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 Required Reading Assignment: 
• Chapter 5 of Shen and Lipasti (SnL). 

 

 Recommended References: 
 

• T. Yeh and Y. Patt,  “Two-Level Adaptive Training Branch Prediction,”  
Intl. Symposium on Microarchitecture, November 1991. 

   MICRO Test of Time Award Winner (after 24 years) 
 

• Kessler, R. E., “The Alpha 21264 Microprocessor,” IEEE Micro, 
March/April 1999, pp. 24-36 (available at ieeexplore.ieee.org). 
 

• McFarling, S., “Combining Branch Predictors,” DEC WRL Technical 
Report, TN-36, June 1993.  

 



Also Recommended … 

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995 

 More advanced pipelining 

 Interrupt and exception handling 

 Out-of-order and superscalar execution concepts 
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Control Dependence 

 Question: What should the fetch PC be in the next cycle? 

 

 If the instruction that is fetched is a control-flow instruction: 

 How do we determine the next Fetch PC? 

 

 In fact, how do we even know whether or not the fetched 
instruction is a control-flow instruction? 
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How to Handle Control Dependences 

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions.  

 

 Potential solutions if the instruction is a control-flow 
instruction: 

 

 Stall the pipeline until we know the next fetch address 

 Guess the next fetch address (branch prediction) 

 Employ delayed branching (branch delay slot) 

 Do something else (fine-grained multithreading) 

 Eliminate control-flow instructions (predicated execution) 

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution) 
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The Branch Problem 

 Control flow instructions (branches) are frequent 

 15-25% of all instructions 

 

 Problem: Next fetch address after a control-flow instruction 
is not determined after N cycles in a pipelined processor 

 N cycles: (minimum) branch resolution latency 

 

 If we are fetching W instructions per cycle (i.e., if the 
pipeline is W wide) 

 A branch misprediction leads to N x W wasted instruction slots  
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Importance of The Branch Problem 
 Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch) 

 Assume: 1 out of 5 instructions is a branch  

 Assume: Each 5 instruction-block ends with a branch 
 

 How long does it take to fetch 500 instructions?  

 100% accuracy  
 100 cycles (all instructions fetched on the correct path) 

 No wasted work 

 99% accuracy 
 100 (correct path) + 20 (wrong path) = 120 cycles 

 20% extra instructions fetched 

 98% accuracy 
 100 (correct path) + 20 * 2 (wrong path) = 140 cycles  

 40% extra instructions fetched  

 95% accuracy 
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles 

 100% extra instructions fetched 
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Simplest: Always Guess NextPC = PC + 4  

 Always predict the next sequential instruction is the next 
instruction to be executed 

 This is a form of next fetch address prediction (and branch 
prediction) 
 

 How can you make this more effective? 

 

 Idea: Maximize the chances that the next sequential 
instruction is the next instruction to be executed 

 Software: Lay out the control flow graph such that the “likely 
next instruction” is on the not-taken path of a branch 

 Profile guided code positioning  Pettis & Hansen, PLDI 1990. 

 Hardware: ??? (how can you do this in hardware…)  

 Cache traces of executed instructions  Trace cache 
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Guessing NextPC = PC + 4 

 How else can you make this more effective? 

 

 Idea: Get rid of control flow instructions (or minimize their 
occurrence) 

 

 How? 

1. Get rid of unnecessary control flow instructions        

combine predicates (predicate combining) 

2. Convert control dependences into data dependences  

predicated execution 
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Branch Prediction (A Bit More Enhanced) 

 Idea: Predict the next fetch address (to be used in the next 
cycle) 

 

 Requires three things to be predicted at fetch stage: 

 Whether the fetched instruction is a branch 

 (Conditional) branch direction 

 Branch target address (if taken) 

 

 Observation: Target address remains the same for a 
conditional direct branch across dynamic instances 

 Idea: Store the target address from previous instance and access 
it with the PC 

 Called Branch Target Buffer (BTB) or Branch Target Address 
Cache 
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target address 
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Three Things to Be Predicted 

 Requires three things to be predicted at fetch stage: 

1. Whether the fetched instruction is a branch 

2. (Conditional) branch direction 

3. Branch target address (if taken) 

 

