
18-740: Computer Architecture

Recitation 4:

Rethinking Memory System Design

Prof. Onur Mutlu

Carnegie Mellon University

Fall 2015

September 22, 2015

Agenda

 Review Assignments for Next Week

 Rethinking Memory System Design (Continued)

 With a lot of discussion, hopefully

2

Review Assignments for Next Week

Required Reviews

 Due Tuesday Sep 29 @ 3pm

 Enter your reviews on the review website

 Please discuss ideas and thoughts on Piazza

4

Review Paper 1 (Required)

 Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems"
Proceedings of the 15th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)

 Related paper:

 Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur
Mutlu,
"HAT: Heterogeneous Adaptive Throttling for On-Chip
Networks"
Proceedings of the 24th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), New
York, NY, October 2012.

5

https://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
https://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
https://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
https://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
https://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
https://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
https://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
https://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
https://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
https://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://www.sbc.org.br/sbac/2012/

Review Paper 2 (Required)

 Rachata Ausavarungnirun, Saugata Ghose, Onur Kayiran, Gabriel L.
Loh, Chita R. Das, Mahmut T. Kandemir, and Onur Mutlu,
"Exploiting Inter-Warp Heterogeneity to Improve GPGPU
Performance"
Proceedings of the 24th International Conference on Parallel
Architectures and Compilation Techniques (PACT), San Francisco, CA,
USA, October 2015.

 Related paper:

 Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt,
Dynamic Warp Formation and Scheduling for Efficient GPU Control
Flow, In proceedings of the 40th IEEE/ACM International Symposium
on Microarchitecture (MICRO-40), pp. 407-418, Chicago, IL,
December 1-5, 2007. slides. pre-print

6

https://users.ece.cmu.edu/~omutlu/pub/MeDiC-for-GPGPUs_pact15.pdf
https://users.ece.cmu.edu/~omutlu/pub/MeDiC-for-GPGPUs_pact15.pdf
https://users.ece.cmu.edu/~omutlu/pub/MeDiC-for-GPGPUs_pact15.pdf
https://users.ece.cmu.edu/~omutlu/pub/MeDiC-for-GPGPUs_pact15.pdf
https://sites.google.com/a/lbl.gov/pact2015/
https://sites.google.com/a/lbl.gov/pact2015/
http://dl.acm.org/citation.cfm?id=1331735
http://dl.acm.org/citation.cfm?id=1331735
http://www.microarch.org/micro40/
http://www.microarch.org/micro40/
http://www.microarch.org/micro40/
http://www.ece.ubc.ca/~aamodt/papers/dwfs-micro07-talk.ppt
http://www.ece.ubc.ca/~aamodt/papers/wwlfung.micro2007.pdf
http://www.ece.ubc.ca/~aamodt/papers/wwlfung.micro2007.pdf
http://www.ece.ubc.ca/~aamodt/papers/wwlfung.micro2007.pdf

Review Paper 3 (Required)

 Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya
Subramanian, and Onur Mutlu,
"Tiered-Latency DRAM: A Low Latency and Low Cost DRAM
Architecture"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

 Related paper

 Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan,
Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for the
Common-Case"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA,
February 2015.
[Slides (pptx) (pdf)] [Full data sets]

7

https://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
https://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
https://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
https://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://www.cs.utah.edu/~lizhang/HPCA19/
http://www.cs.utah.edu/~lizhang/HPCA19/
http://www.cs.utah.edu/~lizhang/HPCA19/
https://users.ece.cmu.edu/~omutlu/pub/lee_hpca13_talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/lee_hpca13_talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
https://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
https://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
https://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
https://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
https://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://darksilicon.org/hpca/
http://darksilicon.org/hpca/
http://darksilicon.org/hpca/
https://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pdf
http://www.ece.cmu.edu/~safari/tools/aldram-hpca2015-fulldata.html

Review Paper 4 (Optional)

 Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Portland, OR, June
2015.

