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Agenda 

 Review Assignments for Next Week 

 

 Rethinking Memory System Design (Continued) 

 With a lot of discussion, hopefully 
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Review Assignments for Next Week 



Required Reviews 

 Due Tuesday Sep 22 @ 3pm 

 

 Enter your reviews on the review website 

 

 Please discuss ideas and thoughts on Piazza 
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Review Paper 1 (Required) 
 Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch, Ken Mai, and Onur 

Mutlu, 
"Read Disturb Errors in MLC NAND Flash Memory: 
Characterization and Mitigation"  
Proceedings of the 45th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 
2015.  
[Slides (pptx) (pdf)]  

 

 Related 

 Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu, 
"Data Retention in MLC NAND Flash Memory: 
Characterization, Optimization and Recovery"  
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA, 
February 2015.  
[Slides (pptx) (pdf)]   
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https://users.ece.cmu.edu/~omutlu/pub/flash-read-disturb-errors_dsn15.pdf
https://users.ece.cmu.edu/~omutlu/pub/flash-read-disturb-errors_dsn15.pdf
http://2015.dsn.org/
http://2015.dsn.org/
https://users.ece.cmu.edu/~omutlu/pub/flash-read-disturb-errors_dsn15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/flash-read-disturb-errors_dsn15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_hpca15.pdf
https://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_hpca15.pdf
http://darksilicon.org/hpca/
http://darksilicon.org/hpca/
http://darksilicon.org/hpca/
https://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_yixin_hpca15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_yixin_hpca15-talk.pdf


Review Paper 2 (Required) 

 Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug 
Burger, 
"Architecting Phase Change Memory as a Scalable 
DRAM Alternative" 
Proceedings of the 36th International Symposium on 
Computer Architecture (ISCA), pages 2-13, Austin, TX, 
June 2009. Slides (pdf) 

 

 Related 

 Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo 
Zhao, Engin Ipek, Onur Mutlu, and Doug Burger, 
"Phase Change Technology and the Future of Main 
Memory" 
IEEE Micro, Special Issue: Micro's Top Picks from 2009 
Computer Architecture Conferences (MICRO TOP PICKS), 
Vol. 30, No. 1, pages 60-70, January/February 2010.   6 

https://users.ece.cmu.edu/~omutlu/pub/pcm_isca09.pdf
https://users.ece.cmu.edu/~omutlu/pub/pcm_isca09.pdf
http://isca09.cs.columbia.edu/
http://isca09.cs.columbia.edu/
https://users.ece.cmu.edu/~omutlu/pub/lee_isca09_talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/lee_isca09_talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/pcm_ieee_micro10.pdf
https://users.ece.cmu.edu/~omutlu/pub/pcm_ieee_micro10.pdf
http://www.computer.org/micro/


Review Paper 3 (Required) 

 Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt, 
"Bottleneck Identification and Scheduling in Multithreaded 
Applications"  
Proceedings of the 17th International Conference on Architectural 
Support for Programming Languages and Operating Systems 
(ASPLOS), London, UK, March 2012. Slides (ppt) (pdf) 
 

 Related 

 M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. 
Patt, 
"Accelerating Critical Section Execution with Asymmetric 
Multi-Core Architectures"  
Proceedings of the 14th International Conference on Architectural 
Support for Programming Languages and Operating Systems 
(ASPLOS), pages 253-264, Washington, DC, March 2009. Slides (ppt)  
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https://users.ece.cmu.edu/~omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
https://users.ece.cmu.edu/~omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/
https://users.ece.cmu.edu/~omutlu/pub/mutlu_asplos12_talk.ppt
https://users.ece.cmu.edu/~omutlu/pub/mutlu_asplos12_talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/mutlu_asplos12_talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
https://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
https://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
https://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://www.cs.virginia.edu/asplos09/
http://www.cs.virginia.edu/asplos09/
https://users.ece.cmu.edu/~omutlu/pub/suleman_asplos09_talk.ppt
https://users.ece.cmu.edu/~omutlu/pub/suleman_asplos09_talk.ppt


Review Paper 4 (Optional) 

 Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. 
Patt, 
"Fairness via Source Throttling: A Configurable and 
High-Performance Fairness Substrate for Multi-Core 
Memory Systems"  
Proceedings of the 15th International Conference on 
Architectural Support for Programming Languages and 
Operating Systems (ASPLOS), pages 335-346, Pittsburgh, 
PA, March 2010. Slides (pdf) 
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https://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
https://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
https://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
https://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
https://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
https://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
https://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
https://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf


