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Contemporary GPU

 Massively Multithreaded

 10,000’s of threads concurrently executing on 10’s of 

Streaming Multiprocessors (SM) 
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Contemporary

Streaming Multiprocessor (SM)
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 1,000’s of schedulable threads

 Amortize front end and memory overheads by grouping 

threads into warps.

 Size of the warp is fixed based on the architecture

GPU

Interconnect

SM SM

SM SM

...

...

MemCtrl
L2$

...

... MemCtrl
L2$

MemCtrl
L2$

MemCtrl
L2$

Streaming Multiprocessor

Frontend

Warp Datapath

L1 I-Cache

Memory Unit

Decode

Warp
Control Logic

32-wide

Tim RogersA Variable Warp-Size Architecture



Contemporary GPU Software

 Regular structured computation

 Predictable access and control flow patterns

 Can take advantage of HW amortization for increased 

performance and energy efficiency
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Execute Efficiently 

on a GPU Today
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…
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Forward-Looking GPU Software

 Still Massively Parallel

 Less Structured

 Memory access and control flow patterns are less predictable
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Execute efficiently 

on a GPU today

Graphics 

Shaders

Matrix 

Multiply

…

Less efficient on 

today’s GPU

Raytracing

Molecular 

Dynamics

Object 

Classification

…
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Divergence: Source of Inefficiency

 Regular hardware that amortizes front end and overhead

 Irregular software with many different control flow paths 

and less predicable memory accesses.
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Branch Divergence Memory Divergence

…

if (…) {

…

}

…
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Load R1, 0(R2)

Can cut function unit 

utilization to 1/32.

32- Wide
32- Wide

Main Memory

Instruction may wait 

for 32 cache lines



Irregular “Divergent” Applications:

Perform better with a smaller warp size
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…

if (…) {

…

}

…

Allows more 

threads to 

proceed 

concurrently

Branch Divergence Memory Divergence

Load R1, 0(R2)

Increased 

function unit 

utilization

Main Memory

Each instruction waits 

on fewer accesses



Negative effects of smaller warp size

Tim RogersA Variable Warp-Size Architecture8

 Less front end amortization

 Increase in fetch/decode energy

 Negative performance effects

 Scheduling skew increases pressure on the memory system



Regular “Convergent” Applications:

Perform better with a wider warp
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32- Wide

Load R1, 0(R2)Load R1, 0(R2)

Main Memory

GPU memory coalescing

One memory system request 

can service all 32 threads

Smaller warps: Less coalescing

Main Memory

8 redundant memory accesses –

no longer occurring together



Performance vs. Warp Size
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Goals

 Convergent  Applications

 Maintain wide-warp performance

 Maintain front end efficiency

 Warp Size Insensitive Applications

 Maintain front end efficiency

 Divergent  Applications

 Gain small warp performance
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Set the warp size based on 

the executing application



Sliced Datapath + Ganged Scheduling
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 Split the SM datapath into narrow slices.

 Extensively studied 4-thread slices

 Gang slice execution to gain efficiencies of wider warp.
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Frontend
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Warp
Control Logic 32-wide

Slice
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...
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Slice

Frontend

Slice Datapath

L1 I-Cache

Memory Unit

Slice
Front 
End 4-wide

...
Slice
Slice DatapathSlice

Front 
End 4-wide

Ganging
Unit

Initial operation

 Slices begin execution in ganged mode

 Mirrors the baseline 32-wide warp system

 Question: When to break the gang?
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Ganging unit 

drives the slices

Instructions are fetched 

and decoded once



Slice

Frontend

Slice Datapath

L1 I-Cache

Memory Unit

Slice
Front 
End 4-wide

...
Slice
Slice DatapathSlice

Front 
End 4-wide

Ganging
Unit

Breaking Gangs on Control Flow Divergence

 PCs common to more than one slice form a new gang

 Slices that follow a unique PC in the gang are transferred 

to independent control
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Unique PCs: no 

