
18-740/640

Computer Architecture

Lecture 5: Advanced Branch Prediction

Prof. Onur Mutlu

Carnegie Mellon University

Fall 2015, 9/16/2015

Required Readings

2

 Required Reading Assignment:
• Chapter 5 of Shen and Lipasti (SnL).

 Recommended References:

• T. Yeh and Y. Patt, “Two-Level Adaptive Training Branch Prediction,”
Intl. Symposium on Microarchitecture, November 1991.

 MICRO Test of Time Award Winner (after 24 years)

• Kessler, R. E., “The Alpha 21264 Microprocessor,” IEEE Micro,
March/April 1999, pp. 24-36 (available at ieeexplore.ieee.org).

• McFarling, S., “Combining Branch Predictors,” DEC WRL Technical
Report, TN-36, June 1993.

Also Recommended …

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

3

Control Dependence

 Question: What should the fetch PC be in the next cycle?

 If the instruction that is fetched is a control-flow instruction:

 How do we determine the next Fetch PC?

 In fact, how do we even know whether or not the fetched
instruction is a control-flow instruction?

4

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

5

The Branch Problem

 Control flow instructions (branches) are frequent

 15-25% of all instructions

 Problem: Next fetch address after a control-flow instruction
is not determined after N cycles in a pipelined processor

 N cycles: (minimum) branch resolution latency

 If we are fetching W instructions per cycle (i.e., if the
pipeline is W wide)

 A branch misprediction leads to N x W wasted instruction slots

6

Importance of The Branch Problem
 Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)

 Assume: 1 out of 5 instructions is a branch

 Assume: Each 5 instruction-block ends with a branch

 How long does it take to fetch 500 instructions?

 100% accuracy
 100 cycles (all instructions fetched on the correct path)

 No wasted work

 99% accuracy
 100 (correct path) + 20 (wrong path) = 120 cycles

 20% extra instructions fetched

 98% accuracy
 100 (correct path) + 20 * 2 (wrong path) = 140 cycles

 40% extra instructions fetched

 95% accuracy
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

 100% extra instructions fetched

 7

Simplest: Always Guess NextPC = PC + 4

 Always predict the next sequential instruction is the next
instruction to be executed

 This is a form of next fetch address prediction (and branch
prediction)

 How can you make this more effective?

 Idea: Maximize the chances that the next sequential
instruction is the next instruction to be executed

 Software: Lay out the control flow graph such that the “likely
next instruction” is on the not-taken path of a branch

 Profile guided code positioning Pettis & Hansen, PLDI 1990.

 Hardware: ??? (how can you do this in hardware…)

 Cache traces of executed instructions Trace cache

8

Guessing NextPC = PC + 4

 How else can you make this more effective?

 Idea: Get rid of control flow instructions (or minimize their
occurrence)

 How?

1. Get rid of unnecessary control flow instructions

combine predicates (predicate combining)

2. Convert control dependences into data dependences

predicated execution

9

Branch Prediction (A Bit More Enhanced)

 Idea: Predict the next fetch address (to be used in the next
cycle)

 Requires three things to be predicted at fetch stage:

 Whether the fetched instruction is a branch

 (Conditional) branch direction

 Branch target address (if taken)

 Observation: Target address remains the same for a
conditional direct branch across dynamic instances

 Idea: Store the target address from previous instance and access
it with the PC

 Called Branch Target Buffer (BTB) or Branch Target Address
Cache

10

11

target address

Fetch Stage with BTB and Direction Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current branch

12

target address

More Sophisticated Branch Direction Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR

PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current branch

Three Things to Be Predicted

 Requires three things to be predicted at fetch stage:

1. Whether the fetched instruction is a branch

2. (Conditional) branch direction

3. Branch target address (if taken)

 Third (3.) can be accomplished using a BTB

Remember target address computed last time branch was
executed

 First (1.) can be accomplished using a BTB

If BTB provides a target address for the program counter, then it
must be a branch

Or, we can store “branch metadata” bits in instruction
cache/memory partially decoded instruction stored in I-cache

 Second (2.): How do we predict the direction?

