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1. Introduction

Traditionally, GPU architectures have been primarily focused
on throughput and latency hiding. However, as the computa-
tional power of GPUs continues to scale with Moore’s law, an
increasing number of applications are becoming limited by
memory bandwidth [1]. Also, data locality and reuse are be-
coming increasingly important with power-limited technology
scaling. The energy spent on off-chip memory transfers are
orders of magnitude greater than the energy spent on on-chip
accesses and actual computation [2]. Main memory compres-
sion in CPU/GPUs using techniques like Linearly Compressed
Pages [3] could provide reduced memory bandwidth as well as
increased memory capacity and energy reduction. GPUs could
potentially benefit more from main memory compression as
the data is usually more regular and the DRAM structure is
more flexible.

GPU architectures typically tolerate long memory access
latencies by concurrently executing many threads which are
grouped into batches known as warps. When one warp is
stalled by a long latency memory access, another warp is
swapped in thereby overlapping the latencies of multiple ac-
cesses. However, if all the warps are simultaneously stalled
on a long latency memory access, it could lead to signifi-
cant underutilization of compute resources. This leads to the
problem of how to improve tolerance towards long memory
access latencies in a massively threaded GPU system when
thread level parallelism is not sufficient. In conventional CPUs,
prefetching is a commonly used technique to mitigate high
memory access latencies. Directly applying prefetching to a
bandwidth limited GPU system, however, could in fact hurt
performance [4]. Prefetch requests, whose accuracy cannot be
guaranteed, increase the number of memory requests which
could delay other demand requests. This problem is more
severe in GPUs as the number of memory requests pending
at any given is much higher than in a CPU. In addition to
this, prefetching useless cachelines to the very limited GPU
last level cache could cause significant cache pollution further
degrading performance. Prefetching could however be very
helpful if the memory system can accommodate the additional
requests without delaying the demand requests.

2. Problem Statement

Prefetching is a technique that has been used effectively in
CPUs to reduce high latency memory access related stalls [5,

6, 7, 8, 9, 10]. But integrating prefetching techniques into
severely bandwidth limited GPU architectures is an interesting
challenge. The goals for this project are as follows:
• To study the positive and possible detrimental impacts of

different conventional prefetching mechanisms on the last
level cache of a GPU.

• To evaluate the sensitivity and performance of different
workloads with different prefetchers tuned to different levels
of aggressiveness.

• To identify an effective prefetcher based mechanism to
mitigate high off-chip memory access latencies without
degradation in performance due to excessive bandwidth
consumption or cache pollution.

• To evaluate the interaction between prefetching and main
memory compression in GPUs. For example, with Linearly
Compressed Pages [3], it is possible to retrieve more than
one compressed cache block in a single access.

• Coordination between the prefetcher and the compression
engine could lead to more efficient, accurate data trans-
fers and better utilization of the last level cache. The aim
is to evaluate and implement synergistic request filtering,
prefetcher throttling and memory compression mechanisms
to effectively integrate prefetching and DRAM compression
in a GPU architecture.

3. Related Work

Prefetching in GPUs. Existing warp scheduling policies do
not enable very effective integration of data prefetchers. Jog
et al. [11, 12] propose prefetch-aware thread scheduling poli-
cies that enable L1 cache prefetchers to be effective in toler-
ating memory latencies. Lee et al. [4] propose inter-thread
prefetching mechanisms tailored to GPGPUs along with an
adaptive throttling mechanism to reduce the negative impact
of prefetching. Arnau et al. [13] show the ineffectiveness
of standard prefetching techniques for graphics applications
and use a decoupled access/execute mechanism for graphics
processing. Sethia et al. [14] aim to reduce the number of
thread contexts required to hide long memory access latencies
and propose an adaptive prefetcher by identifying fixed-offset
address and thread invariant access patterns between threads.
Meng et al. [15] proposed Dynamic Warp Subdivision where
performance improves due to the advantages of prefetching
effects by early execution of some threads in a warp.
Main Memory Compression. Satish et al. [16] investigate
a mechanism to improve the performance of memory bound



workloads using a hardware based memory I/O link compres-
sion technique where data is stored and retrieved from main
memory in a compressed form to reduce bandwidth require-
ments. Tremaine et al. [17] propose a memory controller
design, Pinnacle, based on IBM Memory Extension Technol-
ogy [18] to manage main memory in CPUs where mappings
between the compressed pages and virtual memory is handled
using an uncompressed real address space. Ekman and Sten-
storm [19] propose a main memory compression design using
a variant of Frequent Pattern Compression and the operating
system maps the uncompressed virtual address space directly
to the compressed physical address space. The Linearly Com-
pressed Pages framework [3] aims to compress main memory
in CPUs in order to increase the effective capacity. This mech-
anism also has a prefetching effect by bringing in multiple
blocks in a single transfer.
Adaptive Prefetching. Some adaptive prefetching mecha-
nisms that have been proposed for CPUs include [20] where
a feedback mechanism is used to adjust prefetcher aggres-
siveness based on prefetcher timeliness, accuracy and cache
pollution. Ebrahimi et al. [21] coordinate multiple prefetch-
ers in a multicore architecture to address prefetcher caused
inter-core interference. Lee et al. [22] evaluate the benefits
and limitations of different hardware and software prefetching
techniques. Dahlgren et al. [7] measured the prefetch accu-
racy and adjusted the prefetch distance based on the accuracy.
Zhuang and Lee [23] proposed hardware based pollution fil-
ters for processors employing aggressive prefetching. Some
other prefetching and prefetch control techniques that have
been proposed in the CPU context include [24, 25, 26].

4. Methodology And Plan
We intend to conduct these experiments and evaluations using
GPGPU-Sim [27]. GPGPU-Sim provides a detailed simula-
tion model of a contemporary GPU (such as NVIDIA’s Fermi
and GT200 architectures) running CUDA workloads and in-
cludes an integrated and validated energy model.
Milestone 1 – 14th October:
• Review existing literature on prefetching in GPUs and CPUs

and main memory compression mechanisms.
• Get familiar with GPGPU-Sim.
Milestone 2 – 28th October:
• Incorporate prefetchers into the simulator cache model.
• Sensitivity studies with different prefetchers.
• Study the data patterns in GPGPU workloads.
Milestone 3 – 4th November:
• Evaluate and improve effectiveness of prefetching on im-

proving performance and reducing bandwidth usage.
• Evaluate the impact of cache pollution, prefetch accuracy

and timeliness on performance.
• Study the interaction between scheduling and prefetcher

performance.
• Evaluate the interaction between different prefetchers.
Milestone 4 – 18th November:

• Study the interaction between main memory compression
schemes and different prefetching mechanisms.

• Implement and evaluate an integrated mechanism to effec-
tively coordinate the prefetcher and compression engine.

• Evaluate and reduce cache pollution caused by prefetching
and accesses to compressed blocks.

• Study the impact of data re-alignment in main memory
to improve the coordinated performance impact of the
prefetching and memory compression.
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