
18-740/640

Computer Architecture

Lecture 8: Main Memory System

Prof. Onur Mutlu

Carnegie Mellon University

Fall 2015, 9/28/2015

Required Readings

2

 Required Reading Assignment:
• Sec. 1 & 3 of B. Jacob, “The Memory System: You Can’t

Avoid It, You Can’t Ignore It, You Can’t Fake It,” Synthesis
Lectures on Computer Architecture, 2009.

 Recommended References:

• O. Mutlu and L. Subramanian, “Research Problems and
Opportunities in Memory Systems,” Supercomputing Frontiers and
Innovations, 2015.

• Lee et al., “Phase Change Technology and the Future of Main
Memory,” IEEE Micro, Jan/Feb 2010.

• Y. Kim, W. Yang, O. Mutlu, “Ramulator: A Fast and Extensible DRAM
Simulator,” IEEE Computer Architecture Letters, May 2015.

State-of-the-art in Main Memory…

 Onur Mutlu and Lavanya Subramanian,
"Research Problems and Opportunities in Memory
Systems"
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2015.

3

https://users.ece.cmu.edu/~omutlu/pub/memory-systems-research_superfri14.pdf
http://superfri.org/superfri

Recommended Readings on DRAM

 DRAM Organization and Operation Basics

 Sections 1 and 2 of: Lee et al., “Tiered-Latency DRAM: A Low
Latency and Low Cost DRAM Architecture,” HPCA 2013.

http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf

 Sections 1 and 2 of Kim et al., “A Case for Subarray-Level
Parallelism (SALP) in DRAM,” ISCA 2012.

http://users.ece.cmu.edu/~omutlu/pub/salp-dram_isca12.pdf

 DRAM Refresh Basics

 Sections 1 and 2 of Liu et al., “RAIDR: Retention-Aware
Intelligent DRAM Refresh,” ISCA 2012.
http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-
refresh_isca12.pdf

4

http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/salp-dram_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf

Simulating Main Memory

 How to evaluate future main memory systems?

 An open-source simulator and its brief description

 Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

5

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator

Why Is Main Memory

So Important Especially Today?

The Main Memory System

 Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

 Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

7

Processor

and caches
Main Memory Storage (SSD/HDD)

Memory System: A Shared Resource View

8

Storage

State of the Main Memory System

 Recent technology, architecture, and application trends

 lead to new requirements

 exacerbate old requirements

 DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

 Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

 We need to rethink the main memory system

 to fix DRAM issues and enable emerging technologies

 to satisfy all requirements

9

Major Trends Affecting Main Memory (I)

 Need for main memory capacity, bandwidth, QoS increasing

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending

10

Major Trends Affecting Main Memory (II)

 Need for main memory capacity, bandwidth, QoS increasing

 Multi-core: increasing number of cores/agents

 Data-intensive applications: increasing demand/hunger for data

 Consolidation: cloud computing, GPUs, mobile, heterogeneity

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending

11

Example: The Memory Capacity Gap

 Memory capacity per core expected to drop by 30% every two years

 Trends worse for memory bandwidth per core!
12

Core count doubling ~ every 2 years

DRAM DIMM capacity doubling ~ every 3 years

Lim et al., ISCA 2009

Major Trends Affecting Main Memory (III)

 Need for main memory capacity, bandwidth, QoS increasing

 Main memory energy/power is a key system design concern

 ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,

IEEE Computer 2003]

 DRAM consumes power even when not used (periodic refresh)

 DRAM technology scaling is ending

13

Major Trends Affecting Main Memory (IV)

 Need for main memory capacity, bandwidth, QoS increasing

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending

 ITRS projects DRAM will not scale easily below X nm

 Scaling has provided many benefits:

 higher capacity (density), lower cost, lower energy

14

The DRAM Scaling Problem

 DRAM stores charge in a capacitor (charge-based memory)

 Capacitor must be large enough for reliable sensing

 Access transistor should be large enough for low leakage and high
retention time

 Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

 DRAM capacity, cost, and energy/power hard to scale

15

Row of Cells

Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row

Hammered Row

Repeatedly opening and closing a row enough times within a
refresh interval induces disturbance errors in adjacent rows in
most real DRAM chips you can buy today

