
Timothy G. Rogers

Daniel R. Johnson

Mike O’Connor

Stephen W. Keckler

A Variable Warp-Size
Architecture

Contemporary GPU

 Massively Multithreaded

 10,000’s of threads concurrently executing on 10’s of

Streaming Multiprocessors (SM)

2

GPU

Interconnect

SM SM

SM SM

...

...

MemCtrl
L2$

...

... MemCtrl
L2$

MemCtrl
L2$

MemCtrl
L2$

Tim RogersA Variable Warp-Size Architecture

Contemporary

Streaming Multiprocessor (SM)

3

 1,000’s of schedulable threads

 Amortize front end and memory overheads by grouping

threads into warps.

 Size of the warp is fixed based on the architecture

GPU

Interconnect

SM SM

SM SM

...

...

MemCtrl
L2$

...

... MemCtrl
L2$

MemCtrl
L2$

MemCtrl
L2$

Streaming Multiprocessor

Frontend

Warp Datapath

L1 I-Cache

Memory Unit

Decode

Warp
Control Logic

32-wide

Tim RogersA Variable Warp-Size Architecture

Contemporary GPU Software

 Regular structured computation

 Predictable access and control flow patterns

 Can take advantage of HW amortization for increased

performance and energy efficiency

4

Execute Efficiently

on a GPU Today

Graphics

Shaders

Matrix

Multiply

…

Tim RogersA Variable Warp-Size Architecture

Forward-Looking GPU Software

 Still Massively Parallel

 Less Structured

 Memory access and control flow patterns are less predictable

5

Execute efficiently

on a GPU today

Graphics

Shaders

Matrix

Multiply

…

Less efficient on

today’s GPU

Raytracing

Molecular

Dynamics

Object

Classification

…

Tim RogersA Variable Warp-Size Architecture

Divergence: Source of Inefficiency

 Regular hardware that amortizes front end and overhead

 Irregular software with many different control flow paths

and less predicable memory accesses.

6

Branch Divergence Memory Divergence

…

if (…) {

…

}

…

Tim RogersA Variable Warp-Size Architecture

Load R1, 0(R2)

Can cut function unit

utilization to 1/32.

32- Wide
32- Wide

Main Memory

Instruction may wait

for 32 cache lines

Irregular “Divergent” Applications:

Perform better with a smaller warp size

7 Tim RogersA Variable Warp-Size Architecture

…

if (…) {

…

}

…

Allows more

threads to

proceed

concurrently

Branch Divergence Memory Divergence

Load R1, 0(R2)

Increased

function unit

utilization

Main Memory

Each instruction waits

on fewer accesses

Negative effects of smaller warp size

Tim RogersA Variable Warp-Size Architecture8

 Less front end amortization

 Increase in fetch/decode energy

 Negative performance effects

 Scheduling skew increases pressure on the memory system

Regular “Convergent” Applications:

Perform better with a wider warp

9 Tim RogersA Variable Warp-Size Architecture

32- Wide

Load R1, 0(R2)Load R1, 0(R2)

Main Memory

GPU memory coalescing

One memory system request

can service all 32 threads

Smaller warps: Less coalescing

Main Memory

8 redundant memory accesses –

no longer occurring together

Performance vs. Warp Size

10 Tim RogersA Variable Warp-Size Architecture

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

IP
C

 n
o

rm
a

li
z
e

d
 t

o
 w

a
rp

 s
iz

e
 3

2 Warp Size 4

Application

Convergent

Applications

Warp-Size Insensitive

Applications

Divergent

Applications

 165 Applications

Goals

 Convergent Applications

 Maintain wide-warp performance

 Maintain front end efficiency

 Warp Size Insensitive Applications

 Maintain front end efficiency

 Divergent Applications

 Gain small warp performance

11 Tim RogersA Variable Warp-Size Architecture

Set the warp size based on

the executing application

Sliced Datapath + Ganged Scheduling

12

 Split the SM datapath into narrow slices.

 Extensively studied 4-thread slices

 Gang slice execution to gain efficiencies of wider warp.

Tim RogersA Variable Warp-Size Architecture

Frontend

Warp Datapath

L1 I-Cache

Memory Unit

Warp
Control Logic 32-wide

Slice

Frontend

Slice Datapath

L1 I-Cache

Memory Unit

Slice
Front
End 4-wide

...
Slice
Slice DatapathSlice

Front
End 4-wide

Slices can

execute

independently

Slices share an L1

I-Cache and Memory Unit

Ganging
Unit

Slice

Frontend

Slice Datapath

L1 I-Cache

Memory Unit

Slice
Front
End 4-wide

...
Slice
Slice DatapathSlice

Front
End 4-wide

Ganging
Unit

Initial operation

 Slices begin execution in ganged mode

 Mirrors the baseline 32-wide warp system

 Question: When to break the gang?

