SM
MemCtrll  |MemCtrl
L25 125
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Contemporary

Streaming Multiprocessor (SM)

» |,000’s of schedulable threads

» Amortize front end and memory overheads by grouping

threads into warps.

Size of the warp is fixed based on the architecture

treaming Multiprocessor N
rontenc

L1 I-Cache

Warp
Control Logic

Decode

N

Warp Datapat

gl ____MemoryUnit N~
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Contemporary GPU Software

» Regular structured computation
» Predictable access and control flow patterns

» Can take advantage of HW amortization for increased
performance and energy efficiency

Execute Efficiently
on a GPU Today

Graphics
Shaders

Matrix
Multiply
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Forward-Looking GPU Software

» Still Massively Parallel
» Less Structured

Memory access and control flow patterns are less predictable

Less efficient on
today’s GPU

Molecular
Dynamics

Raytracing

Execute efficiently
on a GPU today

Object
lassification
Graphics
Shaders

Matrix
Multiply
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Divergence: Source of Inefficiency

» Regular hardware that amortizes front end and overhead

» Irregular software with many different control flow paths
and less predicable memory accesses.

Branch Divergence Memory Divergence

Load R1, 0O (R2)

32- Wide

32- Wide

Instruction may wait
for 32 cache lines

Main Memory
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[rregular “Divergent” Applications:
Perform better with a smaller warp size

Branch Divergence Memory Divergence
####@%## Load R1, 0 (R2)
if () o
| Il

Each instruction waits
on fewer accesses

Allows more
threads to
proceed
concurrentl

Increased

Main Memory

function unit
utilization
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Negative effects of smaller warp size

» Less front end amortization

Increase in fetch/decode energy

» Negative performance effects

Scheduling skew increases pressure on the memory system

8 A Variable Warp-Size Architecture Tim Rogers



Regular “Convergent” Applications:
Perform better with a wider warp

GPU memory coalescing Smaller warps: Less coalescing

Load R1, 0(R2)

4 32- Wide F
LT
One memory system request
can service all 32 threads

8 redundant memory accesses -
no longer occurring together

\\ 1Y

Main Memory

Main Memory
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Performance vs. Warp Size

» 165 Applications

——Warp Size 4 {

== ="
N A O ©

IPC normalized to warp size 32
©c o O O
O N M O © B

Application

Convergent Warp-Size Insensitive
Applications Applications
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Goals

» Convergent Applications
Maintain wide-warp performance

Maintain front end efficiency

» Warp Size Insensitive Applications

Maintain front end efficiency

» Divergent Applications

Gain small warp performance

Set the warp size based on
the executing application

Il A Variable Warp-Size Architecture Tim Rogers



Sliced Datapath + Ganged Scheduling

» Split the SM datapath into narrow slices.

Extensively studied 4-thread slices

» Gang slice execution to gain efficiencies of wider warp.
Slices share an L1
I-Cache and Memory Unit m
Frontend execute |
L1 I-Cache independently

Slice Warp Da , Slice
Slice Datapath Slice Datapath

Slice Slice
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Initial operation

» Slices begin execution in ganged mode

Mirrors the baseline 32-wide warp system

» Question:When to break the gang!?
Instructions are fetched
and decoded once

Ganging
Unit

Ganging unit
drives the slices

Frontend

Slice Datapath Slice Datapath

Slice Slice

Front esee Front

Memory Unit
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Breaking Gangs on Control Flow Divergence

» PCs common to more than one slice form a new gang

» Slices that follow a unique PC in the gang are transferred
to independent control

Observes different .
PCs from each slice Unique PCs: no
Frontend longer controlled by
L1 I-Cache ganging unit

Slice
Slice Datapath

Slice
Slice Datapath

Memory Unit
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Breaking Gangs on Memory Divergence

» Latency of accesses from each slice can differ

» Evaluated several heuristics on breaking the gang when
this occurs

Frontend

Slice Datapath

o000 Front

,H'ts Memory Unit Goes to
in LI memory
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Gang Reformation

» Performed opportunistically

Ganging unit checks for gangs or independent slices at the
same PC

Forms them into a gang

Slice Datapath

L - More details in the
paper
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Methodology