OpenedClosed

16

An Example of the DRAM Scaling Problem

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C company

Up to

1.0×107

errors

Up to

2.7×106

errors

Up to

3.3×105

errors

17

Most DRAM Modules Are at Risk

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

DRAM Modulex86 CPU

Y

X

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)

clflush (Y)

mfence

jmp loop

https://github.com/CMU-SAFARI/rowhammer

https://github.com/CMU-SAFARI/rowhammer

DRAM Modulex86 CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)

clflush (Y)

mfence

jmp loop

Y

X

https://github.com/CMU-SAFARI/rowhammer

https://github.com/CMU-SAFARI/rowhammer

DRAM Modulex86 CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)

clflush (Y)

mfence

jmp loop

Y

X

https://github.com/CMU-SAFARI/rowhammer

https://github.com/CMU-SAFARI/rowhammer

DRAM Modulex86 CPU

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)

clflush (Y)

mfence

jmp loop

Y

X

https://github.com/CMU-SAFARI/rowhammer

https://github.com/CMU-SAFARI/rowhammer

• A real reliability & security issue

• In a more controlled environment, we can
induce as many as ten million disturbance errors

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M/sec

22Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors,” ISCA 2014.

Observed Errors in Real Systems

23

All modules from 2012–2013 are vulnerable

First
Appearance

Errors vs. Vintage

Experimental DRAM Testing Infrastructure

24

An Experimental Study of Data Retention
Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques
for DRAM Retention Failures: A
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case (Lee et al.,
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf

Experimental Infrastructure (DRAM)

25Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

1. Most Modules Are at Risk

2. Errors vs. Vintage

3. Error = Charge Loss

4. Adjacency: Aggressor & Victim

5. Sensitivity Studies

6. Other Results in Paper

7. Solution Space

26

RowHammer Characterization Results

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

One Can Take Over an Otherwise-Secure System

27

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

RowHammer Security Attack Example
 “Rowhammer” is a problem with some recent DRAM devices in which

repeatedly accessing a row of memory can cause bit flips in adjacent rows
(Kim et al., ISCA 2014).

 Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors (Kim et al., ISCA 2014)

 We tested a selection of laptops and found that a subset of them
exhibited the problem.

 We built two working privilege escalation exploits that use this effect.

 Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

 One exploit uses rowhammer-induced bit flips to gain kernel privileges on
x86-64 Linux when run as an unprivileged userland process.

 When run on a machine vulnerable to the rowhammer problem, the
process was able to induce bit flips in page table entries (PTEs).

 It was able to use this to gain write access to its own page table, and
hence gain read-write access to all of physical memory.

28
Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

Security Implications

29

Recap: The DRAM Scaling Problem

30

How Do We Solve The Problem?

 Fix it: Make DRAM and controllers more intelligent

 New interfaces, functions, architectures: system-DRAM codesign

 Eliminate or minimize it: Replace or (more likely) augment
DRAM with a different technology

 New technologies and system-wide rethinking of memory &
storage

 Embrace it: Design heterogeneous memories (none of which
are perfect) and map data intelligently across them

 New models for data management and maybe usage

 …

31

Solutions (to memory scaling) require
software/hardware/device cooperation

Microarchitecture

ISA

Programs

Algorithms

Problems

Logic

Devices

Runtime System

(VM, OS, MM)

User

Solution 1: Fix DRAM

 Overcome DRAM shortcomings with

 System-DRAM co-design

 Novel DRAM architectures, interface, functions

 Better waste management (efficient utilization)

 Key issues to tackle

 Enable reliability at low cost

 Reduce energy

 Improve latency and bandwidth

 Reduce waste (capacity, bandwidth, latency)

 Enable computation close to data

32

Solution 1: Fix DRAM
 Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

 Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

 Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

 Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.

 Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.

 Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.

 Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.

 Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014.

 Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.

 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

 Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.

 Qureshi+, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.

 Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” DSN
2015.

 Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.

 Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015.

 Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.

 Ahn+, “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.

 Lee+, “Decoupled Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM,” PACT 2015.

 Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses,” MICRO
2015.

 Avoid DRAM:

 Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.

 Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.

 Seshadri+, “The Dirty-Block Index,” ISCA 2014.

 Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.

 Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps,”
ISCA 2015.

33

Solution 2: Emerging Memory Technologies
 Some emerging resistive memory technologies seem more

scalable than DRAM (and they are non-volatile)

 Example: Phase Change Memory

 Expected to scale to 9nm (2022 [ITRS])

 Expected to be denser than DRAM: can store multiple bits/cell

 But, emerging technologies have shortcomings as well

 Can they be enabled to replace/augment/surpass DRAM?

 Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, Micro’10.

 Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.

 Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.

 Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

 Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.

 Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.

 Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.

 Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,”
ACM TACO 2014.

 Ren+, “Dual-Scheme Checkpointing: “A Software-Transparent Mechanism for Supporting Crash Consistency in
Persistent Memory Systems,” MICRO 2015.