13 Tim RogersA Variable Warp-Size Architecture

Ganging unit

drives the slices

Instructions are fetched

and decoded once

Slice

Frontend

Slice Datapath

L1 I-Cache

Memory Unit

Slice
Front
End 4-wide

...
Slice
Slice DatapathSlice

Front
End 4-wide

Ganging
Unit

Breaking Gangs on Control Flow Divergence

 PCs common to more than one slice form a new gang

 Slices that follow a unique PC in the gang are transferred

to independent control

14 Tim RogersA Variable Warp-Size Architecture

Unique PCs: no

longer controlled by

ganging unit

Observes different

PCs from each slice

Slice

Frontend

Slice Datapath

L1 I-Cache

Memory Unit

Slice
Front
End 4-wide

...
Slice
Slice DatapathSlice

Front
End 4-wide

Ganging
Unit

Breaking Gangs on Memory Divergence

 Latency of accesses from each slice can differ

 Evaluated several heuristics on breaking the gang when

this occurs

15 Tim RogersA Variable Warp-Size Architecture

Hits

in L1

Goes to

memory

Slice

Frontend

Slice Datapath

L1 I-Cache

Memory Unit

Slice
Front
End 4-wide

...
Slice
Slice DatapathSlice

Front
End 4-wide

Ganging
Unit

Gang Reformation

 Performed opportunistically

 Ganging unit checks for gangs or independent slices at the

same PC

 Forms them into a gang

16 Tim RogersA Variable Warp-Size Architecture

Independent BUT

at the same PC

Ganging unit re-gangs

them

More details in the

paper

Methodology

 In House, Cycle-Level Streaming Multiprocessor Model

 1 In-order core

 64KB L1 Data cache

 128KB L2 Data Cache (One SM’s worth)

 48KB Shared Memory

 Texture memory unit

 Limited BW memory system

 Greedy-Then-Oldest (GTO) Issue Scheduler

17 Tim RogersA Variable Warp-Size Architecture

Configurations

Tim RogersA Variable Warp-Size Architecture18

 Warp Size 32 (WS 32)

 Warp Size 4 (WS 4)

 Inelastic Variable Warp Sizing (I-VWS)

 Gangs break on control flow divergence

 Are not reformed

 Elastic Variable Warp Sizing (E-VWS)

 Like I-VWS, except gangs are opportunistically reformed

 Studied 5 applications from each category in detail
Paper Explores Many

More Configurations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
C

o
M

D

L
ig

h
ti

n
g

G
a
m

e
P

h
y
s
ic

s

O
b

jC
la

s
s
if

ie
r

R
a
y

tr
a
c
in

g

H
M

E
A

N
-D

IV

Divergent Applications

IP
C

 n
o

rm
a
li

z
e

d
 t

o
 w

a
rp

 s
iz

e
 3

2

WS 32 WS 4 I-VWS E-VWS

Divergent Application Performance

19 Tim RogersA Variable Warp-Size Architecture

Warp Size 4
I-VWS: Break

on CF Only

E-VWS: Break

+ Reform

0

1

2

3

4

5

6

7

8
C

o
M

D

L
ig

h
ti

n
g

G
a
m

e
P

h
y
s
ic

s

O
b

jC
la

s
s
if

ie
r

R
a
y

tr
a
c
in

g

A
V

G
-D

IV

Divergent Applications

A
v
g

.
F

e
tc

h
e
s
 P

e
r

C
y
c
le

WS 32 WS 4 I-VWS E-VWS

Divergent Application Fetch Overhead

20 Tim RogersA Variable Warp-Size Architecture

Warp Size 4
I-VWS: Break

on CF Only

Used as a proxy for

energy consumption

E-VWS: Break

+ Reform

0

0.2

0.4

0.6

0.8

1

1.2
G

a
m

e
 1

M
a
tr

ix
M

u
lt

ip
ly

G
a
m

e
 2

F
e

a
tu

re
D

e
te

c
t

R
a
d

ix
 S

o
rt

H
M

E
A

N
-C

O
N

Convergent Applications

IP
C

 n
o

rm
a
li

z
e
d

 t
o

 w
a
rp

 s
iz

e
 3

2 WS 32 WS 4 I-VWS E-VWS

Convergent Application Performance

Tim RogersA Variable Warp-Size Architecture21

Warp Size 4
I-VWS: Break

on CF Only

Warp-Size Insensitive

Applications Unaffected

E-VWS: Break

+ Reform

0

1

2

3

4

5

6

7

8

9

Im
a
g

e
 P

ro
c
.

G
a
m

e
 3

C
o

n
v
o

lu
ti

o
n

G
a
m

e
 4

F
F

T

A
V

G
-W

S
I

G
a

m
e

 1

M
a
tr

ix
M

u
lt

ip
ly

G
a
m

e
 2

F
e

a
tu

re
D

e
te

c
t

R
a
d

ix
 S

o
rt

A
V

G
-C

O
N

Warp-Size Insensitive Applications Convergent Applications

A
v
g

.
F

e
tc

h
e
s
 P

e
r

C
y
c
le WS 32 WS 4 I-VWS E-VWS

Convergent/Insensitive Application Fetch

Overhead

22 Tim RogersA Variable Warp-Size Architecture

Warp Size 4

I-VWS: Break

on CF Only
E-VWS: Break

+ Reform

165 Application Performance

Tim RogersA Variable Warp-Size Architecture23

Convergent

Applications
Divergent

Applications

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

IP
C

 n
o

rm
a

li
z
e

d
 t

o
 w

a
rp

 s
iz

e
 3

2 Warp Size 4

I-VWS

Application

Warp-Size Insensitive

Applications

Related Work

24 Tim RogersA Variable Warp-Size Architecture

Compaction/Formation Subdivision/Multipath

Improve

Function Unit

Utilization

Decrease

Thread Level

Parallelism
Decreased

Function Unit

Utilization

Increase

Thread Level

Parallelism

Variable Warp Sizing

Improve

Function Unit

Utilization

Increase

Thread Level

Parallelism

Area Cost Area Cost

Area Cost

VWS Estimate:

5% for 4-wide slices

2.5% for 8-wide slices

Conclusion

 Explored space surrounding warp size and perfromance

 Vary the size of the warp to meet the depends of the

workload

 35% performance improvement on divergent apps

 No performance degradation on convergent apps

 Narrow slices with ganged execution

 Improves both SIMD efficiency and thread-level parallelism

25 Tim RogersA Variable Warp-Size Architecture

Questions?

