
18-740/640

Computer Architecture

Lecture 5: Advanced Branch Prediction

Prof. Onur Mutlu

Carnegie Mellon University

Fall 2015, 9/16/2015

Required Readings

2

 Required Reading Assignment:
• Chapter 5 of Shen and Lipasti (SnL).

 Recommended References:

• T. Yeh and Y. Patt, “Two-Level Adaptive Training Branch Prediction,”
Intl. Symposium on Microarchitecture, November 1991.

 MICRO Test of Time Award Winner (after 24 years)

• Kessler, R. E., “The Alpha 21264 Microprocessor,” IEEE Micro,
March/April 1999, pp. 24-36 (available at ieeexplore.ieee.org).

• McFarling, S., “Combining Branch Predictors,” DEC WRL Technical
Report, TN-36, June 1993.

Also Recommended …

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

3

Control Dependence

 Question: What should the fetch PC be in the next cycle?

 If the instruction that is fetched is a control-flow instruction:

 How do we determine the next Fetch PC?

 In fact, how do we even know whether or not the fetched
instruction is a control-flow instruction?

4

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

5

The Branch Problem

 Control flow instructions (branches) are frequent

 15-25% of all instructions

 Problem: Next fetch address after a control-flow instruction
is not determined after N cycles in a pipelined processor

 N cycles: (minimum) branch resolution latency

 If we are fetching W instructions per cycle (i.e., if the
pipeline is W wide)

 A branch misprediction leads to N x W wasted instruction slots

6

Importance of The Branch Problem
 Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)

 Assume: 1 out of 5 instructions is a branch

 Assume: Each 5 instruction-block ends with a branch

 How long does it take to fetch 500 instructions?

 100% accuracy
 100 cycles (all instructions fetched on the correct path)

 No wasted work

 99% accuracy
 100 (correct path) + 20 (wrong path) = 120 cycles

 20% extra instructions fetched

 98% accuracy
 100 (correct path) + 20 * 2 (wrong path) = 140 cycles

 40% extra instructions fetched

 95% accuracy
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

 100% extra instructions fetched

 7

Simplest: Always Guess NextPC = PC + 4

 Always predict the next sequential instruction is the next
instruction to be executed

 This is a form of next fetch address prediction (and branch
prediction)

 How can you make this more effective?

 Idea: Maximize the chances that the next sequential
instruction is the next instruction to be executed

 Software: Lay out the control flow graph such that the “likely
next instruction” is on the not-taken path of a branch

 Profile guided code positioning  Pettis & Hansen, PLDI 1990.

 Hardware: ??? (how can you do this in hardware…)

 Cache traces of executed instructions  Trace cache

8

Guessing NextPC = PC + 4

 How else can you make this more effective?

 Idea: Get rid of control flow instructions (or minimize their
occurrence)

 How?

1. Get rid of unnecessary control flow instructions 

combine predicates (predicate combining)

2. Convert control dependences into data dependences 

predicated execution

9

Branch Prediction (A Bit More Enhanced)

 Idea: Predict the next fetch address (to be used in the next
cycle)

 Requires three things to be predicted at fetch stage:

 Whether the fetched instruction is a branch

 (Conditional) branch direction

 Branch target address (if taken)

 Observation: Target address remains the same for a
conditional direct branch across dynamic instances

 Idea: Store the target address from previous instance and access
it with the PC

 Called Branch Target Buffer (BTB) or Branch Target Address
Cache

10

11

target address

Fetch Stage with BTB and Direction Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current branch

12

target address

More Sophisticated Branch Direction Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR

PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current branch

Three Things to Be Predicted

 Requires three things to be predicted at fetch stage:

1. Whether the fetched instruction is a branch

2. (Conditional) branch direction

3. Branch target address (if taken)

 Third (3.) can be accomplished using a BTB

Remember target address computed last time branch was
executed

 First (1.) can be accomplished using a BTB

If BTB provides a target address for the program counter, then it
must be a branch

Or, we can store “branch metadata” bits in instruction
cache/memory  partially decoded instruction stored in I-cache

 Second (2.): How do we predict the direction?