34

Solution 3: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Technology X (e.g., PCM)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

App/Data A App/Data B App/Data C

M
em

o
ry

 e
rr

o
r

vu
ln

er
ab

ili
ty

Vulnerable
data

Tolerant
data

Exploiting Memory Error Tolerance
with Hybrid Memory Systems

Heterogeneous-Reliability Memory [DSN 2014]

Low-cost memoryReliable memory

Vulnerable
data

Tolerant
data

Vulnerable
data

Tolerant
data

• ECC protected
• Well-tested chips

• NoECC or Parity
• Less-tested chips

36

On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %

An Orthogonal Issue: Memory Interference

Main
Memory

37

Core Core

Core Core

Cores’ interfere with each other when accessing shared main memory

 Problem: Memory interference between cores is uncontrolled

 unfairness, starvation, low performance

 uncontrollable, unpredictable, vulnerable system

 Solution: QoS-Aware Memory Systems

 Hardware designed to provide a configurable fairness substrate

 Application-aware memory scheduling, partitioning, throttling

 Software designed to configure the resources to satisfy different
QoS goals

 QoS-aware memory systems can provide predictable
performance and higher efficiency

An Orthogonal Issue: Memory Interference

Goal: Predictable Performance in Complex Systems

 Heterogeneous agents: CPUs, GPUs, and HWAs

 Main memory interference between CPUs, GPUs, HWAs

39

CPU CPU CPU CPU

Shared Cache

GPU

HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance?

Strong Memory Service Guarantees

 Goal: Satisfy performance/SLA requirements in the
presence of shared main memory, heterogeneous agents,
and hybrid memory/storage

 Approach:

 Develop techniques/models to accurately estimate the
performance loss of an application/agent in the presence of
resource sharing

 Develop mechanisms (hardware and software) to enable the
resource partitioning/prioritization needed to achieve the
required performance levels for all applications

 All the while providing high system performance

 Subramanian et al., “MISE: Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems,” HPCA 2013.

 Subramanian et al., “The Application Slowdown Model,” MICRO 2015.
40

Main Memory Fundamentals

Main Memory in the System

42

CORE 1

L
2
 C

A
C

H
E

 0

S
H

A
R

E
D

 L
3
 C

A
C

H
E

D
R

A
M

 IN
T

E
R

F
A

C
E

CORE 0

CORE 2 CORE 3
L

2
 C

A
C

H
E

 1

L
2
 C

A
C

H
E

 2

L
2
 C

A
C

H
E

 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY

CONTROLLER

Ideal Memory

 Zero access time (latency)

 Infinite capacity

 Zero cost

 Infinite bandwidth (to support multiple accesses in parallel)

43

The Problem

 Ideal memory’s requirements oppose each other

 Bigger is slower

 Bigger Takes longer to determine the location

 Faster is more expensive

 Memory technology: SRAM vs. DRAM

 Higher bandwidth is more expensive

 Need more banks, more ports, higher frequency, or faster
technology

44

Memory Technology: DRAM

 Dynamic random access memory

 Capacitor charge state indicates stored value

 Whether the capacitor is charged or discharged indicates
storage of 1 or 0

 1 capacitor

 1 access transistor

 Capacitor leaks through the RC path

 DRAM cell loses charge over time

 DRAM cell needs to be refreshed

 Read Liu et al., “RAIDR: Retention-aware Intelligent DRAM
Refresh,” ISCA 2012.

45

row enable

_
b
it
lin

e

 Static random access memory

 Two cross coupled inverters store a single bit

 Feedback path enables the stored value to persist in the “cell”

 4 transistors for storage

 2 transistors for access

Memory Technology: SRAM

46

row select

b
it
lin

e

_
b
it
lin

e

An Aside: Phase Change Memory

 Phase change material (chalcogenide glass) exists in two states:

 Amorphous: Low optical reflexivity and high electrical resistivity

 Crystalline: High optical reflexivity and low electrical resistivity

47

PCM is resistive memory: High resistance (0), Low resistance (1)

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM
Alternative,” ISCA 2009.

Memory Bank: A Fundamental Concept

 Interleaving (banking)

 Problem: a single monolithic memory array takes long to
access and does not enable multiple accesses in parallel

 Goal: Reduce the latency of memory array access and enable
multiple accesses in parallel

 Idea: Divide the array into multiple banks that can be
accessed independently (in the same cycle or in consecutive
cycles)

 Each bank is smaller than the entire memory storage

 Accesses to different banks can be overlapped

 An issue: How do you map data to different banks? (i.e., how
do you interleave data across banks?)