 Related paper

 Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data
Centers: Analysis and Modeling of New Trends from the
Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil,
June 2015.
[Slides (pptx) (pdf)] [DRAM Error Model]

8

https://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15.pdf
https://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15.pdf
https://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15.pdf
http://www.sigmetrics.org/sigmetrics2015/
http://www.sigmetrics.org/sigmetrics2015/
https://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
https://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
https://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
https://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
https://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
http://2015.dsn.org/
http://2015.dsn.org/
https://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pdf
https://www.ece.cmu.edu/~safari/tools/memerr/index.html

Project Proposal

 Due Friday

 September 25, 2015

 Make sure your project is vetted by me before you write
your proposal

9

Still Consider: Another Possible Project

 GPU Warp Scheduling Championship

 http://adwaitjog.github.io/gpu_scheduling.html

10

http://adwaitjog.github.io/gpu_scheduling.html
http://adwaitjog.github.io/gpu_scheduling.html
http://adwaitjog.github.io/gpu_scheduling.html
http://adwaitjog.github.io/gpu_scheduling.html
http://adwaitjog.github.io/gpu_scheduling.html

Rethinking Memory System Design

Some Promising Directions

 New memory architectures
 Rethinking DRAM and flash memory

 A lot of hope in fixing DRAM

 Enabling emerging NVM technologies
 Hybrid memory systems

 Single-level memory and storage

 A lot of hope in hybrid memory systems and single-level stores

 System-level memory/storage QoS
 A lot of hope in designing a predictable system

12

Rethinking DRAM

 In-Memory Computation

 Refresh

 Reliability

 Latency

 Bandwidth

 Energy

 Memory Compression

13

Two Key Questions in 3D Stacked PIM

 What is the minimal processing-in-memory support we can
provide ?

 without changing the system significantly

 while achieving significant benefits of processing in 3D-
stacked memory

 How can we accelerate important applications if we use 3D-
stacked memory as a coarse-grained accelerator?

 what is the architecture and programming model?

 what are the mechanisms for acceleration?

14

A Scalable Processing-in-Memory

Accelerator for Parallel Graph Processing

15

A Scalable Processing-in-Memory Accelerator

for Parallel Graph Processing (Ahn et al., ISCA 2015)

http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf

Large-Scale Graph Processing

 Large graphs are everywhere

 Scalable large-scale graph processing is challenging

36 Million
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128…

32 Cores

Speedup

Key Bottlenecks in Graph Processing

17

for (v: graph.vertices) {

 for (w: v.successors) {

 w.next_rank += weight * v.rank;

 }

}

weight * v.rank

v

w

&w

1. Frequent random memory accesses

2. Little amount of computation

w.rank

w.next_rank

w.edges

…

Challenges in Scalable Graph Processing

 Challenge 1: How to provide high memory bandwidth to
computation units in a practical way?

 Processing-in-memory based on 3D-stacked DRAM

 Challenge 2: How to design computation units that
efficiently exploit large memory bandwidth?

 Specialized in-order cores called Tesseract cores

 Latency-tolerant programming model

 Graph-processing-specific prefetching schemes

Tesseract System for Graph Processing

19

Crossbar Network

…

…

…

…

D
R

A
M

 C
o

n
tro

ller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped

Accelerator Interface
(Noncacheable, Physically Addressed)

Tesseract System for Graph Processing

20

Crossbar Network

…

…

…

…

D
R

A
M

 C
o

n
tro

ller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped

Accelerator Interface
(Noncacheable, Physically Addressed)

Communications via
Remote Function Calls

Tesseract System for Graph Processing

21

Crossbar Network

…

…

…

…

D
R

A
M

 C
o

n
tro

ller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped

Accelerator Interface
(Noncacheable, Physically Addressed)

Prefetching

Evaluated Systems

22

HMC-MC

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

102.4GB/s 640GB/s 640GB/s 8TB/s

HMC-OoO

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

(with FDP)

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

DDR3-OoO
(with FDP)

Tesseract

32
Tesseract

Cores

(32-entry MQ, 4KB PF Buffer)

Workloads

 Five graph processing algorithms

 Average teenage follower

 Conductance

 PageRank

 Single-source shortest path

 Vertex cover

 Three real-world large graphs

 ljournal-2008 (social network)

 enwiki-2003 (Wikipedia)

 indochina-0024 (web graph)

 4~7M vertices, 79~194M edges

Tesseract Graph Processing Performance

24

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

Sp
ee

d
u

p

Tesseract Graph Processing Performance

25

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

Sp
ee

d
u

p

80GB/s 190GB/s 243GB/s

1.3TB/s

2.2TB/s

2.9TB/s

0

0.5

1

1.5

2

2.5

3

3.5

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

M
em

o
ry

 B
an

d
w

id
th

 (
TB

/s
)

