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Required Readings 
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 Required Reading Assignment:
• Lee et al., “Phase Change Technology and the Future of Main 

Memory,” IEEE Micro, Jan/Feb 2010.

 Recommended References:

• M. Qureshi et al., “Scalable high performance main memory system 
using phase-change memory technology,” ISCA 2009. 

• H. Yoon et al., “Row buffer locality aware caching policies for hybrid 
memories,” ICCD 2012.

• J. Zhao et al., “FIRM: Fair and High-Performance Memory Control for 
Persistent Memory Systems,” MICRO 2014.



Self-Optimizing DRAM Controllers

 Problem: DRAM controllers difficult to design  It is difficult for 

human designers to design a policy that can adapt itself very well 
to different workloads and different system conditions

 Idea: Design a memory controller that adapts its scheduling 
policy decisions to workload behavior and system conditions 
using machine learning.

 Observation: Reinforcement learning maps nicely to memory 
control.

 Design: Memory controller is a reinforcement learning agent that 
dynamically and continuously learns and employs the best 
scheduling policy.

3Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.



Self-Optimizing DRAM Controllers

 Dynamically adapt the memory scheduling policy via 
interaction with the system at runtime 

 Associate system states and actions (commands) with long term 
reward values: each action at a given state leads to a learned reward

 Schedule command with highest estimated long-term reward value in 
each state

 Continuously update reward values for <state, action> pairs based on 
feedback from system
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Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 
"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


States, Actions, Rewards
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❖ Reward function

• +1 for scheduling 
Read and Write 
commands

• 0 at all other 
times

Goal is to maximize 
data bus 
utilization

❖ State attributes

• Number of reads, 
writes, and load 
misses in 
transaction queue

• Number of pending 
writes and ROB 
heads waiting for 
referenced row

• Request’s relative 

ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP



Performance Results
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Self Optimizing DRAM Controllers

 Advantages

+ Adapts the scheduling policy dynamically to changing workload 
behavior and to maximize a long-term target

+ Reduces the designer’s burden in finding a good scheduling 
policy. Designer specifies:

1) What system variables might be useful

2) What target to optimize, but not how to optimize it

 Disadvantages and Limitations

-- Black box: designer much less likely to implement what she  
cannot easily reason about

-- How to specify different reward functions that can achieve 
different objectives? (e.g., fairness, QoS)

-- Hardware complexity?
8



More on Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 
"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


Evaluating New Ideas 

for Future (Memory) Architectures



Simulation: The Field of Dreams



Dreaming and Reality

 An architect is in part a dreamer, a creator

 Simulation is a key tool of the architect

 Simulation enables

 The exploration of many dreams

 A reality check of the dreams

 Deciding which dream is better

 Simulation also enables

 The ability to fool yourself with false dreams
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Why High-Level Simulation?

 Problem: RTL simulation is intractable for design space 
exploration  too time consuming to design and evaluate

 Especially over a large number of workloads

 Especially if you want to predict the performance of a good 
chunk of a workload on a particular design

 Especially if you want to consider many design choices

 Cache size, associativity, block size, algorithms

 Memory control and scheduling algorithms

 In-order vs. out-of-order execution

 Reservation station sizes, ld/st queue size, register file size, …

 …

 Goal: Explore design choices quickly to see their impact on 
the workloads we are designing the platform for
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Different Goals in Simulation
 Explore the design space quickly and see what you want to

 potentially implement in a next-generation platform

 propose as the next big idea to advance the state of the art

 the goal is mainly to see relative effects of design decisions

 Match the behavior of an existing system so that you can

 debug and verify it at cycle-level accuracy

 propose small tweaks to the design that can make a difference in 
performance or energy

 the goal is very high accuracy

 Other goals in-between:

 Refine the explored design space without going into a full 
detailed, cycle-accurate design

 Gain confidence in your design decisions made by higher-level 
design space exploration
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Tradeoffs in Simulation

 Three metrics to evaluate a simulator

 Speed

 Flexibility

 Accuracy

 Speed: How fast the simulator runs (xIPS, xCPS)

 Flexibility: How quickly one can modify the simulator to 
evaluate different algorithms and design choices?