48

Memory Bank Organization and Operation

 Read access sequence:

1. Decode row address
& drive word-lines

2. Selected bits drive
bit-lines

• Entire row read

3. Amplify row data

4. Decode column
address & select subset
of row

• Send to output

5. Precharge bit-lines

• For next access

49

Why Memory Hierarchy?

 We want both fast and large

 But we cannot achieve both with a single level of memory

 Idea: Have multiple levels of storage (progressively bigger
and slower as the levels are farther from the processor)
and ensure most of the data the processor needs is kept in
the fast(er) level(s)

50

Memory Hierarchy

 Fundamental tradeoff

 Fast memory: small

 Large memory: slow

 Idea: Memory hierarchy

 Latency, cost, size,

bandwidth

51

CPU

Main

Memory

(DRAM)RF

Cache

Hard Disk

Caching Basics: Exploit Temporal Locality

 Idea: Store recently accessed data in automatically
managed fast memory (called cache)

 Anticipation: the data will be accessed again soon

 Temporal locality principle

 Recently accessed data will be again accessed in the near
future

 This is what Maurice Wilkes had in mind:

 Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

 “The use is discussed of a fast core memory of, say 32000 words
as a slave to a slower core memory of, say, one million words in
such a way that in practical cases the effective access time is
nearer that of the fast memory than that of the slow memory.”

52

Caching Basics: Exploit Spatial Locality

 Idea: Store addresses adjacent to the recently accessed
one in automatically managed fast memory

 Logically divide memory into equal size blocks

 Fetch to cache the accessed block in its entirety

 Anticipation: nearby data will be accessed soon

 Spatial locality principle

 Nearby data in memory will be accessed in the near future

 E.g., sequential instruction access, array traversal

 This is what IBM 360/85 implemented

 16 Kbyte cache with 64 byte blocks

 Liptay, “Structural aspects of the System/360 Model 85 II: the
cache,” IBM Systems Journal, 1968.

53

A Note on Manual vs. Automatic Management

 Manual: Programmer manages data movement across levels

-- too painful for programmers on substantial programs

 “core” vs “drum” memory in the 50’s

 still done in some embedded processors (on-chip scratch pad
SRAM in lieu of a cache)

 Automatic: Hardware manages data movement across levels,
transparently to the programmer

++ programmer’s life is easier

 simple heuristic: keep most recently used items in cache

 the average programmer doesn’t need to know about it

 You don’t need to know how big the cache is and how it works to
write a “correct” program! (What if you want a “fast” program?)

54

Automatic Management in Memory Hierarchy

 Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965.

 “By a slave memory I mean one which automatically
accumulates to itself words that come from a slower main
memory, and keeps them available for subsequent use
without it being necessary for the penalty of main memory
access to be incurred again.”

55

A Modern Memory Hierarchy

56

Register File
32 words, sub-nsec

L1 cache
~32 KB, ~nsec

L2 cache
512 KB ~ 1MB, many nsec

L3 cache,
.....

Main memory (DRAM),
GB, ~100 nsec

Swap Disk
100 GB, ~10 msec

manual/compiler
register spilling

automatic
demand
paging

Automatic
HW cache
management

Memory
Abstraction

The DRAM Subsystem

DRAM Subsystem Organization

 Channel

 DIMM

 Rank

 Chip

 Bank

 Row/Column

58

Page Mode DRAM

 A DRAM bank is a 2D array of cells: rows x columns

 A “DRAM row” is also called a “DRAM page”

 “Sense amplifiers” also called “row buffer”

 Each address is a <row,column> pair

 Access to a “closed row”

 Activate command opens row (placed into row buffer)

 Read/write command reads/writes column in the row buffer

 Precharge command closes the row and prepares the bank for
next access

 Access to an “open row”

 No need for activate command

59

The DRAM Bank Structure

60

DRAM Bank Operation

61

Row Buffer

(Row 0, Column 0)

R
o
w

 d
e
c
o
d
e
r

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
o
w

s

Access Address:

The DRAM Chip

 Consists of multiple banks (8 is a common number today)

 Banks share command/address/data buses

 The chip itself has a narrow interface (4-16 bits per read)

 Changing the number of banks, size of the interface (pins),
whether or not command/address/data buses are shared
has significant impact on DRAM system cost

62

128M x 8-bit DRAM Chip

63

DRAM Rank and Module

 Rank: Multiple chips operated together to form a wide
interface

 All chips comprising a rank are controlled at the same time

 Respond to a single command

 Share address and command buses, but provide different data

 A DRAM module consists of one or more ranks

 E.g., DIMM (dual inline memory module)