13

Simple Branch Direction Prediction Schemes

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)

14

More Sophisticated Direction Prediction

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Program analysis based (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)

 Two-bit counter based prediction

 Two-level prediction (global vs. local)

 Hybrid

 Advanced algorithms (e.g., using perceptrons)

 15

Review: State Machine for Last-Time Prediction

16

predict
taken

predict
not

taken

actually
not taken

actually
taken

actually
taken

actually
not taken

Review: Improving the Last Time Predictor

 Problem: A last-time predictor changes its prediction from
TNT or NTT too quickly

 even though the branch may be mostly taken or mostly not
taken

 Solution Idea: Add hysteresis to the predictor so that
prediction does not change on a single different outcome

 Use two bits to track the history of predictions for a branch
instead of a single bit

 Can have 2 states for T or NT instead of 1 state for each

 Smith, “A Study of Branch Prediction Strategies,” ISCA
1981.

17

Review: Two-Bit Counter Based Prediction

 Each branch associated with a two-bit counter

 One more bit provides hysteresis

 A strong prediction does not change with one single
different outcome

 Accuracy for a loop with N iterations = (N-1)/N

 TNTNTNTNTNTNTNTNTNTN 50% accuracy

 (assuming counter initialized to weakly taken)

+ Better prediction accuracy

-- More hardware cost (but counter can be part of a BTB entry)

18

Review: State Machine for 2-bit Counter
 Counter using saturating arithmetic

 Arithmetic with maximum and minimum values

19

pred
taken

11

pred
taken

10

pred
!taken

01

pred
!taken

00

actually
taken

actually
taken

actually
!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

Review: Hysteresis Using a 2-bit Counter

20

pred
taken

pred
taken

pred
!taken

pred
!taken

actually
taken

actually
taken actually

!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

Change prediction after 2 consecutive mistakes

“weakly
taken”

“strongly
taken”

“weakly
!taken”

“strongly
!taken”

Is This Good Enough?

 ~85-90% accuracy for many programs with 2-bit counter
based prediction (also called bimodal prediction)

 Is this good enough?

 How big is the branch problem?

21

Let’s Do the Exercise Again
 Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)

 Assume: 1 out of 5 instructions is a branch

 Assume: Each 5 instruction-block ends with a branch

 How long does it take to fetch 500 instructions?

 100% accuracy
 100 cycles (all instructions fetched on the correct path)

 No wasted work

 95% accuracy
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

 100% extra instructions fetched

 90% accuracy
 100 (correct path) + 20 * 10 (wrong path) = 300 cycles

 200% extra instructions fetched

 85% accuracy
 100 (correct path) + 20 * 15 (wrong path) = 400 cycles

 300% extra instructions fetched

 22

Can We Do Better: Two-Level Prediction

 Last-time and 2BC predictors exploit “last-time”
predictability

 Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

 Global branch correlation

 Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (other than the outcome
of the branch “last-time” it was executed)

 Local branch correlation

23 Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

Global Branch Correlation (I)

 Recently executed branch outcomes in the execution path
are correlated with the outcome of the next branch

 If first branch not taken, second also not taken

 If first branch taken, second definitely not taken

24

Global Branch Correlation (II)

 If Y and Z both taken, then X also taken

 If Y or Z not taken, then X also not taken

25

Global Branch Correlation (III)

 Eqntott, SPEC’92: Generates truth table from Boolean expr.

 if (aa==2) ;; B1

 aa=0;

 if (bb==2) ;; B2

 bb=0;

 if (aa!=bb) { ;; B3

 ….

 }

If B1 is not taken (i.e., aa==0@B3) and B2 is not taken (i.e.
bb=0@B3) then B3 is certainly taken

26

Capturing Global Branch Correlation

 Idea: Associate branch outcomes with “global T/NT history”
of all branches

 Make a prediction based on the outcome of the branch the
last time the same global branch history was encountered

 Implementation:

 Keep track of the “global T/NT history” of all branches in a
register Global History Register (GHR)

 Use GHR to index into a table that recorded the outcome that
was seen for each GHR value in the recent past Pattern

History Table (table of 2-bit counters)

 Global history/branch predictor

 Uses two levels of history (GHR + history at that GHR)

27 Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

Two Level Global Branch Prediction

 First level: Global branch history register (N bits)

 The direction of last N branches

 Second level: Table of saturating counters for each history entry

 The direction the branch took the last time the same history was
seen

28

1 1 ….. 1 0

GHR

(global

history

register)

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

previous

branch’s

direction

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

How Does the Global Predictor Work?