 Accuracy: How accurate the performance (energy) numbers 
the simulator generates are vs. a real design (Simulation 
error)

 The relative importance of these metrics varies depending 
on where you are in the design process
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Trading Off Speed, Flexibility, Accuracy

 Speed & flexibility affect:

 How quickly you can make design tradeoffs

 Accuracy affects:

 How good your design tradeoffs may end up being

 How fast you can build your simulator (simulator design time)

 Flexibility also affects:

 How much human effort you need to spend modifying the 
simulator

 You can trade off between the three to achieve design 
exploration and decision goals
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High-Level Simulation

 Key Idea: Raise the abstraction level of modeling to give up 
some accuracy to enable speed & flexibility (and quick 
simulator design)

 Advantage

+ Can still make the right tradeoffs, and can do it quickly

+ All you need is modeling the key high-level factors, you can 
omit corner case conditions

+ All you need is to get the “relative trends” accurately, not 
exact performance numbers

 Disadvantage

-- Opens up the possibility of potentially wrong decisions

-- How do you ensure you get the “relative trends” accurately?
17



Simulation as Progressive Refinement

 High-level models (Abstract, C)

 …

 Medium-level models (Less abstract)

 …

 Low-level models (RTL with eveything modeled)

 …

 Real design

 As you refine (go down the above list)

 Abstraction level reduces

 Accuracy (hopefully) increases (not necessarily, if not careful)

 Speed and flexibility reduce

 You can loop back and fix higher-level models
18



Making The Best of Architecture

 A good architect is comfortable at all levels of refinement

 Including the extremes

 A good architect knows when to use what type of 
simulation
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Ramulator: A Fast and Extensible 

DRAM Simulator 

[IEEE Comp Arch Letters’15]
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Ramulator Motivation

 DRAM and Memory Controller landscape is changing

 Many new and upcoming standards

 Many new controller designs

 A fast and easy-to-extend simulator is very much needed
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Ramulator

 Provides out-of-the box support for many DRAM standards:

 DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new 
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

 ~2.5X faster than fastest open-source simulator

 Modular and extensible to different standards
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Case Study: Comparison of DRAM Standards
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Across 22 
workloads, 
simple CPU 
model



Ramulator Paper and Source Code

 Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 

 Source code is released under the liberal MIT License

 https://github.com/CMU-SAFARI/ramulator
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http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator


Extra Credit Assignment

 Review the Ramulator paper

 Send your reviews to me (omutlu@gmail.com) 

 Download and run Ramulator

 Compare DDR3, DDR4, SALP, HBM for the libquantum
benchmark (provided in Ramulator repository)

 Send your brief report to me
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Emerging Memory Technologies



Agenda

 Major Trends Affecting Main Memory

 Requirements from an Ideal Main Memory System

 Opportunity: Emerging Memory Technologies

 Conclusions

 Discussion
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Major Trends Affecting Main Memory (I)

 Need for main memory capacity and bandwidth increasing 

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending 
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Trends: Problems with DRAM as Main Memory

 Need for main memory capacity and bandwidth increasing

 DRAM capacity hard to scale 

 Main memory energy/power is a key system design concern

 DRAM consumes high power due to leakage and refresh

 DRAM technology scaling is ending 

 DRAM capacity, cost, and energy/power hard to scale
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Agenda

 Major Trends Affecting Main Memory

 Requirements from an Ideal Main Memory System

 Opportunity: Emerging Memory Technologies

 Conclusions

 Discussion
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 Traditional

 Enough capacity

 Low cost

 High system performance (high bandwidth, low latency)

 New

 Technology scalability: lower cost, higher capacity, lower energy

 Energy (and power) efficiency

 QoS support and configurability (for consolidation)
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Requirements from an Ideal Memory System



 Traditional

 Higher capacity

 Continuous low cost

 High system performance (higher bandwidth, low latency)

 New

 Technology scalability: lower cost, higher capacity, lower energy

 Energy (and power) efficiency

 QoS support and configurability (for consolidation)

32

Requirements from an Ideal Memory System

Emerging, resistive memory technologies (NVM) can help



How Do We Solve The Memory Problem?

 Fix it: Make DRAM and controllers more intelligent

 New interfaces, functions, architectures: system-DRAM codesign

 Eliminate or minimize it: Replace or (more likely) augment 
DRAM with a different technology

 New technologies and system-wide rethinking of memory & 
storage

 Embrace it: Design heterogeneous memories (none of which 
are perfect) and map data intelligently across them

 New models for data management and maybe usage

 …
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Solutions (to memory scaling) require 
software/hardware/device cooperation

Microarchitecture

ISA

Programs

Algorithms

Problems

Logic

Devices

Runtime System

(VM, OS, MM)

User



Solution 2: Emerging Memory Technologies
 Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile)

 Example: Phase Change Memory

 Expected to scale to 9nm (2022 [ITRS])

 Expected to be denser than DRAM: can store multiple bits/cell

 But, emerging technologies have shortcomings as well

 Can they be enabled to replace/augment/surpass DRAM?

 Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, Micro’10.

 Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.

 Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.

 Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013. 

 Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.

 Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.

 Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.

 Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” 
ACM TACO 2014.

 Ren+, “Dual-Scheme Checkpointing: “A Software-Transparent Mechanism for Supporting Crash Consistency in 
Persistent Memory Systems,” MICRO 2015.
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Solution 3: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Technology X (e.g., PCM)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies
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The Promise of Emerging Technologies

 Likely need to replace/augment DRAM with a technology that is

 Technology scalable

 And at least similarly efficient, high performance, and fault-tolerant 

 or can be architected to be so

 Some emerging resistive memory technologies appear promising

 Phase Change Memory (PCM)?

 Spin Torque Transfer Magnetic Memory (STT-MRAM)?

 Memristors? RRAM? ReRAM?

 And, maybe there are other ones

 Can they be enabled to replace/augment/surpass DRAM?
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Agenda

 Major Trends Affecting Main Memory

 Requirements from an Ideal Main Memory System

 Opportunity: Emerging Memory Technologies
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 PCM (or Technology X) as DRAM Replacement

 Hybrid Memory Systems

 Conclusions

 Discussion
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Charge vs. Resistive Memories

 Charge Memory (e.g., DRAM, Flash)

 Write data by capturing charge Q

 Read data by detecting voltage V

 Resistive Memory (e.g., PCM, STT-MRAM, memristors)

 Write data by pulsing current dQ/dt

 Read data by detecting resistance R 
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Limits of Charge Memory

 Difficult charge placement and control

 Flash: floating gate charge

 DRAM: capacitor charge, transistor leakage

 Reliable sensing becomes difficult as charge storage unit 
size reduces
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Promising Resistive Memory Technologies

 PCM

 Inject current to change material phase

 Resistance determined by phase

 STT-MRAM

 Inject current to change magnet polarity

 Resistance determined by polarity

 Memristors/RRAM/ReRAM

 Inject current to change atomic structure

 Resistance determined by atom distance
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What is Phase Change Memory?

 Phase change material (chalcogenide glass) exists in two states:

 Amorphous: Low optical reflexivity and high electrical resistivity

 Crystalline: High optical reflexivity and low electrical resistivity

42

PCM is resistive memory:  High resistance (0), Low resistance (1)

PCM cell can be switched between states reliably and quickly



How Does PCM Work?

 Write: change phase via current injection

 SET: sustained current to heat cell above Tcryst

 RESET: cell heated above Tmelt and quenched

 Read: detect phase via material resistance 

 amorphous/crystalline

43

Large
Current

SET (cryst)
Low resistance

103-104 W

Small
Current

RESET (amorph)
High resistance

Access
Device

Memory
Element

106-107 W

Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM



Opportunity: PCM Advantages

 Scales better than DRAM, Flash

 Requires current pulses, which scale linearly with feature size

 Expected to scale to 9nm (2022 [ITRS])

 Prototyped at 20nm (Raoux+, IBM JRD 2008)

 Can be denser than DRAM

 Can store multiple bits per cell due to large resistance range

 Prototypes with 2 bits/cell in ISSCC’08, 4 bits/cell by 2012

 Non-volatile

 Can retain data for >10 years at 85C

 No refresh needed, low idle power
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PCM Resistance → Value

Cell resistance

1 0Cell 
value:
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Multi-Level Cell PCM

 Multi-level cell: more than 1 bit per cell

 Further increases density by 2 to 4x [Lee+,ISCA'09]

 But MLC-PCM also has drawbacks

 Higher latency and energy than single-level cell PCM
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MLC-PCM Resistance → Value

Cell resistance

11 000110Cell 
value:

Bit 1 Bit 0
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MLC-PCM Resistance → Value

Cell resistance

11 000110Cell 
value:

Less margin between values
→ need more precise sensing/modification of cell contents
→ higher latency/energy (~2x for reads and 4x for writes)



Phase Change Memory Properties

 Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI, 
ISSCC)