Memory Bandwidth Consumption

Effect of Bandwidth & Programming Model

26

2.3x

3.0x

6.5x

0

1

2

3

4

5

6

7

HMC-MC HMC-MC +
PIM BW

Tesseract +
Conventional BW

Tesseract

Sp
ee

d
u

p

HMC-MC Bandwidth (640GB/s) Tesseract Bandwidth (8TB/s)

Bandwidth

Programming Model

(No Prefetching)

Memory Energy Consumption (Normalized)

27

0

0.2

0.4

0.6

0.8

1

1.2

HMC-OoO Tesseract with Prefetching

Memory Layers Logic Layers Cores

-87%

Tesseract Summary

 How can we accelerate large-scale graph processing using
3D-stacked memory as a coarse-grained accelerator?

 Tesseract: 3D-stacked PIM accelerator for graph processing

 Many in-order cores in a memory chip

 New message passing mechanism for latency hiding

 New hardware prefetchers for graph processing

 Programming interface that exploits our hardware design

 Promising results on five graph processing workloads

 ~14x performance improvement & 87% energy reduction

 Scalable: memory-capacity-proportional performance

Two Approaches to In-Memory Processing

 1. Minimally change DRAM to enable simple yet powerful
computation primitives
 RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)

 Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

 2. Exploit the control logic in 3D-stacked memory to enable
more comprehensive computation near memory
 PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture (Ahn et al., ISCA 2015)

 A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing
(Ahn et al., ISCA 2015)

29

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf

In-Memory Computation: Summary

 It is time to enable mechanisms for performing
computation where it makes sense

 Push from memory technology

 Pull from systems and applications

 Multiple approaches for in-memory computation can be
successful

 Minimally changing DRAM to enable a bulk computation model

 Exploiting the control logic in 3D-stacked memory

 Approaches require cross-layer cooperation and research

 Architecture, systems, compilers, programming models,
algorithms, …

30

Rethinking DRAM

 In-Memory Computation

 Refresh

 Reliability

 Latency

 Bandwidth

 Energy

 Memory Compression

31

DRAM Refresh

 DRAM capacitor charge leaks over time

 The memory controller needs to refresh each row
periodically to restore charge

 Activate each row every N ms

 Typical N = 64 ms

 Downsides of refresh

 -- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM capacity scaling

32

Refresh Overhead: Performance

33

8%

46%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Refresh Overhead: Energy

34

15%

47%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Retention Time Profile of DRAM

35

RAIDR: Eliminating Unnecessary Refreshes

 Observation: Most DRAM rows can be refreshed much less often
without losing data [Kim+, EDL’09][Liu+ ISCA’13]

 Key idea: Refresh rows containing weak cells

 more frequently, other rows less frequently

1. Profiling: Profile retention time of all rows

2. Binning: Store rows into bins by retention time in memory controller

 Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)

3. Refreshing: Memory controller refreshes rows in different bins at
different rates

 Results: 8-core, 32GB, SPEC, TPC-C, TPC-H

 74.6% refresh reduction @ 1.25KB storage

 ~16%/20% DRAM dynamic/idle power reduction

 ~9% performance improvement

 Benefits increase with DRAM capacity

 36
Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Going Forward (for DRAM and Flash)

 How to find out weak memory cells/rows
 Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices:

Implications for Retention Time Profiling Mechanisms”, ISCA 2013.

 Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A
Comparative Experimental Study,” SIGMETRICS 2014.

 Low-cost system-level tolerance of memory errors
 Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center

Cost,” DSN 2014.

 Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,”
Intel Technology Journal 2013.

 Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,”
SIGMETRICS 2014.

 Tolerating cell-to-cell interference at the system level
 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of

DRAM Disturbance Errors,” ISCA 2014.

 Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling,
and Mitigation,” ICCD 2013.

37

Experimental DRAM Testing Infrastructure

38

An Experimental Study of Data Retention
Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques
for DRAM Retention Failures: A
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case (Lee et al.,
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf

Experimental Infrastructure (DRAM)

39 Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

Heater FPGAs FPGAs

More Information [ISCA’13, SIGMETRICS’14]

40

Optimize DRAM and mitigate errors online
without disturbing the system and applications

Initially protect DRAM
with ECC 1

Periodically test
 parts of DRAM 2

Test

Test

Test

Adjust refresh rate and
reduce ECC 3

Online Profiling of DRAM In the Field

Rethinking DRAM

 In-Memory Computation

 Refresh

 Reliability

 Latency

 Bandwidth

 Energy

 Memory Compression

42

43

DRAM Latency-Capacity Trend

0

20

40

60

80

100

0.0

0.5

1.0

1.5

2.0

2.5

2000 2003 2006 2008 2011

La
te

n
cy

 (
n

s)