Managing DRAM Latency Divergence
in Irregular GPGPU Applications

Niladrish Chatterjee

Mike O’Connor

Gabriel H. Loh

Nuwan Jayasena

Rajeev
Balasubramonian

Irregular GPGPU Applications

• Conventional GPGPU workloads access vector or matrix-based data
structures
• Predictable strides, large data parallelism

• Emerging Irregular Workloads
• Pointer-based data-structures & data-dependent memory accesses

• Memory Latency Divergence on SIMT platforms

Warp-aware memory scheduling to reduce DRAM latency
divergence

SC
201427

SIMT Execution Overview

SC
201428

GDDR
5
Channel L1

Warp 1

Warp
Scheduler

SIMD Lanes

Memory
Port

Warp 2

Warp 3

Warp N

SIMT Core

SIMT Core

SIMT Core

I
N
T
E
R
C
O
N
N
E
C
T

L2 Slice
Memory

Controller GDDR
5
Channel

Memory Partition

THREADS

Memory Partition

Warps

GDDR
5

GDDR
5

L2 Slice
Memory

Controller

Lockstep execution
Warp stalled on memory access

Memory Latency Divergence

• Coalescer has limited efficacy
in irregular workloads

• Partial hits in L1 and L2
• 1st source of latency divergence

• DRAM requests can have
varied latencies
• Warp stalled for last request

• DRAM Latency Divergence

Load Inst

SIMD Lanes (32)

Access Coalescing Unit

L1

L2

GDDR5

SC
201429

GPU Memory Controller (GMC)

SC
201430

• Optimized for high throughput

• Harvest channel and bank parallelism
• Address mapping to spread cache-lines across channels and banks.

• Achieve high row-buffer hit rate
• Deep queuing
• Aggressive reordering of requests for row-hit batching

• Not cognizant of the need to service requests from a warp together
• Interleave requests from different warps leading to latency divergence

Warp-Aware Scheduling

SC
201431

SM
1

SM
2

A: LD

A

A

A

A

B B

B B
MC

A:
Use

Baseline
GMC

Scheduling
A B A A A

B:
Use

B B B

Stall Cycles

Stall Cycles

Warp-Aware
Scheduling A A A B BA B B

A:
Use

Stall Cycles

B: LD

Reduced Average Memory Stall Time

Impact of DRAM Latency Divergence

SC
201432

If all requests from a warp were to be returned in
perfect sequence from the DRAM –

~40% improvement.

If there was only 1 request per warp – 5X improvement.

Key Idea

• Form batches of requests from each warp

• warp-group

• Schedule all requests from a warp-group together

• Scheduling algorithm arbitrates between warp-groups to minimize
average stall-time of warps

SC
201433

Controller Design

SC
201434

Controller Design

SC
201435

Warp-Group Scheduling : Single Channel

SC
201436

Pending Warp-Groups

Warp-group
priority table

Transaction
Scheduler

of reqs
in warp-

group

Row
hit/miss
status of

reqs

Queuing
delay in

cmd
queues

Pick warp-group
with lowest

runtime

• Each Warp-Group assigned a
priority
• Reflects completion time of

last request

• Higher Priority to
• Few requests
• High spatial locality
• Lightly loaded banks

• Priorities updated dynamically

• Transaction Scheduler picks warp-
group with lowest run-time
• Shortest-job-first based on

actual service time

WG-scheduling

SC
201437

La
te

n
cy

 D
iv

e
rg

e
n

ce

Ideal
Bandwidth Utilization

GMC
Baseline

WG

Multiple Memory Controllers

• Channel level parallelism
• Warp’s requests sent to multiple memory channels

• Independent scheduling at each controller

• Subset of warp’s requests can be delayed at one or few memory
controllers

• Coordinate scheduling between controllers
• Prioritize warp-group that has already been serviced at other controllers

• Coordination message broadcast to other controllers on completion of a
warp-group.

SC
201438

Warp-Group Scheduling : Multi-Channel

SC
201439

Pending Warp-Groups

Priority Table
Transaction
Scheduler

of reqs
in warp-

group

Row
hit/miss
status of

reqs

Queuing
delay in

cmd
queues

Pick warp-group
with lowest

runtime

Status of
Warp-group

in other
channels

Periodic messages
to other channels
about completed

warp-groups

WG-M Scheduling

SC
201440

La
te

n
cy

 D
iv

e
rg

e
n

ce

Ideal
Bandwidth Utilization

GMC
Baseline

WG

WG-M

Bandwidth-Aware Warp-Group Scheduling

• Warp-group scheduling negatively affects bandwidth utilization
• Reduced row-hit rate

• Conflicting objectives
• Issue row-miss request from current warp-group
• Issue row-hit requests to maintain bus utilization

• Activate and Precharge idle cycles
• Hidden by row-hits in other banks

• Delay row-miss request to find the right slot

SC
201441

Bandwidth-Aware Warp-Group Scheduling

SC
201442

• The minimum number of row-hits needed in other banks to overlap
(tRTP+tRP+tRCD)
• Determined by GDDR timing parameters
• Minimum efficient row burst (MERB)

• Stored in a ROM looked up by Transaction Scheduler

• More banks with pending row-hits
• smaller MERB

• Schedule row-miss after MERB row-hits have been issued to bank

WG-Bw Scheduling

SC
201443

La
te

n
cy

 D
iv

e
rg

e
n

ce

Ideal
Bandwidth Utilization

GMC
Baseline

WG

WG-M

WG-Bw

Warp-Aware Write Draining

• Writes drained in batches
• starts at High_Watermark

• Can stall small warp-groups

• When WQ reaches a threshold (lower than High_Watermark)
• Drain singleton warp-groups only

