740: Computer Architecture Introduction, Logistics, and Background Assignments

> Prof. Onur Mutlu Carnegie Mellon University Fall 2013

Agenda

Syllabus

- Course logistics, info, requirements
- Online nature of the course
- Introduction
- Background Videos and Lectures to Study

Non-Agenda

- Grading and Policies
- Details on Course Project
- Details on Paper Review Assignments
- Initial Assignments and Homeworks
- These are covered in separate videos.

Course Info: Who Are We?

- Instructor: Prof. Onur Mutlu
 - onur@cmu.edu
 - Office: CIC 4105
 - Office Hours: W 2:30-3:30pm (or by appointment)
 - http://www.ece.cmu.edu/~omutlu
 - PhD from UT-Austin, worked at Microsoft Research, Intel, AMD
 - Research interests:
 - Computer architecture, hardware/software interaction
 - Many-core systems
 - Memory and storage systems
 - Improving programmer productivity
 - Interconnection networks
 - Hardware/software interaction and co-design (PL, OS, Architecture)
 - Fault tolerance
 - Hardware security
 - Algorithms and architectures for genomics and embedded systems



Course Info: Who Are We?

- Teaching Assistants
 - Tyler Huberty
 - <u>thuberty@andrew.cmu.edu</u>
 - Brian Osbun
 - <u>bosbun@andrew.cmu.edu</u>
 - Hongyi Xin
 - hxin@andrew.cmu.edu

TBD

Where to Get Up-to-date Course Info?

- Website: <u>http://www.ece.cmu.edu/~ece740</u>
 - Syllabus and contact information
 - Links to videos and online education site
 - Lecture notes
 - Readings and link to review website
 - Project information
 - ...
- Blackboard: Linked from website
- Your email
- Email to us: <u>740-official@ece.cmu.edu</u>

This is a Hybrid Course

- Heavily online
- With in-person recitations and office hours

Lectures, Readings and Recitations

Lectures will be online

- Purpose: Learn the basics of a topic
- You are expected to watch them fully as assigned by the due date
- Videos and supplemental material will be linked from the website

Readings will be online

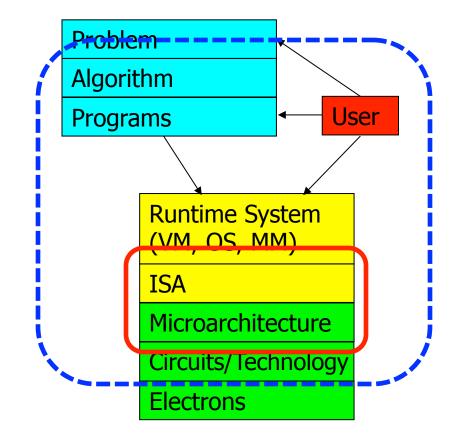
- Purpose: Enhance understanding beyond the lectures
- You are expected to do them before the due date (& enter reviews)

Recitations will be both in-person and online

- Purpose: Enhance understanding via deeper discussion
- During the specified times in the syllabus and course schedule
- We will announce recitation times and format weekly
- In-person recitations will be recorded and posted online

Office Hours

- Office hours will be both in-person and online
 - Purpose: Clarify unclear points, delve deeper
 - Locations and times will be posted

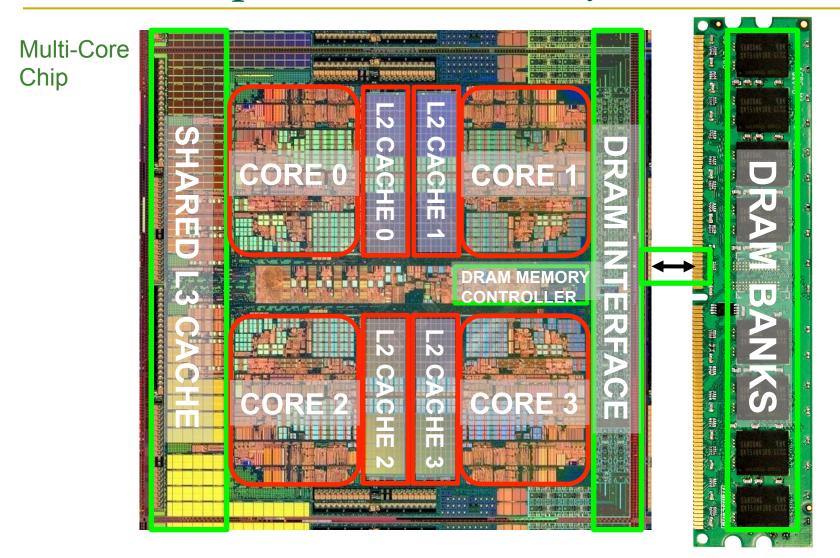

A Note

- Please provide us feedback with the online lectures and quality of the online environment
- If there are issues, we would like to know these early
- Especially true if you are remotely attending the class

