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Required Readings
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 Required Reading Assignment:
• Sec. 1 & 3 of  B. Jacob, “The Memory System: You Can’t 

Avoid It, You Can’t Ignore It, You Can’t Fake It,” Synthesis 
Lectures on Computer Architecture, 2009.

 Recommended References:

• O. Mutlu and L. Subramanian,  “Research Problems and 
Opportunities in Memory Systems,”  Supercomputing Frontiers and 
Innovations, 2015.

• Lee et al., “Phase Change Technology and the Future of Main 
Memory,” IEEE Micro, Jan/Feb 2010.

• Y. Kim, W. Yang, O. Mutlu, “Ramulator: A Fast and Extensible DRAM 
Simulator,” IEEE Computer Architecture Letters, May 2015.



State-of-the-art in Main Memory…

 Onur Mutlu and Lavanya Subramanian,
"Research Problems and Opportunities in Memory 
Systems"
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2015.
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https://users.ece.cmu.edu/~omutlu/pub/memory-systems-research_superfri14.pdf
http://superfri.org/superfri


Recommended Readings on DRAM

 DRAM Organization and Operation Basics

 Sections 1 and 2 of: Lee et al., “Tiered-Latency DRAM: A Low 
Latency and Low Cost DRAM Architecture,” HPCA 2013.

http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf

 Sections 1 and 2 of Kim et al., “A Case for Subarray-Level 
Parallelism (SALP) in DRAM,” ISCA 2012.

http://users.ece.cmu.edu/~omutlu/pub/salp-dram_isca12.pdf

 DRAM Refresh Basics

 Sections 1 and 2 of Liu et al., “RAIDR: Retention-Aware 
Intelligent DRAM Refresh,” ISCA 2012.  
http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-
refresh_isca12.pdf
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http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/salp-dram_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf


Simulating Main Memory

 How to evaluate future main memory systems?

 An open-source simulator and its brief description

 Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 
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http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator


Why Is Main Memory 

So Important Especially Today?



The Main Memory System

 Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

 Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits
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Processor

and caches
Main Memory Storage (SSD/HDD)



Memory System: A Shared Resource View
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Storage



State of the Main Memory System

 Recent technology, architecture, and application trends

 lead to new requirements

 exacerbate old requirements

 DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements

 Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging

 We need to rethink the main memory system

 to fix DRAM issues and enable emerging technologies 

 to satisfy all requirements
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Major Trends Affecting Main Memory (I)

 Need for main memory capacity, bandwidth, QoS increasing 

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending 
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Major Trends Affecting Main Memory (II)

 Need for main memory capacity, bandwidth, QoS increasing 

 Multi-core: increasing number of cores/agents

 Data-intensive applications: increasing demand/hunger for data

 Consolidation: cloud computing, GPUs, mobile, heterogeneity

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending 
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Example: The Memory Capacity Gap

 Memory capacity per core expected to drop by 30% every two years

 Trends worse for memory bandwidth per core!
12

Core count doubling ~ every 2 years 

DRAM DIMM capacity doubling ~ every 3 years

Lim et al., ISCA 2009



Major Trends Affecting Main Memory (III)

 Need for main memory capacity, bandwidth, QoS increasing 

 Main memory energy/power is a key system design concern

 ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 

IEEE Computer 2003] 

 DRAM consumes power even when not used (periodic refresh)

 DRAM technology scaling is ending 
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Major Trends Affecting Main Memory (IV)

 Need for main memory capacity, bandwidth, QoS increasing 

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending 

 ITRS projects DRAM will not scale easily below X nm 

 Scaling has provided many benefits: 

 higher capacity (density), lower cost, lower energy
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The DRAM Scaling Problem

 DRAM stores charge in a capacitor (charge-based memory)

 Capacitor must be large enough for reliable sensing

 Access transistor should be large enough for low leakage and high 
retention time

 Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

 DRAM capacity, cost, and energy/power hard to scale

15



Row of Cells

Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row

Hammered Row

Repeatedly opening and closing a row enough times within a 
refresh interval induces disturbance errors in adjacent rows in 
most real DRAM chips you can buy today

OpenedClosed

16

An Example of  the DRAM Scaling Problem

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
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Most DRAM Modules Are at Risk

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


DRAM Modulex86 CPU

Y

X

loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)

clflush (Y)

mfence

jmp loop

https://github.com/CMU-SAFARI/rowhammer

https://github.com/CMU-SAFARI/rowhammer
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• A real reliability & security issue 

• In a more controlled environment, we can 
induce as many as ten million disturbance errors

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M/sec

22Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014.