» In House, Cycle-Level Streaming Multiprocessor Model
| In-order core
64KB LI Data cache
|28KB L2 Data Cache (One SM’s worth)
48KB Shared Memory
Texture memory unit
Limited BW memory system
Greedy-Then-Oldest (GTO) Issue Scheduler
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Configurations

» Warp Size 32 (WS 32)
» Warp Size 4 (WS 4)

» Inelastic Variable Warp Sizing (I-VWVS)

Gangs break on control flow divergence

Are not reformed

» Elastic Variable Warp Sizing (E-VWYS)

Like I-VWVS, except gangs are opportunistically reformed

Paper Explores Many

» Studied 5 applications from each catej More Configurations
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Divergent Application Performance

E-VWS

OI-VWS

OWS 4

mWS 32

18
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Divergent Applications

Tim Rogers
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Divergent Application Fetch Overhead

E-VWS: Break
+ Reform

BWS 32 oWS 4 OI-VWS SE-VWS

Avg. Fetches Per Cycle
O R, N W d 01 O N
|

BN BN By BN -

CoMD

2>
2
O
>
<

Lighting

Raytracing —
7
_ ]

GamePhysics
ObjClassifier

Divergent Applications

Used as a proxy for
energy consumption
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E-VWS: Break
+ Reform

E-VWS

OI-VWS

OWS 4

mWS 32

Convergent Application Performance

8

Z< 9zIs duem o] pazijew.iou Dd|

N
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0
0.6

Convergent Applicatio

Tim Rogers
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Avg. Fetches Per Cycle

Convergent/Insensitive Application Fetch

Overhead ‘ E-VWS: Break
+ Reform
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165 Application Performance

1.8 .
~ o-Warp Size 4
e o |-VWS
§1.4
S
o 1.2
o©
81
£
5 0.8
& 0.6

Application
Convergent Warp-Size Insensitive Divergent
Applications Applications Applications
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Related Work

Compaction/Formation

Subdivision/Multipath

Increase
Thread Level
Parallelism

Decrease
Thread Level
Parallelism

Improve Decreased
Function Unit Function Unit
Utilization Utilization

Variable Warp Sizing

Increase
Thread Level
Parallelism

Improve
Function Unit
Utilization

VWS Estimate:
5% for 4-wide slices
2.5% for 8-wide slices
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Conclusion

» Explored space surrounding warp size and perfromance

» Vary the size of the warp to meet the depends of the
workload

35% performance improvement on diversent apps
P P g PP

No performance degradation on convergent apps

» Narrow slices with ganged execution

Improves both SIMD efficiency and thread-level parallelism

25 A Variable Warp-Size Architecture Tim Rogers
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Irregular GPGPU Applications

e Conventional GPGPU workloads access vector or matrix-based data
structures

* Predictable strides, large data parallelism

* Emerging Irregular Workloads
* Pointer-based data-structures & data-dependent memory accesses
* Memory Latency Divergence on SIMT platforms

Warp-aware memory scheduling to reduce DRAM latency
divergence

UTAH ARCH
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SIMT Execution Overview

Warps
THREADS
SIMT C - -
ore _ - -
- - .
SIMT Core - - - Lockstep execution
-~ e T I Warp stalled on memory access
SIMT Core " warp2 ™ "
L Warp2 | T Memory Partition
—| Warp3 | E Memory
R Controller
' —/ WarpN | C :
J (0 H
SIMDiLanes . .
IIII“" I N Memory Partition
- I E Memory
w ‘ C Controller D]D]3
’ L1 ‘ Port T Channel )
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Memory Latency Divergence

SIMD Lanes (32)

Load Inst! ! !

* Coalescer has limited efficacy
in irregular workloads

* Partial hitsin L1 and L2
* 15t source of latency divergence

* DRAM requests can have
varied latencies

* Warp stalled for last request

* DRAM Latency Divergence

sC
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GPU Memory Controller (GMC)

* Optimized for high throughput

* Harvest channel and bank parallelism
* Address mapping to spread cache-lines across channels and banks.

