
18-740: Computer Architecture

Recitation 3:

Rethinking Memory System Design

Prof. Onur Mutlu

Carnegie Mellon University

Fall 2015

September 15, 2015

Agenda

 Review Assignments for Next Week

 Rethinking Memory System Design (Continued)

 With a lot of discussion, hopefully

2

Review Assignments for Next Week

Required Reviews

 Due Tuesday Sep 22 @ 3pm

 Enter your reviews on the review website

 Please discuss ideas and thoughts on Piazza

4

Review Paper 1 (Required)
 Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch, Ken Mai, and Onur

Mutlu,
"Read Disturb Errors in MLC NAND Flash Memory:
Characterization and Mitigation"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.
[Slides (pptx) (pdf)]

 Related

 Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu,
"Data Retention in MLC NAND Flash Memory:
Characterization, Optimization and Recovery"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA,
February 2015.
[Slides (pptx) (pdf)]

5

https://users.ece.cmu.edu/~omutlu/pub/flash-read-disturb-errors_dsn15.pdf
https://users.ece.cmu.edu/~omutlu/pub/flash-read-disturb-errors_dsn15.pdf
http://2015.dsn.org/
http://2015.dsn.org/
https://users.ece.cmu.edu/~omutlu/pub/flash-read-disturb-errors_dsn15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/flash-read-disturb-errors_dsn15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_hpca15.pdf
https://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_hpca15.pdf
http://darksilicon.org/hpca/
http://darksilicon.org/hpca/
http://darksilicon.org/hpca/
https://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_yixin_hpca15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_yixin_hpca15-talk.pdf

Review Paper 2 (Required)

 Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug
Burger,
"Architecting Phase Change Memory as a Scalable
DRAM Alternative"
Proceedings of the 36th International Symposium on
Computer Architecture (ISCA), pages 2-13, Austin, TX,
June 2009. Slides (pdf)

 Related

 Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo
Zhao, Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main
Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009
Computer Architecture Conferences (MICRO TOP PICKS),
Vol. 30, No. 1, pages 60-70, January/February 2010. 6

https://users.ece.cmu.edu/~omutlu/pub/pcm_isca09.pdf
https://users.ece.cmu.edu/~omutlu/pub/pcm_isca09.pdf
http://isca09.cs.columbia.edu/
http://isca09.cs.columbia.edu/
https://users.ece.cmu.edu/~omutlu/pub/lee_isca09_talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/lee_isca09_talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/pcm_ieee_micro10.pdf
https://users.ece.cmu.edu/~omutlu/pub/pcm_ieee_micro10.pdf
http://www.computer.org/micro/

Review Paper 3 (Required)

 Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Bottleneck Identification and Scheduling in Multithreaded
Applications"
Proceedings of the 17th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), London, UK, March 2012. Slides (ppt) (pdf)

 Related

 M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N.
Patt,
"Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures"
Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), pages 253-264, Washington, DC, March 2009. Slides (ppt)

7

https://users.ece.cmu.edu/~omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
https://users.ece.cmu.edu/~omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/
https://users.ece.cmu.edu/~omutlu/pub/mutlu_asplos12_talk.ppt
https://users.ece.cmu.edu/~omutlu/pub/mutlu_asplos12_talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/mutlu_asplos12_talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
https://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
https://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
https://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://www.cs.virginia.edu/asplos09/
http://www.cs.virginia.edu/asplos09/
https://users.ece.cmu.edu/~omutlu/pub/suleman_asplos09_talk.ppt
https://users.ece.cmu.edu/~omutlu/pub/suleman_asplos09_talk.ppt

Review Paper 4 (Optional)

 Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N.
Patt,
"Fairness via Source Throttling: A Configurable and
High-Performance Fairness Substrate for Multi-Core
Memory Systems"
Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 335-346, Pittsburgh,
PA, March 2010. Slides (pdf)

8

https://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
https://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
https://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
https://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
https://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
https://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
https://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
https://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf

Project Proposal

 Due next week

 September 25, 2015

9

Another Possible Project

 GPU Warp Scheduling Championship

 http://adwaitjog.github.io/gpu_scheduling.html

10

http://adwaitjog.github.io/gpu_scheduling.html
http://adwaitjog.github.io/gpu_scheduling.html
http://adwaitjog.github.io/gpu_scheduling.html
http://adwaitjog.github.io/gpu_scheduling.html
http://adwaitjog.github.io/gpu_scheduling.html

Rethinking Memory System Design

Some Promising Directions

 New memory architectures
 Rethinking DRAM and flash memory

 A lot of hope in fixing DRAM

 Enabling emerging NVM technologies
 Hybrid memory systems

 Single-level memory and storage

 A lot of hope in hybrid memory systems and single-level stores

 System-level memory/storage QoS
 A lot of hope in designing a predictable system

12

Agenda

 Major Trends Affecting Main Memory

 The Memory Scaling Problem and Solution Directions

 New Memory Architectures

 Enabling Emerging Technologies

 How Can We Do Better?

 Summary

13

Rethinking DRAM

 In-Memory Computation

 Refresh

 Reliability

 Latency

 Bandwidth

 Energy

 Memory Compression

14

Recap: The DRAM Scaling Problem

15

Takeaways So Far

 DRAM Scaling is getting extremely difficult

 To the point of threatening the foundations of secure systems

 Industry is very open to “different” system designs and
“different” memories

 Cost-per-bit is not the sole driving force any more

16

Why In-Memory Computation Today?

 Push from Technology Trends

 DRAM Scaling at jeopardy

  Controllers close to DRAM

  Industry open to new memory architectures

 Pull from Systems and Applications Trends

 Data access is a major system and application bottleneck

 Systems are energy limited

 Data movement much more energy-hungry than computation

17

A Computing System

 Three key components

 Computation

 Communication

 Storage/memory

18

Today’s Computing Systems

 Are overwhelmingly processor centric

 Processor is heavily optimized and is considered the master

 Many system-level tradeoffs are constrained or dictated by
the processor – all data processed in the processor

 Data storage units are dumb slaves and are largely
unoptimized (except for some that are on the processor die)

19

Traditional Computing Systems

 Data stored far away from computational units

 Bring data to the computational units

 Operate on the brought data

 Cache it as much as possible

 Send back the results to data storage

 This may not be an efficient approach given three key
systems trends

20

Three Key Systems Trends

1. Data access from memory is a major bottleneck

 Limited pin bandwidth

 High energy memory bus

 Applications are increasingly data hungry

2. Energy consumption is a key limiter in systems

3. Data movement is much more expensive than computation

 Especially true for off-chip to on-chip movement

21

Dally, HiPEAC 2015

The Problem

 Today’s systems overwhelmingly move data towards
computation, exercising the three bottlenecks

 This is a huge problem when the amount of data access is
huge relative to the amount of computation

 The case with many data-intensive workloads

22

36 Million
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

In-Memory Computation: Goals and Approaches

 Goals

 Enable computation capability where data resides (e.g., in
memory, in caches)

 Enable system-level mechanisms to exploit near-data
computation capability

 E.g., to decide where it makes the most sense to perform the
computation

 Approaches

1. Minimally change DRAM to enable simple yet powerful
computation primitives

2. Exploit the control logic in 3D-stacked memory to enable more
comprehensive computation near memory

23

Why This is Not All Déjà Vu

 Past approaches to PIM (e.g., logic-in-memory, NON-VON,
Execube, IRAM) had little success due to three reasons:

1. They were too costly. Placing a full processor inside DRAM
technology is still not a good idea today.

2. The time was not ripe:

 Memory scaling was not pressing. Today it is critical.

 Energy and bandwidth were not critical scalability limiters.
Today they are.

 New technologies were not as prevalent, promising or needed.
Today we have 3D stacking, STT-MRAM, etc. which can help
with computation near data.