 McFarling, “Combining Branch Predictors,” DEC WRL TR 1993.

29

This branch tests i

Last 4 branches test j

History: TTTN

Predict taken for i

Next history: TTNT

 (shift in last outcome)

Intel Pentium Pro Branch Predictor

 Two level global branch predictor

 4-bit global history register

 Multiple pattern history tables (of 2 bit counters)

 Which pattern history table to use is determined by lower
order bits of the branch address

30

Global Branch Correlation Analysis

 If Y and Z both taken, then X also taken

 If Y or Z not taken, then X also not taken

 Only 3 past branches’ directions
really matter

 Evers et al., “An Analysis of
Correlation and Predictability:
What Makes Two-Level Branch
Predictors Work,” ISCA 1998.

31

Improving Global Predictor Accuracy

 Idea: Add more context information to the global predictor to take into
account which branch is being predicted

 Gshare predictor: GHR hashed with the Branch PC

+ More context information

+ Better utilization of PHT

-- Increases access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

 32

33

target address

Review: One-Level Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current instruction

34

target address

Two-Level Global History Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current instruction

35

target address

Two-Level Gshare Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR

PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current instruction

An Issue: Interference in the PHTs

 Sharing the PHTs between histories/branches leads to interference

 Different branches map to the same PHT entry and modify it

 Interference can be positive, negative, or neutral

 Interference can be eliminated by dedicating a PHT per branch

-- Too much hardware cost

 How else can you eliminate or reduce interference?

36

Reducing Interference in PHTs (I)

 Increase size of PHT

 Branch filtering

 Predict highly-biased branches separately so that they do not
consume PHT entries

 E.g., static prediction or BTB based prediction

 Hashing/index-randomization

 Gshare

 Gskew

 Agree prediction

37

Biased Branches and Branch Filtering

 Observation: Many branches are biased in one direction
(e.g., 99% taken)

 Problem: These branches pollute the branch prediction
structures make the prediction of other branches difficult

by causing “interference” in branch prediction tables and
history registers

 Solution: Detect such biased branches, and predict them
with a simpler predictor (e.g., last time, static, …)

 Chang et al., “Branch classification: a new mechanism for improving
branch predictor performance,” MICRO 1994.

38

Reducing Interference: Gshare

 Idea 1: Randomize the indexing function into the PHT such that
probability of two branches mapping to the same entry reduces

 Gshare predictor: GHR hashed with the Branch PC

+ Better utilization of PHT + More context information

- Increases access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

 39

Reducing Interference: Agree Predictor

 Idea 2: Agree prediction

 Each branch has a “bias” bit associated with it in BTB

 Ideally, most likely outcome for the branch

 High bit of the PHT counter indicates whether or not the prediction
agrees with the bias bit (not whether or not prediction is taken)

+ Reduces negative interference (Why???)

-- Requires determining bias bits (compiler vs. hardware)

40

Sprangle et al., “The Agree Predictor:

A Mechanism for Reducing Negative

Branch History Interference,” ISCA

1997.

Why Does Agree Prediction Make Sense?

 Assume two branches have taken rates of 85% and 15%.

 Assume they conflict in the PHT

 Let’s compute the probability they have opposite outcomes

 Baseline predictor:

 P (b1 T, b2 NT) + P (b1 NT, b2 T)

 = (85%*85%) + (15%*15%) = 74.5%

 Agree predictor:

 Assume bias bits are set to T (b1) and NT (b2)

 P (b1 agree, b2 disagree) + P (b1 disagree, b2 agree)

 = (85%*15%) + (15%*85%) = 25.5%

 Works because most branches are biased (not 50% taken)

41

Reducing Interference: Gskew

 Idea 3: Gskew predictor

 Multiple PHTs

 Each indexed with a different type of hash function

 Final prediction is a majority vote

+ Distributes interference patterns in a more randomized way
(interfering patterns less likely in different PHTs at the same time)

-- More complexity (due to multiple PHTs, hash functions)

42

Seznec, “An optimized

2bcgskew branch

predictor,” IRISA Tech

Report 1993.