 Derived PCM parameters for F=90nm

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 
Memory as a Scalable DRAM Alternative,” ISCA 2009.
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Phase Change Memory Properties: Latency

 Latency comparable to, but slower than DRAM

 Read Latency

 50ns: 4x DRAM, 10-3x NAND Flash

 Write Latency

 150ns: 12x DRAM

 Write Bandwidth

 5-10 MB/s: 0.1x DRAM, 1x NAND Flash
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Phase Change Memory Properties

 Dynamic Energy

 40 uA Rd, 150 uA Wr

 2-43x DRAM, 1x NAND Flash

 Endurance

 Writes induce phase change at 650C

 Contacts degrade from thermal expansion/contraction

 108 writes per cell

 10-8x DRAM, 103x NAND Flash

 Cell Size

 9-12F2 using BJT, single-level cells

 1.5x DRAM, 2-3x NAND     (will scale with feature size, MLC)
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Phase Change Memory: Pros and Cons

 Pros over DRAM

 Better technology scaling

 Non volatility

 Low idle power (no refresh)

 Cons

 Higher latencies: ~4-15x DRAM (especially write)

 Higher active energy: ~2-50x DRAM (especially write)

 Lower endurance (a cell dies after ~108 writes)

 Challenges in enabling PCM as DRAM replacement/helper:

 Mitigate PCM shortcomings

 Find the right way to place PCM in the system

 Ensure secure and fault-tolerant PCM operation
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PCM-based Main Memory: Challenges

 Where to place PCM in the memory hierarchy?

 Hybrid OS controlled PCM-DRAM

 Hybrid OS controlled PCM and hardware-controlled DRAM

 Pure PCM main memory

 How to mitigate shortcomings of PCM?

 How to minimize amount of DRAM in the system?

 How to take advantage of (byte-addressable and fast) non-
volatile main memory?

 Can we design specific-NVM-technology-agnostic techniques?
54



PCM-based Main Memory (I)

 How should PCM-based (main) memory be organized?

 Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09, Meza+ 

IEEE CAL’12]: 

 How to partition/migrate data between PCM and DRAM
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Hybrid Memory Systems: Challenges 

 Partitioning

 Should DRAM be a cache or main memory, or configurable?

 What fraction? How many controllers?

 Data allocation/movement (energy, performance, lifetime)

 Who manages allocation/movement?

 What are good control algorithms?

 How do we prevent degradation of service due to wearout?

 Design of cache hierarchy, memory controllers, OS

 Mitigate PCM shortcomings, exploit PCM advantages

 Design of PCM/DRAM chips and modules

 Rethink the design of PCM/DRAM with new requirements

56



PCM-based Main Memory (II)

 How should PCM-based (main) memory be organized?

 Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]: 

 How to redesign entire hierarchy (and cores) to overcome 
PCM shortcomings
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STT-MRAM as Main Memory

 Magnetic Tunnel Junction (MTJ) device

 Reference layer: Fixed magnetic orientation

 Free layer: Parallel or anti-parallel

 Magnetic orientation of the free layer 
determines logical state of device

 High vs. low resistance

 Write: Push large current through MTJ to 
change orientation of free layer

 Read: Sense current flow

 Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.

Reference Layer

Free Layer

Barrier

Reference Layer

Free Layer

Barrier

Logical 0

Logical 1

Word Line

Bit Line

Access
Transistor

MTJ

Sense Line



Aside: STT MRAM: Pros and Cons

 Pros over DRAM

 Better technology scaling

 Non volatility

 Low idle power (no refresh)

 Cons

 Higher write latency

 Higher write energy

 Reliability?

 Another level of freedom

 Can trade off non-volatility for lower write latency/energy (by 
reducing the size of the MTJ)
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An Initial Study: Replace DRAM with PCM

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 
Memory as a Scalable DRAM Alternative,” ISCA 2009.

 Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)

 Derived “average” PCM parameters for F=90nm
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Results: Naïve Replacement of DRAM with PCM

 Replace DRAM with PCM in a 4-core, 4MB L2 system

 PCM organized the same as DRAM: row buffers, banks, peripherals

 1.6x delay, 2.2x energy, 500-hour average lifetime

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 
Scalable DRAM Alternative,” ISCA 2009.
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Architecting PCM to Mitigate Shortcomings

 Idea 1: Use multiple narrow row buffers in each PCM chip

 Reduces array reads/writes  better endurance, latency, energy

 Idea 2: Write into array at

cache block or word 

granularity

 Reduces unnecessary wear
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DRAM PCM



Results: Architected PCM as Main Memory 

 1.2x delay, 1.0x energy, 5.6-year average lifetime

 Scaling improves energy, endurance, density

 Caveat 1: Worst-case lifetime is much shorter (no guarantees)

 Caveat 2: Intensive applications see large performance and energy hits

 Caveat 3: Optimistic PCM parameters?
64



More on PCM As Main Memory

 Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,
"Architecting Phase Change Memory as a Scalable DRAM 
Alternative"
Proceedings of the 36th International Symposium on Computer 
Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides 
(pdf)
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http://users.ece.cmu.edu/~omutlu/pub/pcm_isca09.pdf
http://isca09.cs.columbia.edu/
http://users.ece.cmu.edu/~omutlu/pub/lee_isca09_talk.pdf
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Hybrid Memory Systems

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid Memories,” 
IEEE Comp. Arch. Letters, 2012.

CPU
DRA
MCtrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies



One Option: DRAM as a Cache for PCM

 PCM is main memory; DRAM caches memory rows/blocks

 Benefits: Reduced latency on DRAM cache hit; write filtering

 Memory controller hardware manages the DRAM cache

 Benefit: Eliminates system software overhead

 Three issues:

 What data should be placed in DRAM versus kept in PCM?

 What is the granularity of data movement?

 How to design a low-cost hardware-managed DRAM cache?

 Two idea directions:

 Locality-aware data placement [Yoon+ , ICCD 2012]

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]
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DRAM as a Cache for PCM

 Goal: Achieve the best of both DRAM and PCM/NVM

 Minimize amount of DRAM w/o sacrificing performance, endurance

 DRAM as cache to tolerate PCM latency and write bandwidth

 PCM as main memory to provide large capacity at good cost and power
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PCM Write Queue

T=Tag-Store
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HDD

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009. 



Write Filtering Techniques

 Lazy Write: Pages from disk installed only in DRAM, not PCM

 Partial Writes:  Only dirty lines from DRAM page written back

 Page Bypass: Discard pages with poor reuse on DRAM eviction

 Qureshi et al., “Scalable high performance main memory system 
using phase-change memory technology,” ISCA 2009. 
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Results: DRAM as PCM Cache (I)

 Simulation of 16-core system, 8GB DRAM main-memory at 320 cycles, 
HDD (2 ms) with Flash (32 us) with Flash hit-rate of 99%

 Assumption: PCM 4x denser, 4x slower than DRAM 

 DRAM block size = PCM page size (4kB) 
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Results: DRAM as PCM Cache (II)

 PCM-DRAM Hybrid performs similarly to similar-size DRAM

 Significant energy savings with PCM-DRAM Hybrid

 Average lifetime: 9.7 years (no guarantees)
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More on DRAM-PCM Hybrid Memory

 Scalable High-Performance Main Memory System 
Using Phase-Change Memory Technology. 
Moinuddin K. Qureshi, Viji Srinivasan, and Jude A. Rivers 
Appears in the International Symposium on Computer 
Architecture (ISCA) 2009. 
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Hybrid Memory

• Key question:  How to place data between the 
heterogeneous memory devices?
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Hybrid Memory: A Closer Look
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DRAM
(small capacity cache)
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Memory channel
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Row (buffer) hit: Access data from row buffer  fast

Row (buffer) miss: Access data from cell array  slow

LOAD X LOAD X+1LOAD X+1LOAD X

Row Buffers and Latency
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Key Observation

• Row buffers exist in both DRAM and PCM

– Row hit latency similar in DRAM & PCM [Lee+ ISCA’09]

– Row miss latency small in DRAM, large in PCM

• Place data in DRAM which

– is likely to miss in the row buffer (low row buffer 
locality)miss penalty is smaller in DRAM

AND

– is reused many times cache only the data 
worth the movement cost and DRAM space
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14%

Benefit 1: Increased row buffer locality (RBL) 
in PCM by moving low RBL data to DRAM

17%

Benefit 1: Increased row buffer locality (RBL) 
in PCM by moving low RBL data to DRAM

Benefit 2: Reduced memory bandwidth 
consumption due to stricter caching criteria

Benefit 2: Reduced memory bandwidth 
consumption due to stricter caching criteria

