
18-740: Computer Architecture 

Recitation 4:  

Rethinking Memory System Design 

 

 

Prof. Onur Mutlu 

Carnegie Mellon University 

Fall 2015 

September 22, 2015 

 



Agenda 

 Review Assignments for Next Week 

 

 Rethinking Memory System Design (Continued) 

 With a lot of discussion, hopefully 
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Review Assignments for Next Week 



Required Reviews 

 Due Tuesday Sep 29 @ 3pm 

 

 Enter your reviews on the review website 

 

 Please discuss ideas and thoughts on Piazza 
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Review Paper 1 (Required) 

 Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt, 
"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory 
Systems"  
Proceedings of the 15th International Conference on Architectural 
Support for Programming Languages and Operating Systems 
(ASPLOS), pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf) 

 

 Related paper: 

 Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur 
Mutlu, 
"HAT: Heterogeneous Adaptive Throttling for On-Chip 
Networks" 
Proceedings of the 24th International Symposium on Computer 
Architecture and High Performance Computing (SBAC-PAD), New 
York, NY, October 2012.  
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http://www.sbc.org.br/sbac/2012/
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Review Paper 2 (Required) 

 Rachata Ausavarungnirun, Saugata Ghose, Onur Kayiran, Gabriel L. 
Loh, Chita R. Das, Mahmut T. Kandemir, and Onur Mutlu, 
"Exploiting Inter-Warp Heterogeneity to Improve GPGPU 
Performance" 
Proceedings of the 24th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), San Francisco, CA, 
USA, October 2015.  

 

 Related paper: 

 Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt, 
Dynamic Warp Formation and Scheduling for Efficient GPU Control 
Flow, In proceedings of the 40th IEEE/ACM International Symposium 
on Microarchitecture (MICRO-40), pp. 407-418, Chicago, IL, 
December 1-5, 2007. slides. pre-print  
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http://www.ece.ubc.ca/~aamodt/papers/wwlfung.micro2007.pdf


Review Paper 3 (Required) 

 Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya 
Subramanian, and Onur Mutlu, 
"Tiered-Latency DRAM: A Low Latency and Low Cost DRAM 
Architecture"  
Proceedings of the 19th International Symposium on High-Performance 
Computer Architecture (HPCA), Shenzhen, China, February 2013. 
Slides (pptx) 

 

 Related paper 

 Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan, 
Vivek Seshadri, Kevin Chang, and Onur Mutlu, 
"Adaptive-Latency DRAM: Optimizing DRAM Timing for the 
Common-Case"  
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA, 
February 2015.  
[Slides (pptx) (pdf)] [Full data sets]  
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http://www.ece.cmu.edu/~safari/tools/aldram-hpca2015-fulldata.html


Review Paper 4 (Optional) 

 Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, 
"A Large-Scale Study of Flash Memory Errors in the Field"  
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Portland, OR, June 
2015.   

 

 Related paper 

 Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, 
"Revisiting Memory Errors in Large-Scale Production Data 
Centers: Analysis and Modeling of New Trends from the 
Field"  
Proceedings of the 45th Annual IEEE/IFIP International Conference 
on Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, 
June 2015.  
[Slides (pptx) (pdf)] [DRAM Error Model]  
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http://2015.dsn.org/
https://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pdf
https://www.ece.cmu.edu/~safari/tools/memerr/index.html


Project Proposal 

 Due Friday  

 September 25, 2015 

 

 Make sure your project is vetted by me before you write 
your proposal 
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Still Consider: Another Possible Project  

 GPU Warp Scheduling Championship 

 

 http://adwaitjog.github.io/gpu_scheduling.html  
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http://adwaitjog.github.io/gpu_scheduling.html
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Rethinking Memory System Design 



Some Promising Directions 
 

 New memory architectures 
 Rethinking DRAM and flash memory 

 A lot of hope in fixing DRAM 
 

 

 

 

 Enabling emerging NVM technologies  
 Hybrid memory systems  

 Single-level memory and storage 

 A lot of hope in hybrid memory systems and single-level stores 
 

 

 

 System-level memory/storage QoS 
 A lot of hope in designing a predictable system 
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Rethinking DRAM 

 In-Memory Computation 

 

 Refresh 

 

 Reliability 

 

 Latency 

 

 Bandwidth 

 

 Energy 

 

 Memory Compression 
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Two Key Questions in 3D Stacked PIM 

 What is the minimal processing-in-memory support we can 
provide ? 

 without changing the system significantly 

 while achieving significant benefits of processing in 3D-
stacked memory 

 

 How can we accelerate important applications if we use 3D-
stacked memory as a coarse-grained accelerator? 

 what is the architecture and programming model? 

 what are the mechanisms for acceleration? 