Project Proposal 

 Due next week 

 September 25, 2015 
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Another Possible Project  

 GPU Warp Scheduling Championship 

 

 http://adwaitjog.github.io/gpu_scheduling.html  
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http://adwaitjog.github.io/gpu_scheduling.html
http://adwaitjog.github.io/gpu_scheduling.html
http://adwaitjog.github.io/gpu_scheduling.html
http://adwaitjog.github.io/gpu_scheduling.html
http://adwaitjog.github.io/gpu_scheduling.html


Rethinking Memory System Design 



Some Promising Directions 
 

 New memory architectures 
 Rethinking DRAM and flash memory 

 A lot of hope in fixing DRAM 
 

 

 

 

 Enabling emerging NVM technologies  
 Hybrid memory systems  

 Single-level memory and storage 

 A lot of hope in hybrid memory systems and single-level stores 
 

 

 

 System-level memory/storage QoS 
 A lot of hope in designing a predictable system 
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Agenda 

 Major Trends Affecting Main Memory 

 The Memory Scaling Problem and Solution Directions 

 New Memory Architectures 

 Enabling Emerging Technologies 

 How Can We Do Better? 

 Summary 
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Rethinking DRAM 

 In-Memory Computation 

 

 Refresh 

 

 Reliability 

 

 Latency 

 

 Bandwidth 

 

 Energy 

 

 Memory Compression 
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Recap: The DRAM Scaling Problem 
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Takeaways So Far 

 DRAM Scaling is getting extremely difficult 

 To the point of threatening the foundations of secure systems 

 

 Industry is very open to “different” system designs and 
“different” memories 

 Cost-per-bit is not the sole driving force any more 
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Why In-Memory Computation Today? 

 Push from Technology Trends 

 DRAM Scaling at jeopardy  

    Controllers close to DRAM 

    Industry open to new memory architectures 

 

 Pull from Systems and Applications Trends 

 Data access is a major system and application bottleneck 

 Systems are energy limited 

 Data movement much more energy-hungry than computation 

17 



A Computing System 

 Three key components 

 Computation  

 Communication 

 Storage/memory 

18 



Today’s Computing Systems 

 Are overwhelmingly processor centric 

 Processor is heavily optimized and is considered the master 

 Many system-level tradeoffs are constrained or dictated by 
the processor – all data processed in the processor 

 Data storage units are dumb slaves and are largely 
unoptimized (except for some that are on the processor die) 
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Traditional Computing Systems 

 Data stored far away from computational units 

 Bring data to the computational units 

 Operate on the brought data 

 Cache it as much as possible 

 Send back the results to data storage 

 

 

 This may not be an efficient approach given three key 
systems trends 

20 



Three Key Systems Trends 

1. Data access from memory is a major bottleneck 

 Limited pin bandwidth 

 High energy memory bus 

 Applications are increasingly data hungry 

 

2. Energy consumption is a key limiter in systems 

 

3. Data movement is much more expensive than computation 

 Especially true for off-chip to on-chip movement 

 

21 

Dally, HiPEAC 2015 



The Problem 

 

 Today’s systems overwhelmingly move data towards 
computation, exercising the three bottlenecks 

 

 This is a huge problem when the amount of data access is 
huge relative to the amount of computation 

 The case with many data-intensive workloads 

22 

36 Million  
Wikipedia Pages 

1.4 Billion 
Facebook Users 

300 Million 
Twitter Users 

30 Billion 
Instagram Photos 



In-Memory Computation: Goals and Approaches 

 Goals 

 Enable computation capability where data resides (e.g., in 
memory, in caches) 

 Enable system-level mechanisms to exploit near-data 
computation capability  

 E.g., to decide where it makes the most sense to perform the 
computation  

 

 Approaches 

1. Minimally change DRAM to enable simple yet powerful   
computation primitives 

2. Exploit the control logic in 3D-stacked memory to enable more 
comprehensive computation near memory 

23 



Why This is Not All Déjà Vu 

 Past approaches to PIM (e.g., logic-in-memory, NON-VON, 
Execube, IRAM) had little success due to three reasons: 

 

1. They were too costly. Placing a full processor inside DRAM    
technology is still not a good idea today. 

2. The time was not ripe: 

 Memory scaling was not pressing. Today it is critical. 

 Energy and bandwidth were not critical scalability limiters. 
Today they are. 

 New technologies were not as prevalent, promising or needed. 
Today we have 3D stacking, STT-MRAM, etc. which can help 
with computation near data. 