longer controlled by 

ganging unit

Observes different 

PCs from each slice



Slice

Frontend

Slice Datapath

L1 I-Cache

Memory Unit

Slice
Front 
End 4-wide

...
Slice
Slice DatapathSlice

Front 
End 4-wide

Ganging
Unit

Breaking Gangs on Memory Divergence

 Latency of accesses from each slice can differ

 Evaluated several heuristics on breaking the gang when 

this occurs
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Hits 

in L1

Goes to 

memory



Slice

Frontend

Slice Datapath

L1 I-Cache

Memory Unit

Slice
Front 
End 4-wide

...
Slice
Slice DatapathSlice

Front 
End 4-wide

Ganging
Unit

Gang Reformation

 Performed opportunistically

 Ganging unit checks for gangs or independent slices at the 

same PC

 Forms them into a gang

16 Tim RogersA Variable Warp-Size Architecture

Independent BUT 

at the same PC

Ganging unit re-gangs 

them

More details in the 

paper



Methodology

 In House, Cycle-Level Streaming Multiprocessor Model

 1 In-order core

 64KB L1 Data cache

 128KB L2 Data Cache (One SM’s worth)

 48KB Shared Memory

 Texture memory unit

 Limited BW memory system

 Greedy-Then-Oldest (GTO) Issue Scheduler

17 Tim RogersA Variable Warp-Size Architecture



Configurations

Tim RogersA Variable Warp-Size Architecture18

 Warp Size 32 (WS 32)

 Warp Size 4 (WS 4)

 Inelastic Variable Warp Sizing (I-VWS)

 Gangs break on control flow divergence

 Are not reformed

 Elastic Variable Warp Sizing (E-VWS)

 Like I-VWS, except gangs are opportunistically reformed

 Studied 5 applications from each category in detail
Paper Explores Many 

More Configurations
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Warp Size 4
I-VWS: Break 

on CF Only

E-VWS: Break 

+ Reform
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Warp Size 4
I-VWS: Break 

on CF Only

Used as a proxy for 

energy consumption

E-VWS: Break 

+ Reform
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Warp Size 4
I-VWS: Break 

on CF Only

Warp-Size Insensitive 

Applications Unaffected

E-VWS: Break 

+ Reform
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Warp Size 4

I-VWS: Break 

on CF Only
E-VWS: Break 

+ Reform



165 Application Performance
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Related Work
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Compaction/Formation Subdivision/Multipath

Improve 

Function Unit 

Utilization

Decrease 

Thread Level 

Parallelism
Decreased 

Function Unit 

Utilization

Increase 

Thread Level 

Parallelism

Variable Warp Sizing

Improve 

Function Unit 

Utilization

Increase 

Thread Level 

Parallelism

Area Cost Area Cost

Area Cost

VWS Estimate:

5% for 4-wide slices

2.5% for 8-wide slices



Conclusion

 Explored space surrounding warp size and perfromance

 Vary the size of the warp to meet the depends of the 

workload

 35% performance improvement on divergent apps

 No performance degradation on convergent apps

 Narrow slices with ganged execution

 Improves both SIMD efficiency and thread-level parallelism

25 Tim RogersA Variable Warp-Size Architecture

Questions?
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Irregular GPGPU Applications

• Conventional GPGPU workloads access vector or matrix-based data 
structures
• Predictable strides, large data parallelism

• Emerging Irregular Workloads
• Pointer-based data-structures & data-dependent memory accesses

• Memory Latency Divergence on SIMT platforms

Warp-aware memory scheduling to reduce DRAM latency 
divergence

SC 
201427



SIMT Execution Overview

SC 
201428
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Memory Latency Divergence

• Coalescer has limited efficacy 
in irregular workloads

• Partial hits in L1 and L2
• 1st source of latency divergence

• DRAM requests can have 
varied latencies
• Warp stalled for last request

• DRAM Latency Divergence

Load Inst

SIMD Lanes (32)

Access Coalescing Unit

L1

L2

GDDR5

SC 
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GPU Memory Controller (GMC)
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201430

• Optimized for high throughput

• Harvest channel and bank parallelism
• Address mapping to spread cache-lines across channels and banks.