 Third (3.) can be accomplished using a BTB 

Remember target address computed last time branch was 
executed 

 First (1.) can be accomplished using a BTB 

If BTB provides a target address for the program counter, then it 
must be a branch 

Or, we can store “branch metadata” bits in instruction 
cache/memory  partially decoded instruction stored in I-cache 

 Second (2.): How do we predict the direction? 
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Simple Branch Direction Prediction Schemes 

 Compile time (static) 

 Always not taken 

 Always taken 

 BTFN (Backward taken, forward not taken) 

 Profile based (likely direction) 

 

 Run time (dynamic) 

 Last time prediction (single-bit) 

 

14 



More Sophisticated Direction Prediction 

 Compile time (static) 

 Always not taken 

 Always taken 

 BTFN (Backward taken, forward not taken) 

 Profile based (likely direction) 

 Program analysis based  (likely direction) 

 

 Run time (dynamic) 

 Last time prediction (single-bit) 

 Two-bit counter based prediction 

 Two-level prediction (global vs. local) 

 Hybrid 

 Advanced algorithms (e.g., using perceptrons) 
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Review: State Machine for Last-Time Prediction 
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Review: Improving the Last Time Predictor 

 Problem: A last-time predictor changes its prediction from 
TNT or NTT too quickly  

 even though the branch may be mostly taken or mostly not 
taken 

 

 Solution Idea: Add hysteresis to the predictor so that 
prediction does not change on a single different outcome 

 Use two bits to track the history of predictions for a branch 
instead of a single bit  

 Can have 2 states for T or NT instead of 1 state for each 

 

 Smith, “A Study of Branch Prediction Strategies,” ISCA 
1981. 
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Review: Two-Bit Counter Based Prediction 

 Each branch associated with a two-bit counter 

 One more bit provides hysteresis 

 A strong prediction does not change with one single 
different outcome 

 

 Accuracy for a loop with N iterations = (N-1)/N 

 TNTNTNTNTNTNTNTNTNTN    50% accuracy 

           (assuming counter initialized to weakly taken) 

 

 

+ Better prediction accuracy 

-- More hardware cost (but counter can be part of a BTB entry) 
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Review: State Machine for 2-bit Counter 
 Counter using saturating arithmetic 

 Arithmetic with maximum and minimum values 
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Review: Hysteresis Using a 2-bit Counter 
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Is This Good Enough? 

 ~85-90% accuracy for many programs with 2-bit counter 
based prediction (also called bimodal prediction) 

 

 Is this good enough? 

 

 How big is the branch problem? 
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Let’s Do the Exercise Again 
 Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch) 

 Assume: 1 out of 5 instructions is a branch  

 Assume: Each 5 instruction-block ends with a branch 
 

 How long does it take to fetch 500 instructions?  

 100% accuracy  
 100 cycles (all instructions fetched on the correct path) 

 No wasted work 

 95% accuracy 
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles 

 100% extra instructions fetched 

 90% accuracy 
 100 (correct path) + 20 * 10 (wrong path) = 300 cycles  

 200% extra instructions fetched  

 85% accuracy 
 100 (correct path) + 20 * 15 (wrong path) = 400 cycles 

 300% extra instructions fetched 
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Can We Do Better: Two-Level Prediction 

 Last-time and 2BC predictors exploit “last-time” 
predictability 

 

 Realization 1: A branch’s outcome can be correlated with 
other branches’ outcomes 

 Global branch correlation  

 

 Realization 2: A branch’s outcome can be correlated with 
past outcomes of the same branch (other than the outcome 
of the branch “last-time” it was executed) 

 Local branch correlation 

 

 

23 Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991. 



Global Branch Correlation (I) 

 Recently executed branch outcomes in the execution path 
are correlated with the outcome of the next branch 

 

 

 

 If first branch not taken, second also not taken 

 

 

 

 If first branch taken, second definitely not taken 
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Global Branch Correlation (II) 

 

 

 

 

 If Y and Z both taken, then X also taken 

 If Y or Z not taken, then X also not taken 
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Global Branch Correlation (III) 

 Eqntott, SPEC’92: Generates truth table from Boolean expr. 

 

 if (aa==2)   ;; B1 

       aa=0; 

 if (bb==2)   ;; B2 

       bb=0; 

 if (aa!=bb) {                ;; B3 

       …. 