Michaud, “Trading conflict

and capacity aliasing in

conditional branch

predictors,” ISCA 1997

B ra n c h Ad d r e ss

G lo b al B H R

f
0

f
1

f 2

M a jo r i ty

F ina l P r e dic tio n

PH T
0

P H T 1 P H T 2

More Techniques to Reduce PHT Interference

 The bi-mode predictor

 Separate PHTs for mostly-taken and mostly-not-taken branches

 Reduces negative aliasing between them

 Lee et al., “The bi-mode branch predictor,” MICRO 1997.

 The YAGS predictor

 Use a small tagged “cache” to predict branches that have experienced
interference

 Aims to not to mispredict them again

 Eden and Mudge, “The YAGS branch prediction scheme,” MICRO 1998.

 Alpha EV8 (21464) branch predictor

 Seznec et al., “Design tradeoffs for the Alpha EV8 conditional
branch predictor,” ISCA 2002.

43

Can We Do Better: Two-Level Prediction

 Last-time and 2BC predictors exploit only “last-time”
predictability for a given branch

 Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

 Global branch correlation

 Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (in addition to the
outcome of the branch “last-time” it was executed)

 Local branch correlation

44 Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

Local Branch Correlation

 McFarling, “Combining Branch Predictors,” DEC WRL TR 1993.

45

More Motivation for Local History

 To predict a loop
branch “perfectly”, we
want to identify the
last iteration of the
loop

 By having a separate
PHT entry for each
local history, we can
distinguish different
iterations of a loop

 Works for “short”
loops

46

0 00 0

0 00 1

0 01 0

0 01 1

0 10 0

0 10 1

0 11 0

0 111

1 00 0

1 00 1

1 01 0

1 011

1 10 0

11 01

11 10

1 111

11

11

11

00

1110 1110 1110 111 0111 0

P H T
L o op c l os ing b ra nc h ’s hi st ory

Capturing Local Branch Correlation

 Idea: Have a per-branch history register

 Associate the predicted outcome of a branch with “T/NT history”
of the same branch

 Make a prediction based on the outcome of the branch the
last time the same local branch history was encountered

 Called the local history/branch predictor

 Uses two levels of history (Per-branch history register +
history at that history register value)

47

Two Level Local Branch Prediction

 First level: A set of local history registers (N bits each)

 Select the history register based on the PC of the branch

 Second level: Table of saturating counters for each history entry

 The direction the branch took the last time the same history was
seen

48

1 1 ….. 1 0

Local history

registers

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

49

target address

Two-Level Local History Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current instruction

Which directions earlier instances of *this branch* went

Two-Level Predictor Taxonomy

 BHR can be global (G), per set of branches (S), or per branch (P)

 PHT counters can be adaptive (A) or static (S)

 PHT can be global (g), per set of branches (s), or per branch (p)

 Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,”
MICRO 1991.

50

Can We Do Even Better?

 Predictability of branches varies

 Some branches are more predictable using local history

 Some using global

 For others, a simple two-bit counter is enough

 Yet for others, a bit is enough

 Observation: There is heterogeneity in predictability
behavior of branches

 No one-size fits all branch prediction algorithm for all branches

 Idea: Exploit that heterogeneity by designing
heterogeneous branch predictors

51

Hybrid Branch Predictors

 Idea: Use more than one type of predictor (i.e., multiple
algorithms) and select the “best” prediction

 E.g., hybrid of 2-bit counters and global predictor

 Advantages:

 + Better accuracy: different predictors are better for different branches

 + Reduced warmup time (faster-warmup predictor used until the
slower-warmup predictor warms up)

 Disadvantages:

 -- Need “meta-predictor” or “selector”

 -- Longer access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

 52

Alpha 21264 Tournament Predictor

 Minimum branch penalty: 7 cycles

 Typical branch penalty: 11+ cycles

 48K bits of target addresses stored in I-cache

 Predictor tables are reset on a context switch

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999.