• Achieve high row-buffer hit rate
• Deep queuing 
• Aggressive reordering of requests for row-hit batching

• Not cognizant of the need to service requests from a warp together
• Interleave requests from different warps leading to latency divergence



Warp-Aware Scheduling
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SM 
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Warp-Aware 
Scheduling A A A B BA B B

A: 
Use

Stall Cycles

B: LD

Reduced Average Memory Stall Time



Impact of DRAM Latency Divergence
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If all requests from a warp were to be returned in 
perfect sequence from the DRAM –

~40% improvement.

If there was only 1 request per warp – 5X improvement.



Key Idea

• Form batches of requests from each warp

• warp-group

• Schedule all requests from a warp-group together

• Scheduling algorithm arbitrates between warp-groups to minimize 
average stall-time of warps 
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Controller Design
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Controller Design
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Warp-Group Scheduling : Single Channel
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201436

Pending Warp-Groups

Warp-group 
priority table

Transaction 
Scheduler

# of reqs
in warp-

group

Row 
hit/miss 
status of 

reqs

Queuing 
delay in 

cmd
queues

Pick warp-group 
with lowest 

runtime

• Each Warp-Group assigned a 
priority
• Reflects completion time of 

last request

• Higher Priority to
• Few requests
• High spatial locality
• Lightly loaded banks

• Priorities updated dynamically

• Transaction Scheduler picks warp-
group with lowest run-time
• Shortest-job-first based on 

actual service time



WG-scheduling
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Multiple Memory Controllers

• Channel level parallelism
• Warp’s requests sent to multiple memory channels

• Independent scheduling at each controller

• Subset of warp’s requests can be delayed at one or few memory 
controllers

• Coordinate scheduling between controllers
• Prioritize warp-group that has already been serviced at other controllers

• Coordination message broadcast to other controllers on completion of a 
warp-group.
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Warp-Group Scheduling : Multi-Channel

SC 
201439

Pending Warp-Groups

Priority Table
Transaction 
Scheduler

# of reqs
in warp-

group

Row 
hit/miss 
status of 

reqs

Queuing 
delay in 

cmd
queues

Pick warp-group 
with lowest 

runtime

Status of 
Warp-group 

in other 
channels

Periodic messages 
to other channels 
about completed 

warp-groups



WG-M Scheduling
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Bandwidth-Aware Warp-Group Scheduling

• Warp-group scheduling negatively affects bandwidth utilization
• Reduced row-hit rate

• Conflicting objectives
• Issue row-miss request from current warp-group 
• Issue row-hit requests to maintain bus utilization

• Activate and Precharge idle cycles 
• Hidden by row-hits in other banks

• Delay row-miss request to find the right slot

SC 
201441



Bandwidth-Aware Warp-Group Scheduling

SC 
201442

• The minimum number of row-hits needed in other banks to overlap 
(tRTP+tRP+tRCD)
• Determined by GDDR timing parameters
• Minimum efficient row burst (MERB)

• Stored in a ROM looked up by Transaction Scheduler

• More banks with pending row-hits 
• smaller MERB

• Schedule row-miss after MERB row-hits have been issued to bank



WG-Bw Scheduling
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Warp-Aware Write Draining

• Writes drained in batches
• starts at High_Watermark

• Can stall small warp-groups

• When WQ reaches a threshold (lower than High_Watermark)
• Drain singleton warp-groups only

• Reduce write-induced latency
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WG-scheduling
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Methodology

• GPGPUSim v3.1 : Cycle Accurate GPGPU simulator 

• USIMM v1.3 : Cycle Accurate DRAM Simulator
• modified to model GMC-baseline & GDDR5 timings

• Irregular and Regular workloads from Parboil, Rodinia, Lonestar, and MARS.