 This is what you plug into your motherboard

 If we have chips with 8-bit interface, to read 8 bytes in a
single access, use 8 chips in a DIMM

64

A 64-bit Wide DIMM (One Rank)

65

DRAM

Chip

DRAM

Chip

DRAM

Chip

DRAM

Chip

DRAM

Chip

DRAM

Chip

DRAM

Chip

DRAM

Chip

Command Data

A 64-bit Wide DIMM (One Rank)

 Advantages:
 Acts like a high-

capacity DRAM chip
with a wide
interface

 Flexibility: memory
controller does not
need to deal with
individual chips

 Disadvantages:
 Granularity:

Accesses cannot be
smaller than the
interface width

66

Multiple DIMMs

67

 Advantages:

 Enables even
higher capacity

 Disadvantages:

 Interconnect
complexity and
energy
consumption
can be high

 Scalability is

limited by this

DRAM Channels

 2 Independent Channels: 2 Memory Controllers (Above)

 2 Dependent/Lockstep Channels: 1 Memory Controller with
wide interface (Not shown above)

68

Generalized Memory Structure

69

Generalized Memory Structure

70

Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

The DRAM Subsystem

The Top Down View

DRAM Subsystem Organization

 Channel

 DIMM

 Rank

 Chip

 Bank

 Row/Column

72

The DRAM subsystem

Memory channel Memory channel

DIMM (Dual in-line memory module)

Processor

“Channel”

Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Rank 0: collection of 8 chips Rank 1

Rank

Rank 0 (Front) Rank 1 (Back)

Data <0:63>CS <0:1>Addr/Cmd

<0:63><0:63>

Memory channel

Breaking down a Rank

Rank 0

<0:63>

C
h

ip
 0

C
h

ip
 1

C
h

ip
 7. . .

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

Breaking down a Chip

C
h

ip
 0

<0
:7

>

Bank 0

<0:7>

<0:7>

<0:7>

...

<0
:7

>

Breaking down a Bank

Bank 0

<0
:7

>

row 0

row 16k-1

...
2kB

1B

1B (column)

1B

Row-buffer

1B

...
<0

:7
>

DRAM Subsystem Organization

 Channel

 DIMM

 Rank

 Chip

 Bank

 Row/Column

80

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Channel 0

DIMM 0

Rank 0

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

Row 0
Col 0

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

8B

Row 0
Col 0

. . .

8B

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

8B

Row 0
Col 1

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

8B

8B

Row 0
Col 1

. . .

8B

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

8B

8B

Row 0
Col 1

A 64B cache block takes 8 I/O cycles to transfer.

During the process, 8 columns are read sequentially.

. . .

Latency Components: Basic DRAM Operation

 CPU → controller transfer time

 Controller latency

 Queuing & scheduling delay at the controller

 Access converted to basic commands

 Controller → DRAM transfer time

 DRAM bank latency

 Simple CAS (column address strobe) if row is “open” OR

 RAS (row address strobe) + CAS if array precharged OR

 PRE + RAS + CAS (worst case)

 DRAM → Controller transfer time

 Bus latency (BL)

 Controller to CPU transfer time

88

Multiple Banks (Interleaving) and Channels

 Multiple banks

 Enable concurrent DRAM accesses

 Bits in address determine which bank an address resides in

 Multiple independent channels serve the same purpose

 But they are even better because they have separate data buses

 Increased bus bandwidth

 Enabling more concurrency requires reducing

 Bank conflicts

 Channel conflicts

 How to select/randomize bank/channel indices in address?

 Lower order bits have more entropy

 Randomizing hash functions (XOR of different address bits)

89

How Multiple Banks Help

90

Address Mapping (Single Channel)

 Single-channel system with 8-byte memory bus

 2GB memory, 8 banks, 16K rows & 2K columns per bank

 Row interleaving

 Consecutive rows of memory in consecutive banks

 Accesses to consecutive cache blocks serviced in a pipelined manner

 Cache block interleaving

 Consecutive cache block addresses in consecutive banks

 64 byte cache blocks

 Accesses to consecutive cache blocks can be serviced in parallel
91

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

Bank Mapping Randomization

 DRAM controller can randomize the address mapping to
banks so that bank conflicts are less likely

 Reading:

 Rau, “Pseudo-randomly Interleaved Memory,” ISCA 1991.

92

Column (11 bits)3 bits Byte in bus (3 bits)

XOR

Bank index

(3 bits)

Address Mapping (Multiple Channels)

 Where are consecutive cache blocks?