 53

Are We Done w/ Branch Prediction?

 Hybrid branch predictors work well

 E.g., 90-97% prediction accuracy on average

 Some “difficult” workloads still suffer, though!

 E.g., gcc

 Max IPC with tournament prediction: 9

 Max IPC with perfect prediction: 35

54

Are We Done w/ Branch Prediction?

55

Chappell et al., “Simultaneous Subordinate Microthreading (SSMT),” ISCA 1999.

Some Other Branch Predictor Types

 Loop branch detector and predictor

 Loop iteration count detector/predictor

 Works well for loops with small number of iterations, where
iteration count is predictable

 Used in Intel Pentium M

 Perceptron branch predictor

 Learns the direction correlations between individual branches

 Assigns weights to correlations

 Jimenez and Lin, “Dynamic Branch Prediction with
Perceptrons,” HPCA 2001.

 Hybrid history length based predictor

 Uses different tables with different history lengths

 Seznec, “Analysis of the O-Geometric History Length branch
predictor,” ISCA 2005.

56

Intel Pentium M Predictors

57

Gochman et al.,

“The Intel Pentium M Processor: Microarchitecture and Performance,”

Intel Technology Journal, May 2003.

Perceptron Branch Predictor (I)

 Idea: Use a perceptron to learn the correlations between branch history
register bits and branch outcome

 A perceptron learns a target Boolean function of N inputs

 Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001.

 Rosenblatt, “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,” 1962

 58

Each branch associated with a perceptron

A perceptron contains a set of weights wi

 Each weight corresponds to a bit in

 the GHR

How much the bit is correlated with the

 direction of the branch

 Positive correlation: large + weight

 Negative correlation: large - weight

Prediction:

 Express GHR bits as 1 (T) and -1 (NT)

 Take dot product of GHR and weights

 If output > 0, predict taken

Perceptron Branch Predictor (II)

59

Bias weight

(bias of branch independent of

 the history)

Dot product of GHR

and perceptron weights

Output

compared

to 0

Prediction function:

Training function:

Perceptron Branch Predictor (III)

 Advantages

+ More sophisticated learning mechanism better accuracy

 Disadvantages

-- Hard to implement (adder tree to compute perceptron output)

-- Can learn only linearly-separable functions

 e.g., cannot learn XOR type of correlation between 2 history
bits and branch outcome

60

Prediction Using Multiple History Lengths

 Observation: Different
branches require
different history lengths
for better prediction
accuracy

 Idea: Have multiple
PHTs indexed with
GHRs with different
history lengths and
intelligently allocate
PHT entries to different
branches

61

Seznec and Michaud, “A case for (partially) tagged Geometric History Length

Branch Prediction,” JILP 2006.

State of the Art in Branch Prediction

 See the Branch Prediction Championship

 http://www.jilp.org/cbp2014/program.html

62

Andre Seznec,

“TAGE-SC-L branch predictors,”

CBP 2014.

http://www.jilp.org/cbp2014/program.html

Another Direction: Helper Threading

 Idea: Pre-compute the outcome of the branch with a
separate, customized thread (i.e., a helper thread)

 Chappell et al., “Difficult-Path Branch Prediction Using Subordinate
Microthreads,” ISCA 2002.

 Chappell et al., “Simultaneous Subordinate Microthreading,” ISCA 1999.

 63

Branch Confidence Estimation

 Idea: Estimate if the prediction is likely to be correct

 i.e., estimate how “confident” you are in the prediction

 Why?

 Could be very useful in deciding how to speculate:

 What predictor/PHT to choose/use

 Whether to keep fetching on this path

 Whether to switch to some other way of handling the branch,
e.g. dual-path execution (eager execution) or dynamic
predication

 …

 Jacobsen et al., “Assigning Confidence to Conditional Branch
Predictions,” MICRO 1996.