SC 
201446

SM Cores 30

Max Threads/Core 1024

Warp Size 32 Threads/warp

L1 / L2 32KB / 128 KB 

DRAM 6Gbps GDDR5

DRAM Channels Banks 6 Channels
16 Banks/channel
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Impact on Regular Workloads
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• Effective coalescing

• High spatial locality in warp-group

• WG scheduling works similar to GMC-baseline
• No performance loss

• WG-Bw and WG-W provide
• Minor benefits



Energy Impact of Reduced Row Hit-Rate

• Scheduling Row-misses over Row-
hits
• Reduces the row-buffer hit rate 16%

• In GDDR5, power consumption 
dominated by I/O. 

• Increase in DRAM power negligible 
compared to execution speed-up
• Net improvement in system energy

SC 
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Conclusions

• Irregular applications place new demands on the GPU’s memory 
system

• Memory scheduling can alleviate the issues caused by latency 
divergence

• Carefully orchestrating the scheduling of commands can help regain 
the bandwidth lost by warp-aware scheduling

• Future techniques must also include the cache-hierarchy in reducing 
latency divergence
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Thanks !
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Backup Slides
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Performance Improvement : IPC
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Average Warp Stall Latency
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DRAM Latency Divergence
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Bandwidth Utilization
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Memory Controller Microarchitecture
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Warp-Group Scheduling

• Every batch assigned a priority-score
• completion time of the longest request

• Higher priority to warp groups with
• Few requests
• High spatial locality
• Lightly loaded banks

• Priorities updated after each warp-group scheduling

• Warp-group with lowest service time selected
• Shortest-job-first based on actual service time, not number of requests

SC 
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Introduction

60

• Graphics Processing Units  (GPUs)
• General purpose throughput processors

• Massive thread hierarchy, warp=32 threads

• Challenge: 
• Small caches + many threads  contention + cache thrashing

• Prior work: throttling thread level parallelism (TLP)
• Problem 1: under-utilized system resources

• Problem 2: unexplored cache efficiency



Motivation: Case Study (CoMD)

Best Throttled max TLP (default)

Throttling improves 
performance

Observation 2: 
Unexplored cache 
efficiency

Observation 1: 
Resource under-utilized
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Throttling Throttling Throttling 



Motivation

• Throttling

• Tradeoff between cache 
efficiency and parallelism.

• # Active Warps = # Warps 
Allocating Cache

• Idea
• Decoupling cache efficiency 

from parallelism
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Our Proposal: Priority Based 
Cache Allocation (PCAL)
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BaselineStandard operation

Regular threads: threads have all capabilities, 
operate as usual (full access to the L1 cache)

Regular
Threads

Warp 0

Warp 1

Warp 2

Warp 3

Warp 4

Warp n-1
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TLP ThrottlingTLP reduced to improve performance

Regular threads: threads have all capabilities, 
operate as usual (full access to the L1 cache)

Second subset: prevented from polluting L1 cache 
(fills bypass)

Throttled threads: throttled (not runnable)

Regular
Threads

Throttled 
Threads

Warp 0

Warp 1

Warp 2

Warp 3

Warp 4

Warp n-1
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Proposed Solution: PCALThree subsets of threads

Regular threads: threads have all capabilities, 
operate as usual (full access to the L1 cache)

Regular
Threads

Non-
polluting 
Threads

Throttled 
Threads

Warp 0

Warp 1

Warp 2

Warp 3

Warp 4

Warp n-1
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Non-polluting threads: runnable, but prevented 
from polluting L1 cache

Throttled threads: throttled (not runnable)



Proposed Solution: PCALTokens for privileged cache access

Tokens grant capabilities or privileges to some 
threads

Threads with tokens are allowed to allocate and 
evict L1 cache lines

Threads without tokens can read and write, but 
not allocate or evict, L1 cache lines