13

Simple Branch Direction Prediction Schemes

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)

14

More Sophisticated Direction Prediction

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Program analysis based (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)

 Two-bit counter based prediction

 Two-level prediction (global vs. local)

 Hybrid

 Advanced algorithms (e.g., using perceptrons)

 15

Review: State Machine for Last-Time Prediction

16

predict
taken

predict
not

taken

actually
not taken

actually
taken

actually
taken

actually
not taken

Review: Improving the Last Time Predictor

 Problem: A last-time predictor changes its prediction from
TNT or NTT too quickly

 even though the branch may be mostly taken or mostly not
taken

 Solution Idea: Add hysteresis to the predictor so that
prediction does not change on a single different outcome

 Use two bits to track the history of predictions for a branch
instead of a single bit

 Can have 2 states for T or NT instead of 1 state for each

 Smith, “A Study of Branch Prediction Strategies,” ISCA
1981.

17

Review: Two-Bit Counter Based Prediction

 Each branch associated with a two-bit counter

 One more bit provides hysteresis

 A strong prediction does not change with one single
different outcome

 Accuracy for a loop with N iterations = (N-1)/N

 TNTNTNTNTNTNTNTNTNTN  50% accuracy

 (assuming counter initialized to weakly taken)

+ Better prediction accuracy

-- More hardware cost (but counter can be part of a BTB entry)

18

Review: State Machine for 2-bit Counter
 Counter using saturating arithmetic

 Arithmetic with maximum and minimum values

19

pred
taken

11

pred
taken

10

pred
!taken

01

pred
!taken

00

actually
taken

actually
taken

actually
!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

Review: Hysteresis Using a 2-bit Counter

20

pred
taken

pred
taken

pred
!taken

pred
!taken

actually
taken

actually
taken actually

!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

Change prediction after 2 consecutive mistakes

“weakly
taken”

“strongly
taken”

“weakly
!taken”

“strongly
!taken”

Is This Good Enough?

 ~85-90% accuracy for many programs with 2-bit counter
based prediction (also called bimodal prediction)

 Is this good enough?

 How big is the branch problem?

21

Let’s Do the Exercise Again
 Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)

 Assume: 1 out of 5 instructions is a branch

 Assume: Each 5 instruction-block ends with a branch

 How long does it take to fetch 500 instructions?

 100% accuracy
 100 cycles (all instructions fetched on the correct path)

 No wasted work

 95% accuracy
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

 100% extra instructions fetched

 90% accuracy
 100 (correct path) + 20 * 10 (wrong path) = 300 cycles

 200% extra instructions fetched

 85% accuracy
 100 (correct path) + 20 * 15 (wrong path) = 400 cycles

 300% extra instructions fetched

 22

Can We Do Better: Two-Level Prediction

 Last-time and 2BC predictors exploit “last-time”
predictability

 Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

 Global branch correlation

 Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (other than the outcome
of the branch “last-time” it was executed)

 Local branch correlation

23 Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

Global Branch Correlation (I)

 Recently executed branch outcomes in the execution path
are correlated with the outcome of the next branch

 If first branch not taken, second also not taken

 If first branch taken, second definitely not taken

24

Global Branch Correlation (II)

 If Y and Z both taken, then X also taken

 If Y or Z not taken, then X also not taken

25

Global Branch Correlation (III)

 Eqntott, SPEC’92: Generates truth table from Boolean expr.

 if (aa==2) ;; B1

 aa=0;

 if (bb==2) ;; B2

 bb=0;

 if (aa!=bb) { ;; B3

 ….

 }

If B1 is not taken (i.e., aa==0@B3) and B2 is not taken (i.e.
bb=0@B3) then B3 is certainly taken

26

Capturing Global Branch Correlation

 Idea: Associate branch outcomes with “global T/NT history”
of all branches

 Make a prediction based on the outcome of the branch the
last time the same global branch history was encountered

 Implementation:

 Keep track of the “global T/NT history” of all branches in a
register  Global History Register (GHR)

 Use GHR to index into a table that recorded the outcome that
was seen for each GHR value in the recent past  Pattern

History Table (table of 2-bit counters)

 Global history/branch predictor

 Uses two levels of history (GHR + history at that GHR)

27 Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

Two Level Global Branch Prediction

 First level: Global branch history register (N bits)

 The direction of last N branches

 Second level: Table of saturating counters for each history entry

 The direction the branch took the last time the same history was
seen

28

1 1 ….. 1 0

GHR

(global

history

register)

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

previous

branch’s

direction

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

How Does the Global Predictor Work?