C
ap

ac
it

y
(G

b
)

Year

Capacity Latency (tRC)

16X

-20%

DRAM latency continues to be a critical
bottleneck, especially for response time-sensitive
workloads

44

DRAM Latency = Subarray Latency + I/O Latency

 What Causes the Long Latency?
DRAM Chip

channel

cell array

I/O

DRAM Chip

channel

I/O

subarray

DRAM Latency = Subarray Latency + I/O Latency

Dominant
Su

b
ar

ra
y

I/
O

45

 Why is the Subarray So Slow?

Subarray

ro
w

 d
ec

o
d

er

sense amplifier

ca
p

ac
it

o
r

access
transistor

wordline

b
it

lin
e

Cell

large sense amplifier

b
it

lin
e:

 5
1

2
 c

el
ls

 cell

• Long bitline
– Amortizes sense amplifier cost  Small area

– Large bitline capacitance  High latency & power

se
n

se
 a

m
p

lif
ie

r

ro
w

 d
ec

o
d

er

46

 Trade-Off: Area (Die Size) vs. Latency

Faster

Smaller

Short Bitline

Long Bitline

Trade-Off: Area vs. Latency

47

 Trade-Off: Area (Die Size) vs. Latency

0

1

2

3

4

0 10 20 30 40 50 60 70

N
o

rm
al

iz
e

d
 D

R
A

M
 A

re
a

Latency (ns)

64

32

128

256 512 cells/bitline

Commodity
DRAM

Long Bitline

C
h

ea
p

e
r

Faster

Fancy DRAM
Short Bitline

48

Short Bitline

Low Latency

 Approximating the Best of Both Worlds

Long Bitline

Small Area

Long Bitline

Low Latency

Short Bitline Our Proposal

Small Area

Short Bitline  Fast

Need
Isolation

Add Isolation
Transistors

High Latency

Large Area

49

 Approximating the Best of Both Worlds

Low Latency

Our Proposal

Small Area
Long Bitline
Small Area

Long Bitline

High Latency

Short Bitline

Low Latency

Short Bitline

Large Area

Tiered-Latency DRAM

Low Latency

Small area
using long

bitline

50

0%

50%

100%

150%

0%

50%

100%

150%

 Commodity DRAM vs. TL-DRAM [HPCA 2013]
La

te
n

cy

P
o

w
e

r

–56%

+23%

–51%

+49%

• DRAM Latency (tRC) • DRAM Power

• DRAM Area Overhead
~3%: mainly due to the isolation transistors

TL-DRAM
Commodity

DRAM

Near Far Commodity
DRAM

Near Far

TL-DRAM

 (52.5ns)

51

 Trade-Off: Area (Die-Area) vs. Latency

0

1

2

3

4

0 10 20 30 40 50 60 70

N
o

rm
al

iz
e

d
 D

R
A

M
 A

re
a

Latency (ns)

64

32

128
256 512 cells/bitline

C
h

ea
p

e
r

Faster

Near Segment Far Segment

52

 Leveraging Tiered-Latency DRAM

• TL-DRAM is a substrate that can be leveraged by
the hardware and/or software

• Many potential uses
1. Use near segment as hardware-managed inclusive

cache to far segment

2. Use near segment as hardware-managed exclusive
cache to far segment

3. Profile-based page mapping by operating system

4. Simply replace DRAM with TL-DRAM

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

53

0%

20%

40%

60%

80%

100%

120%

1 (1-ch) 2 (2-ch) 4 (4-ch)
0%

20%

40%

60%

80%

100%

120%

1 (1-ch) 2 (2-ch) 4 (4-ch)

 Performance & Power Consumption

11.5%

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

Core-Count (Channel)
N

o
rm

al
iz

e
d

 P
o

w
e

r
Core-Count (Channel)

10.7%

12.4%
 –23%

–24%

–26%

Using near segment as a cache improves
performance and reduces power consumption

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

What Else Causes the Long DRAM Latency?

 Conservative timing margins!