3. They did not consider all issues that limited adoption (e.g.,
coherence, appropriate partitioning of computation)

24

Two Approaches to In-Memory Processing

 1. Minimally change DRAM to enable simple yet powerful
computation primitives
 RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)

 Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

 2. Exploit the control logic in 3D-stacked memory to enable
more comprehensive computation near memory

25

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf

Approach 1: Minimally Changing DRAM

 DRAM has great capability to perform bulk data movement
and computation internally with small changes

 Can exploit internal bandwidth to move data

 Can exploit analog computation capability

 …

 Examples: RowClone and In-DRAM AND/OR

 RowClone: Fast and Efficient In-DRAM Copy and Initialization
of Bulk Data (Seshadri et al., MICRO 2013)

 Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE
CAL 2015)

 …

 26

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf

Today’s Memory: Bulk Data Copy

Memory

MC L3 L2 L1 CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

27 1046ns, 3.6uJ (for 4KB page copy via DMA)

Future: RowClone (In-Memory Copy)

Memory

MC L3 L2 L1 CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

28 1046ns, 3.6uJ 90ns, 0.04uJ

DRAM Subarray Operation (load one byte)

Row Buffer (8 Kbits)

Data Bus

8 bits

DRAM array

8 Kbits

Step 1: Activate row

Transfer

row

Step 2: Read

Transfer byte

onto bus

RowClone: In-DRAM Row Copy

Row Buffer (8 Kbits)

Data Bus

8 bits

DRAM array

8 Kbits

Step 1: Activate row A

Transfer

row

Step 2: Activate row B

Transfer

row
0.01% area cost

M
e
m

o
ry

 C
h
a
n

n
e

l

C
h

ip
 I/

O
 Bank Bank I/O

Subarray

Intra Subarray

Copy (2 ACTs)

Inter Bank Copy

(Pipelined

Internal RD/WR)

Inter Subarray Copy

(Use Inter-Bank Copy Twice)

Generalized RowClone

RowClone: Latency and Energy Savings

0

0.2

0.4

0.6

0.8

1

1.2

Latency Energy

N
o

rm
al

iz
e

d
 S

av
in

gs

Baseline Intra-Subarray

Inter-Bank Inter-Subarray

11.6x 74x

32
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

RowClone: Application Performance

33

0

10

20

30

40

50

60

70

80

bootup compile forkbench mcached mysql shell

%
 C

o
m

p
a
re

d
 t

o
 B

a
s
e
li

n
e

IPC Improvement Energy Reduction

RowClone: Multi-Core Performance

34

0.9

1

1.1

1.2

1.3

1.4

1.5

N
o

rm
a

li
z
e

d
 W

e
ig

h
te

d
 S

p
e

e
d

u
p

50 Workloads (4-core)

Baseline RowClone

End-to-End System Design

35

 DRAM (RowClone)

Microarchitecture

ISA

Operating System

Application
How to communicate
occurrences of bulk
copy/initialization across
layers?

How to maximize latency
and energy savings?

How to ensure cache
coherence?

How to handle data reuse?

Goal: Ultra-Efficient Processing Near Data

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller

Specialized
compute-capability

in memory

Memory imaging
core

Memory Bus

Memory similar to a “conventional” accelerator

Enabling In-Memory Search

▪ What is a flexible and scalable memory

interface?

▪ What is the right partitioning of computation

capability?

▪ What is the right low-cost memory substrate?

▪ What memory technologies are the best

enablers?

▪ How do we rethink/ease search

algorithms/applications?

Cache

Process
or
Core

 Interconnect

 Memory

Databa
se

Query vector

Results

Enabling In-Memory Computation

38

Virtual Memory
Support

Cache
Coherence

DRAM
Support

RowClone
(MICRO 2013)

Dirty-Block
Index

(ISCA 2014)

Page Overlays
(ISCA 2015)

In-DRAM
Gather Scatter

In-DRAM Bitwise
Operations

(IEEE CAL 2015)
? ?