 64

How to Estimate Confidence

 An example estimator:

 Keep a record of correct/incorrect outcomes for the past N
instances of the “branch”

 Based on the correct/incorrect patterns, guess if the curent
prediction will likely be correct/incorrect

65 Jacobsen et al., “Assigning Confidence to Conditional Branch Predictions,” MICRO 1996.

What to Do With Confidence Estimation?

 An example application: Pipeline Gating

66

Manne et al., “Pipeline Gating: Speculation Control for Energy Reduction,” ISCA 1998.

Issues in Fast & Wide Fetch

Engines

67

I-Cache Line and Way Prediction

 Problem: Complex branch prediction can take too long (many
cycles)

 Goal

 Quickly generate (a reasonably accurate) next fetch address

 Enable the fetch engine to run at high frequencies

 Override the quick prediction with more sophisticated prediction

 Idea: Get the predicted next cache line and way at the time
you fetch the current cache line

 Example Mechanism (e.g., Alpha 21264)

 Each cache line tells which line/way to fetch next (prediction)

 On a fill, line/way predictor points to next sequential line

 On branch resolution, line/way predictor is updated

 If line/way prediction is incorrect, one cycle is wasted

68

Alpha 21264 Line & Way Prediction

69 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

Alpha 21264 Line & Way Prediction

70 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

Issues in Wide Fetch Engines

 Wide Fetch: Fetch multiple instructions per cycle

 Superscalar

 VLIW

 SIMT (GPUs’ single-instruction multiple thread model)

 Wide fetch engines suffer from the branch problem:

 How do you feed the wide pipeline with useful instructions in a
single cycle?

 What if there is a taken branch in the “fetch packet”?

 What is there are “multiple (taken) branches” in the “fetch
packet”?

71

Fetching Multiple Instructions Per Cycle

 Two problems

1. Alignment of instructions in I-cache

 What if there are not enough (N) instructions in the cache line
to supply the fetch width?

2. Fetch break: Branches present in the fetch block

 Fetching sequential instructions in a single cycle is easy

 What if there is a control flow instruction in the N instructions?

 Problem: The direction of the branch is not known but we
need to fetch more instructions

 These can cause effective fetch width < peak fetch width

72

Wide Fetch Solutions: Alignment

 Large cache blocks: Hope N instructions contained in the
block

 Split-line fetch: If address falls into second half of the
cache block, fetch the first half of next cache block as well

 Enabled by banking of the cache

 Allows sequential fetch across cache blocks in one cycle

 Intel Pentium and AMD K5

73

Split Line Fetch

74

Need alignment logic:

Short Distance Predicted-Taken Branches

75

Techniques to Reduce Fetch Breaks

 Compiler

 Code reordering (basic block reordering)

 Superblock

 Hardware

 Trace cache

 Hardware/software cooperative

 Block structured ISA

76

Basic Block Reordering

 Not-taken control flow instructions not a problem: no fetch
break: make the likely path the not-taken path

 Idea: Convert taken branches to not-taken ones

 i.e., reorder basic blocks (after profiling)

 Basic block: code with a single entry and single exit point

 Code Layout 1 leads to the fewest fetch breaks

77

A

B C

D

T NT

A
99% 1%

B

D

Control Flow Graph Code Layout 1 Code Layout 2

A

C

D

Code Layout 3

A

B

C

D

C B

Basic Block Reordering

 Pettis and Hansen, “Profile Guided Code Positioning,” PLDI
1990.

 Advantages:

+ Reduced fetch breaks (assuming profile behavior matches
runtime behavior of branches)

+ Increased I-cache hit rate

+ Reduced page faults

 Disadvantages:

-- Dependent on compile-time profiling

-- Does not help if branches are not biased

-- Requires recompilation

78

Superblock
 Idea: Combine frequently executed basic blocks such that they form a

single-entry multiple exit larger block, which is likely executed as
straight-line code

+ Helps wide fetch

+ Enables aggressive

 compiler optimizations

 and code reordering

 within the superblock

-- Increased code size

-- Profile dependent

-- Requires recompilation

 Hwu et al. “The Superblock: An effective technique for VLIW

 and superscalar compilation,” Journal of Supercomputing, 1993.
79

Superblock Formation (I)

80

Y

A

100

C

10

B

90

E

90

D

0

F

100

Z

1

90 10

90 0

0
90

10
99

1

Y

A

100

C

10

B

90

E

90

D

0

F

100

Z

1

90
10

90 0

0
90

10

99

1

Is this a superblock?