Regular
Threads

Non-
polluting 
Threads

Throttled 
Threads

Warp 0

Warp 1

Warp 2

Warp 3

Warp 4

Warp n-1

1

1

0

0

0

Priority 
Token Bit
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Proposed solution: Static PCAL

HW implementation: simplicity
Scheduler manages per-warp token bits

Token bits sent with memory requests

Policies: token assignment
Assign at warp launch, release at 
termination

Re-assigned to oldest token-less warp

Parameters supplied by software prior 
to kernel launch

Enhanced scheduler operation

Regular
Threads

Non-
polluting 
Threads

Throttled 
Threads

Warp 0

Warp 1
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Two Optimization Strategies
to exploit the 2-D (#Warps, #Tokens) search space 
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# 
W

ar
p

s 
A

llo
ca

ti
n

g 
C

ac
h

e
 

(#
To

ke
n

s)

Baseline

69

• 1. Increasing TLP (ITLP)
• Adding non-polluting warps

• Without hurting regular warps  Resource 
under-utilized 
ITLP

Unexplored 
cache efficiency 
MTLP

• 2. Maintaining TLP (MTLP)
• Reduce #Token to increase the 

efficiency

• Without decreasing TLP



Proposed Solution: Dynamic PCAL

• Decide parameters at run time
• Choose MTLP/ITLP based on resource usage performance counter

• For MTLP: search #Tokens in parallel

• For ITLP: search #Warps in sequential

• Please refer to our paper for more details
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Evaluation

Simulation: GPGPU-Sim
Open source academic simulator, configured similar to Fermi (full-
chip)

Benchmarks
Open source GPGPU suites: Parboil, Rodinia, LonestarGPU. etc

Selected benchmark subset shows sensitivity to cache size
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MTLP Example (CoMD)
MTLP: reducing #Tokens, keeping #Warps =6

72

Best ThrottledPCAL with MTLP

MTLP MTLP MTLP



ITLP Example (Similarity-Score)

ITLP: increasing #Warps, keeping #Tokens=2
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Best ThrottledPCAL with ITLP

ITLP ITLP ITLP



PCAL Results Summary

Baseline: best throttled results

Performance improvement: Static-PCAL: 17%,  Dynamic-PCAL: 11%
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Conclusion

Existing throttling approach may lead to two problems:
Resources underutilization
Unexplored cache efficiency

We propose PCAL, a simple mechanism to rebalance 
cache efficiency and parallelism

ITLP:  increases parallelism without hurting regular warps
MTLP:  alleviates cache thrashing while maintaining parallelism 

Throughput improvement over best throttled results
Static PCAL: 17%
Dynamic PCAL: 11%
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EVOLVING GPU MEMORY SYSTEM

CUDA 1.0-5.x CUDA 6.0+: Current Future

cudaMemcpy

Programmer controlled 

copying to GPU 

memory

Unified virtual memory

Run-time controlled 

copying  Better 

productivity

CPU-GPU cache-coherent

high BW interconnect

How to best exploit full BW 

while maintaining 

programmability? 
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DDR4

HPCA-2015



79

DESIGN GOALS & OPPORTUNITIES

Simple programming model: 

No need for explicit data copying

Exploit full DDR + GDDR BW

Additional 30% BW via NVLink

Crucial to BW sensitive GPU apps

Legacy CUDA

UVM
PCI-E Target
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NVLink
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Design intelligent dynamic page migration policies 

to achieve both these goals
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DDR4

BANDWIDTH UTILIZATION

GDDR5

GPU CPU

200 GB/s

80 GB/s

NVLink

80 

GB/s

Coherence-based accesses, no page migration

Wastes GPU memory BW
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DDR4GDDR5

BANDWIDTH UTILIZATION

Dynamic migration can exploit the full system memory BW

GPU CPU

200 GB/s

80 GB/s

NVLink

80 
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Static Oracle: Place data in the ratio of memory bandwidths [ASPLOS’15]
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Excessive migration leads to under-utilization of DDR BW