Observed Errors in Real Systems
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All modules from 2012–2013 are vulnerable

First
Appearance

Errors vs. Vintage



Experimental DRAM Testing Infrastructure
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An Experimental Study of Data Retention 
Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling 
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques 
for DRAM Retention Failures: A 
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing 
Them: An Experimental Study of DRAM 
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM 
Timing for the Common-Case (Lee et al., 
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT) 
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf


Experimental Infrastructure (DRAM)

25Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.
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PC

HeaterFPGAs FPGAs



1. Most Modules Are at Risk

2. Errors vs. Vintage

3. Error = Charge Loss

4. Adjacency: Aggressor & Victim

5. Sensitivity Studies

6. Other Results in Paper

7. Solution Space
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RowHammer Characterization Results

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


One Can Take Over an Otherwise-Secure System
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Exploiting the DRAM rowhammer bug to 
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them: 
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


RowHammer Security Attack Example
 “Rowhammer” is a problem with some recent DRAM devices in which 

repeatedly accessing a row of memory can cause bit flips in adjacent rows 
(Kim et al., ISCA 2014). 

 Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors (Kim et al., ISCA 2014)

 We tested a selection of laptops and found that a subset of them 
exhibited the problem. 

 We built two working privilege escalation exploits that use this effect. 

 Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

 One exploit uses rowhammer-induced bit flips to gain kernel privileges on 
x86-64 Linux when run as an unprivileged userland process. 

 When run on a machine vulnerable to the rowhammer problem, the 
process was able to induce bit flips in page table entries (PTEs). 

 It was able to use this to gain write access to its own page table, and 
hence gain read-write access to all of physical memory.

28
Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html


Security Implications
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Recap: The DRAM Scaling Problem

30



How Do We Solve The Problem?

 Fix it: Make DRAM and controllers more intelligent

 New interfaces, functions, architectures: system-DRAM codesign

 Eliminate or minimize it: Replace or (more likely) augment 
DRAM with a different technology

 New technologies and system-wide rethinking of memory & 
storage

 Embrace it: Design heterogeneous memories (none of which 
are perfect) and map data intelligently across them

 New models for data management and maybe usage

 …
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Solutions (to memory scaling) require 
software/hardware/device cooperation

Microarchitecture

ISA

Programs

Algorithms

Problems

Logic

Devices

Runtime System

(VM, OS, MM)

User



Solution 1: Fix DRAM

 Overcome DRAM shortcomings with

 System-DRAM co-design

 Novel DRAM architectures, interface, functions

 Better waste management (efficient utilization)

 Key issues to tackle

 Enable reliability at low cost

 Reduce energy

 Improve latency and bandwidth

 Reduce waste (capacity, bandwidth, latency)

 Enable computation close to data

32



Solution 1: Fix DRAM
 Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

 Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

 Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

 Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.

 Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.

 Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.

 Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.

 Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014.

 Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.

 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

 Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.

 Qureshi+, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.

 Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” DSN 
2015.

 Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.

 Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015.

 Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.

 Ahn+, “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.

 Lee+, “Decoupled Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM,” PACT 2015.

 Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses,” MICRO 
2015.

 Avoid DRAM:

 Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.

 Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.

 Seshadri+, “The Dirty-Block Index,” ISCA 2014.

 Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.

 Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps,” 
ISCA 2015.
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Solution 2: Emerging Memory Technologies
 Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile)

 Example: Phase Change Memory

 Expected to scale to 9nm (2022 [ITRS])

 Expected to be denser than DRAM: can store multiple bits/cell

 But, emerging technologies have shortcomings as well

 Can they be enabled to replace/augment/surpass DRAM?

 Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, Micro’10.

 Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.

 Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.

 Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013. 

 Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.

 Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.

 Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.

 Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” 
ACM TACO 2014.