14 



A Scalable Processing-in-Memory  

Accelerator for Parallel Graph Processing 

15 

A Scalable Processing-in-Memory Accelerator  

for Parallel Graph Processing (Ahn et al., ISCA 2015) 
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Large-Scale Graph Processing 

 Large graphs are everywhere 
 

 

 

 

 

 

 Scalable large-scale graph processing is challenging 

36 Million  
Wikipedia Pages 

1.4 Billion 
Facebook Users 

300 Million 
Twitter Users 

30 Billion 
Instagram Photos 

+42% 

0 1 2 3 4

128…

32 Cores

Speedup 



Key Bottlenecks in Graph Processing 
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for (v: graph.vertices) { 

    for (w: v.successors) { 

        w.next_rank += weight * v.rank; 

    } 

} 

weight * v.rank 

v 

w 

&w 

1. Frequent random memory accesses 

2. Little amount of computation 

w.rank 

w.next_rank 

w.edges 

… 



Challenges in Scalable Graph Processing 

 Challenge 1: How to provide high memory bandwidth to 
computation units in a practical way? 

 Processing-in-memory based on 3D-stacked DRAM 

 

 

 Challenge 2: How to design computation units that      
efficiently exploit large memory bandwidth? 

 Specialized in-order cores called Tesseract cores 

 Latency-tolerant programming model 

 Graph-processing-specific prefetching schemes 



Tesseract System for Graph Processing 
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Tesseract System for Graph Processing 
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Evaluated Systems 
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Workloads 

 Five graph processing algorithms 

 Average teenage follower 

 Conductance 

 PageRank 

 Single-source shortest path 

 Vertex cover 

 

 Three real-world large graphs 

 ljournal-2008 (social network) 

 enwiki-2003 (Wikipedia) 

 indochina-0024 (web graph) 

 4~7M vertices, 79~194M edges 



Tesseract Graph Processing Performance 
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Tesseract Graph Processing Performance 
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Effect of Bandwidth & Programming Model 
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Memory Energy Consumption (Normalized) 
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Tesseract Summary 

 How can we accelerate large-scale graph processing using  
3D-stacked memory as a coarse-grained accelerator? 

 

 Tesseract: 3D-stacked PIM accelerator for graph processing 

 Many in-order cores in a memory chip 

 New message passing mechanism for latency hiding 

 New hardware prefetchers for graph processing 

 Programming interface that exploits our hardware design 

 

 Promising results on five graph processing workloads 

 ~14x performance improvement & 87% energy reduction 

 Scalable: memory-capacity-proportional performance 



Two Approaches to In-Memory Processing  

 1. Minimally change DRAM to enable simple yet powerful   
computation primitives 
 RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data 

(Seshadri et al., MICRO 2013) 

 Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015) 

 

 

 2. Exploit the control logic in 3D-stacked memory to enable 
more comprehensive computation near memory 
 PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture (Ahn et al., ISCA 2015) 

 A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing 
(Ahn et al., ISCA 2015) 
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In-Memory Computation: Summary 

 It is time to enable mechanisms for performing 
computation where it makes sense 

 Push from memory technology 

 Pull from systems and applications 

 

 Multiple approaches for in-memory computation can be 
successful 

 Minimally changing DRAM to enable a bulk computation model  

 Exploiting the control logic in 3D-stacked memory 

 

 Approaches require cross-layer cooperation and research 

 Architecture, systems, compilers, programming models, 
algorithms, … 
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Rethinking DRAM 

 In-Memory Computation 

 

 Refresh 

 

 Reliability 

 

 Latency 

 

 Bandwidth 

 

 Energy 

 

 Memory Compression 

31 



DRAM Refresh 

 DRAM capacitor charge leaks over time 

 

 The memory controller needs to refresh each row 
periodically to restore charge 

 Activate each row every N ms 

 Typical N = 64 ms 

 

 Downsides of refresh 

    -- Energy consumption: Each refresh consumes energy 

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed 

-- QoS/predictability impact: (Long) pause times during refresh 

-- Refresh rate limits DRAM capacity scaling  
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Refresh Overhead: Performance 

33 

8% 

46% 

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Refresh Overhead: Energy 
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15% 

47% 

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Retention Time Profile of DRAM 
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RAIDR: Eliminating Unnecessary Refreshes 

 Observation: Most DRAM rows can be refreshed much less often 
without losing data [Kim+, EDL’09][Liu+ ISCA’13] 
 