Non-contiguous
Cache lines

Gathered Pages

In-DRAM AND/OR: Triple Row Activation

39

½VDD

½VDD

dis

A

B

C

Final State
AB + BC + AC

½VDD+δ

C(A + B) +
~C(AB) en

0

VDD

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.

In-DRAM Bulk Bitwise AND/OR Operation

 BULKAND A, B  C

 Semantics: Perform a bitwise AND of two rows A and B and
store the result in row C

 R0 – reserved zero row, R1 – reserved one row

 D1, D2, D3 – Designated rows for triple activation

1. RowClone A into D1

2. RowClone B into D2

3. RowClone R0 into D3

4. ACTIVATE D1,D2,D3

5. RowClone Result into C

 40

In-DRAM AND/OR Results
 20X improvement in AND/OR throughput vs. Intel AVX

 50.5X reduction in memory energy consumption

 At least 30% performance improvement in range queries

41 Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

8K
B	

16
KB
	

32
KB
	

64
KB
	

12
8K
B	

25
6K
B	

51
2K
B	

1M
B	

2M
B	

4M
B	

8M
B	

16
M
B	

32
M
B	

Size of Vectors to be ANDed

In-DRAM AND (2 banks)

In-DRAM AND (1 bank)

Intel AVX

Going Forward

 A bulk computation model in memory

 New memory & software interfaces to
enable bulk in-memory computation

 New programming models,
algorithms, compilers, and system
designs that can take advantage of
the model

42

Microarchitecture

ISA

Programs

Algorithms

Problems

Logic

Devices

Runtime System

(VM, OS, MM)

User

Two Approaches to In-Memory Processing

 1. Minimally change DRAM to enable simple yet powerful
computation primitives
 RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)

 Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

 2. Exploit the control logic in 3D-stacked memory to enable
more comprehensive computation near memory
 PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture (Ahn et al., ISCA 2015)

 A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing
(Ahn et al., ISCA 2015)

43

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf

Two Key Questions in 3D Stacked PIM

 What is the minimal processing-in-memory support we can
provide ?

 without changing the system significantly

 while achieving significant benefits of processing in 3D-
stacked memory

 How can we accelerate important applications if we use 3D-
stacked memory as a coarse-grained accelerator?

 what is the architecture and programming model?

 what are the mechanisms for acceleration?

44

PIM-Enabled Instructions:

A Low-Overhead, Locality-Aware PIM

Architecture

45

PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture
(Ahn et al., ISCA 2015)

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf

DRAM die

Challenges in Processing-in-Memory

Cost-effectiveness Programming Model Coherence & VM

DRAM die

Complex Logic

Host Processor

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

In-Memory Processors

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

Thread

Thread
Thread

Thread
Thread

Thread
Thread
Thread

Thread

Thread

Host Processor

3

3

4

5

C

C

DRAM die

Challenges in Processing-in-Memory

Cost-effectiveness Programming Model Coherence & VM

DRAM die

Complex Logic

Host Processor

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

In-Memory Processors

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

Thread

Thread
Thread

Thread
Thread

Thread
Thread
Thread

Thread

Thread

Host Processor

3

3

4

5

C

C

(Partially) Solved by
3D-Stacked DRAM

Still Challenging even in Recent PIM Architectures
(e.g., AC-DIMM, NDA, NDC, TOP-PIM, Tesseract, …)

Simple PIM Programming, Coherence, VM

 Objectives

 Provide an intuitive programming model for PIM

 Full support for cache coherence and virtual memory

 Minimize implementation overhead of PIM units

 Solution: simple PIM operations as ISA extensions

 PIM operations as host processor instructions: intuitive

 Preserves sequential programming model

 Avoids the need for virtual memory support in memory

 Leads to low-overhead implementation

 PIM-enabled instructions can be executed on the host-side or
the memory side (locality-aware execution)