 Ren+, “Dual-Scheme Checkpointing: “A Software-Transparent Mechanism for Supporting Crash Consistency in 
Persistent Memory Systems,” MICRO 2015.
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Solution 3: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Technology X (e.g., PCM)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies
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Exploiting Memory Error Tolerance 
with Hybrid Memory Systems

Heterogeneous-Reliability Memory [DSN 2014]
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• ECC protected
• Well-tested chips

• NoECC or Parity
• Less-tested chips
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On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %



An Orthogonal Issue: Memory Interference

Main 
Memory

37

Core Core

Core Core

Cores’ interfere with each other when accessing shared main memory



 Problem: Memory interference between cores is uncontrolled

 unfairness, starvation, low performance

 uncontrollable, unpredictable, vulnerable system

 Solution: QoS-Aware Memory Systems

 Hardware designed to provide a configurable fairness substrate 

 Application-aware memory scheduling, partitioning, throttling

 Software designed to configure the resources to satisfy different 
QoS goals

 QoS-aware memory systems can provide predictable 
performance and higher efficiency

An Orthogonal Issue: Memory Interference



Goal: Predictable Performance in Complex Systems

 Heterogeneous agents: CPUs, GPUs, and HWAs 

 Main memory interference between CPUs, GPUs, HWAs

39

CPU CPU CPU CPU

Shared Cache

GPU

HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance? 



Strong Memory Service Guarantees

 Goal: Satisfy performance/SLA requirements in the 
presence of shared main memory, heterogeneous agents, 
and hybrid memory/storage

 Approach: 

 Develop techniques/models to accurately estimate the 
performance loss of an application/agent in the presence of 
resource sharing

 Develop mechanisms (hardware and software) to enable the 
resource partitioning/prioritization needed to achieve the 
required performance levels for all applications

 All the while providing high system performance 

 Subramanian et al., “MISE: Providing Performance Predictability and Improving Fairness 
in Shared Main Memory Systems,” HPCA 2013.

 Subramanian et al., “The Application Slowdown Model,” MICRO 2015.
40



Main Memory Fundamentals



Main Memory in the System
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Ideal Memory

 Zero access time (latency)

 Infinite capacity

 Zero cost

 Infinite bandwidth (to support multiple accesses in parallel)
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The Problem

 Ideal memory’s requirements oppose each other

 Bigger is slower

 Bigger  Takes longer to determine the location

 Faster is more expensive

 Memory technology: SRAM vs. DRAM

 Higher bandwidth is more expensive

 Need more banks, more ports, higher frequency, or faster 
technology

44



Memory Technology: DRAM

 Dynamic random access memory

 Capacitor charge state indicates stored value

 Whether the capacitor is charged or discharged indicates 
storage of 1 or 0

 1 capacitor

 1 access transistor

 Capacitor leaks through the RC path

 DRAM cell loses charge over time

 DRAM cell needs to be refreshed

 Read Liu et al., “RAIDR: Retention-aware Intelligent DRAM 
Refresh,” ISCA 2012.
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 Static random access memory

 Two cross coupled inverters store a single bit

 Feedback path enables the stored value to persist in the “cell”

 4 transistors for storage

 2 transistors for access

Memory Technology: SRAM
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An Aside: Phase Change Memory

 Phase change material (chalcogenide glass) exists in two states:

 Amorphous: Low optical reflexivity and high electrical resistivity

 Crystalline: High optical reflexivity and low electrical resistivity

47

PCM is resistive memory:  High resistance (0), Low resistance (1)

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM 
Alternative,” ISCA 2009.



Memory Bank: A Fundamental Concept

 Interleaving (banking)

 Problem: a single monolithic memory array takes long to 
access and does not enable multiple accesses in parallel

 Goal: Reduce the latency of memory array access and enable 
multiple accesses in parallel

 Idea: Divide the array into multiple banks that can be 
accessed independently (in the same cycle or in consecutive 
cycles)

 Each bank is smaller than the entire memory storage

 Accesses to different banks can be overlapped

 An issue: How do you map data to different banks? (i.e., how 
do you interleave data across banks?)

48



Memory Bank Organization and Operation

 Read access sequence:

1. Decode row address 
& drive word-lines

2. Selected bits drive 
bit-lines

• Entire row read

3. Amplify row data

4. Decode column 
address & select subset 
of row

• Send to output

5. Precharge bit-lines

• For next access

49



Why Memory Hierarchy?