GDDR5

GPU CPU

200 GB/s

80 GB/s

NVLink

BANDWIDTH UTILIZATION

80 
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DDR4
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Migrate pages for optimal BW utilization
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CONTRIBUTIONS

Aggressively migrate pages upon First-Touch to GDDR memory

Pre-fetch neighbors of touched pages to reduce TLB shootdowns

Throttle page migrations when nearing peak BW

Intelligent Dynamic Page Migration

Dynamic page migration performs 1.95x better than no migration

Comes within 28% of the static oracle performance

6% better than Legacy CUDA
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OUTLINE

Page Migration Techniques

First-Touch page migration

Range-Expansion to save TLB shootdowns

BW balancing to stop excessive migrations

Results & Conclusions
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Naive: Migrate pages that are touched

First-Touch migration approaches Legacy CUDA

FIRST-TOUCH PAGE MIGRATION

1 1

CPU memory GPU memory

First-Touch migration is cheap, no hardware counters required
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PROBLEMS WITH FIRST-TOUCH MIGRATION

TLB shootdowns may negate benefits of page migration

How to migrate pages without incurring shootdown cost?

CPU TLB GPU TLB

VA PA VA PA

V1 P1 V1 P1

… …
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CPU
Migrate 
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No shootdown cost for pre-fetched pages

PRE-FETCH TO AVOID TLB SHOOTDOWNS

Intuition: Hot virtual addresses 
are clustered

Pre-fetch pages before access by 
the GPU
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x
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Hot pages, consume 80% BW

Min
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MIGRATION USING RANGE-EXPANSION

Pre-fetch pages in spatially contiguous range
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MIGRATION USING RANGE-EXPANSION

CPU memory GPU 
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X Accessed, shootdown required

Pre-fetched, shootdown not required

Range-Expansion hides TLB shootdown overhead

Pre-fetch pages in spatially contiguous range

HPCA-2015



90

REVISITING BANDWIDTH UTILIZATION

First-Touch + Range-Expansion aggressively unlocks GDDR BW

First-Touch 
migration

Excessive
migration

How to avoid excessive page migrations?
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BANDWIDTH BALANCING

Throttle migrations when nearing peak BW
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BANDWIDTH BALANCING

Throttle migrations when nearing peak BW
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SIMULATION ENVIRONMENT

Simulator: GPGPU-Sim 3.x

Heterogeneous 2-level memory

GDDR5 (200GB/s, 8-channels)

DDR4 (80GB/s, 4-channels)

GPU-CPU interconnect 

Latency: 100 GPU core cycles

Workloads:

Rodinia applications [Che’IISWC2009]

DoE mini apps [Villa’SC2014]

GDDR5

GPU CPU

200 GB/s

80 GB/s
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DDR4

80 
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RESULTS
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Legacy CUDA First-Touch + Range Exp + BW Balancing ORACLE

RESULTS

First-Touch + Range-Expansion + BW Balancing outperforms 

Legacy CUDA

Static Oracle
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Legacy CUDA First-Touch + Range Exp + BW Balancing ORACLE

RESULTS

Streaming accesses, no-reuse after migration

Static Oracle
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RESULTS
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Legacy CUDA First-Touch + Range Exp + BW Balancing ORACLE

Dynamic page migration performs 1.95x better than no migration

Comes within 28% of the static oracle performance

6% better than Legacy CUDA

Static Oracle
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CONCLUSIONS

Developed migration policies without any programmer involvement

First-Touch migration is cheap but has high TLB shootdowns

First-Touch + Range-Expansion technique unlocks GDDR memory BW 

BW balancing maximizes BW utilization, throttles excessive migrations

These 3 complementary techniques effectively unlock full system BW 
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EFFECTIVENESS OF RANGE-EXPANSION