* Achieve high row-buffer hit rate
* Deep queuing
» Aggressive reordering of requests for row-hit batching

* Not cognizant of the need to service requests from a warp together
* Interleave requests from different warps leading to latency divergence

UTAH ARCH
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Warp-Aware Scheduling

Stall Cyclestall C S .
> H_ﬂ
SV A Stall Cycles 1
. H

\
I |

e " ' |

| Reduced Average Memory Stall Time
Baseline
aMC N - N - W - W

Scheduling |

|
| |
ENWSWSWws : | ;| ;| - |

31 2014

]I

- o v == P

UTAH ARCH



Impact of DRAM Latency Divergence

: m Perfect Coalescing W Zero Latency Dlvergence
QO 5
a
T 4
D
N
© 3
=
|
O 2
spmv sad cfd kmeans nw PVC sssp sp average

If tfh @.lbrmg %ﬂwfnqr@@@@trpémgrwbsxwﬁwbment.
perfect sequence from the DRAM —

~40% improvement.
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Key Idea

* Form batches of requests from each warp
* warp-group

* Schedule all requests from a warp-group together

* Scheduling algorithm arbitrates between warp-groups to minimize
average stall-time of warps



Controller Design

O O
head Queu Rank 1 Bank 1

\ @_ Rank 1 Bank2

H —

Transaction ° 5 Command|-I0o.
Scheduler Rank 2 Bank 1 " |scheduler| GDDR5

! 5 Channel
i o i
§ Rank N Bank M i

__4___q> b |

2 : i
I\Nrite QUE%I e
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Controller Design

ORI
head Queu Rank 1 Bank 1
o
Batchin § Rank 1 Bank
onit | | | &
©) o . _|command |10,
Trahsactioh - ! Rank 2 Bank 1 Scheduler g:DRS |
Scheduler - i SRS
Rank N Bank M
L@ -
|Write Queue
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Warp-Group Scheduling : Single Channel

Pending Warp-Groups * Each Warp-Group assigned a
TR D priority
Row E = I = L % | * Reflects completion time of
Queuing hit/miss # of reqs i ] ii C i i C] E last request
delay in status of in warp- ! ! | e !
cmd reds group E ‘oo C | * Higher Priority to
anenes ; Tt * Few requests

~——

e High spatial locality
* Lightly loaded banks

Transaction
Scheduler * Priorities updated dynamically

Warp-group
priority table

* Transaction Scheduler picks warp-
group with lowest run-time

Pick warp-group * Shortest-job-first based on

with lowest actual service time
runtime

UTAH ARCH
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WG-scheduling

GMC
Baseline

Pt
-
-
-
-
-
-
-
.-
-
-
-
-
-
-
-
-
-
-
-

Latency Divergence

n Bandwidth Utilization
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Multiple Memory Controllers

* Channel level parallelism
* Warp’s requests sent to multiple memory channels
* Independent scheduling at each controller

» Subset of warp’s requests can be delayed at one or few memory
controllers

* Coordinate scheduling between controllers
* Prioritize warp-group that has already been serviced at other controllers

* Coordination message broadcast to other controllers on completion of a
warp-group.

UTAH ARCH
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Warp-Group Scheduling : Multi-Channel

Queuing
delay in
cmd
queues

UTAH ARCH

Row
hit/miss
status of

reqgs

Priority Table

1

Status of
Warp-group
in other
channels

Pending Warp-Groups

_______________

1 \/ 1 ! \

I 1! 1 I 1

3 B R
Il

# of regs I )
in warp- , & e ! ;e !
group A
' IIII :k IIII : [ "k [::] :

\ J

Periodic messages

to other channels

about completed
warp-groups

Transaction
Scheduler

Pick warp-group
with lowest
runtime
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WG-M Scheduling

GMC
Baseline
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Latency Divergence

n Bandwidth Utilization
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Bandwidth-Aware Warp-Group Scheduling

* Warp-group scheduling negatively affects bandwidth utilization
* Reduced row-hit rate

* Conflicting objectives
* Issue row-miss request from current warp-group
* Issue row-hit requests to maintain bus utilization

* Activate and Precharge idle cycles
* Hidden by row-hits in other banks

* Delay row-miss request to find the right slot

UTAH ARCH
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Bandwidth-Aware Warp-Group Scheduling