 We want both fast and large

 But we cannot achieve both with a single level of memory

 Idea: Have multiple levels of storage (progressively bigger 
and slower as the levels are farther from the processor) 
and ensure most of the data the processor needs is kept in 
the fast(er) level(s)
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Memory Hierarchy

 Fundamental tradeoff

 Fast memory: small

 Large memory: slow

 Idea: Memory hierarchy

 Latency, cost, size, 

bandwidth

51
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Memory

(DRAM)RF

Cache

Hard Disk



Caching Basics: Exploit Temporal Locality

 Idea: Store recently accessed data in automatically 
managed fast memory (called cache)

 Anticipation: the data will be accessed again soon

 Temporal locality principle

 Recently accessed data will be again accessed in the near 
future

 This is what Maurice Wilkes had in mind:

 Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE 
Trans. On Electronic Computers, 1965.

 “The use is discussed of a fast core memory of, say 32000 words 
as a slave to a slower core memory of, say, one million words in 
such a way that in practical cases the effective access time is 
nearer that of the fast memory than that of the slow memory.”
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Caching Basics: Exploit Spatial Locality

 Idea: Store addresses adjacent to the recently accessed 
one in automatically managed fast memory

 Logically divide memory into equal size blocks

 Fetch to cache the accessed block in its entirety

 Anticipation: nearby data will be accessed soon

 Spatial locality principle

 Nearby data in memory will be accessed in the near future

 E.g., sequential instruction access, array traversal

 This is what IBM 360/85 implemented

 16 Kbyte cache with 64 byte blocks

 Liptay, “Structural aspects of the System/360 Model 85 II: the 
cache,” IBM Systems Journal, 1968.
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A Note on Manual vs. Automatic Management

 Manual: Programmer manages data movement across levels

-- too painful for programmers on substantial programs

 “core” vs “drum” memory in the 50’s

 still done in some embedded processors (on-chip scratch pad 
SRAM in lieu of a cache)

 Automatic: Hardware manages data movement across levels, 
transparently to the programmer

++ programmer’s life is easier

 simple heuristic: keep most recently used items in cache

 the average programmer doesn’t need to know about it

 You don’t need to know how big the cache is and how it works to 
write a “correct” program! (What if you want a “fast” program?)

54



Automatic Management in Memory Hierarchy

 Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965.

 “By a slave memory I mean one which automatically 
accumulates to itself words that come from a slower main 
memory, and keeps them available for subsequent use 
without it being necessary for the penalty of main memory 
access to be incurred again.”
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A Modern Memory Hierarchy
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Register File
32 words, sub-nsec

L1 cache
~32 KB, ~nsec

L2 cache
512 KB ~ 1MB, many nsec

L3 cache, 
.....

Main memory (DRAM), 
GB, ~100 nsec

Swap Disk
100 GB, ~10 msec

manual/compiler
register spilling

automatic
demand 
paging

Automatic
HW cache
management

Memory
Abstraction



The DRAM Subsystem



DRAM Subsystem Organization

 Channel

 DIMM

 Rank

 Chip

 Bank

 Row/Column
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Page Mode DRAM

 A DRAM bank is a 2D array of cells: rows x columns

 A “DRAM row” is also called a “DRAM page”

 “Sense amplifiers” also called “row buffer”

 Each address is a <row,column> pair

 Access to a “closed row”

 Activate command opens row (placed into row buffer)

 Read/write command reads/writes column in the row buffer

 Precharge command closes the row and prepares the bank for 
next access

 Access to an “open row”

 No need for activate command
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The DRAM Bank Structure
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DRAM Bank Operation
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The DRAM Chip

 Consists of multiple banks (8 is a common number today)

 Banks share command/address/data buses

 The chip itself has a narrow interface (4-16 bits per read)

 Changing the number of banks, size of the interface (pins), 
whether or not command/address/data buses are shared 
has significant impact on DRAM system cost
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128M x 8-bit DRAM Chip
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DRAM Rank and Module

 Rank: Multiple chips operated together to form a wide 
interface

 All chips comprising a rank are controlled at the same time

 Respond to a single command

 Share address and command buses, but provide different data

 A DRAM module consists of one or more ranks

 E.g., DIMM (dual inline memory module)

 This is what you plug into your motherboard

 If we have chips with 8-bit interface, to read 8 bytes in a 
single access, use 8 chips in a DIMM
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A 64-bit Wide DIMM (One Rank)
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A 64-bit Wide DIMM (One Rank)