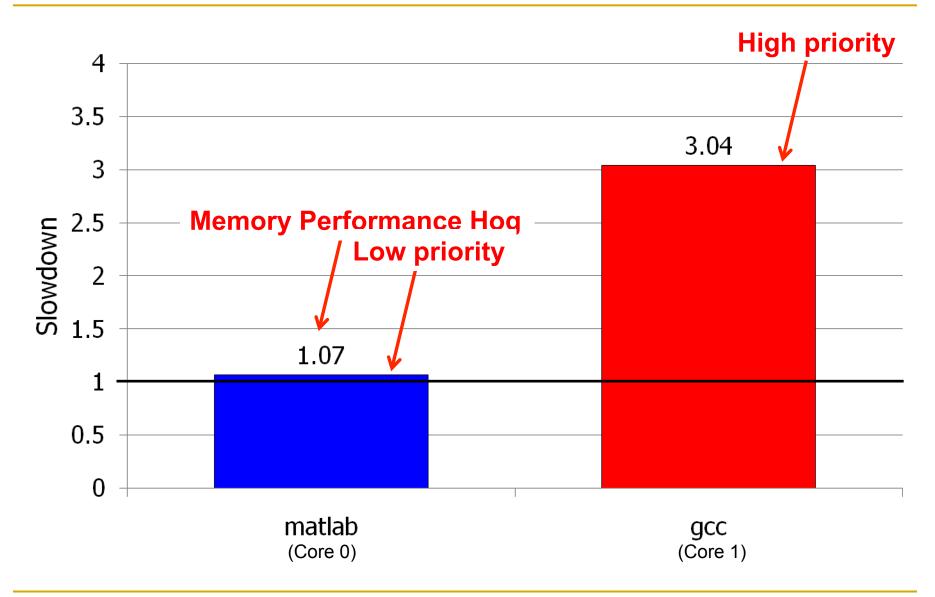
What Will You Learn?

- Computer Architecture: The science and art of designing, selecting, and interconnecting hardware components and designing the hardware/software interface to create a computing system that meets functional, performance, energy consumption, cost, and other specific goals.
- Traditional definition: "The term architecture is used here to describe the attributes of a system as seen by the programmer, i.e., the conceptual structure and functional behavior as distinct from the organization of the dataflow and controls, the logic design, and the physical implementation." *Gene Amdahl*, IBM Journal of R&D, April 1964

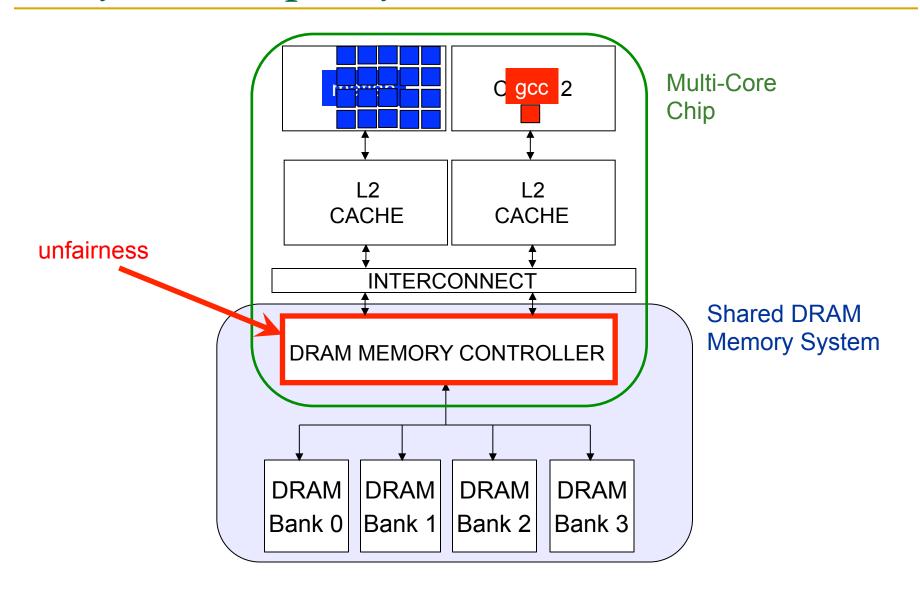
Levels of Transformation


What Will You Learn?