Fig. 7: Effect of range expansion on workload performance when used in conjunction with threshold based migration.

in time, because the algorithms are designed to use blocked
access to the key data structures to enhance locality. Thus, the
prefetching effect of range expansion is only visible when a
page is migrated upon first touch to a neighboring page, by
the second access to a page, all its neighbors have already
been accessed at least once and there will be no savings from
avoiding TLB shootdowns. On the other hand, in benchmarks
such as needl e, there is low temporal correlation among
touches to neighboring pages. Even if a migration candidate is
touched 64 or 128 times, some of its neighboring pages may
not have been touched, and thus the prefetching effect of range
expansion provides up to 42% performance improvement even
at higher thresholds.

In the case of backpr op, we can see that higher thresh-
olds perform poorly compared to threshold 1. Thresholds
above 64 are simply too high; most pages are not accessed
this frequently and thus few pages are migrated, resulting in
poor GDDR bandwidth utilization. Range expansion prefetches

Benchmark Execution % Migrations Exececution
Overhead of Without Runtime

TLB Shootdowns Shootdown Saved
backprop 29.1% 26% 7.6%
bfs 6.7% 12% 0.8%
cns 2.4% 20% 0.5%
comd 2.02% 89% 1.8%
kmeans 4.01% 79% 3.17%
minife 3.6% 36% 1.3%
mummer 21.15% 13% 2.75%
needle 24.9% 55% 13.7%
pathfinder 25.9% 10% 2.6%
srad v1 0.5% 27% 0.14%
xsbench 2.1% 1% 0.02%
Average 11.13% 33.5% 3.72%

TABLE II: Effectiveness of range prefetching at avoiding
TLB shootdowns and runtime savings under a 100-cycle TLB
shootdown overhead.

these low-touch pages to GDDR as well, recouping the per-
formance losses of the higher threshold policies and making
them perform similar to a first touch migration policy. For
mi ni f e, previously discussed in subsection III-B, the effect
of prefetching via range expansion is to recoup some of
the performance loss due to needless migrations. However,
performance still falls short of the legacy memcpy approach,
which in effect, achieves perfect prefetching. Overuse of range
expansion hurts performance in some cases. Under the first
touch migration policy (threshold-1), using range expansion
16, 64, and 128, the worst-case performance degradations are
2%, 3%, and 2.5% respectively. While not visible in the graph
due to the stacked nature of Figure 7, they are included in the
geometric mean calculations.

Overall, weobserve that even with range expansion, higher-
threshold policies do not significantly outperform the much
simpler first-touch policy. With threshold 1, the average per-
formance gain with range expansion of 128 is 1.85⇥. The best
absolute performance is observed when using a threshold of
64 combined with a range expansion value of 64, providing
1.95⇥ speedup. We believe that this additional ⇡ 5% speedup
over first touch migration with aggressive range expansion
is not worth the implementation complexity of tracking and
differentiating all pages in the system. In the next section,
we discuss how to recoup some of this performance for
benchmarks such as bf s and xsbench, which benefit most
from using a higher threshold.

V. BANDWIDTH BALANCING

In Section III, we showed that using a static threshold-
based page migration policy alone could not ideally balance
migrating enough pages to maximize GDDR bandwidth uti-
lization while selectively moving only the hottest data. In
Section IV, we showed that informed page prefetching using
a low threshold and range expansion to exploit locality within
an application’s virtual address space matches or exceeds the
performance of a simple threshold-based policy. Combining
low threshold migration with aggressive prefetching drastically

Fig. 7: Effect of range expansion on workload performance when used in conjunction with threshold based migration.

in time, because the algorithms are designed to use blocked
access to the key data structures to enhance locality. Thus, the
prefetching effect of range expansion is only visible when a
page is migrated upon first touch to a neighboring page, by
the second access to a page, all its neighbors have already
been accessed at least once and there will be no savings from
avoiding TLB shootdowns. On the other hand, in benchmarks
such as needl e, there is low temporal correlation among
touches to neighboring pages. Even if a migration candidate is
touched 64 or 128 times, some of its neighboring pages may
not have been touched, and thus the prefetching effect of range
expansion provides up to 42% performance improvement even
at higher thresholds.

