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 Rethinking Memory System Design (Continued) 

 With a lot of discussion, hopefully 
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Review Assignments for Next Week 



Required Reviews 

 Due Tuesday Sep 29 @ 3pm 

 

 Enter your reviews on the review website 

 

 Please discuss ideas and thoughts on Piazza 
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Review Paper 1 (Required) 

 Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt, 
"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory 
Systems"  
Proceedings of the 15th International Conference on Architectural 
Support for Programming Languages and Operating Systems 
(ASPLOS), pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf) 

 

 Related paper: 

 Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur 
Mutlu, 
"HAT: Heterogeneous Adaptive Throttling for On-Chip 
Networks" 
Proceedings of the 24th International Symposium on Computer 
Architecture and High Performance Computing (SBAC-PAD), New 
York, NY, October 2012.  
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Review Paper 2 (Required) 

 Rachata Ausavarungnirun, Saugata Ghose, Onur Kayiran, Gabriel L. 
Loh, Chita R. Das, Mahmut T. Kandemir, and Onur Mutlu, 
"Exploiting Inter-Warp Heterogeneity to Improve GPGPU 
Performance" 
Proceedings of the 24th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), San Francisco, CA, 
USA, October 2015.  

 

 Related paper: 

 Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt, 
Dynamic Warp Formation and Scheduling for Efficient GPU Control 
Flow, In proceedings of the 40th IEEE/ACM International Symposium 
on Microarchitecture (MICRO-40), pp. 407-418, Chicago, IL, 
December 1-5, 2007. slides. pre-print  
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Review Paper 3 (Required) 

 Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya 
Subramanian, and Onur Mutlu, 
"Tiered-Latency DRAM: A Low Latency and Low Cost DRAM 
Architecture"  
Proceedings of the 19th International Symposium on High-Performance 
Computer Architecture (HPCA), Shenzhen, China, February 2013. 
Slides (pptx) 

 

 Related paper 

 Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan, 
Vivek Seshadri, Kevin Chang, and Onur Mutlu, 
"Adaptive-Latency DRAM: Optimizing DRAM Timing for the 
Common-Case"  
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA, 
February 2015.  
[Slides (pptx) (pdf)] [Full data sets]  
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https://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pdf
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Review Paper 4 (Optional) 

 Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, 
"A Large-Scale Study of Flash Memory Errors in the Field"  
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Portland, OR, June 
2015.   

 

 Related paper 

 Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, 
"Revisiting Memory Errors in Large-Scale Production Data 
Centers: Analysis and Modeling of New Trends from the 
Field"  
Proceedings of the 45th Annual IEEE/IFIP International Conference 
on Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, 
June 2015.  
[Slides (pptx) (pdf)] [DRAM Error Model]  
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Project Proposal 

 Due Friday  

 September 25, 2015 

 

 Make sure your project is vetted by me before you write 
your proposal 
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Still Consider: Another Possible Project  

 GPU Warp Scheduling Championship 

 

 http://adwaitjog.github.io/gpu_scheduling.html  
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Rethinking Memory System Design 



Some Promising Directions 
 

 New memory architectures 
 Rethinking DRAM and flash memory 

 A lot of hope in fixing DRAM 
 

 

 

 

 Enabling emerging NVM technologies  
 Hybrid memory systems  

 Single-level memory and storage 

 A lot of hope in hybrid memory systems and single-level stores 
 

 

 

 System-level memory/storage QoS 
 A lot of hope in designing a predictable system 
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Rethinking DRAM 

 In-Memory Computation 

 

 Refresh 

 

 Reliability 

 

 Latency 

 

 Bandwidth 

 

 Energy 

 

 Memory Compression 
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Two Key Questions in 3D Stacked PIM 

 What is the minimal processing-in-memory support we can 
provide ? 

 without changing the system significantly 

 while achieving significant benefits of processing in 3D-
stacked memory 

 

 How can we accelerate important applications if we use 3D-
stacked memory as a coarse-grained accelerator? 

 what is the architecture and programming model? 

 what are the mechanisms for acceleration? 