 Key idea: Refresh rows containing weak cells  

    more frequently, other rows less frequently 

1. Profiling: Profile retention time of all rows 

2. Binning: Store rows into bins by retention time in memory controller 

 Efficient storage with Bloom Filters (only 1.25KB for 32GB memory) 

3. Refreshing: Memory controller refreshes rows in different bins at 
different rates 

 

 Results: 8-core, 32GB, SPEC, TPC-C, TPC-H 

 74.6% refresh reduction @ 1.25KB storage 

 ~16%/20% DRAM dynamic/idle power reduction 

 ~9% performance improvement  

 Benefits increase with DRAM capacity 

 36 
Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Going Forward (for DRAM and Flash) 

 How to find out weak memory cells/rows 
 Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices: 

Implications for Retention Time Profiling Mechanisms”, ISCA 2013. 

 Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A 
Comparative Experimental Study,” SIGMETRICS 2014. 
 

 Low-cost system-level tolerance of memory errors 
 Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center 

Cost,” DSN 2014. 

 Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” 
Intel Technology Journal 2013. 

 Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” 
SIGMETRICS 2014. 

 

 Tolerating cell-to-cell interference at the system level  
 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 

DRAM Disturbance Errors,” ISCA 2014. 

 Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, 
and Mitigation,” ICCD 2013. 
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Experimental DRAM Testing Infrastructure 
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An Experimental Study of Data Retention 
Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling 
Mechanisms (Liu et al., ISCA 2013) 
 
The Efficacy of Error Mitigation Techniques 
for DRAM Retention Failures: A 
Comparative Experimental Study  
(Khan et al., SIGMETRICS 2014) 

Flipping Bits in Memory Without Accessing 
Them: An Experimental Study of DRAM 
Disturbance Errors (Kim et al., ISCA 2014) 
 
Adaptive-Latency DRAM: Optimizing DRAM 
Timing for the Common-Case (Lee et al., 
HPCA 2015) 
 
AVATAR: A Variable-Retention-Time (VRT) 
Aware Refresh for DRAM Systems (Qureshi 
et al., DSN 2015) 
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http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf


Experimental Infrastructure (DRAM) 

39 Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 

Temperature 
Controller 

 

PC 

Heater FPGAs FPGAs 



More Information [ISCA’13, SIGMETRICS’14] 
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Optimize DRAM and mitigate errors online  
without disturbing the system and applications 

Initially protect DRAM  
with ECC 1 

Periodically test 
 parts of DRAM 2 

Test 

Test 

Test 

Adjust refresh rate and 
reduce ECC 3 

Online Profiling of  DRAM In the Field 



Rethinking DRAM 

 In-Memory Computation 

 

 Refresh 

 

 Reliability 

 

 Latency 

 

 Bandwidth 

 

 Energy 

 

 Memory Compression 
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DRAM Latency-Capacity Trend 
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DRAM latency continues to be a critical 
bottleneck, especially for response time-sensitive 
workloads 
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DRAM Latency = Subarray Latency + I/O Latency 

   What Causes the Long Latency? 
DRAM Chip 
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   Why is the Subarray So Slow? 
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   Trade-Off: Area (Die Size) vs. Latency 
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   Trade-Off: Area (Die Size) vs. Latency 
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Short Bitline 

Low Latency  

   Approximating the Best of Both Worlds 
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   Approximating the Best of Both Worlds 
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   Trade-Off: Area (Die-Area) vs. Latency 
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   Leveraging Tiered-Latency DRAM  

• TL-DRAM is a substrate that can be leveraged by 
the hardware and/or software 
 

• Many potential uses 
1. Use near segment as hardware-managed inclusive 

cache to far segment 

2. Use near segment as hardware-managed exclusive 
cache to far segment 

3. Profile-based page mapping by operating system 

4. Simply replace DRAM with TL-DRAM   

 

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013. 
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Using near segment as a cache improves 
performance and reduces power consumption 

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013. 



What Else Causes the Long DRAM Latency? 

 Conservative timing margins!  

 

 DRAM timing parameters are set to cover the worst case 

 

 Worst-case temperatures  

 85 degrees vs. common-case 

 to enable a wide range of operating conditions 

 Worst-case devices  

 DRAM cell with smallest charge across any acceptable device 

 to tolerate process variation at acceptable yield 

 

 This leads to large timing margins for the common case 
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Adaptive-Latency DRAM [HPCA 2015]  

 Idea: Optimize DRAM timing for the common case 

 Current temperature 

 Current DRAM module 

 

 Why would this reduce latency? 