Simple PIM Operations as ISA Extensions (I)

49

Example: Parallel PageRank computation

for (v: graph.vertices) {

 value = weight * v.rank;

 for (w: v.successors) {

 w.next_rank += value;

 }

}

for (v: graph.vertices) {

 v.rank = v.next_rank; v.next_rank = alpha;

}

Simple PIM Operations as ISA Extensions (II)

50

Main Memory

w.next_rank w.next_rank

for (v: graph.vertices) {

 value = weight * v.rank;

 for (w: v.successors) {

 w.next_rank += value;

 }

}
Host Processor

w.next_rank w.next_rank

64 bytes in
64 bytes out

Conventional Architecture

Simple PIM Operations as ISA Extensions (III)

51

Main Memory

w.next_rank w.next_rank

Host Processor

value

8 bytes in
0 bytes out

In-Memory Addition

for (v: graph.vertices) {

 value = weight * v.rank;

 for (w: v.successors) {

 __pim_add(&w.next_rank, value);

 }

}

pim.add r1, (r2)

Always Executing in Memory? Not A Good Idea

52

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

p
2

p
-G

n
u

te
lla

3
1

so
c-

Sl
as

h
d

o
t0

8
1

1

w
eb

-
St

an
fo

rd

am
az

o
n

-
2

0
0

8

fr
w

ik
i-

2
0

1
3

w
ik

i-
Ta

lk

ci
t-

P
at

en
ts

so
c-

Li
ve

Jo
u

rn
al

1

ljo
u

rn
al

-
2

0
0

8

Sp
ee

d
u

p

More Vertices

Increased
Memory Bandwidth

Consumption
Caching very effective

Reduced Memory Bandwidth
Consumption due to

In-Memory Computation

Two Key Questions for Simple PIM

 How should simple PIM operations be interfaced to
conventional systems?

 PIM-enabled Instructions (PEIs): Expose PIM operations as
cache-coherent, virtually-addressed host processor
instructions

 No changes to the existing sequential programming model

 What is the most efficient way of exploiting such simple
PIM operations?

 Locality-aware PEIs: Dynamically determine the location of PEI
execution based on data locality without software hints

PIM-Enabled Instructions

54

for (v: graph.vertices) {

 value = weight * v.rank;

 for (w: v.successors) {

 w.next_rank += value;

 }

}

PIM-Enabled Instructions

55

for (v: graph.vertices) {

 value = weight * v.rank;

 for (w: v.successors) {

 __pim_add(&w.next_rank, value);

 }

}

pim.add r1, (r2)

 Executed either in memory or in the host processor

 Cache-coherent, virtually-addressed

 Atomic between different PEIs

 Not atomic with normal instructions (use pfence)

PIM-Enabled Instructions

56

 Executed either in memory or in the host processor

 Cache-coherent, virtually-addressed

 Atomic between different PEIs

 Not atomic with normal instructions (use pfence)

for (v: graph.vertices) {

 value = weight * v.rank;

 for (w: v.successors) {

 __pim_add(&w.next_rank, value);

 }

}

pfence();

pim.add r1, (r2)

pfence

PIM-Enabled Instructions

 Key to practicality: single-cache-block restriction

 Each PEI can access at most one last-level cache block

 Similar restrictions exist in atomic instructions

 Benefits

 Localization: each PEI is bounded to one memory module

 Interoperability: easier support for cache coherence and
virtual memory

 Simplified locality monitoring: data locality of PEIs can be
identified simply by the cache control logic

PEI Architecture

58

Out-Of-Order
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM
Controller

DRAM
Controller

DRAM
Controller

Host Processor 3D-stacked Memory (HMC)