93

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Interaction with VirtualPhysical Mapping

 Operating System influences where an address maps to in
DRAM

 Operating system can influence which bank/channel/rank a
virtual page is mapped to.

 It can perform page coloring to

 Minimize bank conflicts

 Minimize inter-application interference [Muralidhara+ MICRO’11]

 Minimize latency in the network [Das+ HPCA’13]

94

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)

Page offset (12 bits)Physical Frame number (19 bits)

Page offset (12 bits)Virtual Page number (52 bits) VA

PA

PA

More on Reducing Bank Conflicts

 Read Sections 1 through 4 of:

 Kim et al., “A Case for Exploiting Subarray-Level Parallelism in
DRAM,” ISCA 2012.

95

DRAM Refresh (I)

 DRAM capacitor charge leaks over time

 The memory controller needs to read each row periodically
to restore the charge

 Activate + precharge each row every N ms

 Typical N = 64 ms

 Implications on performance?

-- DRAM bank unavailable while refreshed

-- Long pause times: If we refresh all rows in burst, every 64ms
the DRAM will be unavailable until refresh ends

 Burst refresh: All rows refreshed immediately after one
another

 Distributed refresh: Each row refreshed at a different time,
at regular intervals

96

DRAM Refresh (II)

 Distributed refresh eliminates long pause times

 How else we can reduce the effect of refresh on
performance?

 Can we reduce the number of refreshes?

97

-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM density scaling

Downsides of DRAM Refresh

98

Liu et al., “RAIDR: Retention-aware Intelligent DRAM Refresh,” ISCA 2012.

Memory Controllers

DRAM versus Other Types of Memories

 Long latency memories have similar characteristics that
need to be controlled.

 The following discussion will use DRAM as an example, but
many scheduling and control issues are similar in the
design of controllers for other types of memories

 Flash memory

 Other emerging memory technologies

 Phase Change Memory

 Spin-Transfer Torque Magnetic Memory

 These other technologies can place other demands on the
controller

100

DRAM Types

 DRAM has different types with different interfaces optimized
for different purposes

 Commodity: DDR, DDR2, DDR3, DDR4, …

 Low power (for mobile): LPDDR1, …, LPDDR5, …

 High bandwidth (for graphics): GDDR2, …, GDDR5, …

 Low latency: eDRAM, RLDRAM, …

 3D stacked: WIO, HBM, HMC, …

 …

 Underlying microarchitecture is fundamentally the same

 A flexible memory controller can support various DRAM types

 This complicates the memory controller

 Difficult to support all types (and upgrades)

101

DRAM Types (II)

102

Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE Comp Arch Letters 2015.

DRAM Controller: Functions

 Ensure correct operation of DRAM (refresh and timing)

 Service DRAM requests while obeying timing constraints of
DRAM chips

 Constraints: resource conflicts (bank, bus, channel), minimum
write-to-read delays

 Translate requests to DRAM command sequences

 Buffer and schedule requests to for high performance + QoS

 Reordering, row-buffer, bank, rank, bus management

 Manage power consumption and thermals in DRAM

 Turn on/off DRAM chips, manage power modes

103

DRAM Controller: Where to Place

 In chipset

+ More flexibility to plug different DRAM types into the system

+ Less power density in the CPU chip

 On CPU chip

+ Reduced latency for main memory access

+ Higher bandwidth between cores and controller

 More information can be communicated (e.g. request’s
importance in the processing core)

104

A Modern DRAM Controller (I)

105

106

A Modern DRAM Controller

DRAM Scheduling Policies (I)

 FCFS (first come first served)

 Oldest request first

 FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate maximize DRAM throughput

 Actually, scheduling is done at the command level

 Column commands (read/write) prioritized over row commands
(activate/precharge)

 Within each group, older commands prioritized over younger ones

107

DRAM Scheduling Policies (II)

 A scheduling policy is a request prioritization order

 Prioritization can be based on

 Request age

 Row buffer hit/miss status

 Request type (prefetch, read, write)

 Requestor type (load miss or store miss)

 Request criticality

 Oldest miss in the core?

 How many instructions in core are dependent on it?

 Will it stall the processor?