3. They did not consider all issues that limited adoption (e.g., 
coherence, appropriate partitioning of computation) 
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Two Approaches to In-Memory Processing  

 1. Minimally change DRAM to enable simple yet powerful   
computation primitives 
 RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data 

(Seshadri et al., MICRO 2013) 

 Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015) 

 

 

 2. Exploit the control logic in 3D-stacked memory to enable 
more comprehensive computation near memory 

25 

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf


Approach 1: Minimally Changing DRAM 

 DRAM has great capability to perform bulk data movement 
and computation internally with small changes 

 Can exploit internal bandwidth to move data 

 Can exploit analog computation capability 

 … 

 

 Examples: RowClone and In-DRAM AND/OR 

 RowClone: Fast and Efficient In-DRAM Copy and Initialization 
of Bulk Data (Seshadri et al., MICRO 2013) 

 Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE 
CAL 2015) 

 … 
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf


Today’s Memory: Bulk Data Copy 

Memory 

 
 
 
 
 
 

 

MC L3 L2 L1 CPU 

1) High latency 

2) High bandwidth utilization 

3) Cache pollution 

4) Unwanted data movement 

27 1046ns, 3.6uJ    (for 4KB page copy via DMA) 



Future: RowClone (In-Memory Copy) 

Memory 

 
 
 
 
 
 

 

MC L3 L2 L1 CPU 

1) Low latency 

2) Low bandwidth utilization 

3) No cache pollution 

4) No unwanted data movement 

28 1046ns, 3.6uJ 90ns, 0.04uJ 



DRAM Subarray Operation (load one byte) 

Row Buffer (8 Kbits) 

Data Bus 

8 bits 

DRAM array 

8 Kbits 

Step 1: Activate row 

 

Transfer 

row 

Step 2: Read   

Transfer byte 

onto bus 



RowClone: In-DRAM Row Copy 

Row Buffer (8 Kbits) 

Data Bus 

8 bits 

DRAM array 

8 Kbits 

Step 1: Activate row A 

Transfer 

row 

Step 2: Activate row B 

 

Transfer 

row 
0.01% area cost 
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RowClone: Latency and Energy Savings 
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32 
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” MICRO 2013. 



RowClone: Application Performance 
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RowClone: Multi-Core Performance 
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End-to-End System Design 
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 DRAM (RowClone) 

Microarchitecture 

ISA 

Operating System 

Application 
How to communicate 
occurrences of bulk 
copy/initialization across 
layers? 

How to maximize latency 
and energy savings? 

How to ensure cache 
coherence? 
 
 

How to handle data reuse? 



Goal: Ultra-Efficient Processing Near Data 

CPU 
core 

CPU 
core 

CPU 
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GPU 
(throughput) 
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GPU 
(throughput) 
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GPU 
(throughput) 

core 

GPU 
(throughput) 

core 

LLC 

Memory Controller 

Specialized 
compute-capability 

in memory 

Memory imaging 
core 

Memory Bus 

Memory similar to a “conventional” accelerator 



Enabling In-Memory Search 

 

 

 

 

 

 

▪ What is a flexible and scalable memory 

interface? 

▪ What is the right partitioning of computation 

capability? 

▪ What is the right low-cost memory substrate? 

▪ What memory technologies are the best 

enablers? 

▪ How do we rethink/ease search 

algorithms/applications? 

Cache 

Process
or 
Core 

 Interconnect 

 Memory 

Databa
se   

Query vector 

Results 



Enabling In-Memory Computation  
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Virtual Memory 
Support 

Cache 
Coherence 

DRAM 
Support 

RowClone 
(MICRO 2013) 

Dirty-Block 
Index 

(ISCA 2014) 

Page Overlays  
(ISCA 2015) 

In-DRAM 
Gather Scatter 

In-DRAM Bitwise 
Operations  

(IEEE CAL 2015) 
? ? 

Non-contiguous 
Cache lines 

Gathered Pages 



In-DRAM AND/OR: Triple Row Activation 
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Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015. 