 

 A DRAM cell can store much more charge in the common case 
(low temperature, strong cell) than in the worst case 

 

 More charge in a DRAM cell 

     Faster sensing, charge restoration, precharging 

     Faster access (read, write, refresh, …) 

 

 
55 Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” 

HPCA 2015. 
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AL-DRAM 

• Key idea 
– Optimize DRAM timing parameters online 

 

• Two components 
– DRAM manufacturer provides multiple sets of 

reliable DRAM timing parameters at different 
temperatures for each DIMM 

– System monitors DRAM temperature & uses 
appropriate DRAM timing parameters 

reliable DRAM timing parameters 

DRAM temperature 

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 
2015. 
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Latency Reduction Summary of 115 DIMMs 

• Latency reduction for read & write (55°C) 
– Read Latency: 32.7% 

– Write Latency: 55.1% 

• Latency reduction for each timing 
parameter (55°C)  
– Sensing: 17.3% 

– Restore: 37.3% (read), 54.8% (write) 

– Precharge: 35.2%  

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 
2015. 
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AL-DRAM: Real System Evaluation 

• System 
– CPU: AMD 4386 ( 8 Cores, 3.1GHz, 8MB LLC) 

– DRAM: 4GByte DDR3-1600 (800Mhz Clock) 

– OS: Linux 

– Storage: 128GByte SSD 

• Workload 
– 35 applications from SPEC, STREAM, Parsec, 

Memcached, Apache, GUPS 
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AL-DRAM: Multi-Core Evaluation 

AL-DRAM provides higher performance for 
multi-programmed & multi-threaded workloads 
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Rethinking DRAM 

 In-Memory Computation 

 

 Refresh 

 

 Reliability 

 

 Latency 

 

 Bandwidth 

 

 Energy 

 

 Memory Compression 
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Agenda 

 Major Trends Affecting Main Memory 

 The Memory Scaling Problem and Solution Directions 

 New Memory Architectures 

 Enabling Emerging Technologies 

 How Can We Do Better? 

 Summary 

62 



Solution 2: Emerging Memory Technologies 

 Some emerging resistive memory technologies seem more 
scalable than DRAM (and they are non-volatile) 

 

 Example: Phase Change Memory 

 Data stored by changing phase of material  

 Data read by detecting material’s resistance 

 Expected to scale to 9nm (2022 [ITRS]) 

 Prototyped at 20nm (Raoux+, IBM JRD 2008) 

 Expected to be denser than DRAM: can store multiple bits/cell 

 

 But, emerging technologies have (many) shortcomings 

 Can they be enabled to replace/augment/surpass DRAM? 
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Charge vs. Resistive Memories 

 

 Charge Memory (e.g., DRAM, Flash) 

 Write data by capturing charge Q 

 Read data by detecting voltage V 

 

 

 Resistive Memory (e.g., PCM, STT-MRAM, memristors) 

 Write data by pulsing current dQ/dt 

 Read data by detecting resistance R  
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Limits of Charge Memory 

 Difficult charge placement and control 

 Flash: floating gate charge 

 DRAM: capacitor charge, transistor leakage 

 

 Reliable sensing becomes difficult as charge storage unit 
size reduces 
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Promising Resistive Memory Technologies 

 PCM 

 Inject current to change material phase 

 Resistance determined by phase 

 

 STT-MRAM 

 Inject current to change magnet polarity 

 Resistance determined by polarity 

 

 Memristors/RRAM/ReRAM 

 Inject current to change atomic structure 

 Resistance determined by atom distance 

66 



What is Phase Change Memory? 

 Phase change material (chalcogenide glass) exists in two states: 

 Amorphous: Low optical reflexivity and high electrical resistivity 

 Crystalline: High optical reflexivity and low electrical resistivity 
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PCM is resistive memory:  High resistance (0), Low resistance (1) 

PCM cell can be switched between states reliably and quickly 



How Does PCM Work? 

 Write: change phase via current injection 

 SET: sustained current to heat cell above Tcryst  

 RESET: cell heated above Tmelt and quenched 

 Read: detect phase via material resistance  

 amorphous/crystalline 
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Large 
Current 

SET (cryst) 
Low resistance 

103-104 W 

Small 
Current 

RESET (amorph) 
High resistance 

Access 
Device 

Memory 
Element 

106-107 W 

Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM 



Opportunity: PCM Advantages 

 Scales better than DRAM, Flash 

 Requires current pulses, which scale linearly with feature size 

 Expected to scale to 9nm (2022 [ITRS]) 

 Prototyped at 20nm (Raoux+, IBM JRD 2008) 

 