* The minimum number of row-hits needed in other banks to overlap
(tRTP+tRP+tRCD)

e Determined by GDDR timing parameters
* Minimum efficient row burst (MERB)

e Stored in a ROM looked up by Transaction Scheduler

* More banks with pending row-hits
e smaller MERB

e Schedule row-miss after MERB row-hits have been issued to bank

e N

UTAH ARCH
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WG-Bw Scheduling

GMC
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Warp-Aware Write Draining

e Writes drained in batches
e starts at High_Watermark

 Can stall small warp-groups

* When WQ reaches a threshold (lower than High_Watermark)
 Drain singleton warp-groups only

* Reduce write-induced latency

e N
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WG-scheduling

GMC
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Methodology

* GPGPUSIim v3.1 : Cycle Accurate GPGPU simulator

SM Cores 30

Max Threads/Core 1024

Warp Size 32 Threads/warp
L1/L2 32KB / 128 KB
DRAM 6Gbps GDDR5
DRAM Channels Banks 6 Channels

16 Banks/channel

e USIMM v1.3 : Cycle Accurate DRAM Simulator
* modified to model GMC-baseline & GDDR5 timings

* Irregular and Regular workloads from Parboil, Rodinia, Lonestar, and MARS.

UTAH ARCH



Performance Improvement

1T Restored
Reduced Latency Bandwidth
Divergence Utjli7a
1696

8%

6%

4%

BASELINE

2%

IPC NORMALIZED TO

0%

WG-Bw WG-W

WG WG-M
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Impact on Regular Workloads

» Effective coalescing
* High spatial locality in warp-group

* WG scheduling works similar to GMC-baseline
* No performance loss

* WG-Bw and WG-W provide

* Minor benefits

e N

UTAH ARCH
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Energy Impact of Reduced Row Hit-Rate

* Scheduling Row-misses over Row-
hits
* Reduces the row-buffer hit rate 16%

* |In GDDRS5, power consumption
dominated by 1/0O.

* Increase in DRAM power negligible
compared to execution speed-up
* Net improvement in system energy

UTAH ARCH
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Conclusions

* Irregular applications place new demands on the GPU’s memory
system

* Memory scheduling can alleviate the issues caused by latency
divergence

 Carefully orchestrating the scheduling of commands can help regain
the bandwidth lost by warp-aware scheduling

* Future techniques must also include the cache-hierarchy in reducing
latency divergence

UTA ARCH
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Performance Improvement : IPC

1.2

1.15

1.
1.05
0

spmv sad cfd kmeans nw sSSsp sp average

e

Normalized IPC

0

©
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Average Warp Stall Latency
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DRAM Latency Divergence

EGMC WG BEWG-M "WG-Bw mWG-W
700
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Bandwidth Utilization

HGMC WG-M B WG-Bw
80%

70%
60%

50%

40%

30%

20%

10% I
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spmv sad bfs c¢fd kmeans nw PVC SS sssp  sp average

Sustained Bandwidth
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Memory Controller Microarchitecture

1
Read Queue P

. Bank 1 5
©; — s
—> Warp Sorter | e— :
. Transaction| | B&n :
SM id|Warp Id|Score|R : :
p [***°I™| scheduler |—+— mE
: @ :
! @ i >
¢ : Bank 1 ;
Bank Table @_ | 5
B ; .
Bank| warp 1|Rowi|Rowzle o/ 27K |Warp 2 ee ‘|l  BankN
Id score N -

Write Queue @

— &

Command}—T0
Scheduler| GDDR5

Channel
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Warp-Group Scheduling

* Every batch assigned a priority-score
» completion time of the longest request

* Higher priority to warp groups with
* Few requests
* High spatial locality
* Lightly loaded banks

* Priorities updated after each warp-group scheduling

* Warp-group with lowest service time selected
» Shortest-job-first based on actual service time, not number of requests

UTAH ARCH
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Introduction

* Graphics Processing Units (GPUs)
* General purpose throughput processors
* Massive thread hierarchy, warp=32 threads

 Challenge:
* Small caches + many threads = contention + cache thrashing

* Prior work: throttling thread level parallelism (TLP)
* Problem 1: under-utilized system resources
* Problem 2: unexplored cache efficiency



Motivation: Case Study (CoMD)