In-DRAM Bulk Bitwise AND/OR Operation 

 BULKAND A, B  C  

 Semantics: Perform a bitwise AND of two rows A and B and 
store the result in row C 

 

 R0 – reserved zero row, R1 – reserved one row 

 D1, D2, D3 – Designated rows for triple activation 

 

1. RowClone  A  into  D1   

2. RowClone  B  into  D2   

3. RowClone  R0  into  D3   

4. ACTIVATE  D1,D2,D3   

5. RowClone  Result  into  C 

 40 



In-DRAM AND/OR Results 
 20X improvement in AND/OR throughput vs. Intel AVX 

 50.5X reduction in memory energy consumption 

 At least 30% performance improvement in range queries 

41 Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015. 
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Going Forward 

 A bulk computation model in memory 

 

 New memory & software interfaces to 
enable bulk in-memory computation 

 

 New programming models, 
algorithms, compilers, and system 
designs that can take advantage of 
the model 

42 
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Two Approaches to In-Memory Processing  

 1. Minimally change DRAM to enable simple yet powerful   
computation primitives 
 RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data 

(Seshadri et al., MICRO 2013) 

 Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015) 

 

 

 2. Exploit the control logic in 3D-stacked memory to enable 
more comprehensive computation near memory 
 PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture (Ahn et al., ISCA 2015) 

 A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing 
(Ahn et al., ISCA 2015) 
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Two Key Questions in 3D Stacked PIM 

 What is the minimal processing-in-memory support we can 
provide ? 

 without changing the system significantly 

 while achieving significant benefits of processing in 3D-
stacked memory 

 

 How can we accelerate important applications if we use 3D-
stacked memory as a coarse-grained accelerator? 

 what is the architecture and programming model? 

 what are the mechanisms for acceleration? 
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PIM-Enabled Instructions:  

A Low-Overhead, Locality-Aware PIM 

Architecture 
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PIM-Enabled Instructions: A Low-Overhead,  
Locality-Aware Processing-in-Memory Architecture  
(Ahn et al., ISCA 2015) 
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(Partially) Solved by 
3D-Stacked DRAM 

Still Challenging even in Recent PIM Architectures 
(e.g., AC-DIMM, NDA, NDC, TOP-PIM, Tesseract, …) 



Simple PIM Programming, Coherence, VM 

 Objectives 

 Provide an intuitive programming model for PIM 

 Full support for cache coherence and virtual memory 

 Minimize implementation overhead of PIM units 

 

 Solution: simple PIM operations as ISA extensions 

 PIM operations as host processor instructions: intuitive 

 Preserves sequential programming model 

 Avoids the need for virtual memory support in memory 

 Leads to low-overhead implementation 

 PIM-enabled instructions can be executed on the host-side or 
the memory side (locality-aware execution) 



Simple PIM Operations as ISA Extensions (I) 

49 

Example: Parallel PageRank computation 

for (v: graph.vertices) { 

    value = weight * v.rank; 

    for (w: v.successors) { 

        w.next_rank += value; 

    } 

} 

for (v: graph.vertices) { 

    v.rank = v.next_rank; v.next_rank = alpha; 

} 



Simple PIM Operations as ISA Extensions (II) 

50 

Main Memory 

w.next_rank w.next_rank 

for (v: graph.vertices) { 

    value = weight * v.rank; 

    for (w: v.successors) { 

        w.next_rank += value; 

    } 

} 
Host Processor 

w.next_rank w.next_rank 

64 bytes in 
64 bytes out 

Conventional Architecture 



Simple PIM Operations as ISA Extensions (III) 

51 

Main Memory 

w.next_rank w.next_rank 

Host Processor 

value 

8 bytes in 
0 bytes out 

In-Memory Addition 

for (v: graph.vertices) { 

    value = weight * v.rank; 

    for (w: v.successors) { 

        __pim_add(&w.next_rank, value); 

    } 

} 

pim.add r1, (r2) 



Always Executing in Memory? Not A Good Idea 
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Two Key Questions for Simple PIM 

 How should simple PIM operations be interfaced to 
conventional systems? 

 PIM-enabled Instructions (PEIs): Expose PIM operations as 
cache-coherent, virtually-addressed host processor 
instructions 

 No changes to the existing sequential programming model 

 

 What is the most efficient way of exploiting such simple 
PIM operations? 

 Locality-aware PEIs: Dynamically determine the location of PEI 
execution based on data locality without software hints 



PIM-Enabled Instructions 
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for (v: graph.vertices) { 

    value = weight * v.rank; 

    for (w: v.successors) { 

        w.next_rank += value; 

    } 

} 



PIM-Enabled Instructions 
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for (v: graph.vertices) { 

    value = weight * v.rank; 

    for (w: v.successors) { 

        __pim_add(&w.next_rank, value); 

    } 

} 

pim.add r1, (r2) 

 Executed either in memory or in the host processor 

 Cache-coherent, virtually-addressed 

 Atomic between different PEIs 

 Not atomic with normal instructions (use pfence) 