• Reduce write-induced latency

SC
201444

WG-scheduling

SC
201445

La
te

n
cy

 D
iv

e
rg

e
n

ce

Ideal
Bandwidth Utilization

GMC
Baseline

WG

WG-M

WG-Bw

WG-W

Methodology

• GPGPUSim v3.1 : Cycle Accurate GPGPU simulator

• USIMM v1.3 : Cycle Accurate DRAM Simulator
• modified to model GMC-baseline & GDDR5 timings

• Irregular and Regular workloads from Parboil, Rodinia, Lonestar, and MARS.

SC
201446

SM Cores 30

Max Threads/Core 1024

Warp Size 32 Threads/warp

L1 / L2 32KB / 128 KB

DRAM 6Gbps GDDR5

DRAM Channels Banks 6 Channels
16 Banks/channel

0%

2%

4%

6%

8%

10%

12%

WG WG-M WG-Bw WG-W

IP
C

 N
O

R
M

A
LI

ZE
D

 T
O

B

A
SE

LI
N

E
Performance Improvement

SC
201447

Reduced Latency
Divergence

Restored
Bandwidth
Utilization

Impact on Regular Workloads

SC
201448

• Effective coalescing

• High spatial locality in warp-group

• WG scheduling works similar to GMC-baseline
• No performance loss

• WG-Bw and WG-W provide
• Minor benefits

Energy Impact of Reduced Row Hit-Rate

• Scheduling Row-misses over Row-
hits
• Reduces the row-buffer hit rate 16%

• In GDDR5, power consumption
dominated by I/O.

• Increase in DRAM power negligible
compared to execution speed-up
• Net improvement in system energy

SC
201449

0

10

20

30

40

Baseline WG-Bw

p
J/

b
it

GDDR5 Energy/bit

I/O Row

Column Control

DLL Background

Conclusions

• Irregular applications place new demands on the GPU’s memory
system

• Memory scheduling can alleviate the issues caused by latency
divergence

• Carefully orchestrating the scheduling of commands can help regain
the bandwidth lost by warp-aware scheduling

• Future techniques must also include the cache-hierarchy in reducing
latency divergence

SC
201450

Thanks !

SC
201451

Backup Slides

SC
201452

Performance Improvement : IPC

SC
201453

Average Warp Stall Latency

SC
201454

DRAM Latency Divergence

SC
201455

Bandwidth Utilization

SC
201456

Memory Controller Microarchitecture

SC
201457

Warp-Group Scheduling

• Every batch assigned a priority-score
• completion time of the longest request

• Higher priority to warp groups with
• Few requests
• High spatial locality
• Lightly loaded banks

• Priorities updated after each warp-group scheduling

• Warp-group with lowest service time selected
• Shortest-job-first based on actual service time, not number of requests

SC
201458

Priority-Based Cache Allocation
in Throughput Processors

Dong Li*†, Minsoo Rhu*§†, Daniel R. Johnson§, Mike O’Connor§†, Mattan
Erez†, Doug Burger‡ , Donald S. Fussell† and Stephen W. Keckler§†

*First authors Li and Rhu have made equal contributions to this work and are listed alphabetically

† § ‡

Introduction

60

• Graphics Processing Units (GPUs)
• General purpose throughput processors

• Massive thread hierarchy, warp=32 threads

• Challenge:
• Small caches + many threads  contention + cache thrashing

• Prior work: throttling thread level parallelism (TLP)
• Problem 1: under-utilized system resources

• Problem 2: unexplored cache efficiency

Motivation: Case Study (CoMD)

Best Throttled max TLP (default)

Throttling improves
performance

Observation 2:
Unexplored cache
efficiency

Observation 1:
Resource under-utilized

61

Throttling Throttling Throttling

Motivation

• Throttling

• Tradeoff between cache
efficiency and parallelism.

• # Active Warps = # Warps
Allocating Cache

• Idea
• Decoupling cache efficiency

from parallelism

62# Active Warps

W

ar
p

s
A

llo
ca

ti
n

g
C

ac
h

e

Baseline

Unexplored

Our Proposal: Priority Based
Cache Allocation (PCAL)

63

BaselineStandard operation

Regular threads: threads have all capabilities,
operate as usual (full access to the L1 cache)

Regular
Threads

Warp 0

Warp 1

Warp 2

Warp 3

Warp 4

Warp n-1

64

TLP ThrottlingTLP reduced to improve performance

Regular threads: threads have all capabilities,
operate as usual (full access to the L1 cache)

Second subset: prevented from polluting L1 cache
(fills bypass)

Throttled threads: throttled (not runnable)

Regular
Threads

Throttled
Threads

Warp 0

Warp 1

Warp 2

Warp 3

Warp 4

Warp n-1

65

Proposed Solution: PCALThree subsets of threads

Regular threads: threads have all capabilities,
operate as usual (full access to the L1 cache)

Regular
Threads

Non-
polluting
Threads

Throttled
Threads

Warp 0

Warp 1

Warp 2

Warp 3

Warp 4

Warp n-1

66

Non-polluting threads: runnable, but prevented
from polluting L1 cache

Throttled threads: throttled (not runnable)

Proposed Solution: PCALTokens for privileged cache access

Tokens grant capabilities or privileges to some
threads

Threads with tokens are allowed to allocate and
evict L1 cache lines

Threads without tokens can read and write, but
not allocate or evict, L1 cache lines