 McFarling, “Combining Branch Predictors,” DEC WRL TR 1993.

29

This branch tests i

Last 4 branches test j

History: TTTN

Predict taken for i

Next history: TTNT

 (shift in last outcome)

Intel Pentium Pro Branch Predictor

 Two level global branch predictor

 4-bit global history register

 Multiple pattern history tables (of 2 bit counters)

 Which pattern history table to use is determined by lower
order bits of the branch address

30

Global Branch Correlation Analysis

 If Y and Z both taken, then X also taken

 If Y or Z not taken, then X also not taken

 Only 3 past branches’ directions
really matter

 Evers et al., “An Analysis of
Correlation and Predictability:
What Makes Two-Level Branch
Predictors Work,” ISCA 1998.

31

Improving Global Predictor Accuracy

 Idea: Add more context information to the global predictor to take into
account which branch is being predicted

 Gshare predictor: GHR hashed with the Branch PC

+ More context information

+ Better utilization of PHT

-- Increases access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

 32

33

target address

Review: One-Level Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current instruction

34

target address

Two-Level Global History Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current instruction

35

target address

Two-Level Gshare Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR

PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current instruction

An Issue: Interference in the PHTs

 Sharing the PHTs between histories/branches leads to interference

 Different branches map to the same PHT entry and modify it

 Interference can be positive, negative, or neutral

 Interference can be eliminated by dedicating a PHT per branch

-- Too much hardware cost

 How else can you eliminate or reduce interference?

36

Reducing Interference in PHTs (I)

 Increase size of PHT

 Branch filtering

 Predict highly-biased branches separately so that they do not
consume PHT entries

 E.g., static prediction or BTB based prediction

 Hashing/index-randomization

 Gshare

 Gskew

 Agree prediction

37

Biased Branches and Branch Filtering

 Observation: Many branches are biased in one direction
(e.g., 99% taken)

 Problem: These branches pollute the branch prediction
structures  make the prediction of other branches difficult

by causing “interference” in branch prediction tables and
history registers

 Solution: Detect such biased branches, and predict them
with a simpler predictor (e.g., last time, static, …)

 Chang et al., “Branch classification: a new mechanism for improving
branch predictor performance,” MICRO 1994.

38

Reducing Interference: Gshare

 Idea 1: Randomize the indexing function into the PHT such that
probability of two branches mapping to the same entry reduces

 Gshare predictor: GHR hashed with the Branch PC

+ Better utilization of PHT + More context information

- Increases access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

 39

Reducing Interference: Agree Predictor

 Idea 2: Agree prediction

 Each branch has a “bias” bit associated with it in BTB

 Ideally, most likely outcome for the branch

 High bit of the PHT counter indicates whether or not the prediction
agrees with the bias bit (not whether or not prediction is taken)

+ Reduces negative interference (Why???)

-- Requires determining bias bits (compiler vs. hardware)

40

Sprangle et al., “The Agree Predictor:

A Mechanism for Reducing Negative

Branch History Interference,” ISCA

1997.

Why Does Agree Prediction Make Sense?

 Assume two branches have taken rates of 85% and 15%.

 Assume they conflict in the PHT

 Let’s compute the probability they have opposite outcomes

 Baseline predictor:

 P (b1 T, b2 NT) + P (b1 NT, b2 T)

 = (85%*85%) + (15%*15%) = 74.5%

 Agree predictor:

 Assume bias bits are set to T (b1) and NT (b2)

 P (b1 agree, b2 disagree) + P (b1 disagree, b2 agree)

 = (85%*15%) + (15%*85%) = 25.5%

 Works because most branches are biased (not 50% taken)

41

Reducing Interference: Gskew

 Idea 3: Gskew predictor

 Multiple PHTs

 Each indexed with a different type of hash function

 Final prediction is a majority vote

+ Distributes interference patterns in a more randomized way
(interfering patterns less likely in different PHTs at the same time)

-- More complexity (due to multiple PHTs, hash functions)

42

Seznec, “An optimized

2bcgskew branch

predictor,” IRISA Tech

Report 1993.