 Advantages:
 Acts like a high-

capacity DRAM chip 
with a wide 
interface

 Flexibility: memory 
controller does not 
need to deal with 
individual chips

 Disadvantages:
 Granularity: 

Accesses cannot be 
smaller than the 
interface width
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Multiple DIMMs
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 Advantages:

 Enables even 
higher capacity

 Disadvantages:

 Interconnect 
complexity and 
energy 
consumption 
can be high

 Scalability is 

limited by this



DRAM Channels

 2 Independent Channels: 2 Memory Controllers (Above)

 2 Dependent/Lockstep Channels: 1 Memory Controller with 
wide interface (Not shown above)
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Generalized Memory Structure
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Generalized Memory Structure

70

Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.



The DRAM Subsystem

The Top Down View



DRAM Subsystem Organization

 Channel

 DIMM

 Rank

 Chip

 Bank

 Row/Column
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The DRAM subsystem

Memory channel Memory channel

DIMM (Dual in-line memory module)

Processor

“Channel”



Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM



Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Rank 0: collection of 8 chips Rank 1
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Breaking down a Rank
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Breaking down a Chip
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Breaking down a Bank
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DRAM Subsystem Organization

 Channel

 DIMM

 Rank

 Chip

 Bank

 Row/Column
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Example: Transferring a cache block
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Example: Transferring a cache block
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A 64B cache block takes 8 I/O cycles to transfer.

During the process, 8 columns are read sequentially.

. . .



Latency Components: Basic DRAM Operation

 CPU → controller transfer time

 Controller latency

 Queuing & scheduling delay at the controller

 Access converted to basic commands

 Controller → DRAM transfer time

 DRAM bank latency

 Simple CAS (column address strobe) if row is “open” OR

 RAS (row address strobe) + CAS if array precharged OR

 PRE + RAS + CAS (worst case)

 DRAM → Controller transfer time

 Bus latency (BL)

 Controller to CPU transfer time

88



Multiple Banks (Interleaving) and Channels

 Multiple banks

 Enable concurrent DRAM accesses

 Bits in address determine which bank an address resides in

 Multiple independent channels serve the same purpose

 But they are even better because they have separate data buses

 Increased bus bandwidth

 Enabling more concurrency requires reducing

 Bank conflicts

 Channel conflicts

 How to select/randomize bank/channel indices in address?

 Lower order bits have more entropy

 Randomizing hash functions (XOR of different address bits)
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How Multiple Banks Help
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Address Mapping (Single Channel)

 Single-channel system with 8-byte memory bus

 2GB memory, 8 banks, 16K rows & 2K columns per bank

 Row interleaving

 Consecutive rows of memory in consecutive banks

 Accesses to consecutive cache blocks serviced in a pipelined manner

 Cache block interleaving

 Consecutive cache block addresses in consecutive banks

 64 byte cache blocks

 Accesses to consecutive cache blocks can be serviced in parallel
91
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Bank Mapping Randomization

 DRAM controller can randomize the address mapping to 
banks so that bank conflicts are less likely

 Reading:

 Rau, “Pseudo-randomly Interleaved Memory,” ISCA 1991.
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Address Mapping (Multiple Channels)

 Where are consecutive cache blocks?
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Interaction with VirtualPhysical Mapping

 Operating System influences where an address maps to in 
DRAM

 Operating system can influence which bank/channel/rank a 
virtual page is mapped to. 

 It can perform page coloring to 

 Minimize bank conflicts

 Minimize inter-application interference [Muralidhara+ MICRO’11]

 Minimize latency in the network [Das+ HPCA’13]
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More on Reducing Bank Conflicts

 Read Sections 1 through 4 of:

 Kim et al., “A Case for Exploiting Subarray-Level Parallelism in 
DRAM,” ISCA 2012.
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DRAM Refresh (I)

 DRAM capacitor charge leaks over time

 The memory controller needs to read each row periodically 
to restore the charge

 Activate + precharge each row every N ms

 Typical N = 64 ms

 Implications on performance?

-- DRAM bank unavailable while refreshed

-- Long pause times: If we refresh all rows in burst, every 64ms 
the DRAM will be unavailable until refresh ends

 Burst refresh: All rows refreshed immediately after one 
another

 Distributed refresh: Each row refreshed at a different time, 
at regular intervals
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DRAM Refresh (II)

 Distributed refresh eliminates long pause times

 How else we can reduce the effect of refresh on 
performance?