Regular
Threads

Non-
polluting
Threads

Throttled
Threads

Warp 0

Warp 1

Warp 2

Warp 3

Warp 4

Warp n-1

1

1

0

0

0

Priority
Token Bit

67

Proposed solution: Static PCAL

HW implementation: simplicity
Scheduler manages per-warp token bits

Token bits sent with memory requests

Policies: token assignment
Assign at warp launch, release at
termination

Re-assigned to oldest token-less warp

Parameters supplied by software prior
to kernel launch

Enhanced scheduler operation

Regular
Threads

Non-
polluting
Threads

Throttled
Threads

Warp 0

Warp 1

Warp 2

Warp 3

Warp 4

Warp n-1

W
ar

p
 S

ch
e

d
u

le
r

To
ke

n
 A

ss
ig

n
m

e
n

t

1

1

0

0

0

Priority
Token

Bit

Scheduler
Status Bits

68

Two Optimization Strategies
to exploit the 2-D (#Warps, #Tokens) search space

Active Warps (#Warps)

W

ar
p

s
A

llo
ca

ti
n

g
C

ac
h

e

(#
To

ke
n

s)

Baseline

69

• 1. Increasing TLP (ITLP)
• Adding non-polluting warps

• Without hurting regular warps Resource
under-utilized
ITLP

Unexplored
cache efficiency
MTLP

• 2. Maintaining TLP (MTLP)
• Reduce #Token to increase the

efficiency

• Without decreasing TLP

Proposed Solution: Dynamic PCAL

• Decide parameters at run time
• Choose MTLP/ITLP based on resource usage performance counter

• For MTLP: search #Tokens in parallel

• For ITLP: search #Warps in sequential

• Please refer to our paper for more details

70

Evaluation

Simulation: GPGPU-Sim
Open source academic simulator, configured similar to Fermi (full-
chip)

Benchmarks
Open source GPGPU suites: Parboil, Rodinia, LonestarGPU. etc

Selected benchmark subset shows sensitivity to cache size

71

MTLP Example (CoMD)
MTLP: reducing #Tokens, keeping #Warps =6

72

Best ThrottledPCAL with MTLP

MTLP MTLP MTLP

ITLP Example (Similarity-Score)

ITLP: increasing #Warps, keeping #Tokens=2

73

Best ThrottledPCAL with ITLP

ITLP ITLP ITLP

PCAL Results Summary

Baseline: best throttled results

Performance improvement: Static-PCAL: 17%, Dynamic-PCAL: 11%

74

Conclusion

Existing throttling approach may lead to two problems:
Resources underutilization
Unexplored cache efficiency

We propose PCAL, a simple mechanism to rebalance
cache efficiency and parallelism

ITLP: increases parallelism without hurting regular warps
MTLP: alleviates cache thrashing while maintaining parallelism

Throughput improvement over best throttled results
Static PCAL: 17%
Dynamic PCAL: 11%

75

Questions

76

Neha Agarwal*

David Nellans

Mike O’Connor

Stephen W. Keckler

Thomas F. Wenisch*

NVIDIA

University of Michigan*

(Major part of this work was done when Neha Agarwal was an intern at NVIDIA)

UNLOCKING BANDWIDTH FOR GPUS

IN CC-NUMA SYSTEMS

HPCA-2015

78

EVOLVING GPU MEMORY SYSTEM

CUDA 1.0-5.x CUDA 6.0+: Current Future

cudaMemcpy

Programmer controlled

copying to GPU

memory

Unified virtual memory

Run-time controlled

copying  Better

productivity

CPU-GPU cache-coherent

high BW interconnect

How to best exploit full BW

while maintaining

programmability?

R
o
a
d
m

a
p

GDDR5 GPU CPU
200 GB/s 80 GB/s 80 GB/s

NVLink

(Cache

Coherent)

PCI-E

15.8 GB/s
DDR4

HPCA-2015

79

DESIGN GOALS & OPPORTUNITIES

Simple programming model:

No need for explicit data copying

Exploit full DDR + GDDR BW

Additional 30% BW via NVLink

Crucial to BW sensitive GPU apps

Legacy CUDA

UVM
PCI-E Target

80

200

280

T
o
ta

l
B
a
n
d
w

id
th

 (
G

B
/s

)

NVLink

CC-NUMA BW

15.8

Design intelligent dynamic page migration policies

to achieve both these goals
HPCA-2015

80

DDR4

BANDWIDTH UTILIZATION

GDDR5

GPU CPU

200 GB/s

80 GB/s

NVLink

80

GB/s

Coherence-based accesses, no page migration

Wastes GPU memory BW

80

20

0

28

0

BW from CC

GPU Memory BW

Total System Memory BW

% of Migrated Pages to GPU Memory
T
o
ta

l
B
a
n
d
w

id
th

 (
G

B
/s

)
0 100

HPCA-2015

81

DDR4GDDR5

BANDWIDTH UTILIZATION

Dynamic migration can exploit the full system memory BW

GPU CPU

200 GB/s

80 GB/s

NVLink

80

GB/s

Static Oracle: Place data in the ratio of memory bandwidths [ASPLOS’15]