Michaud, “Trading conflict

and capacity aliasing in

conditional branch

predictors,” ISCA 1997

B ra n c h Ad d r e ss

G lo b al B H R

f
0

f
1

f 2

M a jo r i ty

F ina l P r e dic tio n

PH T
0

P H T 1 P H T 2

More Techniques to Reduce PHT Interference

 The bi-mode predictor

 Separate PHTs for mostly-taken and mostly-not-taken branches

 Reduces negative aliasing between them

 Lee et al., “The bi-mode branch predictor,” MICRO 1997.

 The YAGS predictor

 Use a small tagged “cache” to predict branches that have experienced
interference

 Aims to not to mispredict them again

 Eden and Mudge, “The YAGS branch prediction scheme,” MICRO 1998.

 Alpha EV8 (21464) branch predictor

 Seznec et al., “Design tradeoffs for the Alpha EV8 conditional
branch predictor,” ISCA 2002.

43

Can We Do Better: Two-Level Prediction

 Last-time and 2BC predictors exploit only “last-time”
predictability for a given branch

 Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

 Global branch correlation

 Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (in addition to the
outcome of the branch “last-time” it was executed)

 Local branch correlation

44 Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

Local Branch Correlation

 McFarling, “Combining Branch Predictors,” DEC WRL TR 1993.

45

More Motivation for Local History

 To predict a loop
branch “perfectly”, we
want to identify the
last iteration of the
loop

 By having a separate
PHT entry for each
local history, we can
distinguish different
iterations of a loop

 Works for “short”
loops

46

0 00 0

0 00 1

0 01 0

0 01 1

0 10 0

0 10 1

0 11 0

0 111

1 00 0

1 00 1

1 01 0

1 011

1 10 0

11 01

11 10

1 111

11

11

11

00

1110 1110 1110 111 0111 0

P H T
L o op c l os ing b ra nc h ’s hi st ory

Capturing Local Branch Correlation

 Idea: Have a per-branch history register

 Associate the predicted outcome of a branch with “T/NT history”
of the same branch

 Make a prediction based on the outcome of the branch the
last time the same local branch history was encountered

 Called the local history/branch predictor

 Uses two levels of history (Per-branch history register +
history at that history register value)

47

Two Level Local Branch Prediction

 First level: A set of local history registers (N bits each)

 Select the history register based on the PC of the branch

 Second level: Table of saturating counters for each history entry

 The direction the branch took the last time the same history was
seen

48

1 1 ….. 1 0

Local history

registers

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

49

target address

Two-Level Local History Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current instruction

Which directions earlier instances of *this branch* went

Two-Level Predictor Taxonomy

 BHR can be global (G), per set of branches (S), or per branch (P)

 PHT counters can be adaptive (A) or static (S)

 PHT can be global (g), per set of branches (s), or per branch (p)

 Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,”
MICRO 1991.

50

Can We Do Even Better?

 Predictability of branches varies

 Some branches are more predictable using local history

 Some using global

 For others, a simple two-bit counter is enough

 Yet for others, a bit is enough

 Observation: There is heterogeneity in predictability
behavior of branches

 No one-size fits all branch prediction algorithm for all branches

 Idea: Exploit that heterogeneity by designing
heterogeneous branch predictors

51

Hybrid Branch Predictors

 Idea: Use more than one type of predictor (i.e., multiple
algorithms) and select the “best” prediction

 E.g., hybrid of 2-bit counters and global predictor

 Advantages:

 + Better accuracy: different predictors are better for different branches

 + Reduced warmup time (faster-warmup predictor used until the
slower-warmup predictor warms up)

 Disadvantages:

 -- Need “meta-predictor” or “selector”

 -- Longer access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

 52

Alpha 21264 Tournament Predictor

 Minimum branch penalty: 7 cycles

 Typical branch penalty: 11+ cycles

 48K bits of target addresses stored in I-cache

 Predictor tables are reset on a context switch

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999.