 Can be denser than DRAM 

 Can store multiple bits per cell due to large resistance range 

 Prototypes with 2 bits/cell in ISSCC’08, 4 bits/cell by 2012 

 

 Non-volatile 

 Retain data for >10 years at 85C 

 

 No refresh needed, low idle power 
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Phase Change Memory Properties 

 

 Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI, 
ISSCC) 

 Derived PCM parameters for F=90nm 

 

 

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 
Memory as a Scalable DRAM Alternative,” ISCA 2009. 
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Phase Change Memory Properties: Latency 

 Latency comparable to, but slower than DRAM 

 

 

 

 

 

 Read Latency 

 50ns: 4x DRAM, 10-3x NAND Flash 

 Write Latency 

 150ns: 12x DRAM 

 Write Bandwidth 

 5-10 MB/s: 0.1x DRAM, 1x NAND Flash 
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Phase Change Memory Properties 

 Dynamic Energy 

 40 uA Rd, 150 uA Wr 

 2-43x DRAM, 1x NAND Flash 

 

 Endurance 

 Writes induce phase change at 650C 

 Contacts degrade from thermal expansion/contraction 

 108 writes per cell 

 10-8x DRAM, 103x NAND Flash 

 

 Cell Size 

 9-12F2 using BJT, single-level cells 

 1.5x DRAM, 2-3x NAND     (will scale with feature size, MLC) 
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Phase Change Memory: Pros and Cons 
 

 Pros over DRAM 

 Better technology scaling (capacity and cost) 

 Non volatility 

 Low idle power (no refresh) 
 

 Cons 

 Higher latencies: ~4-15x DRAM (especially write) 

 Higher active energy: ~2-50x DRAM (especially write) 

 Lower endurance (a cell dies after ~108 writes) 

 Reliability issues (resistance drift) 

 

 Challenges in enabling PCM as DRAM replacement/helper: 

 Mitigate PCM shortcomings 

 Find the right way to place PCM in the system 
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PCM-based Main Memory: Research Challenges 

 Where to place PCM in the memory hierarchy? 

 Hybrid OS controlled PCM-DRAM 

 Hybrid OS controlled PCM and hardware-controlled DRAM 

 Pure PCM main memory 

 

 How to mitigate shortcomings of PCM? 

 

 How to minimize amount of DRAM in the system? 

 

 How to take advantage of (byte-addressable and fast) non-
volatile main memory? 

 

 Can we design specific-NVM-technology-agnostic techniques? 
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PCM-based Main Memory (I) 

 How should PCM-based (main) memory be organized? 

 

 

 

 

 

 
 

 

 Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:  

 How to partition/migrate data between PCM and DRAM 

76 



Hybrid Memory Systems: Challenges  

 Partitioning 

 Should DRAM be a cache or main memory, or configurable? 

 What fraction? How many controllers? 
 

 Data allocation/movement (energy, performance, lifetime) 

 Who manages allocation/movement? 

 What are good control algorithms? 

 How do we prevent degradation of service due to wearout? 
 

 Design of cache hierarchy, memory controllers, OS 

 Mitigate PCM shortcomings, exploit PCM advantages 
 

 Design of PCM/DRAM chips and modules 

 Rethink the design of PCM/DRAM with new requirements 
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PCM-based Main Memory (II) 

 How should PCM-based (main) memory be organized? 

 

 

 

 

 

 

 

 Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:  

 How to redesign entire hierarchy (and cores) to overcome 
PCM shortcomings 
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An Initial Study: Replace DRAM with PCM 

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 
Memory as a Scalable DRAM Alternative,” ISCA 2009. 

 Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC) 

 Derived “average” PCM parameters for F=90nm 
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Results: Naïve Replacement of DRAM with PCM 

 Replace DRAM with PCM in a 4-core, 4MB L2 system 

 PCM organized the same as DRAM: row buffers, banks, peripherals 

 1.6x delay, 2.2x energy, 500-hour average lifetime 

 

 

 

 

 

 

 

 

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 
Scalable DRAM Alternative,” ISCA 2009. 
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Results: Architected PCM as Main Memory  

 1.2x delay, 1.0x energy, 5.6-year average lifetime 

 Scaling improves energy, endurance, density 

 

 

 

 

 

 

 

 

 Caveat 1: Worst-case lifetime is much shorter (no guarantees) 

 Caveat 2: Intensive applications see large performance and energy hits 

 Caveat 3: Optimistic PCM parameters? 
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Solution 3: Hybrid Memory Systems 

 

 

 

 

 

 

 

 

 

 
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 

Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CPU 
DRA
MCtrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 
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