80

20

0

28

0

Additional BW from CC

GPU Memory BW

Total System Memory BW

% of Migrated Pages to GPU Memory
T
o
ta

l
B
a
n
d
w

id
th

 (
G

B
/s

)
0 100

HPCA-2015

82

Excessive migration leads to under-utilization of DDR BW

GDDR5

GPU CPU

200 GB/s

80 GB/s

NVLink

BANDWIDTH UTILIZATION

80

GB/s

DDR4

80

20

0

28

0

Additional BW from CC

GPU Memory BW

Total System Memory BW

% of Migrated Pages to GPU Memory
T
o
ta

l
B
a
n
d
w

id
th

 (
G

B
/s

)
0 100

Migrate pages for optimal BW utilization
HPCA-2015

83

CONTRIBUTIONS

Aggressively migrate pages upon First-Touch to GDDR memory

Pre-fetch neighbors of touched pages to reduce TLB shootdowns

Throttle page migrations when nearing peak BW

Intelligent Dynamic Page Migration

Dynamic page migration performs 1.95x better than no migration

Comes within 28% of the static oracle performance

6% better than Legacy CUDA

HPCA-2015

84

OUTLINE

Page Migration Techniques

First-Touch page migration

Range-Expansion to save TLB shootdowns

BW balancing to stop excessive migrations

Results & Conclusions

HPCA-2015

85

0
0.5

1
1.5

2
2.5

3

Th
ro

u
gh

p
u

t
R

e
la

ti
ve

to

 N
o

 M
ig

ra
ti

o
n

Naive: Migrate pages that are touched

First-Touch migration approaches Legacy CUDA

FIRST-TOUCH PAGE MIGRATION

1 1

CPU memory GPU memory

First-Touch migration is cheap, no hardware counters required

1 1

1 1

HPCA-2015

86

PROBLEMS WITH FIRST-TOUCH MIGRATION

TLB shootdowns may negate benefits of page migration

How to migrate pages without incurring shootdown cost?

CPU TLB GPU TLB

VA PA VA PA

V1 P1 V1 P1

… …

Send
Invalidate

GPU

… …

CPU
Migrate

V1

Ack
Invalidate

P2 P2

0

0.5

1

1.5

2

Th
ro

u
gh

p
u

t
R

e
la

ti
ve

…

No overhead

HPCA-2015

87

No shootdown cost for pre-fetched pages

PRE-FETCH TO AVOID TLB SHOOTDOWNS

Intuition: Hot virtual addresses
are clustered

Pre-fetch pages before access by
the GPU

Ma
x

Mi
n

Hot pages, consume 80% BW

Min

HPCA-2015

88

MIGRATION USING RANGE-EXPANSION

Pre-fetch pages in spatially contiguous range

0

0.5

1

1.5

2

N
o

o
v
e
rh

e
a
d

T
L
B

sh
o
o
td

o
w

n N
o

o
v
e
rh

e
a
d

T
L
B

sh
o
o
td

o
w

n N
o

o
v
e
rh

e
a
d

T
L
B

sh
o
o
td

o
w

n

T
h
ro

u
g
h
p
u
t

R
e
la

ti
v
e

to
 N

o
 M

ig
ra

ti
o
n

No range expansion

X

X

X

X

CPU memory GPU

memory

X Accessed, shootdown required

Pre-fetched, shootdown not required

HPCA-2015

89

MIGRATION USING RANGE-EXPANSION

CPU memory GPU

memory
X

X

0

0.5

1

1.5

2

N
o

o
v
e
rh

e
a
d

T
L
B

sh
o
o
td

o
w

n N
o

o
v
e
rh

e
a
d

T
L
B

sh
o
o
td

o
w

n N
o

o
v
e
rh

e
a
d

T
L
B

sh
o
o
td

o
w

n

T
h
ro

u
g
h
p
u
t

R
e
la

ti
v
e

to
 N

o
 M

ig
ra

ti
o
n

No range expansion Range:16

X Accessed, shootdown required

Pre-fetched, shootdown not required

Range-Expansion hides TLB shootdown overhead

Pre-fetch pages in spatially contiguous range

HPCA-2015

90

REVISITING BANDWIDTH UTILIZATION

First-Touch + Range-Expansion aggressively unlocks GDDR BW

First-Touch
migration

Excessive
migration

How to avoid excessive page migrations?

80

20

0

28

0

BW from CC

GPU Memory BW

Total System Memory BW

% of Migrated Pages to GPU Memory

T
o
ta

l
B
a
n
d
w

id
th

 (
G

B
/s

)

0 100

HPCA-2015

91

BANDWIDTH BALANCING

Throttle migrations when nearing peak BW

%
 o

f
A

cc
e

ss
e

s
fr

o
m

 G
P

U

M
e

m
o

ry

Time

First-Touch + Range Exp

DDR under-subscribed

GDDR under-subscribed

80 20

0

28

0
Total Bandwidth (GB/s)

First-Touch
migrations

Excessive
migrations Target

%
 o

f
M

ig
ra

te
d
 P

a
g
e
s

to
 G

P
U

 M
e
m

o
ry

0

100

70

Star

t

End

HPCA-2015

92

BANDWIDTH BALANCING

Throttle migrations when nearing peak BW

%
 o

f
A

cc
e

ss
e

s
fr

o
m

 G
P

U

M
e

m
o

ry

Time

First-Touch + Range Exp

DDR under-subscribed

GDDR under-subscribed

80 20

0

28

0
Total Bandwidth (GB/s)

First-Touch
migrations

Excessive
migrations Target

%
 o

f
M

ig
ra

te
d
 P

a
g
e
s

to
 G

P
U

 M
e
m

o
ry

0

100

70

Star

t

End

HPCA-2015

93

SIMULATION ENVIRONMENT

Simulator: GPGPU-Sim 3.x

Heterogeneous 2-level memory

GDDR5 (200GB/s, 8-channels)