      } 

 

If B1 is not taken (i.e., aa==0@B3) and B2 is not taken (i.e. 
bb=0@B3) then B3 is certainly taken 
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Capturing Global Branch Correlation 

 Idea: Associate branch outcomes with “global T/NT history” 
of all branches 

 Make a prediction based on the outcome of the branch the 
last time the same global branch history was encountered 

 

 Implementation: 

 Keep track of the “global T/NT history” of all branches in a 
register  Global History Register (GHR) 

 Use GHR to index into a table that recorded the outcome that 
was seen for each GHR value in the recent past  Pattern 

History Table (table of 2-bit counters) 
 

 Global history/branch predictor 

 Uses two levels of history (GHR + history at that GHR) 

27 Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991. 



Two Level Global Branch Prediction 

 First level: Global branch history register (N bits) 

 The direction of last N branches 

 Second level: Table of saturating counters for each history entry 

 The direction the branch took the last time the same history was 
seen 
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Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991. 



How Does the Global Predictor Work? 

 

 

 

 

 

 

 

 

 

 

 

 McFarling, “Combining Branch Predictors,” DEC WRL TR 1993. 
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This branch tests i 

Last 4 branches test j 

History: TTTN 

Predict taken for i 

Next history: TTNT 

  (shift in last outcome)  



Intel Pentium Pro Branch Predictor 

 Two level global branch predictor 

 4-bit global history register 

 Multiple pattern history tables (of 2 bit counters) 

 Which pattern history table to use is determined by lower 
order bits of the branch address 
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Global Branch Correlation Analysis 

 

 

 

 
 If Y and Z both taken, then X also taken 

 If Y or Z not taken, then X also not taken 

 

 Only 3 past branches’ directions 
*really* matter  

 Evers et al., “An Analysis of 
Correlation and Predictability: 
What Makes Two-Level Branch 
Predictors Work,” ISCA 1998. 
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Improving Global Predictor Accuracy 

 Idea: Add more context information to the global predictor to take into 
account which branch is being predicted 

 Gshare predictor: GHR hashed with the Branch PC 

+ More context information 

+ Better utilization of PHT    

-- Increases access latency 

 

 

 

 

 

 

 

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993. 
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An Issue: Interference in the PHTs 

 Sharing the PHTs between histories/branches leads to interference 

 Different branches map to the same PHT entry and modify it 

 Interference can be positive, negative, or neutral 

 

 

 

 

 

 

 

 

 Interference can be eliminated by dedicating a PHT per branch 

-- Too much hardware cost 

 How else can you eliminate or reduce interference? 
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Reducing Interference in PHTs (I) 

 Increase size of PHT 

 

 Branch filtering 

 Predict highly-biased branches separately so that they do not 
consume PHT entries 

 E.g., static prediction or BTB based prediction 

 

 Hashing/index-randomization 

 Gshare 

 Gskew 

 

 Agree prediction 
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Biased Branches and Branch Filtering 

 Observation: Many branches are biased in one direction 
(e.g., 99% taken) 

 

 Problem: These branches pollute the branch prediction 
structures  make the prediction of other branches difficult 

by causing “interference” in branch prediction tables and 
history registers 

 

 Solution: Detect such biased branches, and predict them 
with a simpler predictor (e.g., last time, static, …) 

 

 Chang et al., “Branch classification: a new mechanism for improving 
branch predictor performance,” MICRO 1994. 
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Reducing Interference: Gshare 

 Idea 1: Randomize the indexing function into the PHT such that 
probability of two branches mapping to the same entry reduces 

 Gshare predictor: GHR hashed with the Branch PC 

+ Better utilization of PHT  + More context information 

-  Increases access latency 

 

 

 

 

 

 

 

 

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993. 
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Reducing Interference: Agree Predictor 

 Idea 2: Agree prediction 

 Each branch has a “bias” bit associated with it in BTB 

 Ideally, most likely outcome for the branch 

 High bit of the PHT counter indicates whether or not the prediction 
agrees with the bias bit (not whether or not prediction is taken) 

+ Reduces negative interference (Why???) 

-- Requires determining bias bits (compiler vs. hardware) 

40 

Sprangle et al., “The Agree Predictor: 

A Mechanism for Reducing Negative 

Branch History Interference,” ISCA 

1997. 