 53

Are We Done w/ Branch Prediction?

 Hybrid branch predictors work well

 E.g., 90-97% prediction accuracy on average

 Some “difficult” workloads still suffer, though!

 E.g., gcc

 Max IPC with tournament prediction: 9

 Max IPC with perfect prediction: 35

54

Are We Done w/ Branch Prediction?

55

Chappell et al., “Simultaneous Subordinate Microthreading (SSMT),” ISCA 1999.

Some Other Branch Predictor Types

 Loop branch detector and predictor

 Loop iteration count detector/predictor

 Works well for loops with small number of iterations, where
iteration count is predictable

 Used in Intel Pentium M

 Perceptron branch predictor

 Learns the direction correlations between individual branches

 Assigns weights to correlations

 Jimenez and Lin, “Dynamic Branch Prediction with
Perceptrons,” HPCA 2001.

 Hybrid history length based predictor

 Uses different tables with different history lengths

 Seznec, “Analysis of the O-Geometric History Length branch
predictor,” ISCA 2005.

56

Intel Pentium M Predictors

57

Gochman et al.,

“The Intel Pentium M Processor: Microarchitecture and Performance,”

Intel Technology Journal, May 2003.

Perceptron Branch Predictor (I)

 Idea: Use a perceptron to learn the correlations between branch history
register bits and branch outcome

 A perceptron learns a target Boolean function of N inputs

 Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001.

 Rosenblatt, “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,” 1962

 58

Each branch associated with a perceptron

A perceptron contains a set of weights wi

 Each weight corresponds to a bit in

 the GHR

How much the bit is correlated with the

 direction of the branch

 Positive correlation: large + weight

 Negative correlation: large - weight

Prediction:

 Express GHR bits as 1 (T) and -1 (NT)

 Take dot product of GHR and weights

 If output > 0, predict taken

Perceptron Branch Predictor (II)

59

Bias weight

(bias of branch independent of

 the history)

Dot product of GHR

and perceptron weights

Output

compared

to 0

Prediction function:

Training function:

Perceptron Branch Predictor (III)

 Advantages

+ More sophisticated learning mechanism  better accuracy

 Disadvantages

-- Hard to implement (adder tree to compute perceptron output)

-- Can learn only linearly-separable functions

 e.g., cannot learn XOR type of correlation between 2 history
bits and branch outcome

60

Prediction Using Multiple History Lengths

 Observation: Different
branches require
different history lengths
for better prediction
accuracy

 Idea: Have multiple
PHTs indexed with
GHRs with different
history lengths and
intelligently allocate
PHT entries to different
branches

61

Seznec and Michaud, “A case for (partially) tagged Geometric History Length

Branch Prediction,” JILP 2006.

State of the Art in Branch Prediction

 See the Branch Prediction Championship

 http://www.jilp.org/cbp2014/program.html

62

Andre Seznec,

“TAGE-SC-L branch predictors,”

CBP 2014.

http://www.jilp.org/cbp2014/program.html

Another Direction: Helper Threading

 Idea: Pre-compute the outcome of the branch with a
separate, customized thread (i.e., a helper thread)

 Chappell et al., “Difficult-Path Branch Prediction Using Subordinate
Microthreads,” ISCA 2002.

 Chappell et al., “Simultaneous Subordinate Microthreading,” ISCA 1999.

 63

Branch Confidence Estimation

 Idea: Estimate if the prediction is likely to be correct

 i.e., estimate how “confident” you are in the prediction

 Why?

 Could be very useful in deciding how to speculate:

 What predictor/PHT to choose/use

 Whether to keep fetching on this path

 Whether to switch to some other way of handling the branch,
e.g. dual-path execution (eager execution) or dynamic
predication

 …

 Jacobsen et al., “Assigning Confidence to Conditional Branch
Predictions,” MICRO 1996.