DDR4 (80GB/s, 4-channels)

GPU-CPU interconnect

Latency: 100 GPU core cycles

Workloads:

Rodinia applications [Che’IISWC2009]

DoE mini apps [Villa’SC2014]

GDDR5

GPU CPU

200 GB/s

80 GB/s

100 clks

additional

latency

DDR4

80

GB/s

HPCA-2015

94

RESULTS

0

1

2

3

4

5

6

Th
ro

u
gh

p
u

t
R

e
la

ti
ve

to
 N

o
 M

ig
ra

ti
o

n

Legacy CUDA First-Touch + Range Exp + BW Balancing ORACLEStatic Oracle

HPCA-2015

95

0

1

2

3

4

5

6

Th
ro

u
gh

p
u

t
R

e
la

ti
ve

to
 N

o
 M

ig
ra

ti
o

n

Legacy CUDA First-Touch + Range Exp + BW Balancing ORACLE

RESULTS

First-Touch + Range-Expansion + BW Balancing outperforms

Legacy CUDA

Static Oracle

HPCA-2015

96

0

1

2

3

4

5

6

Th
ro

u
gh

p
u

t
R

e
la

ti
ve

to
 N

o
 M

ig
ra

ti
o

n

Legacy CUDA First-Touch + Range Exp + BW Balancing ORACLE

RESULTS

Streaming accesses, no-reuse after migration

Static Oracle

HPCA-2015

97

RESULTS

0

1

2

3

4

5

6

Th
ro

u
gh

p
u

t
R

e
la

ti
ve

to
 N

o
 M

ig
ra

ti
o

n

Legacy CUDA First-Touch + Range Exp + BW Balancing ORACLE

Dynamic page migration performs 1.95x better than no migration

Comes within 28% of the static oracle performance

6% better than Legacy CUDA

Static Oracle

HPCA-2015

98

CONCLUSIONS

Developed migration policies without any programmer involvement

First-Touch migration is cheap but has high TLB shootdowns

First-Touch + Range-Expansion technique unlocks GDDR memory BW

BW balancing maximizes BW utilization, throttles excessive migrations

These 3 complementary techniques effectively unlock full system BW

HPCA-2015

99

THANK YOU

HPCA-2015

100

EFFECTIVENESS OF RANGE-EXPANSION

Fig. 7: Effect of range expansion on workload performance when used in conjunction with threshold based migration.

in time, because the algorithms are designed to use blocked
access to the key data structures to enhance locality. Thus, the
prefetching effect of range expansion is only visible when a
page is migrated upon first touch to a neighboring page, by
the second access to a page, all its neighbors have already
been accessed at least once and there will be no savings from
avoiding TLB shootdowns. On the other hand, in benchmarks
such as needl e, there is low temporal correlation among
touches to neighboring pages. Even if a migration candidate is
touched 64 or 128 times, some of its neighboring pages may
not have been touched, and thus the prefetching effect of range
expansion provides up to 42% performance improvement even
at higher thresholds.

In the case of backpr op, we can see that higher thresh-
olds perform poorly compared to threshold 1. Thresholds
above 64 are simply too high; most pages are not accessed
this frequently and thus few pages are migrated, resulting in
poor GDDR bandwidth utilization. Range expansion prefetches

Benchmark Execution % Migrations Exececution
Overhead of Without Runtime

TLB Shootdowns Shootdown Saved
backprop 29.1% 26% 7.6%
bfs 6.7% 12% 0.8%
cns 2.4% 20% 0.5%
comd 2.02% 89% 1.8%
kmeans 4.01% 79% 3.17%
minife 3.6% 36% 1.3%
mummer 21.15% 13% 2.75%
needle 24.9% 55% 13.7%
pathfinder 25.9% 10% 2.6%
srad v1 0.5% 27% 0.14%
xsbench 2.1% 1% 0.02%
Average 11.13% 33.5% 3.72%

TABLE II: Effectiveness of range prefetching at avoiding
TLB shootdowns and runtime savings under a 100-cycle TLB
shootdown overhead.

these low-touch pages to GDDR as well, recouping the per-
formance losses of the higher threshold policies and making
them perform similar to a first touch migration policy. For
mi ni f e, previously discussed in subsection III-B, the effect
of prefetching via range expansion is to recoup some of
the performance loss due to needless migrations. However,
performance still falls short of the legacy memcpy approach,
which in effect, achieves perfect prefetching. Overuse of range
expansion hurts performance in some cases. Under the first
touch migration policy (threshold-1), using range expansion
16, 64, and 128, the worst-case performance degradations are
2%, 3%, and 2.5% respectively. While not visible in the graph
due to the stacked nature of Figure 7, they are included in the
geometric mean calculations.

Overall, weobserve that even with range expansion, higher-
threshold policies do not significantly outperform the much
simpler first-touch policy. With threshold 1, the average per-
formance gain with range expansion of 128 is 1.85⇥. The best
absolute performance is observed when using a threshold of
64 combined with a range expansion value of 64, providing
1.95⇥ speedup. We believe that this additional ⇡ 5% speedup
over first touch migration with aggressive range expansion
is not worth the implementation complexity of tracking and
differentiating all pages in the system. In the next section,
we discuss how to recoup some of this performance for
benchmarks such as bf s and xsbench, which benefit most
from using a higher threshold.