14 



A Scalable Processing-in-Memory  

Accelerator for Parallel Graph Processing 

15 

A Scalable Processing-in-Memory Accelerator  

for Parallel Graph Processing (Ahn et al., ISCA 2015) 
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Large-Scale Graph Processing 

 Large graphs are everywhere 
 

 

 

 

 

 

 Scalable large-scale graph processing is challenging 

36 Million  
Wikipedia Pages 

1.4 Billion 
Facebook Users 

300 Million 
Twitter Users 

30 Billion 
Instagram Photos 

+42% 

0 1 2 3 4

128…

32 Cores

Speedup 



Key Bottlenecks in Graph Processing 
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for (v: graph.vertices) { 

    for (w: v.successors) { 

        w.next_rank += weight * v.rank; 

    } 

} 

weight * v.rank 

v 

w 

&w 

1. Frequent random memory accesses 

2. Little amount of computation 

w.rank 

w.next_rank 

w.edges 

… 



Challenges in Scalable Graph Processing 

 Challenge 1: How to provide high memory bandwidth to 
computation units in a practical way? 

 Processing-in-memory based on 3D-stacked DRAM 

 

 

 Challenge 2: How to design computation units that      
efficiently exploit large memory bandwidth? 

 Specialized in-order cores called Tesseract cores 

 Latency-tolerant programming model 

 Graph-processing-specific prefetching schemes 



Tesseract System for Graph Processing 
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Tesseract System for Graph Processing 
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Evaluated Systems 
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Workloads 

 Five graph processing algorithms 

 Average teenage follower 

 Conductance 

 PageRank 

 Single-source shortest path 

 Vertex cover 

 

 Three real-world large graphs 

 ljournal-2008 (social network) 

 enwiki-2003 (Wikipedia) 

 indochina-0024 (web graph) 

 4~7M vertices, 79~194M edges 



Tesseract Graph Processing Performance 
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Effect of Bandwidth & Programming Model 
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Memory Energy Consumption (Normalized) 
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Tesseract Summary 

 How can we accelerate large-scale graph processing using  
3D-stacked memory as a coarse-grained accelerator? 

 

 Tesseract: 3D-stacked PIM accelerator for graph processing 

 Many in-order cores in a memory chip 

 New message passing mechanism for latency hiding 

 New hardware prefetchers for graph processing 

 Programming interface that exploits our hardware design 

 

 Promising results on five graph processing workloads 

 ~14x performance improvement & 87% energy reduction 

 Scalable: memory-capacity-proportional performance 



Two Approaches to In-Memory Processing  

 1. Minimally change DRAM to enable simple yet powerful   
computation primitives 
 RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data 

(Seshadri et al., MICRO 2013) 

 Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015) 

 

 

 2. Exploit the control logic in 3D-stacked memory to enable 
more comprehensive computation near memory 
 PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture (Ahn et al., ISCA 2015) 

 A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing 
(Ahn et al., ISCA 2015) 
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In-Memory Computation: Summary 

 It is time to enable mechanisms for performing 
computation where it makes sense 

 Push from memory technology 

 Pull from systems and applications 

 

 Multiple approaches for in-memory computation can be 
successful 

 Minimally changing DRAM to enable a bulk computation model  

 Exploiting the control logic in 3D-stacked memory 

 

 Approaches require cross-layer cooperation and research 

 Architecture, systems, compilers, programming models, 
algorithms, … 
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Rethinking DRAM 

 In-Memory Computation 

 

 Refresh 

 

 Reliability 

 

 Latency 

 

 Bandwidth 

 

 Energy 

 

 Memory Compression 
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DRAM Refresh 

 DRAM capacitor charge leaks over time 

 

 The memory controller needs to refresh each row 
periodically to restore charge 

 Activate each row every N ms 

 Typical N = 64 ms 

 

 Downsides of refresh 

    -- Energy consumption: Each refresh consumes energy 

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed 

-- QoS/predictability impact: (Long) pause times during refresh 

-- Refresh rate limits DRAM capacity scaling  
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Refresh Overhead: Performance 
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8% 

46% 

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Refresh Overhead: Energy 
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15% 

47% 

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Retention Time Profile of DRAM 
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RAIDR: Eliminating Unnecessary Refreshes 

 Observation: Most DRAM rows can be refreshed much less often 
without losing data [Kim+, EDL’09][Liu+ ISCA’13] 
 

 Key idea: Refresh rows containing weak cells  

    more frequently, other rows less frequently 

1. Profiling: Profile retention time of all rows 

2. Binning: Store rows into bins by retention time in memory controller 

 Efficient storage with Bloom Filters (only 1.25KB for 32GB memory) 

3. Refreshing: Memory controller refreshes rows in different bins at 
different rates 

 

 Results: 8-core, 32GB, SPEC, TPC-C, TPC-H 

 74.6% refresh reduction @ 1.25KB storage 

 ~16%/20% DRAM dynamic/idle power reduction 

 ~9% performance improvement  

 Benefits increase with DRAM capacity 

 36 
Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Going Forward (for DRAM and Flash) 

 How to find out weak memory cells/rows 
 Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices: 

Implications for Retention Time Profiling Mechanisms”, ISCA 2013. 

 Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A 
Comparative Experimental Study,” SIGMETRICS 2014. 
 

 Low-cost system-level tolerance of memory errors 
 Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center 

Cost,” DSN 2014. 

 Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” 
Intel Technology Journal 2013. 

 Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” 
SIGMETRICS 2014. 

 

 Tolerating cell-to-cell interference at the system level  
 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 

DRAM Disturbance Errors,” ISCA 2014. 

 Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, 
and Mitigation,” ICCD 2013. 
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Experimental DRAM Testing Infrastructure 
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An Experimental Study of Data Retention 
Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling 
Mechanisms (Liu et al., ISCA 2013) 
 
The Efficacy of Error Mitigation Techniques 
for DRAM Retention Failures: A 
Comparative Experimental Study  
(Khan et al., SIGMETRICS 2014) 

Flipping Bits in Memory Without Accessing 
Them: An Experimental Study of DRAM 
Disturbance Errors (Kim et al., ISCA 2014) 
 
Adaptive-Latency DRAM: Optimizing DRAM 
Timing for the Common-Case (Lee et al., 
HPCA 2015) 
 
AVATAR: A Variable-Retention-Time (VRT) 
Aware Refresh for DRAM Systems (Qureshi 
et al., DSN 2015) 
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Experimental Infrastructure (DRAM) 

39 Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 

Temperature 
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PC 

Heater FPGAs FPGAs 



More Information [ISCA’13, SIGMETRICS’14] 
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Optimize DRAM and mitigate errors online  
without disturbing the system and applications 

Initially protect DRAM  
with ECC 1 

Periodically test 
 parts of DRAM 2 

Test 

Test 

Test 

Adjust refresh rate and 
reduce ECC 3 

Online Profiling of  DRAM In the Field 



Rethinking DRAM 

 In-Memory Computation 

 

 Refresh 

 

 Reliability 

 

 Latency 

 

 Bandwidth 

 

 Energy 

 

 Memory Compression 
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DRAM Latency-Capacity Trend 
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DRAM latency continues to be a critical 
bottleneck, especially for response time-sensitive 
workloads 
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DRAM Latency = Subarray Latency + I/O Latency 

   What Causes the Long Latency? 
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   Why is the Subarray So Slow? 
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   Trade-Off: Area (Die Size) vs. Latency 
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   Trade-Off: Area (Die Size) vs. Latency 
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Short Bitline 

Low Latency  

   Approximating the Best of Both Worlds 
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   Approximating the Best of Both Worlds 
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   Trade-Off: Area (Die-Area) vs. Latency 
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   Leveraging Tiered-Latency DRAM  

• TL-DRAM is a substrate that can be leveraged by 
the hardware and/or software 
 

• Many potential uses 
1. Use near segment as hardware-managed inclusive 

cache to far segment 

2. Use near segment as hardware-managed exclusive 
cache to far segment 

3. Profile-based page mapping by operating system 

4. Simply replace DRAM with TL-DRAM   

 

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013. 
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Using near segment as a cache improves 
performance and reduces power consumption 

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013. 



What Else Causes the Long DRAM Latency? 

 Conservative timing margins!  

 

 DRAM timing parameters are set to cover the worst case 

 

 Worst-case temperatures  

 85 degrees vs. common-case 

 to enable a wide range of operating conditions 

 Worst-case devices  

 DRAM cell with smallest charge across any acceptable device 

 to tolerate process variation at acceptable yield 

 

 This leads to large timing margins for the common case 
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Adaptive-Latency DRAM [HPCA 2015]  

 Idea: Optimize DRAM timing for the common case 

 Current temperature 

 Current DRAM module 

 

 Why would this reduce latency? 