 Interference caused to other cores

 …

108

Row Buffer Management Policies

 Open row
 Keep the row open after an access

+ Next access might need the same row row hit

-- Next access might need a different row row conflict, wasted energy

 Closed row
 Close the row after an access (if no other requests already in the request

buffer need the same row)

+ Next access might need a different row avoid a row conflict

-- Next access might need the same row extra activate latency

 Adaptive policies

 Predict whether or not the next access to the bank will be to
the same row

109

Open vs. Closed Row Policies

Policy First access Next access Commands
needed for next
access

Open row Row 0 Row 0 (row hit) Read

Open row Row 0 Row 1 (row
conflict)

Precharge +
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in
request buffer
(row hit)

Read

Closed row Row 0 Row 0 – access not
in request buffer
(row closed)

Activate Row 0 +
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 +
Read + Precharge

110

DRAM Power Management

 DRAM chips have power modes

 Idea: When not accessing a chip power it down

 Power states

 Active (highest power)

 All banks idle

 Power-down

 Self-refresh (lowest power)

 Tradeoff: State transitions incur latency during which the
chip cannot be accessed

111

Difficulty of DRAM Control

Why are DRAM Controllers Difficult to Design?

 Need to obey DRAM timing constraints for correctness

 There are many (50+) timing constraints in DRAM

 tWTR: Minimum number of cycles to wait before issuing a read
command after a write command is issued

 tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

 …

 Need to keep track of many resources to prevent conflicts

 Channels, banks, ranks, data bus, address bus, row buffers

 Need to handle DRAM refresh

 Need to manage power consumption

 Need to optimize performance & QoS (in the presence of constraints)

 Reordering is not simple

 Fairness and QoS needs complicates the scheduling problem

113

Many DRAM Timing Constraints

 From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.

114

More on DRAM Operation

 Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,” ISCA 2012.

 Lee et al., “Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

115

DRAM Controller Design Is Becoming More Difficult

 Heterogeneous agents: CPUs, GPUs, and HWAs

 Main memory interference between CPUs, GPUs, HWAs

 Many timing constraints for various memory types

 Many goals at the same time: performance, fairness, QoS,
energy efficiency, …

116

CPU CPU CPU CPU

Shared Cache

GPU

HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

Reality and Dream

 Reality: It difficult to optimize all these different constraints
while maximizing performance, QoS, energy-efficiency, …

 Dream: Wouldn’t it be nice if the DRAM controller
automatically found a good scheduling policy on its own?

117

Self-Optimizing DRAM Controllers

 Problem: DRAM controllers difficult to design It is difficult for

human designers to design a policy that can adapt itself very well
to different workloads and different system conditions

 Idea: Design a memory controller that adapts its scheduling
policy decisions to workload behavior and system conditions
using machine learning.

 Observation: Reinforcement learning maps nicely to memory
control.

 Design: Memory controller is a reinforcement learning agent that
dynamically and continuously learns and employs the best
scheduling policy.

118Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich
Caruana,
"Self Optimizing Memory Controllers: A
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on
Computer Architecture (ISCA), pages 39-50, Beijing,
China, June 2008.

119

Goal: Learn to choose actions to maximize r0 + r1 + 2r2 + … (0 < 1)

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Next Lecture (9/30): Required Readings

120

 Required Reading Assignment:
• Lee et al., “Phase Change Technology and the Future of Main

Memory,” IEEE Micro, Jan/Feb 2010.

 Recommended References:

• M. Qureshi et al., “Scalable high performance main memory system
using phase-change memory technology,” ISCA 2009.

• H. Yoon et al., “Row buffer locality aware caching policies for hybrid
memories,” ICCD 2012.

• J. Zhao et al., “FIRM: Fair and High-Performance Memory Control for
Persistent Memory Systems,” MICRO 2014.

18-740/640

Computer Architecture

Lecture 8: Main Memory System

Prof. Onur Mutlu

Carnegie Mellon University

Fall 2015, 9/28/2015

We did not cover the remaining slides in

lecture. They are for your benefit.

Self-Optimizing DRAM Controllers

 Dynamically adapt the memory scheduling policy via
interaction with the system at runtime

 Associate system states and actions (commands) with long term
reward values: each action at a given state leads to a learned reward

 Schedule command with highest estimated long-term reward value in
each state

 Continuously update reward values for <state, action> pairs based on
feedback from system

123

Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

124

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

States, Actions, Rewards

125

❖ Reward function

• +1 for scheduling
Read and Write
commands

• 0 at all other
times

Goal is to maximize
data bus
utilization

❖ State attributes

• Number of reads,
writes, and load
misses in
transaction queue

• Number of pending
writes and ROB
heads waiting for
referenced row

• Request’s relative

ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP

Performance Results

126

Self Optimizing DRAM Controllers

 Advantages

+ Adapts the scheduling policy dynamically to changing workload
behavior and to maximize a long-term target

+ Reduces the designer’s burden in finding a good scheduling
policy. Designer specifies:

1) What system variables might be useful

2) What target to optimize, but not how to optimize it

 Disadvantages and Limitations

-- Black box: designer much less likely to implement what she
cannot easily reason about

-- How to specify different reward functions that can achieve
different objectives? (e.g., fairness, QoS)

-- Hardware complexity?
127

More on Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

128

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Evaluating New Ideas

for New (Memory) Architectures

Simulation: The Field of Dreams

Dreaming and Reality

 An architect is in part a dreamer, a creator

 Simulation is a key tool of the architect

 Simulation enables

 The exploration of many dreams

 A reality check of the dreams

 Deciding which dream is better

 Simulation also enables

 The ability to fool yourself with false dreams

131

Why High-Level Simulation?