Why Does Agree Prediction Make Sense? 

 Assume two branches have taken rates of 85% and 15%. 

 Assume they conflict in the PHT 

 

 Let’s compute the probability they have opposite outcomes 

 Baseline predictor: 

 P (b1 T, b2 NT) + P (b1 NT, b2 T)  

    = (85%*85%) + (15%*15%) = 74.5% 

 Agree predictor: 

 Assume bias bits are set to T (b1) and NT (b2) 

 P (b1 agree, b2 disagree) + P (b1 disagree, b2 agree)  

    = (85%*15%) + (15%*85%) = 25.5% 

 

 Works because most branches are biased (not 50% taken) 
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Reducing Interference: Gskew 

 Idea 3: Gskew predictor 

 Multiple PHTs 

 Each indexed with a different type of hash function 

 Final prediction is a majority vote 

+ Distributes interference patterns in a more randomized way 
(interfering patterns less likely in different PHTs at the same time) 

-- More complexity (due to multiple PHTs, hash functions) 

42 

Seznec, “An optimized 

2bcgskew branch 

predictor,” IRISA Tech 

Report 1993. 

 

Michaud, “Trading conflict 

and capacity aliasing in 

conditional branch 

predictors,” ISCA 1997 
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More Techniques to Reduce PHT Interference 

 The bi-mode predictor 

 Separate PHTs for mostly-taken and mostly-not-taken branches 

 Reduces negative aliasing between them 

 Lee et al., “The bi-mode branch predictor,” MICRO 1997. 

 

 The YAGS predictor 

 Use a small tagged “cache” to predict branches that have experienced 
interference  

 Aims to not to mispredict them again 

 Eden and Mudge, “The YAGS branch prediction scheme,” MICRO 1998. 

 

 Alpha EV8 (21464) branch predictor 

 Seznec et al., “Design tradeoffs for the Alpha EV8 conditional 
branch predictor,” ISCA 2002. 
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Can We Do Better: Two-Level Prediction 

 Last-time and 2BC predictors exploit only “last-time” 
predictability for a given branch 

 

 Realization 1: A branch’s outcome can be correlated with 
other branches’ outcomes 

 Global branch correlation  

 

 Realization 2: A branch’s outcome can be correlated with 
past outcomes of the same branch (in addition to the 
outcome of the branch “last-time” it was executed) 

 Local branch correlation 

 

 

44 Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991. 



Local Branch Correlation 

 

 

 

 

 

 

 

 

 

 McFarling, “Combining Branch Predictors,” DEC WRL TR 1993. 
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More Motivation for Local History 

 To predict a loop 
branch “perfectly”, we 
want to identify the 
last iteration of the 
loop 

 

 By having a separate 
PHT entry for each 
local history, we can 
distinguish different 
iterations of a loop 

 

 Works for “short” 
loops 
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Capturing Local Branch Correlation 

 Idea: Have a per-branch history register 

 Associate the predicted outcome of a branch with “T/NT history” 
of the same branch 

 Make a prediction based on the outcome of the branch the 
last time the same local branch history was encountered 

 

 Called the local history/branch predictor 

 Uses two levels of history (Per-branch history register + 
history at that history register value) 

47 



Two Level Local Branch Prediction 

 First level: A set of local history registers (N bits each) 

 Select the history register based on the PC of the branch 

 Second level: Table of saturating counters for each history entry 

 The direction the branch took the last time the same history was 
seen 
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Two-Level Predictor Taxonomy 

 BHR can be global (G), per set of branches (S), or per branch (P) 

 PHT counters can be adaptive (A) or static (S) 

 PHT can be global (g), per set of branches (s), or per branch (p) 

 

 

 

 

 

 

 

 

 

 Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” 
MICRO 1991. 
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Can We Do Even Better? 