…

PCU

PCU

PCU

PCU

PIM
Directory

Locality
Monitor

PMU

Proposed PEI Architecture

Memory-side PEI Execution

Out-Of-Order
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el

C

ac
h

e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM
Controller

DRAM
Controller

DRAM
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM
Directory

Locality
Monitor

PMU

pim.add y, &x

x

y

y

Memory-side PEI Execution

Out-Of-Order
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM
Controller

DRAM
Controller

DRAM
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM
Directory

Locality
Monitor

PMU

pim.add y, &x

x

y

y

Address Translation for PEIs

• Done by the host processor TLB

 (similar to normal instructions)

• No modifications to existing HW/OS

• No need for in-memory TLBs

Memory-side PEI Execution

Out-Of-Order
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM
Controller

DRAM
Controller

DRAM
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM
Directory

Locality
Monitor

PMU

pim.add y, &x

x

y

y

Wait until x is writable

Memory-side PEI Execution

Out-Of-Order
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM
Controller

DRAM
Controller

DRAM
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM
Directory

Locality
Monitor

PMU

pim.add y, &x

x y

Wait until x is writable

Reader-writer lock #0

Reader-writer lock #1

Reader-writer lock #N-1

Reader-writer lock #2

…

Address

XOR-Hash

(Inexact, but Conservative)