- Hardware/software interface, major components, and programming models of a modern microprocessor
 - □ State-of-the-art as well as research proposals
 - Tradeoffs and how to make them
 - Emphasis on cutting-edge research
- Hands-on research in a computer architecture topic
 - Semester-long project
 - How to design better architectures (not an intro course)


How to dig out information

- No textbook really required
- But, see the syllabus


An Example: Multi-Core Systems

Unexpected Slowdowns in Multi-Core

Why the Disparity in Slowdowns?

For More Information, Read

 Mutlu and Moscibroda, "Memory Performance Attacks: Denial of Memory Service in Multi-Core Systems", USENIX Security 2007.

Course Goals

- Goal 1: To familiarize computer architecture students and those interested in computer system design with both fundamental design tradeoffs and recent research issues/trends in processor, memory, and platform architectures in today's and future systems.
 - Strong emphasis on fundamentals and design tradeoffs.
- Goal 2: To provide the necessary background and experience to advance the state-of-the-art in computer architecture by performing cutting-edge research.
 - Strong emphasis on
 - Critically evaluating research papers (through literature review assignments)
 - Developing new mechanisms that advance the state of the art (through the course research project).

This is a Graduate-Level Class

- Required background:
 - basic architecture (18-447)
 - basic compilers
 - basic OS
 - programming skills
 - spirit, excitement, and dedication for deep exploration of a topic in computer architecture

What Do I Expect From You?

- Learn the material
 - And, research it \rightarrow find the original source of ideas
- Do the work & work hard

Ask questions, take notes, participate in discussion

- Read and review the assigned research papers & readings
 - Discuss/critique them online with peers and us
 - Write your critique/review online
- Start the research project early and focus on it
- If you want feedback, come to office hours

Recommended Background Videos and Lectures (I)

- All 447 lecture videos and notes are at:
 - http://www.youtube.com/playlist?
 list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
 - http://www.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
- Please watch as many as you can, to brush up on background material
- I would especially encourage everyone to watch:
 - □ Lecture 1: Basics of Computer Architecture
 - <u>http://www.youtube.com/watch?</u>
 <u>v=BJ87rZCGWU0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG</u>
 <u>6IJ&index=1</u>

Recommended Background Videos and Lectures (II)

Lectures 2-3: Fundamental Concepts and ISA, ISA Tradeoffs

- http://www.youtube.com/watch? v=BqJgYN6S6Qw&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=2
- http://www.youtube.com/watch? v=BqJgYN6S6Qw&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=3
- Lecture 8: Pipelining
 - <u>http://www.youtube.com/watch?</u>
 <u>v=5E_W7EeNs8U&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=8</u>
- Lecture 9: Data Dependence Handling
 - http://www.youtube.com/watch? v=Gpz1I47LfDo&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=9
- Lecture 10-11: Branch Prediction
 - http://www.youtube.com/watch? v=XkerLktFtJg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=11
- Lecture 16: Virtual Memory
 - <u>http://www.youtube.com/watch?v=ppPq-</u> <u>ntaAWU&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=16</u>

Recommended Background Videos and Lectures (II)

- Lecture 22: Memory Hierarchy
 - http://www.youtube.com/watch? v=JBdfZ5i21cs&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=22
- Lecture 23-24: Caches
 - http://www.youtube.com/watch? v=TpMdBrM1hVc&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=23
 - http://www.youtube.com/watch?v=TboaFbjTd-E&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=24
- Lecture 30B: Multiprocessors
 - http://www.youtube.com/watch? v=7ozCK_Mgxfk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=31

740: Computer Architecture Introduction, Logistics, and Background Assignments

> Prof. Onur Mutlu Carnegie Mellon University Fall 2013