Throttling improves Observation 1: Observation 2:
performance Resource under-utilized Unexplored cache
efficiency
16 Speedup 04 DRAM BW Utilization 0.6 cache Miss Rate
1.4 0.5
0.3 o
1.2 0.4
1
0.8 0.2 0.3
0.6 0.2 ——
0.4 0.1
]| <= i =TI 4T
0 o ==l o Wit
1 2 4 6 8 10 14 18 1 2 4 6 8 10 14 18 1 2 4 6 8 10 14 18
# Warps # Warps # Warps

B Best Throttled ] max TLP (default)

61



Motivation

* Throttling

* Tradeoff between cache
efficiency and parallelism.

* # Active Warps = # Warps
Allocating Cache
* |dea

* Decoupling cache efficiency
from parallelism

# Warps Allocating Cache

Baseline
77
Y 4
V 4
Y 4
V4
V 4
,/
7
iz
o
AN
V4
V 4
V 4
,/
Unexplored
V 4
34
>

# Active Warps



Our Proposal: Priority Based
Cache Allocation (PCAL)




Regular
Threads —

StanBaselpaation

~ Regular threads: threads have all capabilities,
operate as usual (full access to the L1 cache)
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TLP reducéd PoTithpeditdi pgrformance

» Regular threads: threads have all capabilities,
operate as usual (full access to the L1 cache)

Regular _|
Threads

» Throttled threads: throttled (not runnable)

Throttled B
Threads

65



PrapesedbSekudi omefEAL

Regular » Regular threads: threads have all capabilities,
Threads { operate as usual (full access to the L1 cache)

- Non-polluting threads: runnable, but prevented

I

Non-
polluting —
Threads | from polluting L1 cache
T:;f;;'jf- » Throttled threads: throttled (not runnable)

66



Regular
Threads
Non-

polluting —
Threads

Throttled B
Threads

==

Priority
Token Bit

Pragesedpbiolietairntabiekcess

Warp n-1

> Tokens grant capabilities or privileges to some

threads

» Threads with tokens are allowed to allocate and
evict L1 cache lines

> Threads without tokens can read and write, but
not allocate or evict, L1 cache lines

67



Proposectsattdinter SpaticiBiCAL

Regular
Threads

Non-

polluting — 0 Warp 3

Threads

Throttled _
Threads

— Warp n-1

|
Priority Scheduler

Token Status Bits
Bit

Token Assignment

Warp Scheduler

HW implementation: simplicity
Scheduler manages per-warp token bits
Token bits sent with memory requests

Policies: token assignment

Assign at warp launch, release at
termination

Re-assigned to oldest token-less warp

Parameters supplied by software prior
to kernel launch

68



# Warps Allocating Cache
(#Tokens)

Two Optimization Strategies
to exploit the 2-D (#Warps, #Tokens) search space

Baseline
A + 1. Increasing TLP (ITLP)
< &\/" * Adding non-polluting warps
,&‘,\3&/ Resource * Without hurting regular warps
«\\*ogo%‘:__tin_dgr—utilized
&«Q e ITLP
N e 2. Maintaining TLP (MTLP)
/’, i Unexplored . Rec_zlgce #Token to increase the
e + cache efficiency efficiency
34 ® mTLP * Without decreasing TLP
>

# Active Warps (#Warps)



Proposed Solution: Dynamic PCAL

* Decide parameters at run time
* Choose MTLP/ITLP based on resource usage performance counter
* For MTLP: search #Tokens in parallel
* For ITLP: search #Warps in sequential

* Please refer to our paper for more details



Evaluation

Simulation: GPGPU-Sim
Open source academic simulator, configured similar to Fermi (full-
chip)

Benchmarks
Open source GPGPU suites: Parboil, Rodinia, LonestarGPU. etc
Selected benchmark subset shows sensitivity to cache size



MTLP Example (CoMD)
MTLP: reducing #Tokens, keeping #Warps =6

18 Speedup 03 Cache Miss Rate 03 Cache Miss Rate
16 (Regular warps) (all warps)
14
1.2 0.2 0.2
1
0.8
0.6 0.1 0.1
0.4
B | e B | e C e
0 0 0
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
# Tokens # Tokens # Tokens