Benefit 3: Balanced memory request load 
between DRAM and PCM
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than all PCM, within 29% of all DRAM performance
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For More on Hybrid Memory Data Placement

 HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, 
Rachael Harding, and Onur Mutlu,
"Row Buffer Locality Aware Caching Policies for 
Hybrid Memories"
Proceedings of the 30th IEEE International Conference on 
Computer Design (ICCD), Montreal, Quebec, Canada, 
September 2012. Slides (pptx) (pdf)
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The Problem with Large DRAM Caches

 A large DRAM cache requires a large metadata (tag + 
block-based information) store

 How do we design an efficient DRAM cache?
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Idea 1: Tags in Memory

 Store tags in the same row as data in DRAM

 Store metadata in same row as their data

 Data and metadata can be accessed together

 Benefit: No on-chip tag storage overhead

 Downsides: 

 Cache hit determined only after a DRAM access

 Cache hit requires two DRAM accesses
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Idea 2: Cache Tags in SRAM

 Recall Idea 1: Store all metadata in DRAM 

 To reduce metadata storage overhead

 Idea 2: Cache in on-chip SRAM frequently-accessed 
metadata

 Cache only a small amount to keep SRAM size small
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Idea 3: Dynamic Data Transfer Granularity

 Some applications benefit from caching more data

 They have good spatial locality

 Others do not

 Large granularity wastes bandwidth and reduces cache 
utilization

 Idea 3: Simple dynamic caching granularity policy

 Cost-benefit analysis to determine best DRAM cache block size

 Group main memory into sets of rows

 Some row sets follow a fixed caching granularity

 The rest of main memory follows the best granularity

 Cost–benefit analysis:  access latency versus number of cachings

 Performed every quantum
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TIMBER Tag Management

 A Tag-In-Memory BuffER (TIMBER)

 Stores recently-used tags in a small amount of SRAM

 Benefits: If tag is cached:

 no need to access DRAM twice

 cache hit determined quickly
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TIMBER Tag Management Example (I)

 Case 1: TIMBER hit
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TIMBER Tag Management Example (II)

 Case 2: TIMBER miss
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Metadata Storage Performance
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lookup access latency
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Metadata Storage Performance
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Metadata Storage Performance
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Dynamic Granularity Performance

10%

Reduced channel 
contention and 
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TIMBER Performance

-6%

Reduced channel 
contention and 

improved spatial locality

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and 
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
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TIMBER Energy Efficiency

Fewer migrations reduce 
transmitted data and 
channel contention

18%

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and 
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.



More on Large DRAM Cache Design

 Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and 
Parthasarathy Ranganathan, 
"Enabling Efficient and Scalable Hybrid Memories 
Using Fine-Granularity DRAM Cache Management"
IEEE Computer Architecture Letters (CAL), February 2012. 
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STT-MRAM As Main Memory



STT-MRAM as Main Memory

 Magnetic Tunnel Junction (MTJ) device

 Reference layer: Fixed magnetic orientation

 Free layer: Parallel or anti-parallel

 Magnetic orientation of the free layer 
determines logical state of device

 High vs. low resistance

 Write: Push large current through MTJ to 
change orientation of free layer

 Read: Sense current flow

 Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.
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STT-MRAM: Pros and Cons

 Pros over DRAM

 Better technology scaling

 Non volatility

 Low idle power (no refresh)

 Cons

 Higher write latency

 Higher write energy

 Reliability?

 Another level of freedom

 Can trade off non-volatility for lower write latency/energy (by 
reducing the size of the MTJ)
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Architected STT-MRAM as Main Memory

 4-core, 4GB main memory, multiprogrammed workloads

 ~6% performance loss, ~60% energy savings vs. DRAM
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Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.



More on STT-MRAM as Main Memory

 Emre Kultursay, Mahmut Kandemir, Anand
Sivasubramaniam, and Onur Mutlu,
"Evaluating STT-RAM as an Energy-Efficient Main 
Memory Alternative"
Proceedings of the 2013 IEEE International Symposium on 
Performance Analysis of Systems and Software (ISPASS), 
Austin, TX, April 2013. Slides (pptx) (pdf)
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Other Opportunities with Emerging Technologies

 Merging of memory and storage

 e.g., a single interface to manage all data

 New applications

 e.g., ultra-fast checkpoint and restore

 More robust system design

 e.g., reducing data loss

 Processing tightly-coupled with memory

 e.g., enabling efficient search and filtering
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Merging of Memory and Storage: 