 DRAM timing parameters are set to cover the worst case

 Worst-case temperatures

 85 degrees vs. common-case

 to enable a wide range of operating conditions

 Worst-case devices

 DRAM cell with smallest charge across any acceptable device

 to tolerate process variation at acceptable yield

 This leads to large timing margins for the common case

54

Adaptive-Latency DRAM [HPCA 2015]

 Idea: Optimize DRAM timing for the common case

 Current temperature

 Current DRAM module

 Why would this reduce latency?

 A DRAM cell can store much more charge in the common case
(low temperature, strong cell) than in the worst case

 More charge in a DRAM cell

  Faster sensing, charge restoration, precharging

  Faster access (read, write, refresh, …)

55 Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,”

HPCA 2015.

56

AL-DRAM

• Key idea
– Optimize DRAM timing parameters online

• Two components
– DRAM manufacturer provides multiple sets of

reliable DRAM timing parameters at different
temperatures for each DIMM

– System monitors DRAM temperature & uses
appropriate DRAM timing parameters

reliable DRAM timing parameters

DRAM temperature

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA
2015.

57

Latency Reduction Summary of 115 DIMMs

• Latency reduction for read & write (55°C)
– Read Latency: 32.7%

– Write Latency: 55.1%

• Latency reduction for each timing
parameter (55°C)
– Sensing: 17.3%

– Restore: 37.3% (read), 54.8% (write)

– Precharge: 35.2%

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA
2015.

58

AL-DRAM: Real System Evaluation

• System
– CPU: AMD 4386 (8 Cores, 3.1GHz, 8MB LLC)

– DRAM: 4GByte DDR3-1600 (800Mhz Clock)

– OS: Linux

– Storage: 128GByte SSD

• Workload
– 35 applications from SPEC, STREAM, Parsec,

Memcached, Apache, GUPS

59

0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

1.4%

6.7%

0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

5.0%

AL-DRAM: Single-Core Evaluation

AL-DRAM improves performance on a real system

Pe
rf

or
m

an
ce

 Im
p

ro
ve

m
en

t Average
Improvement

al
l-

3
5

-w
o

rk
lo

ad

60

0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

14.0%

2.9%
0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

10.4%

AL-DRAM: Multi-Core Evaluation

AL-DRAM provides higher performance for
multi-programmed & multi-threaded workloads

Pe
rf

or
m

an
ce

 Im
p

ro
ve

m
en

t Average
Improvement

al
l-

3
5

-w
o

rk
lo

ad

Rethinking DRAM

 In-Memory Computation

 Refresh

 Reliability

 Latency

 Bandwidth

 Energy

 Memory Compression

61

Agenda

 Major Trends Affecting Main Memory

 The Memory Scaling Problem and Solution Directions

 New Memory Architectures

 Enabling Emerging Technologies

 How Can We Do Better?

 Summary

62

Solution 2: Emerging Memory Technologies

 Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

 Example: Phase Change Memory

 Data stored by changing phase of material

 Data read by detecting material’s resistance

 Expected to scale to 9nm (2022 [ITRS])

 Prototyped at 20nm (Raoux+, IBM JRD 2008)

 Expected to be denser than DRAM: can store multiple bits/cell

 But, emerging technologies have (many) shortcomings

 Can they be enabled to replace/augment/surpass DRAM?

63

Charge vs. Resistive Memories

 Charge Memory (e.g., DRAM, Flash)

 Write data by capturing charge Q

 Read data by detecting voltage V

 Resistive Memory (e.g., PCM, STT-MRAM, memristors)

 Write data by pulsing current dQ/dt

 Read data by detecting resistance R

64

Limits of Charge Memory

 Difficult charge placement and control

 Flash: floating gate charge

 DRAM: capacitor charge, transistor leakage

 Reliable sensing becomes difficult as charge storage unit
size reduces

65

Promising Resistive Memory Technologies

 PCM

 Inject current to change material phase

 Resistance determined by phase

 STT-MRAM

 Inject current to change magnet polarity

 Resistance determined by polarity

 Memristors/RRAM/ReRAM

 Inject current to change atomic structure

 Resistance determined by atom distance

66

What is Phase Change Memory?

 Phase change material (chalcogenide glass) exists in two states:

 Amorphous: Low optical reflexivity and high electrical resistivity

 Crystalline: High optical reflexivity and low electrical resistivity

67

PCM is resistive memory: High resistance (0), Low resistance (1)

PCM cell can be switched between states reliably and quickly

How Does PCM Work?