B PCAL with MTLP [ Best Throttled
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1.6

1.2

0.8

04

ITLP Example (Similarity-Score)

ITLP: increasing #Warps, keeping #Tokens=2
Speedup

08 11 Miss Rate 03
(Regular Warps)

0.6

0.4

B PCAL with ITLP

0.2
0.1
0
4 6 8
# Warps

B Best Throttled

DRAM BW Utilization
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PCAL Results Summary

» Baseline: best throttled results
» Performance improvement: Static-PCAL: 17%, Dynamic-PCAL: 11%
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Conclusion

Existing throttling approach may lead to two problems:

Resources underutilization
Unexplored cache efficiency

We propose PCAL, a simple mechanism to rebalance

cache efficiency and parallelism
ITLP: increases parallelism without hurting regular warps
MTLP: alleviates cache thrashing while maintaining parallelism

Throughput improvement over best throttled results

Static PCAL: 17%
Dynamic PCAL: 11%



Questions
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EVOLVING GPU MEMORY SYSTEM

200 GB/s

CUDA 1.0-5.x CUDA 6.0+: Current

\ywwerg DDR4
80 GB/s

Future

cudaMemcpy Unified virtual memory

Roadmap

Programmer controlled Run-time controlled
copying to GPU copying - Better
memory productivity

NicHiGaN HPCA-2015

>
CPU-GPU cache-coherent

high BW interconnect
How to best exploit full BW

while maintaining
programmability?

GANVIDIA.



DESIGN GOALS & OPPORTUNITIES

> Simple programming model:

> No need for explicit data copying

N
8
|
|
|
|
|
|
|
|
|
|
|

» Exploit full DDR + GDDR BW
» Additional 30% BW via NVLink

(0]
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(7]
N
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O
-
L
whd
"'g
3
©
c
5]
(aa]
E
o
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Legacy CUDA ) NVLink
UVM PCE cc.Numa pw Tareet

» Crucial to BW sensitive GPU apps

Design intelligent dynamic page migration policies
to achieve both these goals

HPCA-2015
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BANDWIDTH UTILIZATION
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» Coherence-based accesses, no page migration

0" 9% of Migrated Pages to GPU Memory 100

M ~ Wastes GPU memory BW
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BANDWIDTH UTILIZATION
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» Static Oracle: Place data in the ratio of memory bandwidths [AsPLOS’15]

it

0" 9% of Migrated Pages to GPU Memory 100

M Dynamic migration can exploit the full system memory BW
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BANDWIDTH UTILIZATION
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» Excessive migration leads to under-utilization of DDR BW

0" 9% of Migrated Pages to GPU Memory 100

Migrate pages for optimal BW utilization
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Intellig@@ NIrB'BUﬂ-a@ Nﬁgration

~ Aggressively migrate pages upon First-Touch to GDDR memory
> Pre-fetch neighbors of touched pages to reduce TLB shootdowns

» Throttle page migrations when nearing peak BW

Dynamic page migration performs 1.95x better than no migration
Comes within 28% of the static oracle performance
6% better than Legacy CUDA
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OUTLINE

» Page Migration Techniques
» First-Touch page migration
> Range-Expansion to save TLB shootdowns

> BW balancing to stop excessive migrations

> Results & Conclusions

T HPCA-2015
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FIRST-TOUCH PAGE MIGRATION

> Naive: Migrate pages that are touched
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> First-Touch migration approaches Legacy CUDA

First-Touch migration is cheap, no hardware counters required
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PROBLEMS WITH FIRST-TOUCH MIGRATION

™ No overhead

N

\/ PA Skakd VA PA
Invalidate
V1 P2 P2 N ¥l =« P2

U

Throughput
[ERY

o Relatiye...

w

CPU TLB zGPU TLB
Migrate

2
Vi | CRU Dy

o

1T

> TLB shootdowns may negate benefits of page migration

How to migrate pages without incurring shootdown cost?
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PRE-FETCH TO AVOID TLB SHOOTDOWNS

» |Intuition: Hot virtual addresses
are clustered

> Pre-fetch pages before access by
the GPU
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No shootdown cost for pre-fetched pages
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MIGRATION USING RANGE-EXPANSION

@ No range expansion
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% Pre-fetched, shootdown not required

» Pre-fetch pages in spatially contiguous range
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MIGRATION USING RANGE-EXPANSION

@ No range expansion @ Range:16
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% Pre-fetched, shootdown not required

» Pre-fetch pages in spatially contiguous range

Range-Expansion hides TLB shootdown overhead
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REVISITING BANDWIDTH UTILIZATION
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0" 9% of Migrated Pages to GPU Memory 100

> First-Touch + Range-Expansion aggressively unlocks GDDR BW

M How to avoid excessive page migrations?