Persistent Memory Managers



Coordinated Memory and Storage with NVM (I)

 The traditional two-level storage model is a bottleneck with NVM
 Volatile data in memory  a load/store interface

 Persistent data in storage  a file system interface

 Problem: Operating system (OS) and file system (FS) code to locate, translate, 
buffer data become performance and energy bottlenecks with fast NVM stores
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Coordinated Memory and Storage with NVM (II)

 Goal: Unify memory and storage management in a single unit to 
eliminate wasted work to locate, transfer, and translate data

 Improves both energy and performance

 Simplifies programming model as well
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Storage and Memory,” WEED 2013.



The Persistent Memory Manager (PMM)

 Exposes a load/store interface to access persistent data

 Applications can directly access persistent memory  no conversion, 

translation, location overhead for persistent data 

 Manages data placement, location, persistence, security

 To get the best of multiple forms of storage

 Manages metadata storage and retrieval

 This can lead to overheads that need to be managed

 Exposes hooks and interfaces for system software

 To enable better data placement and management decisions

 Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.
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The Persistent Memory Manager (PMM)

108

PMM uses access and hint information to allocate, locate, migrate 
and access data in the heterogeneous array of devices

Persistent objects



Efficient Data Mapping among Heterogeneous Devices

 A persistent memory exposes a large, persistent address space

 But it may use many different devices to satisfy this goal

 From fast, low-capacity volatile DRAM to slow, high-capacity non-
volatile HDD or Flash

 And other NVM devices in between

 Performance and energy can benefit from good placement of 
data among these devices

 Utilizing the strengths of each device and avoiding their weaknesses, 
if possible

 For example, consider two important application characteristics:  
locality and persistence
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Efficient Data Mapping among Heterogeneous Devices
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Columns in a column store that are
scanned through only infrequently

 place on Flash

Efficient Data Mapping among Heterogeneous Devices
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Frequently-updated index for a 
Content Delivery Network (CDN) 

 place in DRAM

Efficient Data Mapping among Heterogeneous Devices
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Performance Benefits of a Single-Level Store
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~5X

~24X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.



Energy Benefits of a Single-Level Store
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~5X

~16X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.



More on Single-Level Stores

 Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan 
Xie, and Onur Mutlu,
"A Case for Efficient Hardware-Software 
Cooperative Management of Storage and Memory"
Proceedings of the 5th Workshop on Energy-Efficient 
Design (WEED), Tel-Aviv, Israel, June 2013. Slides (pptx)
Slides (pdf)
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Enabling and Exploiting NVM: Issues

 Many issues and ideas from 
technology layer to algorithms layer

 Enabling NVM and hybrid memory

 How to tolerate errors?

 How to enable secure operation?

 How to tolerate performance and 
power shortcomings?

 How to minimize cost?

 Exploiting emerging technologies

 How to exploit non-volatility?

 How to minimize energy consumption?

 How to exploit NVM on chip?
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Security Challenges of Emerging Technologies

1. Limited endurance  Wearout attacks

2. Non-volatility  Data persists in memory after crash/poweroff

 Inconsistency and retrieval of privileged information

3. Multiple bits per cell  Information leakage (via side channel)
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Securing Emerging Memory Technologies

1. Limited endurance  Wearout attacks

Better architecting of memory chips to absorb writes

Hybrid memory system management

Online wearout attack detection

2. Non-volatility  Data persists in memory after crash/poweroff

 Inconsistency and retrieval of privileged information    

Efficient encryption/decryption of whole main memory

Hybrid memory system management

3. Multiple bits per cell  Information leakage (via side channel)

System design to hide side channel information
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Summary: Memory Scaling (with NVM)

 Main memory scaling problems are a critical bottleneck for 
system performance, efficiency, and usability

 Solution 1: Tolerate DRAM

 Solution 2: Enable emerging memory technologies 

 Replace DRAM with NVM by architecting NVM chips well

 Hybrid memory systems with automatic data management

 An exciting topic with many other solution directions & ideas

 Hardware/software/device cooperation essential

 Memory, storage, controller, software/app co-design needed

 Coordinated management of persistent memory and storage

 Application and hardware cooperative management of NVM

120



18-740/640 

Computer Architecture

Lecture 9: Emerging Memory Technologies

Prof. Onur Mutlu

Carnegie Mellon University

Fall 2015, 9/30/2015