 Problem: RTL simulation is intractable for design space
exploration too time consuming to design and evaluate

 Especially over a large number of workloads

 Especially if you want to predict the performance of a good
chunk of a workload on a particular design

 Especially if you want to consider many design choices

 Cache size, associativity, block size, algorithms

 Memory control and scheduling algorithms

 In-order vs. out-of-order execution

 Reservation station sizes, ld/st queue size, register file size, …

 …

 Goal: Explore design choices quickly to see their impact on
the workloads we are designing the platform for

132

Different Goals in Simulation
 Explore the design space quickly and see what you want to

 potentially implement in a next-generation platform

 propose as the next big idea to advance the state of the art

 the goal is mainly to see relative effects of design decisions

 Match the behavior of an existing system so that you can

 debug and verify it at cycle-level accuracy

 propose small tweaks to the design that can make a difference in
performance or energy

 the goal is very high accuracy

 Other goals in-between:

 Refine the explored design space without going into a full
detailed, cycle-accurate design

 Gain confidence in your design decisions made by higher-level
design space exploration

133

Tradeoffs in Simulation

 Three metrics to evaluate a simulator

 Speed

 Flexibility

 Accuracy

 Speed: How fast the simulator runs (xIPS, xCPS)

 Flexibility: How quickly one can modify the simulator to
evaluate different algorithms and design choices?

 Accuracy: How accurate the performance (energy) numbers
the simulator generates are vs. a real design (Simulation
error)

 The relative importance of these metrics varies depending
on where you are in the design process

134

Trading Off Speed, Flexibility, Accuracy

 Speed & flexibility affect:

 How quickly you can make design tradeoffs

 Accuracy affects:

 How good your design tradeoffs may end up being

 How fast you can build your simulator (simulator design time)

 Flexibility also affects:

 How much human effort you need to spend modifying the
simulator

 You can trade off between the three to achieve design
exploration and decision goals

135

High-Level Simulation

 Key Idea: Raise the abstraction level of modeling to give up
some accuracy to enable speed & flexibility (and quick
simulator design)

 Advantage

+ Can still make the right tradeoffs, and can do it quickly

+ All you need is modeling the key high-level factors, you can
omit corner case conditions

+ All you need is to get the “relative trends” accurately, not
exact performance numbers

 Disadvantage

-- Opens up the possibility of potentially wrong decisions

-- How do you ensure you get the “relative trends” accurately?
136

Simulation as Progressive Refinement

 High-level models (Abstract, C)

 …

 Medium-level models (Less abstract)

 …

 Low-level models (RTL with eveything modeled)

 …

 Real design

 As you refine (go down the above list)

 Abstraction level reduces

 Accuracy (hopefully) increases (not necessarily, if not careful)

 Speed and flexibility reduce

 You can loop back and fix higher-level models
137

Making The Best of Architecture

 A good architect is comfortable at all levels of refinement

 Including the extremes

 A good architect knows when to use what type of
simulation

138

Ramulator: A Fast and Extensible

DRAM Simulator

[IEEE Comp Arch Letters’15]

139

Ramulator Motivation

 DRAM and Memory Controller landscape is changing

 Many new and upcoming standards

 Many new controller designs

 A fast and easy-to-extend simulator is very much needed

140

Ramulator

 Provides out-of-the box support for many DRAM standards:

 DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

 ~2.5X faster than fastest open-source simulator

 Modular and extensible to different standards

141

Case Study: Comparison of DRAM Standards

142

Across 22
workloads,
simple CPU
model

Ramulator Paper and Source Code

 Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

 Source code is released under the liberal MIT License

 https://github.com/CMU-SAFARI/ramulator

143

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

Extra Credit Assignment

 Review the Ramulator paper

 Send your reviews to me (omutlu@gmail.com)

 Download and run Ramulator

 Compare DDR3, DDR4, SALP, HBM for the libquantum
benchmark (provided in Ramulator repository)

 Send your brief report to me

144

mailto:omutlu@gmail.com