Memory-side PEI Execution

Out-Of-Order
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM
Controller

DRAM
Controller

DRAM
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM
Directory

Locality
Monitor

PMU

pim.add y, &x

x

Wait until x is writable

Check the data locality of x

y

Memory-side PEI Execution

Out-Of-Order
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM
Controller

DRAM
Controller

DRAM
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM
Directory

Locality
Monitor

PMU

pim.add y, &x

x

Wait until x is writable

Check the data locality of x

y

Hit: High locality

Miss: Low locality

Tag Tag Tag Tag …

Tag Tag Tag Tag …

Tag Tag Tag Tag …

…

Address

Partial Tag Array

Updated on
• Each LLC access
• Each issue of a PIM operation to memory

Memory-side PEI Execution

Out-Of-Order
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM
Controller

DRAM
Controller

DRAM
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM
Directory

Locality
Monitor

PMU

pim.add y, &x

y x

Low locality

Wait until x is writable

Check the data locality of x

Memory-side PEI Execution

Out-Of-Order
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM
Controller

DRAM
Controller

DRAM
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM
Directory

Locality
Monitor

PMU

pim.add y, &x

y x

Low locality

• Back-invalidation for
cache coherence

• No modifications to
existing cache
coherence protocols

Memory-side PEI Execution

Out-Of-Order
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM
Controller

DRAM
Controller

DRAM
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM
Directory

Locality
Monitor

PMU

pim.add y, &x

y x x+y
y x+y

Low locality

Memory-side PEI Execution

Out-Of-Order
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM
Controller

DRAM
Controller

DRAM
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM
Directory

Locality
Monitor

PMU

pim.add y, &x

y x+y
x+y

Completely Localized
 PIM Memory Accesses

without Special Data Mapping

Memory-side PEI Execution

Out-Of-Order
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM
Controller

DRAM
Controller

DRAM
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM
Directory

Locality
Monitor

PMU

pim.add y, &x

y x
x+y

x+y

Completion Notification

Host-side PEI Execution

Out-Of-Order
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el

 C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM
Controller

DRAM
Controller

DRAM
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM
Directory

Locality
Monitor

PMU

pim.add y, &x

x y

y

Wait until x is writable

Check the data locality of x

Host-side PEI Execution

Out-Of-Order
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM
Controller

DRAM
Controller

DRAM
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM
Directory

Locality
Monitor

PMU

pim.add y, &x

x

y

Wait until x is writable

Check the data locality of x

x

High locality

x

x+y

x x+y

Host-side PEI Execution

Out-Of-Order
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM
Controller

DRAM
Controller

DRAM
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM
Directory

Locality
Monitor

PMU

pim.add y, &x

x

y x+y

x x x+y

No Cache Coherence Issues

Host-side PEI Execution

Out-Of-Order
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM
Controller

DRAM
Controller

DRAM
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM
Directory

Locality
Monitor

PMU

pim.add y, &x

x

y x+y

x x x+y

Completion Notification

PEI Execution Summary

 Atomicity of PEIs

 PIM directory implements reader-writer locks

 Locality-aware PEI execution

 Locality monitor simulates cache replacement behavior

 Cache coherence for PEIs

 Memory-side: back-invalidation/back-writeback

 Host-side: no need for consideration

 Virtual memory for PEIs

 Host processor performs address translation before issuing a PEI

Evaluation: Simulation Configuration

 In-house x86-64 simulator based on Pin

 16 out-of-order cores, 4GHz, 4-issue

 32KB private L1 I/D-cache, 256KB private L2 cache

 16MB shared 16-way L3 cache, 64B blocks

 32GB main memory with 8 daisy-chained HMCs (80GB/s)

 PCU (PIM Computation Unit, In Memory)

 1-issue computation logic, 4-entry operand buffer

 16 host-side PCUs at 4GHz, 128 memory-side PCUs at 2GHz

 PMU (PIM Management Unit, Host Side)

 PIM directory: 2048 entries (3.25KB)

 Locality monitor: similar to LLC tag array (512KB)

Evaluated Data-Intensive Applications

 Ten emerging data-intensive workloads

 Large-scale graph processing

 Average teenage followers, BFS, PageRank, single-source
shortest path, weakly connected components

 In-memory data analytics

 Hash join, histogram, radix partitioning

 Machine learning and data mining

 Streamcluster, SVM-RFE

 Three input sets (small, medium, large) for each workload
to show the impact of data locality

PEI Performance Delta: Large Data Sets

77

0%

10%

20%

30%

40%

50%

60%

70%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Large Inputs, Baseline: Host-Only)

PEI Performance: Large Data Sets

78

0%

10%

20%

30%

40%

50%

60%

70%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Large Inputs, Baseline: Host-Only)

0

0.2

0.4

0.6

0.8

1

1.2

ATF BFS PR SP WCC HJ HG RP SC SVM

Normalized Amount of Off-chip Transfer

Host-Only PIM-Only Locality-Aware

PEI Performance Delta: Small Data Sets

79

-60%

-40%

-20%

0%

20%

40%

60%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Small Inputs, Baseline: Host-Only)

PEI Performance: Small Data Sets

80

-60%

-40%

-20%

0%

20%

40%

60%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Small Inputs, Baseline: Host-Only)

0

1

2

3

4

5

6

7

8

ATF BFS PR SP WCC HJ HG RP SC SVM

Normalized Amount of Off-chip Transfer

Host-Only PIM-Only Locality-Aware

PEI Performance Delta: Medium Data Sets

81

-10%

0%

10%

20%

30%

40%

50%

60%

70%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Medium Inputs, Baseline: Host-Only)

PEI Energy Consumption

82

0

0.5

1

1.5

Small Medium Large

Cache HMC Link DRAM

Host-side PCU Memory-side PCU PMU

Host-Only

PIM-Only

Locality-Aware

Summary: Simple Processing-In-Memory

 PIM-enabled Instructions (PEIs): Expose PIM operations as
cache-coherent, virtually-addressed host processor
instructions
 No changes to the existing sequential programming model

 No changes to virtual memory

 Minimal changes for cache coherence

 Locality-aware PEIs: Dynamically determine the location of
PEI execution based on data locality without software hints

 PEI performance and energy results are promising
 47%/32% speedup over Host/PIM-Only in large/small inputs

 25% node energy reduction in large inputs

 Good adaptivity across randomly generated workloads

Two Key Questions in 3D Stacked PIM

 What is the minimal processing-in-memory support we can
provide ?

 without changing the system significantly

 while achieving significant benefits of processing in 3D-
stacked memory

 How can we accelerate important applications if we use 3D-
stacked memory as a coarse-grained accelerator?

 what is the architecture and programming model?

 what are the mechanisms for acceleration?

84