 

 A DRAM cell can store much more charge in the common case 
(low temperature, strong cell) than in the worst case 

 

 More charge in a DRAM cell 

     Faster sensing, charge restoration, precharging 

     Faster access (read, write, refresh, …) 

 

 
55 Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” 

HPCA 2015. 
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AL-DRAM 

• Key idea 
– Optimize DRAM timing parameters online 

 

• Two components 
– DRAM manufacturer provides multiple sets of 

reliable DRAM timing parameters at different 
temperatures for each DIMM 

– System monitors DRAM temperature & uses 
appropriate DRAM timing parameters 

reliable DRAM timing parameters 

DRAM temperature 

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 
2015. 
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Latency Reduction Summary of 115 DIMMs 

• Latency reduction for read & write (55°C) 
– Read Latency: 32.7% 

– Write Latency: 55.1% 

• Latency reduction for each timing 
parameter (55°C)  
– Sensing: 17.3% 

– Restore: 37.3% (read), 54.8% (write) 

– Precharge: 35.2%  

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 
2015. 
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AL-DRAM: Real System Evaluation 

• System 
– CPU: AMD 4386 ( 8 Cores, 3.1GHz, 8MB LLC) 

– DRAM: 4GByte DDR3-1600 (800Mhz Clock) 

– OS: Linux 

– Storage: 128GByte SSD 

• Workload 
– 35 applications from SPEC, STREAM, Parsec, 

Memcached, Apache, GUPS 
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AL-DRAM: Multi-Core Evaluation 

AL-DRAM provides higher performance for 
multi-programmed & multi-threaded workloads 
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Rethinking DRAM 

 In-Memory Computation 

 

 Refresh 

 

 Reliability 

 

 Latency 

 

 Bandwidth 

 

 Energy 

 

 Memory Compression 
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Agenda 

 Major Trends Affecting Main Memory 

 The Memory Scaling Problem and Solution Directions 

 New Memory Architectures 

 Enabling Emerging Technologies 

 How Can We Do Better? 

 Summary 
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Solution 2: Emerging Memory Technologies 

 Some emerging resistive memory technologies seem more 
scalable than DRAM (and they are non-volatile) 

 

 Example: Phase Change Memory 

 Data stored by changing phase of material  

 Data read by detecting material’s resistance 

 Expected to scale to 9nm (2022 [ITRS]) 

 Prototyped at 20nm (Raoux+, IBM JRD 2008) 

 Expected to be denser than DRAM: can store multiple bits/cell 

 

 But, emerging technologies have (many) shortcomings 

 Can they be enabled to replace/augment/surpass DRAM? 
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Charge vs. Resistive Memories 

 

 Charge Memory (e.g., DRAM, Flash) 

 Write data by capturing charge Q 

 Read data by detecting voltage V 

 

 

 Resistive Memory (e.g., PCM, STT-MRAM, memristors) 

 Write data by pulsing current dQ/dt 

 Read data by detecting resistance R  
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Limits of Charge Memory 

 Difficult charge placement and control 

 Flash: floating gate charge 

 DRAM: capacitor charge, transistor leakage 

 

 Reliable sensing becomes difficult as charge storage unit 
size reduces 
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Promising Resistive Memory Technologies 

 PCM 

 Inject current to change material phase 

 Resistance determined by phase 

 

 STT-MRAM 

 Inject current to change magnet polarity 

 Resistance determined by polarity 

 

 Memristors/RRAM/ReRAM 

 Inject current to change atomic structure 

 Resistance determined by atom distance 
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What is Phase Change Memory? 

 Phase change material (chalcogenide glass) exists in two states: 

 Amorphous: Low optical reflexivity and high electrical resistivity 

 Crystalline: High optical reflexivity and low electrical resistivity 
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PCM is resistive memory:  High resistance (0), Low resistance (1) 

PCM cell can be switched between states reliably and quickly 



How Does PCM Work? 

 Write: change phase via current injection 

 SET: sustained current to heat cell above Tcryst  

 RESET: cell heated above Tmelt and quenched 

 Read: detect phase via material resistance  

 amorphous/crystalline 

 

 

68 

Large 
Current 

SET (cryst) 
Low resistance 

103-104 W 

Small 
Current 

RESET (amorph) 
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Access 
Device 

Memory 
Element 
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Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM 



Opportunity: PCM Advantages 

 Scales better than DRAM, Flash 

 Requires current pulses, which scale linearly with feature size 

 Expected to scale to 9nm (2022 [ITRS]) 

 Prototyped at 20nm (Raoux+, IBM JRD 2008) 

 

 Can be denser than DRAM 

 Can store multiple bits per cell due to large resistance range 

 Prototypes with 2 bits/cell in ISSCC’08, 4 bits/cell by 2012 

 