 Predictability of branches varies 

 

 Some branches are more predictable using local history 

 Some using global 

 For others, a simple two-bit counter is enough 

 Yet for others, a bit is enough  

 

 Observation: There is heterogeneity in predictability 
behavior of branches 

 No one-size fits all branch prediction algorithm for all branches 

 

 Idea: Exploit that heterogeneity by designing 
heterogeneous branch predictors 
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Hybrid Branch Predictors 

 Idea: Use more than one type of predictor (i.e., multiple 
algorithms) and select the “best” prediction 

 E.g., hybrid of 2-bit counters and global predictor 

 

 Advantages: 

 + Better accuracy: different predictors are better for different branches 

 + Reduced warmup time (faster-warmup predictor used until the 
slower-warmup predictor warms up) 

 

 Disadvantages: 

 -- Need “meta-predictor” or “selector” 

 -- Longer access latency 

 

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993. 
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Alpha 21264 Tournament Predictor 

 

 

 

 

 

 

 

 Minimum branch penalty: 7 cycles 

 Typical branch penalty: 11+ cycles 

 48K bits of target addresses stored in I-cache 

 Predictor tables are reset on a context switch 

 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999. 
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Are We Done w/ Branch Prediction? 

 Hybrid branch predictors work well 

 E.g., 90-97% prediction accuracy on average 

 

 Some “difficult” workloads still suffer, though! 

 E.g., gcc 

 Max IPC with tournament prediction: 9 

 Max IPC with perfect prediction: 35 
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Are We Done w/ Branch Prediction? 

55 

Chappell et al., “Simultaneous Subordinate Microthreading (SSMT),” ISCA 1999. 



Some Other Branch Predictor Types 

 Loop branch detector and predictor 

 Loop iteration count detector/predictor 

 Works well for loops with small number of iterations, where 
iteration count is predictable 

 Used in Intel Pentium M 

 Perceptron branch predictor 

 Learns the direction correlations between individual branches 

 Assigns weights to correlations 

 Jimenez and Lin, “Dynamic Branch Prediction with 
Perceptrons,” HPCA 2001. 

 Hybrid history length based predictor 

 Uses different tables with different history lengths 

 Seznec, “Analysis of the O-Geometric History Length branch 
predictor,” ISCA 2005. 
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Intel Pentium M Predictors 

57 

Gochman et al.,  

“The Intel Pentium M Processor: Microarchitecture and Performance,”  

Intel Technology Journal, May 2003. 



Perceptron Branch Predictor (I) 

 Idea: Use a perceptron to learn the correlations between branch history 
register bits and branch outcome 

 A perceptron learns a target Boolean function of N inputs 

 
 

 

 

 
 

 

 

 

 

 Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001. 

 Rosenblatt, “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,” 1962 
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Each branch associated with a perceptron 

 

A perceptron contains a set of weights wi 

 Each weight corresponds to a bit in  

    the GHR  

How much the bit is correlated with the  

   direction of the branch 

 Positive correlation: large + weight 

 Negative correlation: large - weight 

 

Prediction: 

 Express GHR bits as 1 (T) and -1 (NT) 

 Take dot product of GHR and weights 

 If output > 0, predict taken 



Perceptron Branch Predictor (II) 
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Perceptron Branch Predictor (III) 

 Advantages 

+ More sophisticated learning mechanism  better accuracy 

 

 Disadvantages 

-- Hard to implement (adder tree to compute perceptron output) 

-- Can learn only linearly-separable functions 

 e.g., cannot learn XOR type of correlation between 2 history 
bits and branch outcome 

60 



Prediction Using Multiple History Lengths 

 Observation: Different 
branches require 
different history lengths 
for better prediction 
accuracy 

 

 Idea: Have multiple 
PHTs indexed with 
GHRs with different 
history lengths and 
intelligently allocate 
PHT entries to different 
branches 

61 

Seznec and Michaud, “A case for (partially) tagged Geometric History Length  

Branch Prediction,” JILP 2006. 



State of the Art in Branch Prediction 

 See the Branch Prediction Championship 

 http://www.jilp.org/cbp2014/program.html  
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Andre Seznec,  

“TAGE-SC-L branch predictors,”  

CBP 2014. 

http://www.jilp.org/cbp2014/program.html


Another Direction: Helper Threading 

 Idea: Pre-compute the outcome of the branch with a 
separate, customized thread (i.e., a helper thread) 

 

 

 

 

 

 

 

 
 

 Chappell et al., “Difficult-Path Branch Prediction Using Subordinate 
Microthreads,” ISCA 2002. 

 Chappell et al., “Simultaneous Subordinate Microthreading,” ISCA 1999. 
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Branch Confidence Estimation 

 Idea: Estimate if the prediction is likely to be correct  

 i.e., estimate how “confident” you are in the prediction  
 

 Why? 