 Can we reduce the number of refreshes?
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-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM density scaling 

Downsides of DRAM Refresh
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Liu et al., “RAIDR: Retention-aware Intelligent DRAM Refresh,” ISCA 2012.



Memory Controllers



DRAM versus Other Types of Memories

 Long latency memories have similar characteristics that 
need to be controlled.

 The following discussion will use DRAM as an example, but 
many scheduling and control issues are similar in the 
design of controllers for other types of memories

 Flash memory

 Other emerging memory technologies

 Phase Change Memory

 Spin-Transfer Torque Magnetic Memory

 These other technologies can place other demands on the 
controller
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DRAM Types

 DRAM has different types with different interfaces optimized 
for different purposes

 Commodity: DDR, DDR2, DDR3, DDR4, …

 Low power (for mobile): LPDDR1, …, LPDDR5, …

 High bandwidth (for graphics): GDDR2, …, GDDR5, …

 Low latency: eDRAM, RLDRAM, …

 3D stacked: WIO, HBM, HMC, …

 …

 Underlying microarchitecture is fundamentally the same

 A flexible memory controller can support various DRAM types 

 This complicates the memory controller

 Difficult to support all types (and upgrades)
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DRAM Types (II)
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Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE Comp Arch Letters 2015.



DRAM Controller: Functions

 Ensure correct operation of DRAM (refresh and timing)

 Service DRAM requests while obeying timing constraints of 
DRAM chips

 Constraints: resource conflicts (bank, bus, channel), minimum 
write-to-read delays

 Translate requests to DRAM command sequences

 Buffer and schedule requests to for high performance + QoS

 Reordering, row-buffer, bank, rank, bus management

 Manage power consumption and thermals in DRAM

 Turn on/off DRAM chips, manage power modes
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DRAM Controller: Where to Place

 In chipset

+ More flexibility to plug different DRAM types into the system

+ Less power density in the CPU chip

 On CPU chip

+ Reduced latency for main memory access

+ Higher bandwidth between cores and controller

 More information can be communicated (e.g. request’s 
importance in the processing core)
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A Modern DRAM Controller (I)
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A Modern DRAM Controller



DRAM Scheduling Policies (I)

 FCFS (first come first served)

 Oldest request first

 FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate  maximize DRAM throughput

 Actually, scheduling is done at the command level

 Column commands (read/write) prioritized over row commands 
(activate/precharge)

 Within each group, older commands prioritized over younger ones
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DRAM Scheduling Policies (II)

 A scheduling policy is a request prioritization order

 Prioritization can be based on

 Request age

 Row buffer hit/miss status

 Request type (prefetch, read, write)

 Requestor type (load miss or store miss)

 Request criticality

 Oldest miss in the core?

 How many instructions in core are dependent on it?

 Will it stall the processor?

 Interference caused to other cores

 …
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Row Buffer Management Policies

 Open row
 Keep the row open after an access

+ Next access might need the same row  row hit

-- Next access might need a different row  row conflict, wasted energy

 Closed row
 Close the row after an access (if no other requests already in the request 

buffer need the same row)

+ Next access might need a different row  avoid a row conflict

-- Next access might need the same row  extra activate latency

 Adaptive policies

 Predict whether or not the next access to the bank will be to 
the same row
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Open vs. Closed Row Policies

Policy First access Next access Commands 
needed for next 
access

Open row Row 0 Row 0 (row hit) Read 

Open row Row 0 Row 1 (row 
conflict)

Precharge + 
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in 
request buffer 
(row hit)

Read

Closed row Row 0 Row 0 – access not 
in request buffer 
(row closed)

Activate Row 0 + 
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 + 
Read + Precharge
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DRAM Power Management

 DRAM chips have power modes

 Idea: When not accessing a chip power it down

 Power states

 Active (highest power)

 All banks idle

 Power-down

 Self-refresh (lowest power)

 Tradeoff: State transitions incur latency during which the 
chip cannot be accessed
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Difficulty of DRAM Control



Why are DRAM Controllers Difficult to Design?