 Non-volatile 

 Retain data for >10 years at 85C 

 

 No refresh needed, low idle power 
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Phase Change Memory Properties 

 

 Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI, 
ISSCC) 

 Derived PCM parameters for F=90nm 

 

 

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 
Memory as a Scalable DRAM Alternative,” ISCA 2009. 
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Phase Change Memory Properties: Latency 

 Latency comparable to, but slower than DRAM 

 

 

 

 

 

 Read Latency 

 50ns: 4x DRAM, 10-3x NAND Flash 

 Write Latency 

 150ns: 12x DRAM 

 Write Bandwidth 

 5-10 MB/s: 0.1x DRAM, 1x NAND Flash 
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Phase Change Memory Properties 

 Dynamic Energy 

 40 uA Rd, 150 uA Wr 

 2-43x DRAM, 1x NAND Flash 

 

 Endurance 

 Writes induce phase change at 650C 

 Contacts degrade from thermal expansion/contraction 

 108 writes per cell 

 10-8x DRAM, 103x NAND Flash 

 

 Cell Size 

 9-12F2 using BJT, single-level cells 

 1.5x DRAM, 2-3x NAND     (will scale with feature size, MLC) 
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Phase Change Memory: Pros and Cons 
 

 Pros over DRAM 

 Better technology scaling (capacity and cost) 

 Non volatility 

 Low idle power (no refresh) 
 

 Cons 

 Higher latencies: ~4-15x DRAM (especially write) 

 Higher active energy: ~2-50x DRAM (especially write) 

 Lower endurance (a cell dies after ~108 writes) 

 Reliability issues (resistance drift) 

 

 Challenges in enabling PCM as DRAM replacement/helper: 

 Mitigate PCM shortcomings 

 Find the right way to place PCM in the system 
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PCM-based Main Memory: Research Challenges 

 Where to place PCM in the memory hierarchy? 

 Hybrid OS controlled PCM-DRAM 

 Hybrid OS controlled PCM and hardware-controlled DRAM 

 Pure PCM main memory 

 

 How to mitigate shortcomings of PCM? 

 

 How to minimize amount of DRAM in the system? 

 

 How to take advantage of (byte-addressable and fast) non-
volatile main memory? 

 

 Can we design specific-NVM-technology-agnostic techniques? 
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PCM-based Main Memory (I) 

 How should PCM-based (main) memory be organized? 

 

 

 

 

 

 
 

 

 Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:  

 How to partition/migrate data between PCM and DRAM 
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Hybrid Memory Systems: Challenges  

 Partitioning 

 Should DRAM be a cache or main memory, or configurable? 

 What fraction? How many controllers? 
 

 Data allocation/movement (energy, performance, lifetime) 

 Who manages allocation/movement? 

 What are good control algorithms? 

 How do we prevent degradation of service due to wearout? 
 

 Design of cache hierarchy, memory controllers, OS 

 Mitigate PCM shortcomings, exploit PCM advantages 
 

 Design of PCM/DRAM chips and modules 

 Rethink the design of PCM/DRAM with new requirements 
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PCM-based Main Memory (II) 

 How should PCM-based (main) memory be organized? 

 

 

 

 

 

 

 

 Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:  

 How to redesign entire hierarchy (and cores) to overcome 
PCM shortcomings 
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An Initial Study: Replace DRAM with PCM 

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 
Memory as a Scalable DRAM Alternative,” ISCA 2009. 

 Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC) 

 Derived “average” PCM parameters for F=90nm 
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Results: Naïve Replacement of DRAM with PCM 

 Replace DRAM with PCM in a 4-core, 4MB L2 system 

 PCM organized the same as DRAM: row buffers, banks, peripherals 

 1.6x delay, 2.2x energy, 500-hour average lifetime 

 

 

 

 

 

 

 

 

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 
Scalable DRAM Alternative,” ISCA 2009. 
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Results: Architected PCM as Main Memory  

 1.2x delay, 1.0x energy, 5.6-year average lifetime 

 Scaling improves energy, endurance, density 

 

 

 

 

 

 

 

 

 Caveat 1: Worst-case lifetime is much shorter (no guarantees) 

 Caveat 2: Intensive applications see large performance and energy hits 

 Caveat 3: Optimistic PCM parameters? 
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Solution 3: Hybrid Memory Systems 

 

 

 

 

 

 

 

 

 

 
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 

Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CPU 
DRA
MCtrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 
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