HPCA-2015

ANVIDIA.



BANDWIDTH BALANCING

——First-Touch + Range Exp

Excessive ——> DDR under-subscribed
migrations
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Throttle migrations when nearing peak BW
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BANDWIDTH BALANCING
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SIMULATION ENVIRONMENT

> Simulator: GPGPU-Sim 3.x

100 clks
additional
latency

80 GB/s

> Heterogeneous 2-level memory

> GDDR5 (200GB/s, 8-channels)

> DDR4 (80GB/s, 4-channels)
> GPU-CPU interconnect 2006B/s /0

> Latency: 100 GPU core cycles
> Workloads:

> Rodinia applications [Che’lISWC2009]

M > DoE mini apps [Villa’5C2014]
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RESULTS

[ Legacy CUDA M First-Touch + Range Exp + BW Balancing I Static Otdcle

to No Migration
w B~ U1 O

O N

()
2
)
L
Q
o
wfd
=
Q.
=
bo
>
o
S
N -
[

HPCA-2015

ANVIDIA.



RESULTS

[ Legacy CUDA M First-Touch + Range Exp + BW Balancing I Static Otdcle

mﬂﬂﬁﬂﬂﬂ“
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First-Touch + Range-Expansion + BW Balancing outperforms
M Legacy CUDA

HPCA-2015
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RESULTS

[ Legacy CUDA M First-Touch + Range Exp + BW Balancing I Static Otdcle
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Streaming accesses, no-reuse after migration
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RESULTS

[ Legacy CUDA M First-Touch + Range Exp + BW Balancing I Static Otdcle

mﬂﬂmﬂﬂﬂﬂ

Dynamic page migration performs 1.95x better than no migration
Comes within 28% of the static oracle performance
M 6% better than Legacy CUDA

HPCA-2015
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CONCLUSIONS

> Developed migration policies without any programmer involvement
- First-Touch migration is cheap but has high TLB shootdowns
> First-Touch + Range-Expansion technique unlocks GDDR memory BW

» BW balancing maximizes BW utilization, throttles excessive migrations

These 3 complementary techniques effectively unlock full system BW
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EFFECTIVENESS OF RANGE-EXPANSION

Execution % Migrations Execution
Benchmark Overhead of Without Runtime
TLB Shootdown Shootdown Saved
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Range-Expansion can save up to 45% TLB shootdowns
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DATA TRANSFER RATIO

DDR ORACLE ¥77 DDR Migration
== GDDR ORACLE /. GDDR Migration
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Performance is low when GDDR/DDR ratio is away from optimal
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GPU WORKLOADS: BW SENSITIVITY

==backprop"  -=rbfs" btree" =¢gaussian" =*heartwell"
hotspot" —+—kmeans" =—lava_MD" lud_cuda" =S=mummergpu
needle" pathfinder" sc_gpu" srad_v1" cns"
comd" minife" -®-xsbench"
3"

N

=

=
S
o
=
o0
S
o
S
£
=
2
N
o
7]
3

0.12x" 0.14x" 0.17x" 0.20x" 0.25x" 0.33x" 0.5x" 1x" 2x" 3x"
Aggregate'DRAM'Bandwidth,'1x=200GB/sec'

E—

1.2$

'99$ '80$ '60$ '40$ '20$ 0$ 208 40$ 60 805 100$
Additonal'DRAM'delay'in'GPU'core'cycles'

Throughput

- GPU workloads are highly BW sensitive
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RESULTS

[ Legacy CUDA [0 First-Touch Oracle
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Dynamic page migration performs 1.95x better than no migration
Comes within 28% of the static oracle performance
6% better than Legacy CUDA
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