 Need to obey DRAM timing constraints for correctness

 There are many (50+) timing constraints in DRAM

 tWTR: Minimum number of cycles to wait before issuing a read 
command after a write command is issued

 tRC: Minimum number of cycles between the issuing of two 
consecutive activate commands to the same bank

 …

 Need to keep track of many resources to prevent conflicts

 Channels, banks, ranks, data bus, address bus, row buffers

 Need to handle DRAM refresh

 Need to manage power consumption

 Need to optimize performance & QoS (in the presence of constraints)

 Reordering is not simple

 Fairness and QoS needs complicates the scheduling problem
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Many DRAM Timing Constraints

 From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing 
Write-Caused Interference in Memory Systems,” HPS Technical Report, 
April 2010.
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More on DRAM Operation

 Kim et al., “A Case for Exploiting Subarray-Level Parallelism 
(SALP) in DRAM,” ISCA 2012.

 Lee et al., “Tiered-Latency DRAM: A Low Latency and Low 
Cost DRAM Architecture,” HPCA 2013.
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DRAM Controller Design Is Becoming More Difficult

 Heterogeneous agents: CPUs, GPUs, and HWAs 

 Main memory interference between CPUs, GPUs, HWAs

 Many timing constraints for various memory types

 Many goals at the same time: performance, fairness, QoS, 
energy efficiency, …

116

CPU CPU CPU CPU

Shared Cache

GPU

HWA HWA

DRAM and Hybrid Memory Controllers
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Reality and Dream

 Reality: It difficult to optimize all these different constraints 
while maximizing performance, QoS, energy-efficiency, … 

 Dream: Wouldn’t it be nice if the DRAM controller 
automatically found a good scheduling policy on its own?
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Self-Optimizing DRAM Controllers

 Problem: DRAM controllers difficult to design  It is difficult for 

human designers to design a policy that can adapt itself very well 
to different workloads and different system conditions

 Idea: Design a memory controller that adapts its scheduling 
policy decisions to workload behavior and system conditions 
using machine learning.

 Observation: Reinforcement learning maps nicely to memory 
control.

 Design: Memory controller is a reinforcement learning agent that 
dynamically and continuously learns and employs the best 
scheduling policy.

118Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.



Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich 
Caruana, 
"Self Optimizing Memory Controllers: A 
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on 
Computer Architecture (ISCA), pages 39-50, Beijing, 
China, June 2008.

119

Goal: Learn to choose actions to maximize r0 + r1 + 2r2 + … ( 0   < 1) 

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


Next Lecture (9/30): Required Readings 

120

 Required Reading Assignment:
• Lee et al., “Phase Change Technology and the Future of Main 

Memory,” IEEE Micro, Jan/Feb 2010.

 Recommended References:

• M. Qureshi et al., “Scalable high performance main memory system 
using phase-change memory technology,” ISCA 2009. 

• H. Yoon et al., “Row buffer locality aware caching policies for hybrid 
memories,” ICCD 2012.

• J. Zhao et al., “FIRM: Fair and High-Performance Memory Control for 
Persistent Memory Systems,” MICRO 2014.
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We did not cover the remaining slides in 

lecture. They are for your benefit.



Self-Optimizing DRAM Controllers

 Dynamically adapt the memory scheduling policy via 
interaction with the system at runtime 

 Associate system states and actions (commands) with long term 
reward values: each action at a given state leads to a learned reward

 Schedule command with highest estimated long-term reward value in 
each state

 Continuously update reward values for <state, action> pairs based on 
feedback from system
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Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 
"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
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States, Actions, Rewards
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❖ Reward function

• +1 for scheduling 
Read and Write 
commands

• 0 at all other 
times

Goal is to maximize 
data bus 
utilization

❖ State attributes

• Number of reads, 
writes, and load 
misses in 
transaction queue

• Number of pending 
writes and ROB 
heads waiting for 
referenced row

• Request’s relative 

ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP



Performance Results
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Self Optimizing DRAM Controllers

 Advantages

+ Adapts the scheduling policy dynamically to changing workload 
behavior and to maximize a long-term target

+ Reduces the designer’s burden in finding a good scheduling 
policy. Designer specifies:

1) What system variables might be useful

2) What target to optimize, but not how to optimize it

 Disadvantages and Limitations

-- Black box: designer much less likely to implement what she  
cannot easily reason about

-- How to specify different reward functions that can achieve 
different objectives? (e.g., fairness, QoS)

-- Hardware complexity?
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More on Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 
"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
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Evaluating New Ideas 

for New (Memory) Architectures



Simulation: The Field of Dreams



Dreaming and Reality

 An architect is in part a dreamer, a creator

 Simulation is a key tool of the architect

 Simulation enables

 The exploration of many dreams

 A reality check of the dreams

 Deciding which dream is better

 Simulation also enables

 The ability to fool yourself with false dreams
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Why High-Level Simulation?