 64

How to Estimate Confidence

 An example estimator:

 Keep a record of correct/incorrect outcomes for the past N
instances of the “branch”

 Based on the correct/incorrect patterns, guess if the curent
prediction will likely be correct/incorrect

65 Jacobsen et al., “Assigning Confidence to Conditional Branch Predictions,” MICRO 1996.

What to Do With Confidence Estimation?

 An example application: Pipeline Gating

66

Manne et al., “Pipeline Gating: Speculation Control for Energy Reduction,” ISCA 1998.

Issues in Fast & Wide Fetch

Engines

67

I-Cache Line and Way Prediction

 Problem: Complex branch prediction can take too long (many
cycles)

 Goal

 Quickly generate (a reasonably accurate) next fetch address

 Enable the fetch engine to run at high frequencies

 Override the quick prediction with more sophisticated prediction

 Idea: Get the predicted next cache line and way at the time
you fetch the current cache line

 Example Mechanism (e.g., Alpha 21264)

 Each cache line tells which line/way to fetch next (prediction)

 On a fill, line/way predictor points to next sequential line

 On branch resolution, line/way predictor is updated

 If line/way prediction is incorrect, one cycle is wasted

68

Alpha 21264 Line & Way Prediction

69 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

Alpha 21264 Line & Way Prediction

70 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

Issues in Wide Fetch Engines

 Wide Fetch: Fetch multiple instructions per cycle

 Superscalar

 VLIW

 SIMT (GPUs’ single-instruction multiple thread model)

 Wide fetch engines suffer from the branch problem:

 How do you feed the wide pipeline with useful instructions in a
single cycle?

 What if there is a taken branch in the “fetch packet”?

 What is there are “multiple (taken) branches” in the “fetch
packet”?

71

Fetching Multiple Instructions Per Cycle

 Two problems

1. Alignment of instructions in I-cache

 What if there are not enough (N) instructions in the cache line
to supply the fetch width?

2. Fetch break: Branches present in the fetch block

 Fetching sequential instructions in a single cycle is easy

 What if there is a control flow instruction in the N instructions?

 Problem: The direction of the branch is not known but we
need to fetch more instructions

 These can cause effective fetch width < peak fetch width

72

Wide Fetch Solutions: Alignment

 Large cache blocks: Hope N instructions contained in the
block

 Split-line fetch: If address falls into second half of the
cache block, fetch the first half of next cache block as well

 Enabled by banking of the cache

 Allows sequential fetch across cache blocks in one cycle

 Intel Pentium and AMD K5

73

Split Line Fetch

74

Need alignment logic:

Short Distance Predicted-Taken Branches

75

Techniques to Reduce Fetch Breaks

 Compiler

 Code reordering (basic block reordering)

 Superblock

 Hardware

 Trace cache

 Hardware/software cooperative

 Block structured ISA

76

Basic Block Reordering

 Not-taken control flow instructions not a problem: no fetch
break: make the likely path the not-taken path

 Idea: Convert taken branches to not-taken ones

 i.e., reorder basic blocks (after profiling)

 Basic block: code with a single entry and single exit point

 Code Layout 1 leads to the fewest fetch breaks

77

A

B C

D

T NT

A
99% 1%

B

D

Control Flow Graph Code Layout 1 Code Layout 2

A

C

D

Code Layout 3

A

B

C

D

C B

Basic Block Reordering

 Pettis and Hansen, “Profile Guided Code Positioning,” PLDI
1990.

 Advantages:

+ Reduced fetch breaks (assuming profile behavior matches
runtime behavior of branches)

+ Increased I-cache hit rate

+ Reduced page faults

 Disadvantages:

-- Dependent on compile-time profiling

-- Does not help if branches are not biased

-- Requires recompilation

78

Superblock
 Idea: Combine frequently executed basic blocks such that they form a

single-entry multiple exit larger block, which is likely executed as
straight-line code

+ Helps wide fetch

+ Enables aggressive

 compiler optimizations

 and code reordering

 within the superblock

-- Increased code size

-- Profile dependent

-- Requires recompilation

 Hwu et al. “The Superblock: An effective technique for VLIW

 and superscalar compilation,” Journal of Supercomputing, 1993.
79

Superblock Formation (I)

80

Y

A

100

C

10

B

90

E

90

D

0

F

100

Z

1

90 10

90 0

0
90

10
99

1

Y

A

100

C

10

B

90

E

90

D

0

F

100

Z

1

90
10

90 0

0
90

10

99

1

Is this a superblock?