In the case of backpr op, we can see that higher thresh-
olds perform poorly compared to threshold 1. Thresholds
above 64 are simply too high; most pages are not accessed
this frequently and thus few pages are migrated, resulting in
poor GDDR bandwidth utilization. Range expansion prefetches

Benchmark Execution % Migrations Exececution
Overhead of Without Runtime

TLB Shootdowns Shootdown Saved
backprop 29.1% 26% 7.6%
bfs 6.7% 12% 0.8%
cns 2.4% 20% 0.5%
comd 2.02% 89% 1.8%
kmeans 4.01% 79% 3.17%
minife 3.6% 36% 1.3%
mummer 21.15% 13% 2.75%
needle 24.9% 55% 13.7%
pathfinder 25.9% 10% 2.6%
srad v1 0.5% 27% 0.14%
xsbench 2.1% 1% 0.02%
Average 11.13% 33.5% 3.72%

TABLE II: Effectiveness of range prefetching at avoiding
TLB shootdowns and runtime savings under a 100-cycle TLB
shootdown overhead.

these low-touch pages to GDDR as well, recouping the per-
formance losses of the higher threshold policies and making
them perform similar to a first touch migration policy. For
mi ni f e, previously discussed in subsection III-B, the effect
of prefetching via range expansion is to recoup some of
the performance loss due to needless migrations. However,
performance still falls short of the legacy memcpy approach,
which in effect, achieves perfect prefetching. Overuse of range
expansion hurts performance in some cases. Under the first
touch migration policy (threshold-1), using range expansion
16, 64, and 128, the worst-case performance degradations are
2%, 3%, and 2.5% respectively. While not visible in the graph
due to the stacked nature of Figure 7, they are included in the
geometric mean calculations.

Overall, weobserve that even with range expansion, higher-
threshold policies do not significantly outperform the much
simpler first-touch policy. With threshold 1, the average per-
formance gain with range expansion of 128 is 1.85⇥. The best
absolute performance is observed when using a threshold of
64 combined with a range expansion value of 64, providing
1.95⇥ speedup. We believe that this additional ⇡ 5% speedup
over first touch migration with aggressive range expansion
is not worth the implementation complexity of tracking and
differentiating all pages in the system. In the next section,
we discuss how to recoup some of this performance for
benchmarks such as bf s and xsbench, which benefit most
from using a higher threshold.

V. BANDWIDTH BALANCING

In Section III, we showed that using a static threshold-
based page migration policy alone could not ideally balance
migrating enough pages to maximize GDDR bandwidth uti-
lization while selectively moving only the hottest data. In
Section IV, we showed that informed page prefetching using
a low threshold and range expansion to exploit locality within
an application’s virtual address space matches or exceeds the
performance of a simple threshold-based policy. Combining
low threshold migration with aggressive prefetching drastically

Benchmark

Execution 

Overhead of

TLB Shootdown

% Migrations 

Without 

Shootdown

Execution 

Runtime

Saved

Backprop 29.1% 26% 7.6%

Pathfinder 25.9% 10% 2.6%

Needle 24.9% 55% 2.75%

Mummer 21.15% 13% 2.75%

Bfs 6.7% 12% 0.8%

Range-Expansion can save up to 45% TLB shootdowns
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DATA TRANSFER RATIO

Performance is low when GDDR/DDR ratio is away from optimal
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GPU WORKLOADS: BW SENSITIVITY
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GPU workloads are highly BW sensitive
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RESULTS
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Legacy CUDA First-Touch Oracle

Dynamic page migration performs 1.95x better than no migration

Comes within 28% of the static oracle performance

6% better than Legacy CUDA
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