 Problem: RTL simulation is intractable for design space 
exploration  too time consuming to design and evaluate

 Especially over a large number of workloads

 Especially if you want to predict the performance of a good 
chunk of a workload on a particular design

 Especially if you want to consider many design choices

 Cache size, associativity, block size, algorithms

 Memory control and scheduling algorithms

 In-order vs. out-of-order execution

 Reservation station sizes, ld/st queue size, register file size, …

 …

 Goal: Explore design choices quickly to see their impact on 
the workloads we are designing the platform for
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Different Goals in Simulation
 Explore the design space quickly and see what you want to

 potentially implement in a next-generation platform

 propose as the next big idea to advance the state of the art

 the goal is mainly to see relative effects of design decisions

 Match the behavior of an existing system so that you can

 debug and verify it at cycle-level accuracy

 propose small tweaks to the design that can make a difference in 
performance or energy

 the goal is very high accuracy

 Other goals in-between:

 Refine the explored design space without going into a full 
detailed, cycle-accurate design

 Gain confidence in your design decisions made by higher-level 
design space exploration
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Tradeoffs in Simulation

 Three metrics to evaluate a simulator

 Speed

 Flexibility

 Accuracy

 Speed: How fast the simulator runs (xIPS, xCPS)

 Flexibility: How quickly one can modify the simulator to 
evaluate different algorithms and design choices?

 Accuracy: How accurate the performance (energy) numbers 
the simulator generates are vs. a real design (Simulation 
error)

 The relative importance of these metrics varies depending 
on where you are in the design process
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Trading Off Speed, Flexibility, Accuracy

 Speed & flexibility affect:

 How quickly you can make design tradeoffs

 Accuracy affects:

 How good your design tradeoffs may end up being

 How fast you can build your simulator (simulator design time)

 Flexibility also affects:

 How much human effort you need to spend modifying the 
simulator

 You can trade off between the three to achieve design 
exploration and decision goals
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High-Level Simulation

 Key Idea: Raise the abstraction level of modeling to give up 
some accuracy to enable speed & flexibility (and quick 
simulator design)

 Advantage

+ Can still make the right tradeoffs, and can do it quickly

+ All you need is modeling the key high-level factors, you can 
omit corner case conditions

+ All you need is to get the “relative trends” accurately, not 
exact performance numbers

 Disadvantage

-- Opens up the possibility of potentially wrong decisions

-- How do you ensure you get the “relative trends” accurately?
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Simulation as Progressive Refinement

 High-level models (Abstract, C)

 …

 Medium-level models (Less abstract)

 …

 Low-level models (RTL with eveything modeled)

 …

 Real design

 As you refine (go down the above list)

 Abstraction level reduces

 Accuracy (hopefully) increases (not necessarily, if not careful)

 Speed and flexibility reduce

 You can loop back and fix higher-level models
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Making The Best of Architecture

 A good architect is comfortable at all levels of refinement

 Including the extremes

 A good architect knows when to use what type of 
simulation
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Ramulator: A Fast and Extensible 

DRAM Simulator 

[IEEE Comp Arch Letters’15]
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Ramulator Motivation

 DRAM and Memory Controller landscape is changing

 Many new and upcoming standards

 Many new controller designs

 A fast and easy-to-extend simulator is very much needed
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Ramulator

 Provides out-of-the box support for many DRAM standards:

 DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new 
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

 ~2.5X faster than fastest open-source simulator

 Modular and extensible to different standards
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Case Study: Comparison of DRAM Standards
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Ramulator Paper and Source Code

 Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 

 Source code is released under the liberal MIT License

 https://github.com/CMU-SAFARI/ramulator
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Extra Credit Assignment

 Review the Ramulator paper

 Send your reviews to me (omutlu@gmail.com) 

 Download and run Ramulator

 Compare DDR3, DDR4, SALP, HBM for the libquantum
benchmark (provided in Ramulator repository)

 Send your brief report to me
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