Superblock Formation (II)

81

Y

A

100

C

10

B

90

E

90

D

0

F

90

Z

1

90 10

90 0

0

90

10

89.1

0.9

Tail duplication:

duplication of basic blocks

after a side entrance to

eliminate side entrances

 transforms

a trace into a superblock.

F’
10

10

9.9

0.1

Superblock Code Optimization Example

82

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,1 99

1

1

Original Code

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,1 99

1

Code After Superblock Formation

opC’: mul r3<-r2,3

opA: mul r1<-r2,3

opC: mov r3<-r1

opB: add r2<-r2,1 99

1

Code After Common

Subexpression Elimination

opC’: mul r3<-r2,3

Techniques to Reduce Fetch Breaks

 Compiler

 Code reordering (basic block reordering)

 Superblock

 Hardware

 Trace cache

 Hardware/software cooperative

 Block structured ISA

83

Trace Cache: Basic Idea

 A trace is a sequence of executed instructions.

 It is specified by a start address and the branch outcomes
of control transfer instructions.

 Traces repeat: programs have frequently executed paths

 Trace cache idea: Store the dynamic instruction sequence
in the same physical location.

84

Reducing Fetch Breaks: Trace Cache

 Dynamically determine the basic blocks that are executed consecutively

 Trace: Consecutively executed basic blocks

 Idea: Store consecutively-executed basic blocks in physically-contiguous
internal storage (called trace cache)

 Basic trace cache operation:
 Fetch from consecutively-stored basic blocks (predict next trace or branches)

 Verify the executed branch directions with the stored ones

 If mismatch, flush the remaining portion of the trace

 Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction

Fetching,” MICRO 1996.

 Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997.

 85

Trace Cache: Example

86

An Example Trace Cache Based Processor

 From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar

Processors,” University of Michigan, 1999.

87

Multiple Branch Predictor

 S. Patel, “Trace Cache Design for Wide Issue Superscalar Processors,” PhD
Thesis, University of Michigan, 1999.

88

What Does A Trace Cache Line Store?

 Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR,

1997.

 89

Trace Cache: Advantages/Disadvantages

+ Reduces fetch breaks (assuming branches are biased)

+ No need for decoding (instructions can be stored in decoded form)

+ Can enable dynamic optimizations within a trace

-- Requires hardware to form traces (more complexity)  called fill unit

-- Results in duplication of the same basic blocks in the cache

-- Can require the prediction of multiple branches per cycle

 -- If multiple cached traces have the same start address

 -- What if XYZ and XYT are both likely traces?

90

Intel Pentium 4 Trace Cache

 A 12K-uop trace cache replaces the L1 I-cache

 Trace cache stores decoded and cracked instructions

 Micro-operations (uops): returns 6 uops every other cycle

 x86 decoder can be simpler and slower

 A. Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Organized
Around Trace Segments Independent of Virtual Address Line", United States
Patent No. 5,381,533, Jan 10, 1995

91

Front End BTB

4K Entries

ITLB &

Prefetcher
L2 Interface

x86 Decoder

Trace Cache

12K uop’s
Trace Cache BTB

512 Entries

Required Readings for Next Lecture

92

 Required Reading Assignment:
• Chapter 5 and Chapter 9 of Shen and Lipasti (SnL).

 Recommended References:

• Robert Tomasulo, “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM Journal of Research and Development,
11(1):25-33, January 1967.

• Bo Zhang, “A Tomasulo's Algorithm Emulator,” February 1, 2013.

18-740/640

Computer Architecture

Lecture 5: Advanced Branch Prediction

Prof. Onur Mutlu

Carnegie Mellon University

Fall 2015, 9/16/2015