V. BANDWIDTH BALANCING

In Section III, we showed that using a static threshold-
based page migration policy alone could not ideally balance
migrating enough pages to maximize GDDR bandwidth uti-
lization while selectively moving only the hottest data. In
Section IV, we showed that informed page prefetching using
a low threshold and range expansion to exploit locality within
an application’s virtual address space matches or exceeds the
performance of a simple threshold-based policy. Combining
low threshold migration with aggressive prefetching drastically

Fig. 7: Effect of range expansion on workload performance when used in conjunction with threshold based migration.

in time, because the algorithms are designed to use blocked
access to the key data structures to enhance locality. Thus, the
prefetching effect of range expansion is only visible when a
page is migrated upon first touch to a neighboring page, by
the second access to a page, all its neighbors have already
been accessed at least once and there will be no savings from
avoiding TLB shootdowns. On the other hand, in benchmarks
such as needl e, there is low temporal correlation among
touches to neighboring pages. Even if a migration candidate is
touched 64 or 128 times, some of its neighboring pages may
not have been touched, and thus the prefetching effect of range
expansion provides up to 42% performance improvement even
at higher thresholds.

In the case of backpr op, we can see that higher thresh-
olds perform poorly compared to threshold 1. Thresholds
above 64 are simply too high; most pages are not accessed
this frequently and thus few pages are migrated, resulting in
poor GDDR bandwidth utilization. Range expansion prefetches

Benchmark Execution % Migrations Exececution
Overhead of Without Runtime

TLB Shootdowns Shootdown Saved
backprop 29.1% 26% 7.6%
bfs 6.7% 12% 0.8%
cns 2.4% 20% 0.5%
comd 2.02% 89% 1.8%
kmeans 4.01% 79% 3.17%
minife 3.6% 36% 1.3%
mummer 21.15% 13% 2.75%
needle 24.9% 55% 13.7%
pathfinder 25.9% 10% 2.6%
srad v1 0.5% 27% 0.14%
xsbench 2.1% 1% 0.02%
Average 11.13% 33.5% 3.72%

TABLE II: Effectiveness of range prefetching at avoiding
TLB shootdowns and runtime savings under a 100-cycle TLB
shootdown overhead.

these low-touch pages to GDDR as well, recouping the per-
formance losses of the higher threshold policies and making
them perform similar to a first touch migration policy. For
mi ni f e, previously discussed in subsection III-B, the effect
of prefetching via range expansion is to recoup some of
the performance loss due to needless migrations. However,
performance still falls short of the legacy memcpy approach,
which in effect, achieves perfect prefetching. Overuse of range
expansion hurts performance in some cases. Under the first
touch migration policy (threshold-1), using range expansion
16, 64, and 128, the worst-case performance degradations are
2%, 3%, and 2.5% respectively. While not visible in the graph
due to the stacked nature of Figure 7, they are included in the
geometric mean calculations.

Overall, weobserve that even with range expansion, higher-
threshold policies do not significantly outperform the much
simpler first-touch policy. With threshold 1, the average per-
formance gain with range expansion of 128 is 1.85⇥. The best
absolute performance is observed when using a threshold of
64 combined with a range expansion value of 64, providing
1.95⇥ speedup. We believe that this additional ⇡ 5% speedup
over first touch migration with aggressive range expansion
is not worth the implementation complexity of tracking and
differentiating all pages in the system. In the next section,
we discuss how to recoup some of this performance for
benchmarks such as bf s and xsbench, which benefit most
from using a higher threshold.

V. BANDWIDTH BALANCING

In Section III, we showed that using a static threshold-
based page migration policy alone could not ideally balance
migrating enough pages to maximize GDDR bandwidth uti-
lization while selectively moving only the hottest data. In
Section IV, we showed that informed page prefetching using
a low threshold and range expansion to exploit locality within
an application’s virtual address space matches or exceeds the
performance of a simple threshold-based policy. Combining
low threshold migration with aggressive prefetching drastically

Benchmark

Execution

Overhead of

TLB Shootdown

% Migrations

Without

Shootdown

Execution

Runtime

Saved

Backprop 29.1% 26% 7.6%

Pathfinder 25.9% 10% 2.6%

Needle 24.9% 55% 2.75%

Mummer 21.15% 13% 2.75%

Bfs 6.7% 12% 0.8%

Range-Expansion can save up to 45% TLB shootdowns

HPCA-2015

101

DATA TRANSFER RATIO

Performance is low when GDDR/DDR ratio is away from optimal

HPCA-2015

102

GPU WORKLOADS: BW SENSITIVITY

0"

0.5"

1"

1.5"

2"

2.5"

3"

0.12x" 0.14x" 0.17x" 0.20x" 0.25x" 0.33x" 0.5x" 1x" 2x" 3x"

R
e
la
%
ve
'T
h
ro
u
gh
p
u
t'
'

Aggregate'DRAM'Bandwidth,'1x=200GB/sec'

backprop" bfs" btree" gaussian" heartwell"
hotspot" kmeans" lava_MD" lud_cuda" mummergpu"
needle" pathfinder" sc_gpu" srad_v1" cns"
comd" minife" xsbench"

0.8$

1$

1.2$

'99$ '80$ '60$ '40$ '20$ 0$ 20$ 40$ 60$ 80$ 100$R
e
la
%
v
e
'

T
h
ro
u
g
h
p
u
t'

Additonal'DRAM'delay'in'GPU'core'cycles'

GPU workloads are highly BW sensitive

HPCA-2015

103

RESULTS

0

1

2

3

4

5

6

Th
ro

u
gh

p
u

t
R

e
la

ti
ve

to
 N

o
 M

ig
ra

ti
o

n

Legacy CUDA First-Touch Oracle

Dynamic page migration performs 1.95x better than no migration

Comes within 28% of the static oracle performance

6% better than Legacy CUDA
HPCA-2015