 Could be very useful in deciding how to speculate: 

 What predictor/PHT to choose/use 

 Whether to keep fetching on this path 

 Whether to switch to some other way of handling the branch, 
e.g. dual-path execution (eager execution) or dynamic 
predication  

 … 
 

 

 

 

 Jacobsen et al., “Assigning Confidence to Conditional Branch 
Predictions,” MICRO 1996. 
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How to Estimate Confidence 

 An example estimator: 

 Keep a record of correct/incorrect outcomes for the past N 
instances of the “branch” 

 Based on the correct/incorrect patterns, guess if the curent 
prediction will likely be correct/incorrect 

65 Jacobsen et al., “Assigning Confidence to Conditional Branch Predictions,” MICRO 1996. 



What to Do With Confidence Estimation? 

 An example application: Pipeline Gating  

66 

Manne et al., “Pipeline Gating: Speculation Control for Energy Reduction,” ISCA 1998. 



Issues in Fast & Wide Fetch 

Engines 
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I-Cache Line and Way Prediction 

 Problem: Complex branch prediction can take too long (many 
cycles) 

 Goal 

 Quickly generate (a reasonably accurate) next fetch address  

 Enable the fetch engine to run at high frequencies 

 Override the quick prediction with more sophisticated prediction 

 Idea: Get the predicted next cache line and way at the time 
you fetch the current cache line  

 

 Example Mechanism (e.g., Alpha 21264) 

 Each cache line tells which line/way to fetch next (prediction) 

 On a fill, line/way predictor points to next sequential line 

 On branch resolution, line/way predictor is updated 

 If line/way prediction is incorrect, one cycle is wasted 
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Alpha 21264 Line & Way Prediction 

69 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999. 



Alpha 21264 Line & Way Prediction 

70 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999. 



Issues in Wide Fetch Engines 

 Wide Fetch: Fetch multiple instructions per cycle 

 

 Superscalar 

 VLIW 

 SIMT (GPUs’ single-instruction multiple thread model) 

 

 Wide fetch engines suffer from the branch problem: 

 How do you feed the wide pipeline with useful instructions in a 
single cycle? 

 What if there is a taken branch in the “fetch packet”? 

 What is there are “multiple (taken) branches” in the “fetch 
packet”? 
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Fetching Multiple Instructions Per Cycle 

 Two problems 

 

1. Alignment of instructions in I-cache 

 What if there are not enough (N) instructions in the cache line 
to supply the fetch width? 

 

2. Fetch break: Branches present in the fetch block 

 Fetching sequential instructions in a single cycle is easy 

 What if there is a control flow instruction in the N instructions? 

 Problem: The direction of the branch is not known but we 
need to fetch more instructions 

 

 These can cause effective fetch width < peak fetch width 
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Wide Fetch Solutions: Alignment 

 Large cache blocks: Hope N instructions contained in the 
block 

 

 Split-line fetch: If address falls into second half of the 
cache block, fetch the first half of next cache block as well 

 Enabled by banking of the cache 

 Allows sequential fetch across cache blocks in one cycle 

 Intel Pentium and AMD K5 
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Split Line Fetch 
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Need alignment logic: 



Short Distance Predicted-Taken Branches 
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Techniques to Reduce Fetch Breaks 

 Compiler 

 Code reordering (basic block reordering) 

 Superblock 

 

 Hardware 

 Trace cache 

 

 Hardware/software cooperative 

 Block structured ISA 

 

 

76 



Basic Block Reordering 

 Not-taken control flow instructions not a problem: no fetch 
break: make the likely path the not-taken path 

 Idea: Convert taken branches to not-taken ones 

 i.e., reorder basic blocks (after profiling) 

 Basic block: code with a single entry and single exit point 

 

 

 

 

 

 

 Code Layout 1 leads to the fewest fetch breaks 
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Basic Block Reordering 

 Pettis and Hansen, “Profile Guided Code Positioning,” PLDI 
1990. 