Superblock Formation (II)

81

Y

A

100

C

10

B

90

E

90

D

0

F

90

Z

1

90 10

90 0

0

90

10

89.1

0.9

Tail duplication:

duplication of basic blocks

after a side entrance to

eliminate side entrances

 transforms

a trace into a superblock.

F’
10

10

9.9

0.1

Superblock Code Optimization Example

82

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,1 99

1

1

Original Code

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,1 99

1

Code After Superblock Formation

opC’: mul r3<-r2,3

opA: mul r1<-r2,3

opC: mov r3<-r1

opB: add r2<-r2,1 99

1

Code After Common

Subexpression Elimination

opC’: mul r3<-r2,3

Techniques to Reduce Fetch Breaks

 Compiler

 Code reordering (basic block reordering)

 Superblock

 Hardware

 Trace cache

 Hardware/software cooperative

 Block structured ISA

83

Trace Cache: Basic Idea

 A trace is a sequence of executed instructions.

 It is specified by a start address and the branch outcomes
of control transfer instructions.

 Traces repeat: programs have frequently executed paths

 Trace cache idea: Store the dynamic instruction sequence
in the same physical location.

84

Reducing Fetch Breaks: Trace Cache

 Dynamically determine the basic blocks that are executed consecutively

 Trace: Consecutively executed basic blocks

 Idea: Store consecutively-executed basic blocks in physically-contiguous
internal storage (called trace cache)

 Basic trace cache operation:
 Fetch from consecutively-stored basic blocks (predict next trace or branches)

 Verify the executed branch directions with the stored ones

 If mismatch, flush the remaining portion of the trace

 Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction

Fetching,” MICRO 1996.

 Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997.

 85

Trace Cache: Example

86

An Example Trace Cache Based Processor

 From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar

Processors,” University of Michigan, 1999.

87

Multiple Branch Predictor

 S. Patel, “Trace Cache Design for Wide Issue Superscalar Processors,” PhD
Thesis, University of Michigan, 1999.

88

What Does A Trace Cache Line Store?

 Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR,

1997.

 89

Trace Cache: Advantages/Disadvantages

+ Reduces fetch breaks (assuming branches are biased)

+ No need for decoding (instructions can be stored in decoded form)

+ Can enable dynamic optimizations within a trace

-- Requires hardware to form traces (more complexity) called fill unit

-- Results in duplication of the same basic blocks in the cache

-- Can require the prediction of multiple branches per cycle

 -- If multiple cached traces have the same start address

 -- What if XYZ and XYT are both likely traces?

90

Intel Pentium 4 Trace Cache

 A 12K-uop trace cache replaces the L1 I-cache

 Trace cache stores decoded and cracked instructions

 Micro-operations (uops): returns 6 uops every other cycle

 x86 decoder can be simpler and slower

 A. Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Organized
Around Trace Segments Independent of Virtual Address Line", United States
Patent No. 5,381,533, Jan 10, 1995

91

Front End BTB

4K Entries

ITLB &

Prefetcher
L2 Interface

x86 Decoder

Trace Cache

12K uop’s
Trace Cache BTB

512 Entries

Required Readings for Next Lecture

92

 Required Reading Assignment:
• Chapter 5 and Chapter 9 of Shen and Lipasti (SnL).

 Recommended References:

• Robert Tomasulo, “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM Journal of Research and Development,
11(1):25-33, January 1967.

• Bo Zhang, “A Tomasulo's Algorithm Emulator,” February 1, 2013.

18-740/640

Computer Architecture

Lecture 5: Advanced Branch Prediction

Prof. Onur Mutlu

Carnegie Mellon University

Fall 2015, 9/16/2015