 Write: change phase via current injection

 SET: sustained current to heat cell above Tcryst

 RESET: cell heated above Tmelt and quenched

 Read: detect phase via material resistance

 amorphous/crystalline

68

Large
Current

SET (cryst)
Low resistance

103-104 W

Small
Current

RESET (amorph)
High resistance

Access
Device

Memory
Element

106-107 W

Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM

Opportunity: PCM Advantages

 Scales better than DRAM, Flash

 Requires current pulses, which scale linearly with feature size

 Expected to scale to 9nm (2022 [ITRS])

 Prototyped at 20nm (Raoux+, IBM JRD 2008)

 Can be denser than DRAM

 Can store multiple bits per cell due to large resistance range

 Prototypes with 2 bits/cell in ISSCC’08, 4 bits/cell by 2012

 Non-volatile

 Retain data for >10 years at 85C

 No refresh needed, low idle power

69

Phase Change Memory Properties

 Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI,
ISSCC)

 Derived PCM parameters for F=90nm

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

70

71

Phase Change Memory Properties: Latency

 Latency comparable to, but slower than DRAM

 Read Latency

 50ns: 4x DRAM, 10-3x NAND Flash

 Write Latency

 150ns: 12x DRAM

 Write Bandwidth

 5-10 MB/s: 0.1x DRAM, 1x NAND Flash

72

Phase Change Memory Properties

 Dynamic Energy

 40 uA Rd, 150 uA Wr

 2-43x DRAM, 1x NAND Flash

 Endurance

 Writes induce phase change at 650C

 Contacts degrade from thermal expansion/contraction

 108 writes per cell

 10-8x DRAM, 103x NAND Flash

 Cell Size

 9-12F2 using BJT, single-level cells

 1.5x DRAM, 2-3x NAND (will scale with feature size, MLC)

 73

Phase Change Memory: Pros and Cons

 Pros over DRAM

 Better technology scaling (capacity and cost)

 Non volatility

 Low idle power (no refresh)

 Cons

 Higher latencies: ~4-15x DRAM (especially write)

 Higher active energy: ~2-50x DRAM (especially write)

 Lower endurance (a cell dies after ~108 writes)

 Reliability issues (resistance drift)

 Challenges in enabling PCM as DRAM replacement/helper:

 Mitigate PCM shortcomings

 Find the right way to place PCM in the system
74

PCM-based Main Memory: Research Challenges

 Where to place PCM in the memory hierarchy?

 Hybrid OS controlled PCM-DRAM

 Hybrid OS controlled PCM and hardware-controlled DRAM

 Pure PCM main memory

 How to mitigate shortcomings of PCM?

 How to minimize amount of DRAM in the system?

 How to take advantage of (byte-addressable and fast) non-
volatile main memory?

 Can we design specific-NVM-technology-agnostic techniques?
75

PCM-based Main Memory (I)

 How should PCM-based (main) memory be organized?

 Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:

 How to partition/migrate data between PCM and DRAM

76

Hybrid Memory Systems: Challenges

 Partitioning

 Should DRAM be a cache or main memory, or configurable?

 What fraction? How many controllers?

 Data allocation/movement (energy, performance, lifetime)

 Who manages allocation/movement?

 What are good control algorithms?

 How do we prevent degradation of service due to wearout?

 Design of cache hierarchy, memory controllers, OS

 Mitigate PCM shortcomings, exploit PCM advantages

 Design of PCM/DRAM chips and modules

 Rethink the design of PCM/DRAM with new requirements

77

PCM-based Main Memory (II)

 How should PCM-based (main) memory be organized?

 Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:

 How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings

78

An Initial Study: Replace DRAM with PCM

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

 Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)

 Derived “average” PCM parameters for F=90nm

79

Results: Naïve Replacement of DRAM with PCM

 Replace DRAM with PCM in a 4-core, 4MB L2 system

 PCM organized the same as DRAM: row buffers, banks, peripherals

 1.6x delay, 2.2x energy, 500-hour average lifetime

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009.

80

Results: Architected PCM as Main Memory

 1.2x delay, 1.0x energy, 5.6-year average lifetime

 Scaling improves energy, endurance, density

 Caveat 1: Worst-case lifetime is much shorter (no guarantees)

 Caveat 2: Intensive applications see large performance and energy hits

 Caveat 3: Optimistic PCM parameters?
81

Solution 3: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

18-740: Computer Architecture

Recitation 4:

Rethinking Memory System Design

Prof. Onur Mutlu

Carnegie Mellon University

Fall 2015

September 22, 2015