PIM-Enabled Instructions 
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 Executed either in memory or in the host processor 

 Cache-coherent, virtually-addressed 

 Atomic between different PEIs 

 Not atomic with normal instructions (use pfence) 

for (v: graph.vertices) { 

    value = weight * v.rank; 

    for (w: v.successors) { 

        __pim_add(&w.next_rank, value); 

    } 

} 

pfence(); 

pim.add r1, (r2) 

pfence 



PIM-Enabled Instructions 

 Key to practicality: single-cache-block restriction 

 Each PEI can access at most one last-level cache block 

 Similar restrictions exist in atomic instructions 

 

 Benefits 

 Localization: each PEI is bounded to one memory module 

 Interoperability: easier support for cache coherence and 
virtual memory 

 Simplified locality monitoring: data locality of PEIs can be 
identified simply by the cache control logic 



PEI Architecture 
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Memory-side PEI Execution 
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Address Translation for PEIs 

• Done by the host processor TLB  

    (similar to normal instructions) 

• No modifications to existing HW/OS 

• No need for in-memory TLBs 



Memory-side PEI Execution 
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Memory-side PEI Execution 
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Address 

Partial Tag Array 

Updated on 
• Each LLC access 
• Each issue of a PIM operation to memory 



Memory-side PEI Execution 
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Memory-side PEI Execution 
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Host-side PEI Execution 
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PEI Execution Summary 

 Atomicity of PEIs 

 PIM directory implements reader-writer locks 

 

 Locality-aware PEI execution 

 Locality monitor simulates cache replacement behavior 

 

 Cache coherence for PEIs 

 Memory-side: back-invalidation/back-writeback 

 Host-side: no need for consideration 

 

 Virtual memory for PEIs 

 Host processor performs address translation before issuing a PEI 



Evaluation: Simulation Configuration 

 In-house x86-64 simulator based on Pin 

 16 out-of-order cores, 4GHz, 4-issue 

 32KB private L1 I/D-cache, 256KB private L2 cache 

 16MB shared 16-way L3 cache, 64B blocks 

 32GB main memory with 8 daisy-chained HMCs (80GB/s) 

 

 PCU (PIM Computation Unit, In Memory) 

 1-issue computation logic, 4-entry operand buffer 

 16 host-side PCUs at 4GHz, 128 memory-side PCUs at 2GHz 

 

 PMU (PIM Management Unit, Host Side) 

 PIM directory: 2048 entries (3.25KB) 

 Locality monitor: similar to LLC tag array (512KB) 



Evaluated Data-Intensive Applications 

 Ten emerging data-intensive workloads 

 Large-scale graph processing 

 Average teenage followers, BFS, PageRank, single-source 
shortest path, weakly connected components 

 In-memory data analytics 

 Hash join, histogram, radix partitioning 

 Machine learning and data mining 

 Streamcluster, SVM-RFE 

 

 Three input sets (small, medium, large) for each workload 
to show the impact of data locality 



PEI Performance Delta: Large Data Sets 
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PEI Performance: Large Data Sets 

78 

0%

10%

20%

30%

40%

50%

60%

70%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Large Inputs, Baseline: Host-Only) 

0

0.2

0.4

0.6

0.8

1

1.2

ATF BFS PR SP WCC HJ HG RP SC SVM

Normalized Amount of Off-chip Transfer 

Host-Only PIM-Only Locality-Aware



PEI Performance Delta: Small Data Sets 
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PEI Performance: Small Data Sets 
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PEI Performance Delta: Medium Data Sets 
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PEI Energy Consumption 
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Summary: Simple Processing-In-Memory 

 PIM-enabled Instructions (PEIs): Expose PIM operations as 
cache-coherent, virtually-addressed host processor 
instructions 
 No changes to the existing sequential programming model 

 No changes to virtual memory 

 Minimal changes for cache coherence 
 

 Locality-aware PEIs: Dynamically determine the location of 
PEI execution based on data locality without software hints 
 

 PEI performance and energy results are promising 
 47%/32% speedup over Host/PIM-Only in large/small inputs 

 25% node energy reduction in large inputs 

 Good adaptivity across randomly generated workloads 

 



Two Key Questions in 3D Stacked PIM 

 What is the minimal processing-in-memory support we can 
provide ? 

 without changing the system significantly 

 while achieving significant benefits of processing in 3D-
stacked memory 

 

 How can we accelerate important applications if we use 3D-
stacked memory as a coarse-grained accelerator? 

 what is the architecture and programming model? 

 what are the mechanisms for acceleration? 
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