 

 Advantages: 

+ Reduced fetch breaks (assuming profile behavior matches 
runtime behavior of branches) 

+ Increased I-cache hit rate 

+ Reduced page faults 

 

 Disadvantages: 

-- Dependent on compile-time profiling 

-- Does not help if branches are not biased 

-- Requires recompilation 
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Superblock 
 Idea: Combine frequently executed basic blocks such that they form a 

single-entry multiple exit larger block, which is likely executed as 
straight-line code 

 

+ Helps wide fetch 

+ Enables aggressive 

    compiler optimizations 

    and code reordering 

    within the superblock 

 

-- Increased code size 

-- Profile dependent 

-- Requires recompilation 

 
 Hwu et al. “The Superblock: An effective technique for VLIW  

     and superscalar compilation,” Journal of Supercomputing, 1993. 
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Superblock Formation (I) 
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Superblock Formation (II) 
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Superblock Code Optimization Example 
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opA: mul r1<-r2,3 

opC: mul r3<-r2,3 

opB: add r2<-r2,1 99 

1 

1 

Original Code 

opA: mul r1<-r2,3 

opC: mul r3<-r2,3 

opB: add r2<-r2,1 99 

1 

Code After Superblock Formation 

opC’: mul r3<-r2,3 

opA: mul r1<-r2,3 

opC: mov r3<-r1 

opB: add r2<-r2,1 99 

1 

Code After Common  

Subexpression Elimination 

opC’: mul r3<-r2,3 



Techniques to Reduce Fetch Breaks 

 Compiler 

 Code reordering (basic block reordering) 

 Superblock 

 

 Hardware 

 Trace cache 

 

 Hardware/software cooperative 

 Block structured ISA 
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Trace Cache: Basic Idea 

 A trace is a sequence of executed instructions. 

 It is specified by a start address and the branch outcomes 
of control transfer instructions. 

 Traces repeat: programs have frequently executed paths 

 Trace cache idea: Store the dynamic instruction sequence 
in the same physical location. 
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Reducing Fetch Breaks: Trace Cache 

 Dynamically determine the basic blocks that are executed consecutively 

 Trace: Consecutively executed basic blocks 

 Idea: Store consecutively-executed basic blocks in physically-contiguous 
internal storage (called trace cache) 

 

 

 

 Basic trace cache operation: 
 Fetch from consecutively-stored basic blocks (predict next trace or branches) 

 Verify the executed branch directions with the stored ones 

 If mismatch, flush the remaining portion of the trace 

 
 Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction 

Fetching,” MICRO 1996. 

 Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997. 
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Trace Cache: Example 
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An Example Trace Cache Based Processor  

 

 

 

 

 

 

 

 

 

 

 
 From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar 

Processors,” University of Michigan, 1999.  
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Multiple Branch Predictor 

 S. Patel, “Trace Cache Design for Wide Issue Superscalar Processors,” PhD 
Thesis, University of Michigan, 1999.  
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What Does A Trace Cache Line Store? 

 

 

 

 

 

 

 

 

 

 

 
 Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 

1997. 
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Trace Cache: Advantages/Disadvantages 

 

 

 

 

 

 
+ Reduces fetch breaks (assuming branches are biased) 

+ No need for decoding (instructions can be stored in decoded form) 

+ Can enable dynamic optimizations within a trace 

-- Requires hardware to form traces (more complexity)  called fill unit 

-- Results in duplication of the same basic blocks in the cache 

-- Can require the prediction of multiple branches per cycle 

 -- If multiple cached traces have the same start address 

 -- What if XYZ and XYT are both likely traces? 
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Intel Pentium 4 Trace Cache 

 A 12K-uop trace cache replaces the L1 I-cache 

 Trace cache stores decoded and cracked instructions 

 Micro-operations (uops): returns 6 uops every other cycle 

 x86 decoder can be simpler and slower 

 A. Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Organized 
Around Trace Segments Independent of Virtual Address Line", United States 
Patent No. 5,381,533, Jan 10, 1995  
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Required Readings for Next Lecture 
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 Required Reading Assignment: 
• Chapter 5 and Chapter 9 of Shen and Lipasti (SnL). 

 

 Recommended References: 
 

• Robert Tomasulo, “An Efficient Algorithm for Exploiting Multiple 
Arithmetic Units,” IBM Journal of Research and Development, 
11(1):25-33, January 1967. 
 

• Bo Zhang, “A Tomasulo's Algorithm Emulator,” February 1, 2013. 
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